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Creating Kinematics-dependent Pedestrian Crossing Willingness Model

When Interacting with Approaching Vehicle

Kai Tian1, Gustav Markkula1, Chongfeng Wei1 and Richard Romano1

Abstract— The interaction between automated vehicles (AVs)
and vulnerable road users is increasingly important since the
adoption of AVs is closer to reality. Particularly, the pedestrians’
crossing behaviour are extremely complex, and it is difficult for
AVs to predict pedestrians’ decisions and motion behaviour.
One of the important problems is how to characterize pedes-
trians crossing willingness (PCW), which is important for
AV systems. Currently, few models have been proposed to
characterize PCW. The most relevant models, pedestrian gap
acceptance models, are mostly pure statistical approaches which
are difficult to apply to a wide range of scenarios. In this
paper, to avoid these drawbacks, we developed a novel PCW
model by employing a continuously changing psychophysical
stimulus, looming, which characterizes the visual information of
approaching vehicles through the kinematics model of crossing
scenario. In addition, a perception threshold is introduced to
constrain the model. Results in this study showed that the PCW
model can accurately capture the effects of the vehicle speed,
distance and size on pedestrians’ behaviour pattern. It was also
found that pedestrians have maximum willingness to cross the
street when this stimulus is beyond the perception threshold. We
found that the model fit well with data collected from previous
gap acceptance studies.

I. INTRODUCTION

For over a decade, AVs have been expected to be the most

promising solution to protect vulnerable road users from traf-

fic accidents. However, as research continues, some critical

problems have emerged. How to interact with pedestrians is

one of the chanllenges that needs to be solved. As predicted,

there will be situations of mixed traffic with both pedestrians

and AVs on the road, giving rise to uncertainty about safety

in the near future [1]. Hence, the interaction process plays an

essential role in these problems. Before the wide adoption of

AVs, research on interaction between pedestrians and AVs is

required.

Generally, the studies on the interaction between pedes-

trians and vehicles in the case of pedestrian crossing can

be explored broadly as behavioural psychology research

and modelling research. For behavioural psychology stud-

ies, researchers investigated the social aspects of crossing

behaviour and identified various factors that affect the pedes-

trian’s decision-making process through questionnaires, field

tests or traffic videos. Those factors can be considered to

revolve around external and internal factors. External factors

include dynamic factors (e.g. gap size, time-to-collision

(TTC), vehicle distance, vehicle speed, etc.), traffic factors

(e.g. vehicle size, vehicle type, etc.) and environmental

1All authors are with Institute for Transport Studies, University of
Leeds, LS2 9JT Leeds, United Kingdom. Corresponding author: Kai Tian
tskt@leeds.ac.uk

factors (e.g. lane quantity, length of the lane, etc.) [2].

Internal factors consider humans’ individual characteristics,

including demographics (e.g. gender, age, etc.), social factors

(e.g. group size, social status, culture, etc.) and psychological

factors (e.g. temperament, etc.) [2]–[4]. For the research

on modelling pedestrian’s crossing behaviour, especially the

crossing willingness, to the best of the author’s knowledge,

very few studies proposed to solve this problem. Some

similar models which model pedestrians’ acceptance of the

available gap between vehicles were most relevant to this

topic. Gap-acceptance models intend to capture the critical

gap judgement of pedestrians, which can be defined as the

time gap that half of the people would accept and others

would reject [5], [6], in the interaction process. In the

following section, several common gap-acceptance models

will be introduced.

A number of models calculated the critical gap directly as

a constant, called fixed critical gap methods. For instance,

Raff’s method [7] defined the critical gap as the value where

the probability of accepted shorter gaps equals the probability

of longer gap rejection. Those methods were easy to perform,

but the obtained fixed rough approximations were difficult

to apply in practice. Second, different from the fixed critical

gap method, the maximum likelihood method supposed the

gap-acceptance data as a random variable obeying a certain

distribution [8]. Those models estimated the critical gap

by assuming that the pedestrian’s critical gap is between

their largest rejected gap and accepted gap. However, all

aforementioned methods have assumed that the pedestrians

are homogenous. In other words, most of the factors of

the pedestrian (e.g. gender, age, walking speed, etc.) were

considered to be the same, which led to a poor generalization

performance [8]. Since the crossing decision only has two

alternatives, it is suitable to use a binary logistic regression

(LR) model to deal with this problem [9], [10]. From Wang et

al.’s study [10], the LR model took into account factors such

as gap size, pedestrian number, age and gender to predict

crossing decisions. Recently, with the rapid development of

machine learning theory, artificial neural networks (ANN)

has proven to have an excellent ability to fit complex

non-linear relationships between multiple input features and

predictions. Kadali et al.’s ANN model involved 14 factors

to predict the behaviour of pedestrians [11].

Modelling interaction between pedestrians and vehicles

is, of course, very challenging. The gap acceptance mod-

els mentioned above attempted to predict the pedestrian’s

behaviour by using pure statistics methods. These models

ignored human perception processes, vehicle kinematics,
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Fig. 1. The model schematics and the variables of the unmarked crossing
scenario

lack of interpretability, and were not suitable for fine-

grained interaction research. For instance, when pedestrians

face a decelerating vehicle, the decision-making process is

no longer a simple binary choice model, so LR method

cannot deal with these situations. Moreover, since the ANN

model is poor interpretable, it is difficult to analyze the

individual effect of the single factor in the model. But recent

literature suggests some possible directions: a continuous

visual stimulus, looming, characterizes the information of

an approaching vehicle to observers based on the spatial

relationship between observers and vehicles [12]–[14]. The

model has been used to control a driver’s braking behaviour

[12]. Moreover, Markkula et al. used looming as evidence to

model the pedestrian crossing decision-making process and

obtained reasonable results [13].

According to the literature review and description above,

four main objectives of this paper will be pursued: (i) propose

a novel PCW model which includes a corrected looming

stimulus to characterize the pedestrian perceived visual infor-

mation of approaching vehicles; (ii) illustrate that this model

can qualitatively reproduce pedestrian crossing behaviour

patterns (i.e. speed effects, distance dependence, and vehicle

size effects) reported in the literature; (iii) illustrate this

model can quantitatively fit to pedestrian behaviour data from

previous study; (iv) illustrate that the potential applications

of the model to pedestrian and AVs interactions.

II. METHODOLOGY

A. Model Framework

Since pedestrians crossing the street from both sides are

similar, the following model only considers the situation with

a one-way lane. To simplify the model, there is only one

pedestrian interacting with one vehicle. As in Fig. 1, the

position of the pedestrian is set at the origin of the coordinate

axis. The vehicle is moving forward with speed v, while the

pedestrian stands at the curb and observes the state of the

vehicle. A set of variables constrain the spatial relationship

between pedestrian and car. W and L refer to the width and

length of the vehicle. S is the length of the diagonal of the

vehicle. Zk is the distance between the pedestrian and the

vehicle or object. θkp is the visual angle subtended by the

approaching vehicle. R is the lateral distance from the car

to the pedestrian. Ik is the length of the projection of the

v
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Fig. 2. The simple optic geometrics for looming [15]

vehicle in the direction of line of sight. The length of the

OA line and OC line are Dk and Bk. The value of ∠OAC

and ∠OCA are δk1 and δk2 . k are the time steps.

B. Looming Theory

Looming refers to the rapid expansion in the size of the

images on the observer’s retina. It is usually defined as the

changing rate of the visual angle subtended by the object or

the lead vehicle [16]. The basic optic geometrics of looming

is presented in Fig. 2(a). An axisymmetric spherical object

of width W approaches the observer’s eye with a constant

velocity v. The object subtends a visual angle θk and the

derivative of θk refers to looming θ̇k, which can be derived

from the following functions. For small values of θk:

θ̇k =
θk · v

Zk
(1)

where v = −Żk; θk ≃
W
Zk [16]

When humans hunt prey or avoid danger, their movements or

decisions need a precise spatial and temporal cue so that they

can judge the position and motion of the target, and looming

provides that kind of information. According to [16], [17],

the θ̇k is visual available and simple to calculate.

C. Making Looming Fit for the Crossing Scenario

In the original looming theory [16], [17], the target is

assumed to be an image which is symmetrical with respect

to the line of sight. Although this assumption reasonably

simplifies the model, it only works on a relatively small

class of objects. For instance, in the crossing scenario, the

moving vehicle is not an axisymmetric image, as in Fig.

1, so the original looming theory is not applicable to the

crossing scenario. The case of pedestrian crossing is more

likely an off-axis case, as in Fig. 2(b), where the object

deviates R to one side of the axis and bypasses the observer.

For more detailed information about the looming in the

off-axis situation, please refer to [15]. To fit the original



looming theory to the crossing scenario, we revised the

original looming θ̇k and proposed the θ̇kp approach. In Fig.

1, when a small car approaches the pedestrian, the actual

visual angle θkp would be subtended by Ik. It is easy to find

that the length Ik changes from W and L. To simplify the

model, the W is considered as the maximum width of the

vehicle front profile. Assuming W , L and R are given, we

had the following equations:

S =
√

W 2 + L2 (2)

Dk =
√

(Zk)2 + (R+W )2 (3)

Bk =
√

(Zk + L)2 +R2 (4)

δk1 = arctan(
Zk

R+W
) + arctan(

L

W
) (5)

After that, according to the sines rule and the cosines rule,

the actual visual angle θkp and the projection width Ik are

formulated as:

θkp = arcsin(
S · sin(δk1 )

Bk
) (6)

δk2 = arcsin(
Dk · sin(δk1 )

Bk
) (7)

Ik =
√

S2 + (Bk −Dk)2 − 2S(Bk −Dk) cos(δk2 ) (8)

Finally, taking the temporal derivative of θkp :

θ̇
k
p(Z

k
, v,W,L,R)=−F1(k)[F2(k)F5(k)

1

R+W
−F3(k)F7(k)]v

(9)
where

F1(k)=
1

√

1− F 2

6
(k)

;F2(k)=
S cos(δk1 )

Bk
;F3(k)=

S sin δk1
(Bk)2

;

F4(k)=
Zk

R+W
;F5(k)=

1

1 + F 2

4
(k)

;F6(k)=
S sin(δk1 )

Bk
;

F7(k)= [(Zk + L)2 +R
2]−1/2

· (Zk + L);

D. Capturing the Crossing Willingness of a Pedestrian

In the previous sections, we used the θ̇kp approach to repre-

sent the pedestrian’s sensory signals in the crossing scenario.

In this section, A PCW model is developed based on the

θ̇kp approach. Generally, the probability of gap acceptance is

modelled by the logit method [10]. Therefore, the probability

of gap rejection is defined by the following equation:

p =
e(βx+ω)

1 + e(βx+ω)
(10)

where x is the certain factor, β and ω are the coefficients

controlling the relationship between x and p. To connect

looming stimulus to crossing willingness, a proper model

should be selected. Tarko depicted the driver’s risk to speed

by form of vn, where n is a constant number within 2-4 [18].

Gupta et al. used 1/gap to describe pedestrian perceived-

risk towards the approaching vehicle [19]. Moreover, Zhuang

et al. characterized pedestrian perceived-risk by assuming

that risk is inversely proportional to the probability of gap

acceptance [20]. Based on this, we assume that the crossing

willingness is inversely proportional to the probability of

rejection. Therefore, the crossing willingness should have the

following form [20]:

PCW ∝
1

p
;
1

p
∝ e−(βx+ω)

→ PCW ∝ e−(βx+ω) (11)

Adding θ̇kp to (11), the PCW model is formulated as:

PCW(k) = e−(βθ̇k
p+ω) (12)

In (12), the coefficients β and ω are redefined as the

sensitivity coefficients, because the humans’ internal factors

(e.g. age, gender, temperament, etc.) would affect their

sensitivity to the stimuli from approaching vehicles [2]–[4].

It would be possible to use these coefficients to link the

PCW model to those internal factors. Based on this idea,

in the following section, the model will be improved and

simplified by another perception theory.

E. The Looming Threshold

Although humans have an advanced perceptual system, it

has been found that the capability of looming perception

could be limited. Hoffmann et al. proposed the looming

threshold theory, and found that the threshold value for adults

may be between 0.002-0.003 rad/s [21]. Hence, we applied

the threshold theory to the PCW model. Since pedestrians

cannot perceive looming when it is equal and below the

threshold, the crossing willingness should be maximum in

these situations. Therefore, when θ̇kp = θ̇thresh, e−(βθ̇k
p+ω)

should equal to one and the final formulation of the model

is:

PCW(k) =

{

e−β(θ̇k
p−θ̇thresh) θ̇kp > θ̇thresh

1 θ̇kp ≤ θ̇thresh
(13)

where θ̇thresh is the looming perception threshold. Usually,

θ̇thresh for the adults (excluding the elderly) is 0.003 rad/s

[21]. In (13), the unknown coefficients are reduced to one

(i.e. β), where the ω is replaced by the product of θ̇thresh
and β. In addition, several studies indicated that the threshold

theory can be connected to some space after period.For

instance, Hoffmann found TTC judgment performance is

strongly dependent on the age of the observers. He indicted

that the 5-6-year-old, 7-8-year-old, 9-10-year-old children

and adults have different thresholds, about 0.04, 0.04, 0.008
and 0.002 rad/s [21]. Recent work by Wann et al. also

showed that looming thresholds have strong developmental

trends in sensitivity [22]. Based on the current research, it

would be possible to make the PCW model suitable for

pedestrians of different ages by adjusting the thresholds.
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Fig. 3. The results of the numerical simulation experiments. The black dotted lines refer to the gaps between the pedestrian and the vehicle when
pedestrian observes the vehicle. (a) The looming values in the speed effects simulation;(b) The looming values in the distance dependence simulation; (c)
The looming values in the vehicle size effects simulation; (d) The results of the PCW model in the speed effects simulation; (e) The results of the PCW
model in the distance dependence simulation; (f) The results of the PCW model in the vehicle size effects simulation.

III. NUMERICAL SIMULATION

In this section, three numerical simulations were carried

out to analyze the PCW model. Based on distinct typical

pedestrian crossing scenarios, we used the model to interpret

pedestrian behaviour patterns (i.e. speed effects, distance

dependence, and vehicle size effects). In these simulations,

the risk sensitivity coefficient β and the looming threshold

θ̇thresh are selected appropriately and fixed. According to

the experience and references, β = 70 and θ̇thresh = 0.003
rad/s were selected. Other parameters are shown in Table.I.

A. The Effects of the Vehicle Speed

Assuming two vehicles of the same type were approaching

the pedestrian at the same distance, 60m, with different

speeds, 40km/h and 60km/h. The perceived θ̇kp and PCW are

shown in Fig. 3(a) and Fig. 3(d). Since the starting distance

is the same, the change rate of the visual angle subtended

by the vehicle with higher speed is bigger than the other

one. Therefore, the relatively bigger sensory stimulus would

increase the perceived-risk of pedestrian and inhibit PCW.

As in Fig. 3(d), pedestrians are more likely to cross when

facing a vehicle at slower speed. The results align with Oxley

et al.’s and Lobjois et al.’s studies [23], [24], where it was

shown that when the car came to 110m, the pedestrian’s

positive response to the vehicle at 40km/h was 100%, while

the positive response to the vehicle at 60km/s was about

95%.

B. The Phenomenon of the Distance Dependence

We use the same type of vehicles at different speeds.

Instead of assuming the same spatial gap, we set the two

vehicles approaching pedestrians at the equivalent temporal

gap (i.e. 4s). This situation was studied by many researchers,

and a pedestrian crossing behaviour pattern against common

sense was observed, called distance dependence [23]–[25],

i.e. at the same time gap, more pedestrians were willing

to cross the road when the vehicle approaches at a higher

speed. Since the time gap was the same, vehicles with

relatively higher speed have bigger spatial gap sizes. There-

fore, researchers proposed that, compared to the time gap

or the velocity, pedestrians rely on the distance to make

crossing decisions. However, in our work, we proposed an

alternative explanation. First, the mainstream perception the-

ories supposed that human perception systems use multiple

clues to make a judgement (e.g. external factors, built-in

functions or prior knowledge) [26]. Second, the PCW model

captured the so-called distance dependence phenomenon by

involving several cues (i.e. speed, distance, car size and

relative position). In Fig. 3(b), θ̇kp;60km/h is smaller than

θ̇kp;40km/h at 4s, which means the faster car has smaller

looming stimulus to the pedestrians. The results of the PCW

model show that pedestrian would be more likely to cross at

a higher speed condition, as in Fig. 3(e).

C. The Effects of the Vehicle Size

Assuming two different types of vehicles, I (size:1.8m×

4.8m) and II (size:2.2m × 6m), drive to the pedestrian at

the same speed, 60 km/h, from the same distance, 60m.

From previous studies, although the two conditions had the

same distance and time gap, different pedestrian behaviour

patterns were observed. In [27], there was a clearly positive



relationship between the accepted gap sizes and the length

of the vehicle. From the results of PCW model, as in Fig.

3(c) and Fig. 3(f), the pedestrian perceives a higher value of

looming at the vehicle II condition, θ̇kp;I(Z
k=60)=0.010<

θ̇kp;II(Z
k = 60) = 0.013. It can be interpreted as the bigger

car’s approaching risk is higher than the small car, so the

pedestrian would choose a longer gap size and not be willing

to cross the street, PCWI =0.603<PCWII =0.515.

Fig. 4. The data of the percentage of crossing acceptance in spatial gaps
for 20-30-year-old group [24].

IV. MODEL VALIDATION

To verify whether the PCW model can be used to analyze

the experimental data, the pedestrian crossing data collected

from Lobjois et al.’s work was used to calibrate the model

[24]. The experimental setup meets our requirements and the

fixed parameters used in the model are shown in Table. I. For

more data information, please refer to the reference [24]. In

this study, we adopted the acceptance probability of adults

aged 20-30 years. Since the PCW model has one free param-

eter, it would be easy to calibrate the model through a no-

linear least square estimation approach (NLLSE). Moreover,

a logistic regression (LR) method was used for comparison.

Figure 4 shows the discrete raw data, and the results of two

models are illustrated in Fig. 5. In Table. II, both the PCW

model and the LR method successfully fit the data with good

R2. The overall SSE of the PCW model is 0.041 and 0.091

for 40km/h and 60km/h. The RMSE of the PCW model

is 0.041 and 0.050 for different speed conditions. Although

the LR method can better fit the data within the distances

from 55 to 70m in Fig. 5(a) and from 30 to 70m in Fig.

5(b), it cannot reach zero value when the distance is small

enough. From the statistical point of view, we cannot be

certain that no one will cross the street at such a close

distance, but the actual data is that it is impossible for

any normal person to cross the street within such a small

distance, 10m-20m. The PCW model has more reasonable

results at this distance, because it generates the intensive

looming stimulus and extremely inhibits PCW. Moreover,

the spatial gap at which the PCW values reach the θ̇thresh is

in good agreement with the spatial gap of the raw data. That

is, the maximum willingness to cross the street is reached

when the pedestrian cannot perceive the looming. This may

thresh 0.003 =

85

(a) 40km/h

103

thresh 0.003 =

(b) 60km/h

Fig. 5. The fitting results of PCW method and logistic regression method
as the function of speed ((a) 40 km/h; (b) 60km/h) and spatial gap. The
black dotted lines refer to the spatial gap when looming reaches threshold.

TABLE I

THE LIST OF THE FIXED PARAMETERS USED IN THE SIMULATION AND

THE MODEL FITTING [24]

Fixed parameters L(m) W (m) R(m) θ̇thresh(rad/s) Zk(m) v(km/h) β

Simulation 4.8;6 1.8;2.2 3 0.003 0-120 40;60 70
Model fitting 4.42 1.72 2.09 0.003 10-135 40;60 -

imply that there exists a threshold in the human perception

system that prevents them from judging the movements of

the approaching objects from a long distance. This aligns

with aligns with the looming threshold theory. Overall, the

PCW model can fit the data as well as the LR method and

has more reasonable results in the maximum and minimum

willingness than the LR method.

V. CONCLUSION AND FUTURE WORK

In this study, we has modelled pedestrian crossing willing-

ness at an unmarked roadway. It used an interpretable way to

predict the willingness of pedestrians by employing looming

theory and a kinematics model. After that, a threshold theory

was introduced to constrain the model. Moreover, to verify

and calibrate the PCW model, the model was tested and

analyzed using numerical simulation and experimental data.

Compared with previous related models, the PCW model

has the following features. First, compared to the typical

gap acceptance models (e.g. LR), the PCW model based on

psychology theories is interpretable and has psychophysical



TABLE II

THE ESTIMATED COEFFICIENTS OF THE PCW MODEL AND THE

LOGISTIC REGRESSION MODEL

Speed(km/h) ω β SSE RMSE R2

PCW model
40 - 54.17 0.041 0.041 0.985
60 - 54.17 0.091 0.050 0.980

LR
40 -4.780 0.121 0.018 0.027 0.994
60 -4.759 0.093 0.014 0.019 0.997

significance rather than a black box. Secondly, the model

includes the kinematics of which vehicle and pedestrian,

which enables information to pass between them. Finally,

the PCW model is continuous in time, so it would be

possible to develop a real-time model. In practice, the

proposed model has two potential applications. First, since

the looming stimulus is an important evidence reflecting the

psychological state of pedestrians, it can be used to design

a more realistic pedestrian simulation model and improve

the driving or the traffic simulators. Secondly, As mentioned

above, the model can use the trajectory data of the vehicle to

calculate the crossing willingness of the pedestrian, so it has

the potential to improve the development of AVs’ decision-

making strategies or control systems.

Before adapting the PCW model to other studies, several

limitations still need to be addressed in the future.The

experimental data used to analyze the model are not enough.

For example, although the performance of the age 20-30

data seems good enough, the model might not work well

with older people or children. Because of the relatively poor

perceptual, cognitive, and motor abilities, their behaviour

patterns may be significantly different from the young adults.

Therefore, we need to use more data to calibrate the PCW

model to fit the behaviour patterns of different groups. In

addition, the scenario used in the model is too simplified, for

instance, it only considered interactions involving a vehicle

at constant speed. It is hoped that more detailed external

information could be included in our final model.
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