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A B S T R A C T

Increases in biological and non-biological pollutants pose a significant threat to environmental systems. In an
effort to develop an effective means to treat such pollutants, the use of Phaseolus vulgaris (kidney beans) as
reducing and capping agents is proposed for the green synthesis of highly stable silver nanoparticles (AgNPs)
with a face-centered cubic (fcc) crystalline structure (size range: 10–20 nm). The potent role of the resulting
AgNPs was found as triple platforms (photocatalyst, catalyst, and antimicrobial disinfectant). AgNPs were able to
photocatalytically degrade approximately 97% of reactive red-141 (RR-141) dye within 150 min of exposure
(quantum efficiency of 3.68 × 10-6 molecule.photon-1 and a removal reaction kinetic rate of 1.13 × 10-2 mmol
g−1 h−1). The role of specific reactive oxygen species (ROS) in the photocatalytic process and complete mi-
neralization of dye was also explored through scavenger and chemical oxygen demand (COD) experiments,
respectively. As an catalyst, AgNPs were also capable of reducing 4-nitrophenol to 4-aminophenol within
15 min. Overall, AgNPs showed excellent stability as catalyst and photocatalyst even after five test cycles. As an
antimicrobial agent, the AgNPs are effective against both gram-positive (Bacillus subtilis) and -negative bacteria
(Escherichia coli), with the zones of clearance as 15 and 18 mm, respectively. Thus, the results of this study
validate the triple role of AgNPs derived via green synthesis as a photocatalyst, catalyst, and antimicrobial agent
for effective environmental remediation.

1. Introduction

The continuous growth of global population coupled with in-
dustrialization and urbanization has brought rising demand for che-
micals, materials, and energy. The release of highly undesirable wastes
from numerous man-made sources into environment was inevitably
accompanied to lower the quality of environmental systems, of parti-
cular aquatic reservoirs (Ali et al., 2019). For example, azo dyes (e.g.,
Reactive Red 141 [RR-141]: Table 1), which contain two azo groups
and one sulfonic acid group, are identified as a major industrial effluent
contaminating freshwater bodies. The fixation rate of reactive dyes in
the dying process is highly inefficient, less than 50%; with 10% to 15%
of used azo dyes are thus released directly into the environment (Telke

et al., 2008). Similarly, chemicals such as 4-nitrophenol (4-NP) that are
increasingly used in the production of herbicides, insecticides, and
synthetic dyestuffs are regarded as an environmentally harmful sub-
stance (Chen et al., 2018; O’Connor and Young, 1989; Singh et al.,
2017; Trapido and Kallas, 2000).

Many conventional methods based on physical/chemical principles
are available to treat the contamination of dye. However, the practical
use of these methods is generally restricted as their applications are
associated with expensive chemicals and/or equipment, complex steps
and processes, and production of secondary pollutants (some of which
can be more toxic than the primary pollutants) (Nawaz and Ahsan,
2014; Singh and Arora, 2011). Advanced oxidation processes (AOP) are
often suggested as a proper means to address some of these limitations.
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In particular, nanoparticle (NP)-mediated processes based on genera-
tion of reactive oxygen species (ROS) in the presence of light (visible,
ultraviolet [UV], or both) are highly effective photocatalysts for dye
degradation (Ahmed et al., 2017; Baruah et al., 2018; Deng and Zhao,
2015; Trapido and Kallas, 2000; Vieira et al., 2018). However, many
NP-based photocatalysts only utilize a limited portion of the solar
spectrum. For example, TiO2 NPs are effective photocatalysts only
under UV irradiation. In contrast, silver nanoparticles (AgNPs) are re-
garded as a highly effective option for photocatalytic treatment as they
can accommodate both the UV and visible regions of the electro-
magnetic spectrum for actual operation (Leong et al., 2018). The utility
of AgNPs has further been recognized as catalytic media to treat 4-NP
(Mody et al., 2010; Sreekanth et al., 2016; Suchomel et al., 2018). In
addition, the utility of AgNP structures has been identified as effective
inhibitors for multiple microbial-resistant pathogens (Rolim et al.,
2019; Slavin et al., 2017; Wang et al., 2017). As such, AgNPs can be
employed based on diverse principles or multiple platforms (as photo-
catalyst, catalyst, and antimicrobial agent) to remove different types of
pollutants such as RR-141, 4-NP, and pathogenic bacteria from aquatic
environments, respectively.

Several physical and chemical methods have been explored for the
synthesis of AgNPs by employing organic and inorganic stabilizing/
capping agents (Reverberi et al., 2016; Van Dong et al., 2012; Wani
et al., 2011; Zhang et al., 2016). However, these approaches often use
noxious and expensive chemicals, involve complex and/or time-con-
suming processes, and may generate toxic wastes and by-products.
Therefore, the development of an environmentally friendly, renewable,
easy-to-implement, and cost-effective means of synthesizing AgNPs has
become one of the foremost demands in the field of environmental
remediation. AgNPs can be produced through a variety of green
synthesis routes if one can effectively utilize the biomolecules (e.g.,
proteins and vitamins) and phytochemicals (e.g., phenols and flavo-
noids) within plants (biomass) as natural reducing and capping agents
(Raveendran et al., 2003; Singh et al., 2018a; Yadi et al., 2018). This
eliminates the need for harmful and expensive chemicals in reduction of
metal salts and capping of NPs (as is the case in chemical reduction
methods).

Herein, a facile and inexpensive green synthesis method is proposed
to prepare highly stable AgNPs with the aid of Phaseolus vulgaris seed
extract. The produced AgNPs were then employed to investigate their
potential as environmental remediation agents (photocatalyst, catalyst
and antimicrobial). P. vulgaris seeds contain several essential vitamins,
proteins, minerals, flavonoids, phenolic compounds, and antioxidants
(e.g., lutein, zeaxanthin, and β-carotene) that play important roles in
the synthesis of AgNPs (Udani et al., 2018).

To date, only a few studies have been reported to address the utility
of P. vulgaris, in the synthesis of AgNPs (Deb, 2014; Khandelwal et al.,
2020; Paul et al., 2015). However, from almost none of them, the cat-
alytic/photocatalytic potential or stability of the synthesized AgNPs has
been assessed in detail at the same time. In this study, the potential of

AgNP as triple remediation platforms for photocatalyst, catalyst, and
disinfectant is assessed against RR-141, 4-NP, and Escherichia coli/Ba-

cillus subtilis bacteria, respectively. Furthermore, studies on the ROS and
chemical oxygen demand (COD) were also carried out to support the
verification of their remediation potential and recyclability/reusability.

2. Materials and methodology

2.1. Materials

P. Vulgaris seeds were purchased from a local market in Fatehgarh
Sahib, Punjab, India, and thoroughly rinsed with distilled water to re-
move dirt and debris. The bacteria E. coli (DH-5α) and B. subtilis were
procured from the Department of Biotechnology, SGGSWU, Punjab,
India. Silver nitrate (AgNO3), sodium hydroxide (NaOH), sodium bor-
ohydride (NaBH4), and 4-NP were purchased from Merck, Germany.
RR-141 was purchased from Parswanath Dye Stuff Industries,
Ahmedabad, India. All glassware was washed with aqua regia (1:3 vol
of concentrated HNO3/HCl) and then rinsed with deionized (DI) water
before use.

2.2. Methodology

2.2.1. Synthesis of AgNPs

A mixture of P. Vulgaris seeds (10 g) and distilled water (100 mL)
was heated at 80 °C for 1 h, followed by filtration. AgNPs were syn-
thesized by adding 1, 2, 3, and 4 mL of the resulting filtrate (extract)
into the AgNO3 solution (0.01 M, 50 mL) and stirred at a constant speed
(300 rpm) for 30 min. (The pH of the extract was maintained at 10
using buffer solution to ensure optimal outcomes (Singh et al., 2019)).
With time, the color of the solution changed from colorless to light
yellow and dark brown, indicative of the reduction of silver ions into
AgNPs.

2.2.2. Quantitation of AgNPs

The concentration of AgNPs was estimated from the concentration
of AgNO3 solution (0.01 M, 50 mL) using a procedure described by
Kalishwaralal et al. (2010) as follows:

Step 1: Average number of atoms per nanoparticle (N):
(It was assumed that 100% of the silver atoms were converted into

silver NPs.)

=N
πρD

M
N

6
A

3

where π = 3.14, ρ is the density of the face-centered cubic crystalline
(fcc) structure of silver (i.e., 10.5 g/cm3), D is the average diameter of
AgNPs (16 nm), M is the atomic mass of silver (107.86 g), and NA is the
number of atoms per mole (Avogadro’s number = 6.023 × 1023).

Therefore,

Table 1

Chemical and structural properties of the target dye studied in this work.

S/N Dye CAS registry number Molecularweight (Da) Structure

1. Reactivered-141(RR-141) 61931–52-0 1774.19
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=N 125683

Step 2: Molar concentration of AgNPs solution (C):

=C
N

NVN
T

A (2)

where NT is the total number of silver atoms, which is equal to the
molarity of silver nitrate (0.01 M) × atoms present in one mole
(6.023 × 1023), N is number of atoms per nanoparticle (calculated in
step 1), and V is the volume of solution (L).

By putting the value of N obtained from Step 1 into Eq. (2),

=
× ×

× × ×
C

0.01 6.023 10

125682.98 0.05 6.023 10

23

23 (3)

C = 1.59 × 10-6 M.L-1 = 1590 nM

2.2.3. Catalytic activity: Degradation of 4-NP

The addition of AgNPs (1590 nM) were made at three different
volumes (e.g., 10, 20, and 30 µL) to an aqueous solution made of 4-NP
(40 µL, 5 × 10-2 M), DI water (1.65 mL), and NaBH4 (200 µL, 2 × 10-1

M). The progress of the reaction was monitored by UV–vis spectroscopy
after every 3 mins until no further significant change takes place.

2.2.4. Photocatalytic activity: Degradation of RR-141

An aqueous solution of RR-141 (50 mL, 20 ppm) was allowed to
equilibrate at room temperature (in dark condition over 30 min).
Thereafter, the as synthesised AgNP (5 mg) was added and stirred

(magnetic stirrer, 200 rpm) for 20 min. The solution was then directly
exposed to sunlight. Following exposure, the AgNPs were separated
from the dye solution through centrifugation (at 10,000 rpm for
15 min), and the UV–Vis spectrum of the supernatant (2 mL) was re-
corded. The degradation efficiency (R) was estimated by equations (4)
(Gautam et al., 2016):

= − × = − ×R {(C C)/C } 100 {(A A)/A } 1000 0 0 0 (4)

where C0/C and A0/A represent the concentration and absorbance of
dyes, respectively, at time t = 0/t.

The quantum efficiency (QE) of the removal process was also cal-
culated by:

=QE
no ofdegradaeddyemolecules

no ofphotonsabsorbed

.

. (5)

2.2.5. Complete mineralization evaluation and reactive oxygen species

(ROS) assessment

The complete mineralization of the dye was determined by mon-
itoring the reduction in COD. For this purpose, 2 mL of test solution was
pipetted into the standard amount of potassium dichromate and kept at
150 °C for 2 h. Then, COD was estimated on COD meter (Bansal and
Sud, 2012).

A scavenger experiment was undertaken to investigate the ROS in
photocatalysis. In this regard, different quenchers (with concentration
0.5 mM) were used such as: (i) methanol for hydroxy radical (OH•), (ii)
p-benzoquinone (p-BQ) for superoxide radicals (O2

•), and (iii) ammo-
nium oxalate (AO) for holes (h+). (Mavaei et al., 2020; Suliman et al.,

Fig. 1. Optical study of AgNPs: (a) UV–visible spectra of AgNPs prepared using 1–4 mL P. vulgaris seed extracts, (b) FTIR spectrum of finally prepared AgNPs, (c) and
(d) the UV–visible absorbance and Zetasizer graph, respectively, of freshly prepared AgNPs and 3-month-old AgNPs.
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2019). After adding these scavengers with AgNPs, photoacatalytic ac-
tivity was monitored under the same reaction conditions described
above.

2.2.6. Assessment of antimicrobial activity

A conventional well-plate diffusion technique was used to evaluate
the antibacterial potential of the as-synthesized AgNPs. First, bacterial
cultures were grown in Luria broth (LB) overnight and then incubated
in LB at 37 °C. Subsequently, wells were punched in the LB plates. The
prepared AgNPs were then added into the wells at different volumes
(20, 40, 60, and 80 µL) and placed at 37 °C for one day.

2.2.7. Characterization of AgNPs

An optical study of synthesized AgNPs was undertaken using a
Shimadzu-UV 2600 spectrophotometer at wavelengths from 200 to
800 nm. The role of biomolecules in the extract and their interaction
with AgNPs were investigated by an Alpha Fourier-transform infrared

(FTIR) spectrophotometer (Bruker Corp.). The average particle size was
estimated by a particle-size analyzer (Malvern-ZEN-1690).
Morphological characteristics and accurate particle sizes were mea-
sured from high-resolution transmission electron microscope (HR-TEM;
Jeol JEM-2100) images. Similarly, the crystalline structure and inter-
planar d-spacing between lattice planes were estimated using selected
area electron diffraction (SAED). The quantitative stoichiometric con-
figuration of the prepared sample was determined by energy-dispersive
X-ray spectroscopy on an Oxford Instruments X-Max 51 –XMX0004.

3. Results and discussion

3.1. Characterization of synthesized AgNPs

Addition of the 1, 2, 3, and 4 mL of P. vulgaris seed extract to AgNO3

solution at room temperature changed the appearance of the solution
from colorless to pale yellow and finally to a dark brownish-red color.
The latter is indicative of the formation of AgNPs through the reduction
of Ag+ ions to Ag0 (Li et al., 2007) as also evidenced by UV–visible
spectroscopy (Fig. 1a). A sharp band between 420 and 430 nm was
observed to commensurate with surface plasmon excitations. At 2 mL of
extract, observations of a blue shift (at 422 nm) confirmed the narrow
size distribution of AgNPs (Jain and Mehata, 2017). It was suspected
that large amount of reductive phytoconstituents led to a rapid for-
mation of Ag NPs followed by their subsequent growth via Ostwald
reopening. Therefore, the size of NPs will increase over time to cause
red shift in UV spectrum (Shaik et al., 2018). In the present case, the

Fig. 2. Microscopic study: (a-b) HR-TEM micrographs of AgNPs (inset shows the particle size distribution curve and interplanar d-spacing, respectively); (c-d) SAED and
EDX pattern of AgNPs, which illustrate its crystal planes and elementary composition, respectively.

Table 2

Interplanar d-spacing and corresponding lattice planes calculated from SAED
patterns.

S/N 2R R[1/nm] R [nm] R [Å] Lattice plane

1. 8.17 4.08 0.24 2.44 (111)
2. 9.54 4.77 0.20 2.09 (200)
3. 13.54 6.77 0.14 1.47 (220)
4. 15.94 7.97 0.12 1.26 (311)

P. Rani, et al. Environment International 143 (2020) 105924
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2 mL volume of extract was treated as an optimal volume for the pre-
paration of AgNPs. Hence, AgNPs prepared through this route were
used for further characterization and degradation studies.

The functionality present on AgNP surfaces was investigated by
FTIR spectroscopy. Fig. 1(b) shows the FTIR spectrum of the as-syn-
thesised AgNPs. Strong absorption bands at 3590 (O-H str.), and
3070 cm−1 (C-H str.), 1670 cm−1 (C = O str.), and 1525 cm−1 (N-H
bend, Amide I) are indicative of organic or proteinaceous matter on the
surface of AgNPs. The proteinaceous matter acts to cap the AgNPs while
preventing agglomeration. (Jyoti et al., 2016; Huang et al., 2007). The
absorption bands at 816 and 630 cm−1 are attributed to the stretching
vibrations of AgNPs (Khan et al., 2013). The stability and longevity of
the AgNPs were assessed by recording their UV–vis spectrum after three
months storage (Fig. 1 d). A very minor decline in absorbance (without
any shift in the absorption band) of synthesized AgNPs was noted,
signifying the exceptional stability of AgNPs over extended periods.
Likewise, the average particle size (Fig. 1.d) showed a very minor in-
crease, i.e., Z-direction from 31.5 to 35.7 nm).

The size and morphology of the as-prepared AgNPs by P. vulgaris

seeds extract were determined by HR-TEM micrographs (Fig. 2). The
synthesized AgNPs exhibited a spherical morphology, ranging in size
from 10 to 20 nm (average size ~ 16 nm). As shown in Fig. 2(b), the
interplanar d-spacing between the lattice fringes was 0.235 nm, cor-
responding to the (111) lattice plane. The identification of a crystalline
structure was investigated by SAED analysis, as shown in Fig. 2(c). The
bright circles confirmed the polycrystalline nature of the AgNPs. From
the SAED pattern, the interplanar d-spacings were estimated to be 2.44,
2.09, 1.47, and 1.26 Å, corresponding to the (111), (200), (220), and

(311) lattice planes, respectively, as summarized in Table 2. These
results resemble the standard data of a crystal structure (JCPDS file no.
00–004-0783) to support the (fcc) crystal structure of our as-synthe-
sized AgNPs. The surface elemental composition of AgNPs (Fig. 2(d))
showed the predominance of Ag (74%) and O (26%) on mass basis.
(Note that only % elemental values of Ag and O was considered in
present case.) The presence of oxygen correlates well with FTIR data
(O-H str.) and our premise that organic molecules, e.g. proteinaceous
matter should be involved in capping of the AgNPs (Jyoti et al., 2016).

3.2. Catalytic activity of synthesized AgNPs

Due to the well-known catalytic properties of AgNPs, they are
considered effective catalysts for the degradation of harmful dyes. The
catalytic performance of synthesized AgNPs was analyzed by evaluating
the reduction and degradation of 4-NP and RR-141, respectively. These
performance parameters were evaluated by recording the time-depen-
dent UV–visible spectra of both molecules. In the reduction of 4-NP, a
sharp absorption band was evident at 315 nm (Fig. S1). After the ad-
dition of sodium borohydride and AgNPs into the reaction medium, 4-
NP is initially converted into its nitrophenolate intermediate (evidenced
at 400 nm) (Fig. S1), followed reduction to 4-aminophenol. This
change is reflected by the appearance of a new band in the UV–visible
spectrum at 296 nm (Kästner and Thünemann, 2016). As the reaction
proceeds, the intensity of the 400 nm peak decreases, whilst the in-
tensity of the 296 nm peak increase. The effect of amount of AgNPs on
the catalytic reaction was also investigated. As shown in Fig. 3(a-c), the
reduction of 4-NP was tested using three volumes (10, 20, and 30 µL) of

Fig. 3. Catalytic study: (a-c) UV–visible spectra illustrating AgNP (10, 20, and 30 µL)-mediated catalytic reduction of 4-NP to 4-AP and (d) kinetic study of catalytic
reduction.
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AgNP solution prepared at 535 nM. Accordingly, 20 µL of AgNPs
achieved the maximum reduction of 4-NP. With 20 µL of AgNPs,
complete degradation of 4-NP took 15 min. The results with 10 and
30 µL took comparatively longer 21 and 24 min, respectively. We
therefore concluded that 20 µL of AgNPs was optimal for the 4-NP
catalytic performances. This may be due to an increase in amounts of
catalyst and capping agents (phytoconstituents), which slowed the re-
action rate. As reported previously, the increasing the amount of plant
extract and capping agents reduced the reaction rate by slowing re-
structuration (involving redox reactions between reactants and cata-
lyst) on the surface of the catalyst (Bingwa and Meijboom, 2014; Niu
and Li, 2014). In a control sample, the reduction of 4-NP was negligible
in the absence of AgNPs (Fig. S2).

The kinetics of the catalytic reaction was determined by plotting a
graph of normalized concentration (Ct/C0) versus time. Fig. 3(d) shows
that the 4-NP reduction using AgNPs was well fit by a pseudo-first-order
rate equation. The apparent rate constant (K’

app) of 4-NP reduction was
estimated using a pseudo-first-order rate equation (Thawarkar et al.,

2018):

= −ln(C /C ) k . tt 0 app
,

(6)

where Ct and C0 are concentrations of the reactant (4-NP) at times t = t
and t = 0, respectively (Singh et al., 2018b). The K’

app value for 20 µL of
AgNPs was calculated to be 0.165 min−1 with correlation coefficient
(R2) of 0.935. It can thus be inferred that the catalytic reaction should
follow the pseudo first order kinetic rate. The kinetic rate of this re-
action was estimated to be 1.59 mmol g-1h−1. The high surface-to-vo-
lume ratio and active surface sites of AgNPs are speculated to reduce
the activation energy barrier between 4-NP and 4-AP. These properties
of AgNPs were reported to facilitate the catalytic conversion of 4-NP
into 4-AP at ultra-high speed (Zhao et al., 2015).

A proposed mechanism for 4-NP catalytic reduction is described in
Fig. 4. In the first step, the addition of sodium borohydride leads to
conversion of 4-NP to nitrophenolate ion. As there is a large potential
difference between acceptor (4-NP = 0.76 V) and donor molecules
(BH-

4 = 1.33 V), a large activation energy barrier is created. However,

Fig. 4. Schematic shows the proposed mechanism of 4-NP reduction by Phaseolus vulgaris-mediated AgNPs.

Table 3

Performance comparison of silver nanoparticles and their composites for catalytic reduction of 4-NP to 4-AP.

S/N Catalyst Synthesis method Concentration of 4-
nitrophenol(g/L)

Catalyst loading
(mg/mL)

Reaction time
(min)

Kinetic rate
(mmol/g/h)

References

1 Ag/PAN CFNs Hydrothermal 0.01 0.33 70 0.185 (Gao et al., 2016)
2 Ag-P(NIPAM-co-AAm) Precipitation

polymerization
0.008 23.90 25 — (Begum et al., 2016)

3 AgNP-enriched SiO2 Green (seed mediated) 0.06 0.25 26 — (Online and Lee, 2015)
4 CNC/CTAB/Ag

nanohybrid composite
Hydrolysis 0.01 — 20 — (An et al., 2016)

5 AgNPs Green (using curcumin) 0.18 21.6 20 0.186 (Verma et al., 2016)
6 AgNPs/PD/ PANFP Wet chemical 0.01 — 30 — (Lu et al., 2017)
7 AgNPs/polymer nanofiber Wet chemical 2.78 0.2 30 3.996 (Xiao et al., 2012)
8 AgNPs Green(leaves of C.

occidentalis)

0.02 0.1 30 0.003 (Gondwal and Joshi Nee
Pant, 2018)

9 Biogenic AgNPs Green (kidney beans) 0.69 0.0001 15 1.587 This study

P. Rani, et al. Environment International 143 (2020) 105924
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Fig. 5. Dye degradation study: (a) UV–vis graphs of Reactive Red 141 (RR-141) dye in a time bound study, (b) normalized absorbance of dye in dark and sunlight in
the presence and absence of catalyst, (c) kinetic study of dye degradation, and (d) dye removal efficiency with reaction time. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Schematic shows the mechanistic processes in AgNP-based photocatalytic degradation of Reactive Red 141 dye. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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AgNPs efficiently reduce the activation energy barrier (acting as elec-
tron reservoir (between donor and acceptor molecules) known as
electron relay effect) to convert 4-nitrophenolate ion into 4-amino-
phenol. Table 3 compares the performance of different catalytic systems
for reduction of 4-NP to 4-AP. Previous efforts employed silver-based
nanocomposites through complex chemical processes such as pre-
cipitation polymerization, hydrolysis, and hydrothermal synthesis. In
contrast, in the present study, a simpler and more environmentally
friendly system is developed for efficient reduction of 4-NP.

3.3. Photocatalytic performance of AgNPs

The photocatalytic degradation of RR-141 dye in the presence of
AgNPs was monitored by UV–vis spectroscopy (absorption bands at 534
and 332 nm, see Fig. 5(a)), Upon addition of AgNPs and exposure to
sunlight, the intensity of these absorption bands started to decrease, as
shown in Fig. 5(a). The average sunlight flux was estimated on the
pyranometer as 645 W/m2.

A control experiment with and without catalyst in dark and sunlight
environments was also performed to determine the effects of catalyst
and sunlight alone. In the absence of catalyst, a negligible decline in
RR-141 absorbance was observed in both the dark and sunlight.
Likewise, when the dye degradation experiment was conducted in the
dark in the presence of a catalyst, a minor decline in absorbance was
observed (Fig. 5(b and d)). These results suggest that the progress of
dye degradation should rely on both AgNPs and sunlight. A kinetic
study revealed the photocatalytic reaction to have a pseudo-first-order
relationship, with an apparent rate constant (k’app) and R2 of
0.02 min−1 and 0.941, respectively, as shown in Fig. 5(c). Nonetheless,
due to the high molecular weight (1774.19 g/mol), low diffusion rate,
and complex structure (two azo groups), RR-141 was not as easily de-
graded compared with the lab dyes (methylene blue: 319.85 g/mol;
Congo red: 696.66 g/mol) (Jagadale et al., 2012; Khataee and Kasiri,
2010; Muhd Julkapli et al., 2014). The dye degradation efficiency was
approximately 97% within 150 min. Moreover, the QE of the photo-
catalytic process was 3.68 × 10-6 molecule.photon-1, with a removal
rate of 3.66 × 1013 molecule.sec-1 and kinetic rate was estimated to be
1.13 × 10-2 mmol.g-1h−1.

The dye degradation mechanism by AgNPs is based on plasmon-
derived photocatalysis. One of the advantages of using AgNPs as pho-
tocatalysts is that they can utilize both the visible and UV regions of the
solar spectrum due to surface plasmon resonance and their inter-band
transition properties. The excitation of sp-band electrons of AgNPs in-
volves absorption of light in the visible region. The plasmon effect
produces heat energy or hot electrons, which interact with oxygen and

generate oxygen free radicals (e.g., O2
•). These energetic free radicals

are responsible for degradation of dye molecules. The holes generated
in the 5 sp band can enhance degradation performance by acquiring
electrons from dye molecules. Similarly, under UV radiation exposure
(from sunlight), inter-band transitions took place in the 4d orbital of the
AgNPs. This process generated highly energetic oxygen and hydroxy
radicals (O2

•, OH•), which degraded dye molecules. (Kale et al., 2014;
Kumar et al., 2013; Leong et al., 2018; Roy et al., 2015a, 2015b; Sumi
et al., 2017). The dye degradation mechanism is illustrated in Fig. 6.
Furthermore, a scavenger experiment was carried out to determine the
role of specific ROS species in the photocatalytic process. As seen in
Fig. 7(a), the photocatalytic activity was greatly affected and declined
relative to the control when p-BQ and methanol were present as sca-
vengers. Also, a minor decline was observed when AO was employed as
a scavenger. Therefore, it can be inferred that the superoxide (O2

•), and
hydroxyl (OH•) radicals are the dominant ROS species in the photo-
catalytic activity of AgNPs. In other words, the relative dominance of
ROS species in the photocatalytic process can be estimated as
O2

•>OH•>h+.
The complete mineralization was also estimated by evaluating the

reduction in COD as shown in Fig. 7(b). The complete mineralization of
dye took longer (e.g., 60 min) than photocatalytic degradation. This
might be due to the formation of some intermediate (uncoloured)
moieties that can intervene in the degradation process (Bansal and Sud,
2012).

To validate the efficacy of photocatalytic activity of AgNPs observed
in this work relative to the finding of other studies, all related data were
surveyed as described in Table 4. We also estimated the QE of all re-
levant studies. In most of previous studies on AgNPs with a variety of
forms (composites, core–shell, etc.), the efficiency of the photocatalytic
process was estimated under highly favorable conditions (e.g., use of
artificially intense light sources and lab dyes (highly degradable com-
ponent with low molecular weight and high diffusion rate)). In com-
parison, the present AgNPs system was demonstrated to have appreci-
able photocatalytic potency (as seen from QE values) without such
adjustment for favorable experimental conditions. It can thus be in-
ferred that the developed system can be employed to effectively destroy
hard-to-degrade reactive dyes.

The re-usability and recyclability of the as-synthesised AgNPs were
also tested for catalytic (reduction of 4-NP) and photocatalytic appli-
cations (degradation of RR-141) as shown in Fig. 8. The as-synthesised
AgNPs showed excellent recyclability and efficacy with up to 5 time re-
use. Only, a minor decline in catalytic and photocatalytic activity of
AgNPs was observed even after five runs.

Fig. 7. Photocatalytic processes: (a) Trapping of ROS using methanol, p-benzoquinone (p- BQ), ammonium oxalate (AO) for hydroxy radical (OH•) and superoxide
radicals (O2

•), and holes (h+) respectively, and (b) bar graph of COD reduction indicates the complete mineralization of dye.
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Table 4

Performance comparison of silver nanoparticles and their composites for degradation of various pollutant dyes.

S/N Catalyst Method of synthesis Dye Concentration of
dye(g/L)

Catalyst
loading(mg/
mL)

Light source/
irradiation/
wavelength (nm)

Reactiontime
(min)

Degradation
efficiency (%)

Kinetic rate
(mmol/g/h)

Quantum efficiency
(QE) (molecule
photon-1)

Ref.

1 Ag-SnO2 Sol-gel Methylene blue 0.006 1 Hg lamp/254 nm 120 90 — — (Ahmed et al., 2017)
2 Ag-TiO2 Electro-chemical Methyl orange 0.02 0.5 Hg lamp/365 nm 120 98.5 4.57 × 10-2 3.42 × 10-7 (Petica et al., 2019)
3 AgNPs Green using Parkia

speciosaleaf extract
Methylene blue 0.001 0.1 Sunlight 180 84 — — (Ravichandran et al.,

2019)
4 Ag-ZrO2 Solution phase reduction Sulfo-

rhodamine-B
0.001 1 UV tube light/

450 nm
240 66 2.48 × 10-3 1.01 × 10-7 (Chen et al., 2010)

5 Ag-TiO2 P25
hybrid

Dip coating Methyl orange 175.16 0.02 UV-C lamp/
253.7 nm

150 45 1.0 × 101 5.90 × 10-1 (Kodom et al., 2015)

6 AgNPs Green using Shorea robusta

extract
Rhodamine B 0.02 0.01 UV chamber/

*365 nm
120 77.4 1.04 × 10-4 3.35 × 10-6 (Shaikh et al., 2019)

7 AgNPs Green using Z. armatum leaf
extract

Methylene blue 0.01 0.1 — 1,440 — — — (Jyoti and Singh, 2016)
Safranine O 0.0.01 0.1 1,440 — —

8 Ag- Halloysite Chemical reduction Rhodamine B 0.02 — UV lamp/*365 nm 120 — — — (Fatimah and Herianto,
2018)

9 Ag-Ni
bimetallic NPs

Green using zinger extract Saffranin O 0.01 0.2 Hg lamp/*365 nm 25 62.5 3.48 × 10-1 1.32 × 10-6 (Mohan and Devan,
2019)

10 AgNPs Green using potato Methyl orange 0.01 1 Sunlight 480 75 — — (Roy et al., 2015c)
11 AgNPs Green using Psidium guajava

leaves
Methyl orange 0.01 0.4 UV light tubes/

450 nm
600 ~ 60 — — (Wang et al., 2018)

CBB G 250 0.01 0.4 300 ~ 70 — —

12 AgNPs Green using Cordia

dichotomaleaf extract
Methylene blue 0.01 0.5 Sunlight 360 — — — (Kumari et al., n.d.)

13 ZnO/Ag nano-
flower

Surfactant-mediated Methylene blue 0.015 2.5 Tungsten lamp/
365 nm

120 40 1.99 × 10-3 6.04 × 10-8 (Fageria et al., 2014)

14 Au-Ag core
shell NPs

Green using eggshell Methyl violet
6B

3.93 0.05 Sunlight 150 97.6 — — (Sinha and
Ahmaruzzaman, 2015)

15 AgNPs Green using coconut tree Azo dye — — Sunlight 240 — — — (Mariselvam et al.,
2016)

16 Ag-TiO2 Hydro-thermal gel Methyl orange 0.02 1 Hg lamp/365 nm 180 79.4 1.90 × 10-2 6.89 × 10-6 (Zhang et al., 2018)
17 AgNPs Chemical reduction Methylene blue 0.05 1 UV lamp/365 nm 240 28 3.91 × 10-2 2.49 × 10-6 (Khanna and More,

2018)
18 Ag-TiO2 Green using Azadirachta indica

leaves
Rhodamine B 0.1 2 UV light/*365 nm 120 90 — — (Saeed et al., 2019)

19 Ag-ZnO Precipitation–thermal
decomposition method

Reactive red
120

— — Sunlight 30 — — 6.9 × 10-3 (Subash et al., 2013)
Zr co-doped Ag-
ZnO

— — 2.3 × 10-2

20 Ag-ZnO/RGO Hydrothermal method Reactive black
5

0.01 0.66 Hg lamp/*365 nm 200 ~88 4.59 × 10-3 3.34 × 10-6 (Raj Pant et al., 2013)
Ag-ZnO ~70 4.59 × 10-3 2.66 × 10-6

21 Ag doped (LI)-
CSTiO2

Chemical Reactive blue
220

0.05 1 UV lamp/365 nm 240 ~ 32 2.0 × 10-3 1.67 × 10-6 (Khanna and Shetty,
2014)

Ag doped (PD)-
CSTiO2

~ 40 2.0 × 10-3 2.02 × 10-6

Ag doped-
SGTiO2

~ 68 2.0 × 10-3 3.44 × 10-6

Ag@TiO2 core
shell

Chemical Reactive blue
220

0.05 0.5 Sunlight 60 99 1.6 × 10-2 —

0.05 1 UV lamp/365 nm 240 98.9 2.0 × 10-3 5.0 × 10-6

22 Ag-colemanite
ore

Chemical Reactive
yellow 86

1 1 UV–Vis lamp/
250 nm

110 97.7 9.32 × 10-1 1.49 × 10-5 (Yola et al., 2013)

Reactive red 2 1 1 110 95.2 9.03 × 10-1 1.41 × 10-5

23 Ag-TiO2

biotemplate
Enzyme mediated Reactive black

b
0.1 1 Sunlight 80 92 7.76 × 10-2 — (Gunasekar et al.,

2013)
24 AgNPs Green using palm shell Reactive red

141
0.1 0.16 — 210 — — — (Vanaamudan et al.,

2016)

(continued on next page)
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3.4. Antibacterial performance of AgNPs

The antibacterial properties of synthesized AgNPs were investigated
against two types of bacteria: E. coli (gram-negative) and B. subtilis

(gram-positive). Different volumes of AgNPs were poured into cultured
E. coli and B. subtilis plates by the disk-diffusion method, as presented in
Fig. 9 (a and c). Agar plates b and d were designed as controls for E. coli
and B. subtilis, respectively, by adding water, AgNO3, and P. vulgaris

extract to the three wells. The four wells in the plate were filled with 20,
40, 60, and 80 µL suspension of AgNPs and labelled as 1, 2, 3, and 4,
respectively, in the a and c agar plates.

Different zones of clearance were observed in all the AgNP-treated
wells, while no such zones were observed in control plates. The zone of
clearance revealed a linear increment in the volume of AgNPs (Fig. 9
and Table 5). It was observed that the synthesized AgNPs showed
higher antimicrobial activity towards gram-negative bacteria. This
difference may be explained from a number of respects. Firstly, differ-
ences in cell wall construction should be considered between the two
types of bacteria. As gram-positive bacteria have a thicker cell wall to
contain peptidoglycan proteins, they can render resistance to AgNPs
relative to the gram-negative bacteria with thinner cell wall. Secondly,
it should be noted that the cell wall of gram-positive bacteria is nega-
tively charged. As they can attract silver ions to the surface, it is pos-
sible to suppress their amount reaching the plasma membrane (Peiris
et al., 2018). Antimicrobial screening analysis confirmed that the bio-
genic AgNPs possess efficient antimicrobial potential against E. coli and
B. subtilis bacteria. It is suggested that, due to the small size and large
intake of AgNPs by bacteria, the AgNPs demonstrated enhanced toxicity
toward bacterial strains (Dakshayani et al., 2019; Pirtarighat et al.,
2019). The main reason for high antimicrobial activity of AgNPs is
production of ROS, which is suspected to be the main factor in bacterial
cell death (Lee et al., 2019), along with formation of Ag+ (Al-Sharqi
et al., 2019). Earlier studies on AgNP antimicrobial activity suggested
that these NPs should attack bacterial cells through oxidative stress,
DNA damage, protein denaturation, and rupture of the cell transport
membrane (Roy et al., 2019). Multiple antimicrobial mechanisms of
AgNPs are described in Fig. 10. (Behravan et al., 2019). AgNPs syn-
thesized in an environmentally friendly manner are associated with
more effective antimicrobial activity due to the presence of biomole-
cules compared with commercially available or chemically synthesized
NPs (Bagherzade et al., 2017).

4. Conclusions

In this research, a highly stable AgNPs were prepared through anT
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Fig. 8. Reusability test: Degradation efficiency of 4-NP and RR-141 using
AgNPs after various test cycles.
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environmentally friendly and cost-effective green synthesis approach
using P. vulgaris seed extract as capping and reducing agent. The triple
role (as catalyst, photocatalyst, and antimicrobial agent) of the pro-
duced AgNPs was demonstrated based on their efficacy toward the re-
duction of each selected target such as 4-NP to 4-AP, RR-141, and both
gram-positive/-negative bacteria (Escherichia coli (achieving an 18 mm
maximum zone of clearance) and Bacillus subtilis (15 mm maximum
zone of clearance)), respectively. Moreover, the as-synthesised AgNPs
recorded remarkable stability after various test cycles for catalyst/
photocatalyst. This work fosters the possible development of a three-in-
one platform for the environmental remediation of waste water sys-
tems.

Fig. 9. Left side: Agar plates showing diameters of zones of clearance of Escherichia coli and Bacillus subtilis treatment with AgNPs (a, c) and with control (b, d),
respectively. Right side: Histogram shows that antimicrobial activity of the AgNPs increased linearly with increase in volume of NPs (Blue: Escherichia coli; Brown:

Bacillus subtilis). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5

Zone of clearance with respect to amount of AgNPs.

S/N Amount of AgNPs (µL) Zone of clearance (mm)
Escherichia coli Bacillus subtilis

1. 20 12 12.2
2. 40 13.1 13.5
3. 60 15 14.5
4. 80 18 15

Fig. 10. Schematic shows the multiple antimicrobial mechanism of AgNPs.
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