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Abstract

The Moving Finite Element method for the solution of time-dependent partial differential
equations is a numerical solution scheme which allows the automatic adaption of the finite element
approximation space with time. An analysis of how this method models the steady solutions of
a general class of parabolic linear source equations is presented. It is shown that under certain
conditions the steady solutions of the Moving Finite Element problem can correspond to best free
knot spline approximations to the true steady solution of the differential equation when using
the natural norm associated with the problem. Hence a quantitative measure of the advantages
of the Moving Finite Element method over the usual fixed grid Galerkin method is produced for
these equations. A number of numerical examples are included to illustrate these results.

1 Introduction

The Moving Finite Element (MFE) method for the solution of time-dependent partial differential
equations was first introduced by Miller et al ([9], [21], and [22]) in 1981. It is a finite element
method in which a spatial mesh with a constant number of degrees of freedom is allowed to deform
continuously in time. Unlike in [11], [19] or [26] for example, this is achieved without tying the node
positions to individually tracked solution properties such as characteristic speeds or the motions
of internal boundaries. Instead these positions are treated as unknown time-dependent variables
which, just like the conventional finite element degrees of freedom, must be evaluated as part of the
solution procedure. This procedure is designed to simultaneously determine at each time both a
suitable spatial mesh and an approximation to the solution on that mesh.

This paper considers the application of the MFE method to the solution of the following family
of linear second order evolution equations:

@(Lt) = _i[pw,(g)_a—u(g,t)] —q(z)u(z,t) +r(z), Vee QC R and t € (0,7]. (1.1)
ot oz, oz,

Here d may be any positive integer (but is typically 1,2 or 3), 7" > 0 and the usual summation
convention (summing from 1 to d) applies over the repeated suffices p and v. Also we assume that
the matrix P(z), whose entries are p,,(z), is symmetric and positive definite and that

each p,, € CH*(Q), ¢, €CP(Q) and ¢>0 Vz € Q,



for some exponent o of Holder continuity in (0,1). This set of assumptions is sufficient to ensure
that the equation (1.1) is well-defined and, provided it is solved subject to suitable conditions on an
appropriate boundary 99 (satisfying an exterior ball condition say), has a unique classical steady
solution (as described in [10, section 6.3] for example).

For the theoretical part of this paper we restrict our consideration to the particular case of
homogeneous Dirichlet conditions throughout € in order to keep the theory as clear as possible.
This can easily be extended however and in [14] a wider variety of possible boundary conditions are
discussed in some detail. We also assume for simplicity that the initial solution u(z,0) satisfies the
applied boundary conditions and is everywhere twice differentiable.

The main result of this paper shows that when the Moving Finite Element method is used to solve
(1.1), if it tends to a steady solution then this solution corresponds to a locally best approximation
of the true steady solution of the p.d.e. from the space of all possible free knot linear splines. That
is, in a particular norm, the error in the approximation to the true steady solution by the steady
MFE solution is at a local minimum in the manifold of free knot linear splines. Such a result was
suspected by Miller in one of his original papers on the MFE method ([22]) and it is proved here
using a style and framework more akin to that of Delfour et alin [6] than that used by Miller.

An alternative way of expressing the result is to say that successful use of the Moving Finite
Element method is as good, in terms of approximating the steady solution, as using the fixed grid
Galerkin method on a best possible choice of spatial mesh. This is significant because it is one
of the few analytical results about the Moving Finite Element method that is able to quantify its
advantages over the fixed grid Galerkin method for this type of parabolic equation. One of the only
other published results of this type is the slightly weaker result of Dupont [8], who proves that for a
certain class of parabolic equations with smooth solutions the Moving Finite Element method, under
the influence of sufficiently strong penalty functions of the type used by Miller [22], is asymptotically
no worse than a fixed-grid method.

Although it is necessary to restrict the theory in this paper to the particular case of equations of
the form (1.1) the MFE method may of course be applied to a much larger variety of problems. It
is expected that any insight that it is possible to gain by looking at straightforward linear equations
such as (1.1) will be of use when attempting to understand and analyze harder problems.

The following section of the paper briefly introduces the Moving Finite Element method and
derives the governing equations when it is applied to (1.1). Only sufficient details to establish
enough background and notation for the rest of the paper are included. Further details of the
procedure and its implementation can be found elsewhere: in [1], [9] or [27] for example. Section 3
contains the bulk of the theory in which the result outlined above is derived and discussed, then in
section 4 a number of numerical examples are given in order to verify the theoretical results and put
them in a computational context. The paper ends with a short discussion.

2 The Moving Finite Element Method

In this section we give a brief outline of the Moving Finite Element method and how it can be
applied to the solution of equation (1.1) with homogeneous Dirichlet boundary conditions on 9€2.
For clarity these simple boundary conditions are considered throughout this paper: see [14] for a
discussion of more general boundary conditions.

In order to proceed it will be helpful to introduce some notation. In the first instance we will
agssume that the spatial domain Q is fixed for all time and is such that its boundary 0 can be
covered exactly by simplexes of dimension d — 1. In the case d = 2 this means that the domain
boundary is polygonal. Given this, it is possible to discretize ) into a set of non-overlapping
simplexes of dimension d (triangles when d = 2). This discretization can be uniquely specified as a



mesh M = (s,C). Here
8= (81,1 SN, SN 415 SN+ B) (2.1)

is an ordered set of the position vectors of the vertices of the d-dimensional triangulation and C is a
list of all of its edges. In (2.1) the vertices or knot points are ordered such that there are N vertices
strictly inside Q followed by a further B vertices on 01).

The Moving Finite Element method seeks to approximate u(z,t), the solution of (1.1), by a
time-dependent piecewise linear function, v say, defined on a mesh of simplexes M(t) = (s(¢),C)
covering the spatial domain €. Unlike in the conventional Galerkin method, this mesh is allowed to
deform smoothly in time by allowing the positions of the internal knot points, s;(?), ..., sy(t), to be
time-dependent. Their connectivity C remains fixed however.

Because C is kept fixed throughout we will generally refer to a mesh M(¢) = (s(¢),C) only by
the ordered set s(¢) for notational convenience. Note that a mesh is only a valid finite element
triangulation if the position of the knot points for a given connectivity is such that the measure
of each simplex within the mesh is strictly positive. Given that this is the case we can write our

approximation v in the form
N

o(z,1) =) ai(Dai(z, s(1)) , (2.2)

=1

where o; is the usual continuous piecewise linear “hat” basis function on the mesh s(t):
a;(s;(t),s(t)) = b , i=1,..,.N; j=1,..N+B.

The sum only goes from 1 to N because of the homogeneous Dirichlet boundary conditions on 0f2.

In order to determine this approximation to u(z,¢) we need to find values for the unknowns
ay(t),s1(1),...,an(t), sy(t). The Moving Finite Element method does this by producing a weak form
of (1.1) for Which the trial solution v takes the form of (2.2) and the test space is the space in which
the function 2 5; lies at each instant in time. In order to determine this space we differentiate (2.2)
with respect to time to give

9 oY
a—?; = O_Z a(z,s(1))
N
= Zaal—l—ZaV ;- , (2.3)

where this second term is present due to the time-dependence of each «a; through the time-dependence
of the mesh s, and the gradient operator V, applies to the s variables only. Hence

v N ds
- = ’Z. ; VS .=
ot ;a %+ XY dt
N N
= Y @i+ Y5
i=1 i=1
N
=1
where §. = % = (53?9—”1’ s 8852 )T and the dot above a variable denotes differentiation with respect
to time. In fact it can be shown (see [15] or [20] for example) that
J J
8. = —v = —a; Vv, and hence  §; = —ai_—v fort=1,..,d. (2.5)



Hence in order to minimize the p.d.e. residual over all possible choices of % the Moving Finite
Element method takes a weak form of (1.1) for which the test space is the space spanned by the
functions

{a1, Bty s Brd; +ene- N, BN1, s BNd) -

The most straightforward weak form of this type is the simple generalization of the Galerkin method
given formally by the differential system

N . .
. . 0 ov
< ;(aiai + S; ﬁ),a] >= a[p;“,%],aj > —<qv-—r, Q; > (26)
and
N . 0 ov
< E(aiai + 8 ﬁz)vﬁ]m >=< a—[p;wa—]vﬁjm > —=<qv— T7ﬁjm > (27)
=1 Ty Ty

for the unknowns a;(t),s;(%),...,an(t),sy(t), with j = 1,..., N and m = 1,...,d. In the above
notation < -,- > represents the usual L? inner product on  and summation is again implied over
the repeated suffices p and v (as will be the case throughout this paper).

It should be noted at this point however that the second of these sets of equations is not properly
defined for a piecewise linear function v(z,?), even in a distributional sense. To overcome this
difficulty it is necessary to express these equations in a formally equivalent form which is well-
defined for such functions ». This can be achieved by applying the following integration by parts
argument, similar to that in [23], to the first term on the right-hand-side of (2.7):

<i[p ﬁ] _ala_'v> ~ <y dv o d*v da; 0Ov (2.8)
oz, "oz, oz, "oz, 7 0r,0v, Oz, 0, '
L [81) 0 (8v)+ ov 0 (8v)]>
2 TR 0y, Oxy, Oy dz, 0y, Oy,
+<p ﬁ % dv >
"o, 0z, 0z,
(using the symmetry p,, = py,)
= 1<a< i(a—va—v)>+< Ov_Ov aaj>
2 fp“”’axm dz,, Oz, oz, (?xl,’pw(?x“
1 0 v dv v Ov da; > (2.9)

DRI S LY ek el kvl

The last line of this expression is defined for piecewise linear functions v and so can be used in the
definition of the Moving Finite Element equations (derived from (2.6) and (2.7)):

§:< >’+§:2d:<ﬁ > $ < 0v aOéj> < > (2.10)
g, ay a; iy Qg Sig = — Va2 a - v=T, 05 .
i=1 ! i=1 /=1 o ‘ P dwy” Oz ! ’
and
N N d . . p
. . 1 dv dv 0
< Q4 Pjm > a4 <Pity Pjm > S0 = —5 < g5 73 (ADuw) >
dv Ov da;
< s Puv > — < qv—r,8;m >(2.11
+ 0z, 0z, Pu oz, qv = r.5; ( )
for j =1,..., N and m = 1,...,d. Note that our use of homogeneous Dirichlet boundary conditions

here has again simplified things by ensuring that there are no boundary integrals present in these



equations. Also, some authors prefer to derive these equations in a slightly different manner, using
mollification ([21],[22]) or recovery methods ([16],[7]) to deal with the second order terms. (It is
important to realize that the mollification approach of Miller and the above intergration by parts
approach are themselves intrinsicly related, see [2] for example, where the issue of second order terms
is considered in detail.)

As has already been implied, the sets of equations (2.10) and (2.11) are referred to as the
Moving Finite Element equations. They form a system of ordinary differential equations which may
be written in the form

AWy =9y (2.12)
where
y= (0175117---731d; ------ §aN75N17---75Nd)T7
a = (Oél,ﬁll,...,ﬁld; ...... ;OéN,ﬁNl,...,ﬂNd)T,

A=< a,a’ >

and ¢ is the vector of right-hand-sides. The matrix A(y) is often called the “MFE mass matrix” by
anal(;gy with the usual Galerkin mass matrix. B

It should be noted that even though (1.1) is linear, the Moving Finite Element semi-discretization
yields a nonlinear system of differential equations. Also, although the matrix A can be shown to be
positive semi-definite, it may become singular for certain values of the solution parameters y. This
occurs when the elements of the ordered set a, defined above, form a linearly dependent set. This
can be shown to be happen if and only if the MFE solution » has a directional derivative which is
continuous at one or more of the knot points sy, ..., s5 ([28]). If this is the case (2.12) becomes a
differential-algebraic system and the problem is said to be “degenerate”. When this is not the case
we will refer to the MFE solution as being “non-degenerate” and we note that for such solutions the
MFE mass matrix, A(y), is strictly positive definite.

The problem of degeneracy along with the possibility of the measure of one or more of the
simplexes in the mesh becoming non-positive as the knot points evolve are often cited as two of the
major drawbacks of the MFE method. One approach to overcoming these difficulties is to attempt
to influence the nodal motion by using penalty functions in the underlying minimization to which
equations (2.10) and (2.11) correspond. This is the approach of Miller at al ([9], [21], [22]) and
Mueller and Carey [24] for example. However, the work of Baines et al ([1], [3], [4], [16], [28]),
mainly, but not exclusively, for hyperbolic PDE’s, suggests that the use of these awkward-to-handle
penalty functions may not always be necessary. Computational experience of the author ([13]) also
suggests that this is the case for certain problems, such as those being considered here.

In the next section we consider the MFE equations (2.10) and (2.11), or (2.12), in more detail.
In particular, we investigate their steady solutions and compare them with steady solutions of the
continuous equation (1.1).

3 Steady Solutions of the Moving Finite Element Equations

As mentioned in section 1, an important property of (1.1) is that with suitable boundary
conditions on 99 (including the homogeneous Dirichlet conditions being considered here) it always
possesses a unique steady solution, U(z) say. In this section we show that whenever the MFE
equations (2.12) tend to a non-degenerate steady solution this is a best approximation to U(z)
from the manifold of free knot linear splines on the mesh s(¢), in a particular norm. In order to
demonstrate this, theorem 3.4 shows that the stationary equations for a best approximation to U(z)
are exactly the same as the equations g(y) = 0, with g(y) as in (2.12). In fact the theorem states a



stronger result than this which enables the stability of the steady MFE solution to imply that the
solution of the stationary equations is in fact a local minimum.

Before this theorem can be shown in detail however it is necessary to prove some preliminary
lemmas. The first of these is used merely to help prove lemma 3.2 which is used in the proof of
theorem 3.4. The third lemma is used in the corollary to this theorem.

Lemma 3.1 Consider a d-dimensional simplex with vertices at g, 3, ..., 3, and measure A(8) > 0.
Let aj be the local linear basis function on this simplex such that

Gag(8;) = biy for i,J €{0,1,....d}.
Then
0A  0Oay

9%, ~ 9z A for Je{0,1,...d} and m € {1,...,d}.

Proof First note that the d-dimensional measure, A, of the simplex depends only upon the positions
of the vertices of the simplex and so is given by

A= A(é) = A(ém "'7&]—17&]7&]4—17 7$d) .

(In fact it is possible to write this expression explicitly as

R B
A(3) = ] I_OH;@J -3,

for any J € {0,1,...,d}, where [[x represents the d 4+ 1 dimensional vector product of d vectors in
R? — however such a formula is not required in this proof.)

Now observe that the d-dimensional measure of the simplex obtained by replacing the vertex 3;
by one at a point z strictly inside the original simplex is A(3q,...,87_1,2,8741,...,84). Hence, since
Qg, @1, ..., g are area coordinates, we know that

dJ(i) = A(ém ---vi]—lvgvi]-l—h 7$d) / A(§A07 "'7&]—17§J7§J+17 7§d) .
Moreover, since we know that a;(z) is affine, we know that gj—f is independent of z. Hence
m
J . . . N
ox A(§07 ey SJ—15L, 8741 7§d)
m

is independent of z. Thus

d N . N .
(?gj A(§07---7§J—17§J7§J+17'--7§d)
m
is independent of §; and so
0 . R . . J . N . .
Oz A(§07"'7§J—17£7§J+17“'7§d) = 93, A(§07"'7§J—17§J7§J+17'“7§d)'
m “Jm
Therefore
dday 0 .

P — a2 A(ém---7§1—17§J7§J+17"'7$d) / A(ﬁm"'7§J—17§J7§J—|—17“'7§d)
axm 08Jm

as required. ///

The statement and proof of the next lemma require a small amount of further notation to be
established. For each internal knot point, s;, let N(j) be the number of elements which have a
vertex at s;. Further, for e = 1,..., N(j), let E(j,e) be a unique ordering of these N(j) elements
with a vertex at s;. Finally, let Qp(;.) be the region occupied by the simplex numbered E(j,e) and
let Ag(;) be the d-dimensional measure of this region.



Lemma 3.2 Given p(z): R - R, j € {1,...,N} and m € {1,...,d} then

0 / 0
. p(z dzz/ —[p(z)a;(z)] dz
D57 Jor, . (z) 2, D (z)ej(z)

for each e € {1,..., N(j)}.

Proof Consider element £(j,e) for an arbitrary e € {1,..., N(j)}. Let the vertices of this element
have positions 3, ...,5; and let &g, ..., &g be the local hnear basis functions on this simplex. Also,

let J be the local vertex of element E(j,e) which corresponds to node j (i.e. 3; = 5;). It is now
possible to make the following change of variables:

d
_ S e
=0

where e, = 0 and, for ¢ = 1,...,d, ¢; is the d-dimensional vector whose entries are all 0 except for

the " which is 1. Note that the inverse of this mapping is given by
d
Eé a;( where  a;(e;) = bir (3.1)
=0
Now, if we let A be the simplex in {-space with vertices at eg, €4, ..., €4, then

/ ) dz= IREE I e

Hence
0 0 0
= — | .
Do /Q . plz)dz = /Q . p(z) dz 55, /Ad-AEu,e)P(&(i)) dg

and applying lemma 3.1 in order to differentiate the last of these integrands with respect to 3;,,, we
get

L e = [ s, Z L Lt Mel€)Ar(i gt} dE.

aSjm a.’Eg anm

Given (3.1), this implies that

0 0 . dé
/QE@,G) p(z) de = /Ad!AE(j,e){%(ﬁ(ﬁ))aJ(g) +p(g(§))ﬁ(g(§))} dg¢

05jm,

which, on changing the variables of integration back to z, gives

05jm,

9 _ o . Dévy
/ﬂw pe)de = /QEW{axm@aJ@>+ p(2) g (@) de

= [ @) + pe) gt @) de

E(je) Iz,
as required. ///
The final lemma that we state here is useful in the proof that a stable steady MFE solution

corresponds to a best local free knot linear spline approximation to the true steady solution of (1.1).
Such a result is presented as a corollary to theorem 3.4 below.



Lemma 3.3 Let A be a symmetric posilive definite m X m matriz and B be a m X m malriz whose
eigenvalues all have positive real parts. Then if AB is symmetric it must also be positive definite.

Proof Since AB is symmetric C' = A:%ABlA_% — AZBA™% is as well, where we use the symmetric
square root. But the spectI;um (1)f A2 BA™2 is the same as that of B. Thus C is positive definite
and therefore sois AB = A2C'Az. ///

We are now in a position to prove the main result of this section. In the following theorem we
consider minimizing the difference, n(z) say, between the true steady solution of (1.1), U(z), and
the best possible piecewise linear approximation to U(z) from all valid meshes s. The norm with
respect to which this minimization is performed is defined by

dn 9
2 _ 2
(@I = [ g g+ o) de (3.2)

and in this norm it is shown that any non-degenerate, steady, stable solution of the MFE equations
(2.12) must also be a local minimizer of ||n]|.

Theorem 3.4 Let U(z) be the unique steady solution of (1.1) subject to homogeneous Dirichlet
boundary conditions on 0. Let

N

o(z, 1) =Y ai(t)ai(z, s(1))

=1

be a continuous piecewise linear approximation to U(z) on a mesh s(t) with N free internal knots

$1(t), ..., sn(t). Also let

Y= (1,811, vy 515 oeven JanN, le,...,sNd)T
and
I(y) = / (.i(U - v)pwi(U —v) + q[U —v]?) dz .
- o Oz, dz,
Then

Vi(y) = -2(y) , (33)
for g(y) as in (2.12).

Proof We begin by observing, from (2.10) and (2.11), that g(y) consists of the following components:

v 0Oa;
p‘“’dw ,ﬁ > —<qv—rT,05 > (3.4)
and
_1<(?v dv (9(a ) > 4 < dv Ov (?a]>_<v_r dv N (3.5)
dz, dz,’ 0z, iPu 0z, 0z, ’p‘“’dx# 1 08, '
form =1,...,dand 5 = 1,. ,N We will now show that the components of VI(y) are as claimed
in (3.3) by demonstratmg that 5= is —2 times (3.4) and 5=— is —2 times (3.5) for m = 1,...,d and
7=1,...N.
For the first of these two cases,
ol da;  Oaj 0
a. v v - 2 - 1 d
Ja; / Gxﬂ V)P Jdz, + 3x#p“ (?xl,(U v)+ 20U = v)as} dz

da; dv 004] ou
Oxﬂpwdac dx—}—?/qva] dz — 2/{ W@ +qUo;} dz



(using the symmetry p,, = py,)

ov 0
= Q/pw,avaa]d —}—Q/qva] g—?/{——pw )+ qU}o; dz
ov da;
= Q/pm,axy Owi dz + Q/quaj dg—Q/Q'raj dz , (3.6)

which is equal to —2 times (3.4) as required.
For the other case,

or 0 v ov de 0 oUu ov . 0 ov aoU s
aSﬁn N 8Sﬁn (zaxpp#yaxy - 3Sﬁn (28$Mpﬂyaxy - 88ﬁn gzaxﬁpuyaxy -
0 d 9
_Qasjm/QQUU dz + aSjm/ﬂqv dz
N(j) 9

ov ov 0 oU
= ; 8Sjm /QE(J, ) axﬂp}w oz, dz OS]m / Qv dx — aS]m /{0 Puv oz, + QUU} dz

(using the symmetry Puv = pyu)

N(j) p ;
0 0 Ov
= E {GGV_—/ Puy dz + (GG)/ pyd£}+2/qv_ dz
e=1 FY0s; Qa(j,e) g Isjm Qp(je) g Q0 08jm

o
Os]m / {(995# p””@wy) —Ujvde,

where G, (G,) is equal to v (88” ) restricted to simplex E(j,e). (Note that the values of G, and

l‘

G, are 1ndependent of z but dependent upon s;.) Hence, using lemma 3.2,

o1 9 o 9 ov
Osjm E{G ., p“”af)d“[G“axy(as]-mH 9z, sy /QE(J P 4

oy, 6)

+2 / (0= 7) (f“ da

Sim

B dv Ov 0 Ov Oa; Ov da; dv Ov
- Z {/QE(J e) axu dz, 0y, By, Puveii) 4z = /QE(J,e) oz, 0z, 0x,, Oz, Ox,, Oz, WPy dz}
-I-Q/(qv —r) '0 dz (using (2.5))
Q 05jm
B ov Ov 0 ov Ov Oa] ov
= Jo 3z, 0z, Gz, Peeo) A2 2/ Dy, 02, 9z, T 2/ (00 =15 & (3.7)

(again using the symmetry p,, = puu),

which is equal to —2 times (3.5) as required. ///

This theorem tells us that any steady MFE solution (i.e. a solution for which § = 0 and so
g(y) = 0 by (2.12)) is such that VI(y) = 0 too. Hence, such a solution satisfies the stationary
equations for a best free knot linear spline approximation to U(z) in the norm (3.2). The following
corollary goes on to show that provided the steady MFE solution is non-degenerate and stable, it
corresponds to a local minimum of the error I(y).

Corollary 3.5 Any non-degenerate, asymptotically stable, steady solution of the Moving Finite Fl-
ement equations (2.12) is a locally best approzimation to the true steady solution of (1.1) in the
norm (3.2).



Proof Let y, be such a solution of (2.12). Then, because it is non-degenerate, A(y,) is positive
definite. If we now consider a small perturbation of y , given by y =y, + ey, (2.12) becomes

Ay, + ey )Gy + €g,) = 9(y, +€y,) -

Linearizing this about y, gives

g = A_l(y )Dg(yo)yl bl
where Dg(y. ) is the Jacobian of g with respect to y evaluated at y,. Hence the asymptotic stability
of y, 1mphes that all eigenvalues of A~ (yO)Dg(yO) have negative real parts. Moreover, since Dy is
equal to the Hessian of 1 (from (3.3)), it must be symmetric and so we can apply lemma 3.3 with
A = A(y,) and B = —A~! (yO)Dg( ) to deduce that —Dg(y,) is positive definite. That is, the

Hessian of I evaluated at y, is positive definite (again by (3.3)), and so y, must be a local minimum

of I(y) as claimed. ///

We have now proved the result claimed: that if the MFE solution tends to a steady state, this
is a locally best approximation to the true steady solution. We may also observe that the globally
best approximation to the true steady solution in this norm is of course a local minimum too, and
so by the converse of the argument in the above proof it follows that this must be a stable steady
solution of the MFE equations. Of course this tells us nothing about the domain of attraction of
the global minimizer and we have no guarantee that for an arbitrary choice of initial data the MFE
equations will tend to this, or any other, steady solution.

In the next section we give a number of numerical examples which serve to confirm the above
analysis. One of the examples also confirms the fact that for arbitrary initial data the equations
may not always tend to a steady solution due to a breakdown occurring because the measure of one
or more of the simplexes becomes non-positive. This difficulty is easily overcome in this case by
simply removing appropriate nodes and elements from the mesh — an approach which is studied in
much more detail in [17]. From a theoretical point of view this approach of deleting, and possibly
adding, nodes and elements presents few problems since the above results all still hold: applying to
whatever mesh topology is in use when a steady solution is finally reached. (From an algorithmic
point of view this approach may not always be as straightforward of course: again see [17].)

Additional generalizations to the theory can be made by considering a wider class of boundary
conditions, as in [14], or by adding constraints to the motion of the nodes. For example, if we
choose to impose zero velocity constraints on nodes in a certain region of the domain (to prevent
there being too few nodes in a particularly flat region of the solution perhaps) then it is easy to see
that the proofs of theorem 3.4 and its corollary still go through, except that now we have a best
approximation from a smaller manifold: with only the knots not constrained in the MFE solution
being free. Finally it is also possible to allow the constrained motion of some of the nodes on the
boundary of the domain, as described in [14].

4 Some Numerical Examples

In this section we outline a small number of computational examples which serve to confirm
the results of section 3. For simplicity we only consider the use of Dirichlet boundary conditions
and we keep the mesh fixed throughout the boundary of the domain. A number of one-dimensional
examples appear in [13] so all of the examples in this section are for two-dimensional problems
(d = 2). Whenever steady MFE solutions are found we confirm that they are local minimizers of
the free knot error in the norm (3.2) by using the NAG library routine E04JAF [25].
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We start by considering the case where p,, = §,, (the usual Kronecker delta) and ¢ = 0 in

equation (1.1),
du %u *u
E(Lt) = ﬁ(%t) + @(Lt) +r(z) , (4.1)

subject to homogeneous Dirichlet boundary conditions on a square spatial domain: (0,1) x (0,1).
We look at two different choices for r(z) — corresponding to the two steady solutions

(1) U(z) = 6423(1 — z1)23(1 — z2),
(ii) U(z) = sin (7z?)sin (r23).

For this equation the norm (3.2) simplifies to

Il = [ [Z0)* da . (4.2)

which is a genuine norm here because the Dirichlet boundary conditions ensure that the error is zero
along 092.

Figure 1 shows the evolution of the MFE solution mesh when solving problem (i) with just 15
degrees of freedom. The meshes shown (from top left to bottom right) are the initial mesh, the mesh
at ¢ = 0.01, the mesh at ¢ = 0.02 and the steady solution mesh (at { = 1.0). A quadrature rule with
degree of precision 5 (see [5]) was used to calculate all of the integrals in (2.10) and (2.11) on each
triangular element: because of the choice of r(z) this ensured that all integration was exact. The
steady solution to this problem was found to be as given in table 1 and it is straightforward to verify
that this is indeed a local minimum of

5
13wl ) — 64231 — 21)a3(1 — 23)]
=1

over all choices of (a1, s, ..., a5, S5), where || - || is given by (4.2).

The MFE solution to problem (ii) behaves in a similar manner to that of problem (i), as is
illustrated by figure 2. Again only 15 degrees of freedom have been used along with identical initial
data, and the meshes shown are the initial mesh and those calculated at ¢ = 0.01, ¢ = 0.02 and at the
steady state (¢ = 1.0). Table 2 gives the precise values that the 15 degrees of freedom attain when the
steady MFE solution is reached. When one attempts to verify that these values represent an optimal
approximation to the true steady solution, U(z), a slight discrepancy is observed however. Table
3 shows the optimum values of (a1,s;,...,a5,55) as calculated by E04JAF using a very accurate
adaptive quadrature subroutine for all integration. The difference, which is far too small to be
discernible on a picture of the meshes, as in figure 2 for example, is due to the inexact quadrature
that is used in the MFE code.

In all of the theory presented in section 3 it is assumed that exact integration is used to calculate
g(y) whereas this is not the case in practice. Hence for the remaining examples in this section we
regard the results of section 3 as being confirmed whenever the MFE solution and the exact optimum
are very close. (In problem (ii) above, for example, the largest difference in any of the degrees of
freedom is just 1.0% and the difference between the error using MFE with quadrature and the exact
minimum is less than 0.01%.)

The next example that we consider, problem (iii) say, is exactly the same as problem (ii) except
uses different initial data on a less coarse mesh: with 66 degrees of freedom and 54 triangular
elements. The initial data has been obtained by solving equation (4.1) using an adaptive h-refinement
code of the sort described in [12] or [18], and so it gives a reasonably good approximation to the
exact steady solution. As can be seen from figure 3 (again the sequence of pictures goes from the
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top left to the bottom right) the initial mesh soon starts to deform significantly and by the time
t = 0.00125 (the second mesh), 3 node points near the very centre of the mesh are about to run into
each other, causing 4 elements to shrink to zero. In order to overcome this potential difficulty it is
necessary to delete the offending elements and merge the 3 nodes into one, thus reducing the number
of degrees of freedom to 60 and the number of triangular elements to 50 (the third mesh in figure
3). The integration in time can now continue until a steady state is reached (illustrated by the final
mesh at { = 1.0). Note that in this case the merging of the nodes provides few problems since they
come together in a continuous manner. That is, as the nodes get closer together so do their solution
values and so replacing the three converged nodes with a single one is very straightforward. A more
extensive look at MFE algorithms with node addition and deletion may be found in [17].

As with the previous examples it is possible to use the NAG routine E04JAF to verify that the
steady MFE solution is indeed a local optimum over the manifold of free knot linear splines. In this
case the optimum is with respect to the final family of meshes, with 20 free knots, rather then the
original family, containing 22 free knots. (The free knot at the top right corner of the final mesh
appears at first sight to be surprisingly close to the boundary of the domain however numerical
experiment confirms that its position is indeed optimal.) In addition it is possible to compare the
final approximation to the steady solution, which has an error of 0.6206 in the norm (4.2), with the
original approximation, obtained using adaptive h-refinement, which has an error of 0.8200 in this
norm. We see a significant improvement using the Moving Finite Element method even though the
final approximation uses fewer degrees of freedom.

The final computations that we describe in this section are for the equation

ou

E(g,t) = Au(z,t) —u(z, )+ r(z), (4.3)
on the same spatial domain as before: (0,1) x (0,1). This corresponds to choosing p,, = §,, and
¢ =1in (1.1) and so the norm (3.2) becomes the usual H! norm on Q. Again r(z) may be selected
so that the steady solution to the problem is U(z) = sin (72})sin (723). When the initial data is
chosen as in problems (ii) and (iii) the solution evolves in a very similar manner to the solutions to
these problems. In each case the steady MFE solutions are also very similar which is to be expected
since they are optimal approximations to the same function in closely related norms.

Figure 4 shows the evolution of the solution mesh for example (iv) which solves equation (4.3)
using a third choice of initial data. Again, the meshes shown are at times { = 0.0, ¢t = 0.01, { = 0.02
and ¢t = 1.0 (the steady state), and on this occasion the problem uses 27 degrees of freedom and
32 elements. Once more it is possible to verify that the steady MFE solution is indeed optimal
(allowing for small errors in the numerical quadrature), this time in the H! norm on €.

5 Discussion

The results of this paper, whilst applying to problems in an arbitrary number of spatial dimen-
sions with straightforward extensions to a wide variety of boundary conditions, do have a number of
restrictions. In particular, we have only considered one specific family of linear equations, (1.1), and
no mention is made of the temporal accuracy of the MFE method for these or any other problems:
only steady solutions have been considered. Clearly these restrictions are very important since most
practical time-dependent problems that we may wish to solve numerically are more complicated
than (1.1), containing convection terms or nonlinearities for example. Also we are often interested
in the temporal as well as the steady solutions of such problems. Nevertheless, the results of theorem
3.4 and 3.5 are still of some significance. These results demonstrate that there is some potential
advantage to be gained by allowing the spatial mesh to deform continuously rather than simply
using a fixed finite element mesh or just adding and deleting nodes at discrete times. Practical
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adaptive algorithms may combine a number of more complicated features, such as the use of penalty
functions or the systematic creation and deletion of elements and nodes, however it is important to
try to understand the underlying mechanisms which drive the node motion itself.

Example (iii) in section 4, for example, demonstrates that h-refinement alone will not always be
as accurate as a combination of both h-refinement and node movement, and there is no reason to
suspect that such a result is not also true for problems other than (1.1). For this reason it seems
plausible that further research, applying the MFE method to nonlinear equations for example, is
likely to lead to an extension of the results described here. In addition, it would be helpful to
understand the precise effects of using numerical quadrature in the assembly of the right-hand-side
of equations (2.12).
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a; [Initial a;] s; [Initial s;]
0.1441192496 [0.6] | (0.2014560973,0.2014560973)7 [0.4, 0.4]
0.1120860039 [0.5] (0.1317789179,0.9481600932)T [0.4,0.9]
1.3146998340 [1.4] (0.6575676092,0.6575676092)T [0.7,0.7]

I ( )7 ]
J]( ) ]

0.1120860039 [0.5 0.9481600932,0.1317789179)" 10.9,0.4
1.1199302110 [0.4] | (0.8051060698,0.8051060698)" [0.9,0.9

TR W N | e

Table 1: The values of the 15 degrees of freedom at the steady MFE solution to problem (i) [along
with the initial data used].

s; [Initial s;]
(0.6143033663, 0.6143033663) [0.4, 0.4]
(0.4436057237, 0.9509544010)T [0.4,0.9]
(0.8654844853, 0.8654844853) [0.7,0.7]
( )l
( )"

a; [Initial a;]
0.07833177194 [0
[0

6]
0.03827731410 [0.5]
0.8054015159 [1.4]
0.03827731410 [0.5]

]

0.7698683170 [0.4

0.9509544010, 0.4436057237)* [0.9,0.4]
0.9128451098,0.9128451098)* [0.9,0.9]

T W N .

Table 2: The values of the 15 degrees of freedom at the steady MFE solution to problem (ii) [along
with the initial data used].

a; S;
0.07755135662 | (0.6137001656,0.6137000912 T
0.03792676572 | (0.4437757351,0.9519518425 T

( )

( )
0.8008348341 | (0.8658795118,0.8658795095)"

( )

( )

0.03792675588 | (0.9519518557,0.4437757363)7
0.7632101319 | (0.9132093670,0.9132093662)

T W N .

Table 3: The optimum values of the 15 degrees of freedom for problem (ii) as calculated by E04JAF
using highly accurate quadrature.
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Figure 1: Evolution of the MFE solution mesh when solving problem (i).

16




4

Figure 2: Evolution of the MFE solution mesh when solving problem (ii).
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Figure 3: Evolution of the MFE solution mesh when solving problem (iii).
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Figure 4: Evolution of the MFE solution mesh when solving problem (iv).
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