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Revealed Preference Analysis with Normal Goods: 

Application to Cost-of-Living Indices†

By Laurens Cherchye, Thomas Demuynck, 

Bram De Rock, and Khushboo Surana*

We present a revealed preference methodology for nonparametric 
demand analysis under the assumption of normal goods. Our meth-
odology is flexible in that it allows for imposing normality on any 
subset of goods. We show the usefulness of our methodology for 
empirical welfare analysis through cost-of-living indices. An illustra-
tion to US consumption data drawn from the Panel Study of Income 
Dynamics (PSID) demonstrates that mild normality assumptions can 
substantially strengthen the empirical analysis. It obtains consider-
ably tighter bounds on cost-of-living indices and a significantly more 
informative classification of  better-off and  worse-off individuals 
after the 2008 financial crisis. (JEL D11, D12, E31, G01)

Changing  price-income regimes can have a substantive impact on individual 

demand patterns. The empirical analysis of the associated welfare effects has 

attracted considerable attention in the applied welfare literature. In the current paper, 

we propose a structural method for such welfare analysis that is intrinsically non-

parametric: it does not impose any parametric/functional structure on the individual 

utilities but merely exploits the preference information that is directly revealed by 

the observed consumption behavior. Particularly, we demonstrate that mild normal-

ity assumptions on the demand for (a subset of) goods can obtain a significantly 

informative analysis of individual cost-of-living indices. We show this through an 

empirical illustration to household demand data taken from the PSID, in which we 

analyze the welfare effects of the 2008 financial crisis for a sample of singles in the 

United States.
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Welfare Evaluation and Counterfactual Demand Analysis.—The structural anal-

ysis of welfare effects associated with changing prices and/or incomes requires 

predicting demand in counterfactual  price-income regimes. This issue is standardly 

addressed by adopting a parametric approach, which assumes a specific functional 

form for the consumers’ utility or expenditure functions.1 The parameters of this 

functional form are then estimated from the observed consumption behavior, and 

these estimations can be used to interpolate or extrapolate demand in unobserved 

 price-income situations. A main problem of this parametric approach is that it cru-

cially relies on some a priori assumed functional form for the individual preferences, 

which is typically  nonverifiable. This implies an intrinsic risk of specification error.

We can avoid this specification risk by adopting the nonparametric revealed pref-

erence approach that was initiated by Samuelson (1938) and Houthakker (1950) and 

further developed by Afriat (1967), Diewert (1973), and Varian (1982). Basically, 

this nonparametric approach develops testable implications for observed consump-

tion patterns (prices and quantities) that must hold under rational demand behavior 

associated with any  well-behaved utility function. These testable implications are 

then used as a basis for counterfactual demand predictions in the form of set iden-

tification (producing bounds on possible demand responses in new  price-income 

regimes). By its very nature, this nonparametric approach avoids the possibility of 

erroneous conclusions following from a wrongly specified functional form.

Revealed Preference Analysis and Normal Goods.—Although this nonparamet-

ric orientation of the revealed preference approach is conceptually appealing, its 

empirical usefulness is often put into question. Generally, an informative empirical 

analysis requires a rich dataset with high price variation and low income variation. 

In many observational settings, however, the opposite holds true (i.e., low price 

variation combined with high income variation). In such cases, the nonparametric 

testable implications have little empirical bite, and, correspondingly, the set identi-

fication results are not very informative (see, for example, Varian 1982 and Bronars 

1987 for detailed discussions). As an implication, the revealed preference method-

ology is then of limited practical value.

In the current paper, we show that this lack of power can be remediated by assum-

ing normality of the goods that are consumed. Normality is often a natural assump-

tion to make. Basically, a good is normal if its income expansion path is increasing. 

A convenient feature of our method is that we can impose normality without need-

ing to estimate the expansion path; our nonparametric testable implications apply to 

any expansion path that satisfies normal demand. Moreover, our method applies to 

settings with any number of goods and can impose normality on any subset of these 

goods. The only assumption it makes is that normality holds for the observed prices, 

so avoiding the stronger hypothesis that normality must apply to any (observed or 

unobserved) price.

1 Popular functional forms in the literature are the  Cobb-Douglas, the translog (Christensen, Jorgenson, and Lau 
1975), the almost ideal demand (Deaton and Muellbauer 1980), and quadratic almost ideal demand specification 
(Banks, Blundell, and Lewbel 1997).
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In a recent series of papers, Blundell, Browning, and Crawford (2003, 2007, 2008) 
and Blundell et al. (2015) also used the assumption of normal demand for observed 

prices to deal with the power issue associated with empirical revealed preference 

analysis. However, we see at least two main differences between the method pro-

posed by these authors and our novel method. First, they assume that normality 

holds for all goods simultaneously, whereas our method is equally applicable to nor-

mality for any subset of goods. Second, and more importantly, these authors exploit 

normality of demand by using (nonparametrically) estimated income expansion 

paths (assuming a repeated  cross-sectional dataset). As indicated above, our method 

avoids this prior estimation step (and associated statistical issues); it directly applies 

revealed preference restrictions (for normal demand) to the observed consumption 

choices. Interestingly, our empirical application shows that our method can yield an 

informative welfare analysis even with a short time series of (three) consumption 

observations per individual.

In another closely related paper, Cherchye, Demuynck, and De Rock (2018)—
henceforth, CDR—also establish revealed preference conditions for normal demand, 

with a main focus on the two goods setting. A first crucial difference with the current 

paper is that CDR consider the stronger assumption that normality holds for all 

(observed and unobserved)  nonnegative prices, whereas we use the substantially 

weaker assumption that imposes normality (only) for the observed prices. Next, 

CDR focus on  so-called  WARP-consistent demand, implying that they do not exploit 

transitivity of preferences. In the current paper, however, we also explicitly consider 

the testable implications of transitivity. Rose (1958) showed that transitivity has 

no empirical bite in the two goods setting. As an implication, our testable impli-

cations will be weaker than the ones of CDR if there are only two goods (because 

of CDR’s stronger normality assumption; see above). For more than two goods, 

transitivity may have empirical bite, and thus, our testable implications may become 

more restrictive than the ones of CDR. Evidently, whether or not this is the case will 

crucially depend on the nature of the observed price regimes. Finally, while CDR’s 

conditions are necessary and sufficient for rational demand that satisfies normality 

when there are two goods, they are only necessary (but not sufficient) for the general 

setting with more than two goods. By contrast, our testable implications provide a 

necessary and sufficient characterization of rationality under normal demand that 

applies to any number of goods.

Empirical Welfare Analysis and Cost-of-living Indices.—We show that our 

revealed preference method can be used for a meaningful welfare analysis on the 

basis of cost-of-living indices. We demonstrate this through an empirical application 

to data drawn from the PSID. We select a balanced panel from the 2007, 2009, and 

2011 waves of the PSID to study the welfare effects of the 2008 financial crisis. A 

large number of studies has analyzed these welfare effects since the onset of the 

crisis. As the crisis led to a substantial rise in unemployment, the principal focus so 

far has been on the extensive margin of labor supply (see, for example, Verick 2009, 

Hurd and Rohwedder 2010, Goodman and Mance 2011, Deaton 2012). By contrast, 

in our application, we concentrate on individuals who remained employed after the 

crisis.
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More specifically, our structural analysis assumes a model of rational labor sup-

ply for singles who spend their potential income on leisure, food, housing, and other 

goods, hereby imposing normality on all consumption categories except for leisure. 

To assess the empirical bite of the testable implications associated with normality, 

we also compute the empirical results for the rational labor supply model without 

normal demand. Our results show that imposing normality entails a substantially 

more powerful empirical analysis. In particular, we obtain considerably tighter 

bounds on cost-of-living indices and a significantly more informative classification 

of  better-off and  worse-off individuals after the 2008 crisis.

Outline.—Section I develops the revealed preference characterization of utility 

maximization under normality assumptions. Section II introduces the cost-of-living 

index for our empirical welfare analysis. We also define the  goodness-of-fit and pre-

dictive success measures that we will use to evaluate the empirical performance of 

our normality assumptions. Section III presents our empirical application to PSID 

data. Section IV concludes.

I. Rational Demand with Normal Goods

Our main theoretical result defines the testable implications for the observed 

demand behavior to be consistent with rationality (i.e., utility maximization) and 

normality of (a subset of) the consumed goods. To this end, we first define the 

Generalized Axiom of Revealed Preference (GARP) in terms of Hicksian demand 

bundles that correspond to the observed prices and associated utility levels (for 

the given quantity bundles). Imposing normality boils down to restricting these 

Hicksian demand bundles at any observed price regime to be monotone in utility 

(Fisher 1990). Basically, our testable revealed preference conditions verify whether 

there exists at least one possible specification of the utility levels and Hicksian 

demand bundles that satisfy this requirement. If so, we cannot reject the joint 

hypothesis of normality and rational behavior.

Generalized Axiom of Revealed Preference (GARP).—Throughout, we focus on 

a finite set  T  of observed prices and corresponding quantities. For each consump-

tion observation  t ∈ T , let   q t   ∈  ℝ  +  n    and   p t   ∈  ℝ  ++  n    denote the (column) vectors 

of quantities and prices, respectively. This defines the dataset  S =  {(  p t  ,  q t  )} t∈T    . We 

say that  S  is “rationalizable” if there exists a utility function  u( ⋅ )  such that for each 

observation  t ∈ T ,   q t    maximizes this function  u( ⋅ )  over all affordable bundles for 

the given prices   p t    and outlay   x t   =  p t    q t   . Throughout, we will assume utility func-

tions that are continuous and strictly monotone.

DEFINITION 1: A dataset  S =  {(  p t  ,  q t  )} t∈T    is rationalizable if there exists a con-

tinuous and strictly monotone utility function  u :  ℝ  +  n   → ℝ  such that for all  t ∈ T  

and   x t   =  p t    q t   ,

   q t   ∈ arg max u (q)   subject to   p t   q ≤  x t  .
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 Varian (1982) has shown that GARP defines a necessary and sufficient condition 

for a dataset  S  to be rationalizable. Thus, checking rationalizability boils down to 

verifying whether or not the set  S  satisfies GARP. To formally define this GARP 

requirement, we will need the following concepts.

DEFINITION 2: Consider a dataset  S =  {(  p t  ,  q t  )} t∈T   . We say that   q t   ,  t ∈ T , 

is directly revealed preferred to the bundle   q v   ,  v ∈ T , if   p t    q t   ≥  p t    q v   . We denote 

this as   q t    R   D   q v   . Next, we say that   q t    is strictly directly revealed preferred to   q v    

if   p t    q t   >  p t    q v   . We denote this as   q t    P   D   q v   . Finally, we say that   q t    is revealed pre-

ferred to   q v    if there exists a ( possibly empty) sequence  u, s, …, r ∈ T  such that

   q t    R   D   q u  ,  q u    R   D   q s  , …,  q r    R   D   q v   .

We denote this as   q t   R  q v   .

Thus, the quantity bundle   q t    is directly revealed preferred to the bundle   q v    

(i.e.,   q t    R   D   q v   ) if   q v    was affordable when bundle   q t    was chosen (i.e.,   p t    q t   ≥  p t    q v   ). 
If the inequality is strict (i.e.,   p t    q t   >  p t    q v   ), then   q t    is strictly directly revealed 

preferred to   q v    (i.e.,   q t    P   D   q v   ). Finally, from the direct revealed preference rela-

tions, we can define the more general concept of (direct or indirect) revealed 

preference relations by exploiting transitivity of preferences (i.e.,   q t   R  q v    follows 

from   q t    R   D   q u  ,  q u    R   D   q s  , … ,  q r    R   D   q v   ).
We can now define GARP.

DEFINITION 3: A dataset  S =  {(  p t  ,  q t  )} t∈T    satisfies GARP if for all  t, v ∈ T , 

  q t   R  q v    implies not   q v    P   D   q t   .

In words, a dataset  S  satisfies GARP if for any two observed bundles   q t    and   q v   ,  

  q t   R  q v    implies that   q v    is not strictly directly revealed preferred to   q t    (i.e., not   q v    P   D   q t   ). 
Intuitively, GARP excludes that bundle   q t    is revealed preferred to   q v    while, at the same 

time,   q t    was affordable at a strictly lower cost when   q v    was purchased.

In what follows, we will focus on a less standard reformulation of the GARP 

condition in Definition 3. This alternative formulation will be instrumental for our 

characterization of rationalizable consumer behavior under normal demand. It is 

contained in the following result.2

PROPOSITION 1: A dataset  S =  {(  p t  ,  q t  )} t∈T    satisfies GARP if and only if there 

exist numbers   ( u t  ) t∈T    such that for all  s, t ∈ T 

 •  if  u t   ≥  u s   , then  p s    q s   ≤  p s    q t   ;

 •  if  u t   >  u s   , then  p s    q s   <  p s    q t   .

2 This equivalent reformulation of GARP has been used in the literature on nonparametric production analysis. 
We refer to Varian (1984, Theorem 2) for a formal proof of Proposition 1.
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The second equivalence shows that a dataset  S  can be verified by checking the exis-

tence of “utility numbers”   u t    that satisfy a series of “if-then” conditions. Intuitively, 

each number   u t    represents the consumer’s utility level associated with the bundle   q t   . 

If the utility level at observation  t  is (strictly) above the utility level at observation  

s  (i.e.,   u t   ≥ (>)  u s   ), then the bundle   q t    must be (strictly) more expensive than the 

bundle   q s    at the prices   p s   .

 Normality-extended GARP ( N-GARP).—Let  M ⊆ {1, …, n}  be a subset of the 

goods that are consumed. We say that a dataset  S  is rationalizable by normal demand 

on the subset  M  if there exists a well-behaved utility function that (i) represents each 

observed bundle   q t    as utility maximizing under (ii) the additional requirement that 

for each good  i ∈ M , the income expansion path at the observed prices has a posi-

tive slope. Formally, we have the following definition.

DEFINITION 4: A dataset  S =  {(  p t  ,  q t  )} t∈T    is rationalizable by normal demand on 

the subset  M   (M ⊆ {1, …, n})  if there exists a continuous and strictly monotone 

utility function  u :  핉  +  n   → 핉  and functions   q t   :  핉 +   →  핉  +  n    such that for all  t ∈ T  

and   x t   =  p t    q t   ,

 •   q t  (x) ∈ arg max u(q) subject to   p t   q ≤ x ,

 •   q  t  
i (x)  is monotone in  x  for all  i ∈ M ,

 •   q t   =  q t  ( x t  ) .

In this definition, the function   q t  ( ⋅ )  represents the income expansion path at 

the observed prices   p t   , defining the quantities demanded by the consumer at the 

 price-income pair  (  p t  , x)  for any value of  x . Definition 4 defines three conditions 

for the functions  u( ⋅ )  and   q t  ( ⋅ ) . The first condition states that for all income levels  

x ,   q t  (x)  maximizes the function  u( ⋅ )  over all affordable bundles at prices   p t    and 

income  x . The second condition imposes that   q  t  
i (x)  is increasing in  x , meaning that 

good  i ∈ M  is normal at prices   p t   . The last condition requires that   q t  ( x t  )  equals the 

observed demand   q t    for the observed income/outlay   x t     (=  p t    q t  )  and prices   p t   .

In order to better grasp the meaning of our main result (captured by Proposition 2 

below), we make use of dual demand theory. If utility functions are continuous and 

strictly monotone, then every utility maximization problem has a dual expenditure 

minimization problem where the objective is to minimize expenditures for a given 

price vector conditional upon a certain level of utility:

     v (p, x)  =  max  
q
  

 
   u (q)  subject to pq ≤ x    



      

primal utility max problem

  
 

  ;

    e (p, u)  =  min  
q
  

 
   pq subject to u (q)  ≥ u    



      

dual expenditure min problem

  
 

   .
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The indirect utility function, here denoted by  v( p, x) , is the inverse of the expen-

diture function, denoted by  e( p, u) , in the sense that for all prices  p , utility levels  u , 

and income levels  x , we have

  v (p, e (p, u) )  = u and e (p, v (p, x) )  = x .

The expenditure function is increasing in utility  u , and the indirect utility function 

is increasing in income  x . In addition, if they are unique, the solution to the utility 

maximization problem,  q( p, x) , which is called the Marshallian demand function, 

and the solution to the expenditure minimization problem,  h( p, u) , which is called 

the Hicksian demand function, are related in the following sense:

  q (p, e (p, u) )  = h (p, u)  and h (p, v (p, x) )  = q (p, x)  .

Let us then consider two income levels  x  and  x ′, with  x ≥ x′ , and a good  i ∈ M . 

If   q   i ( p, x)  satisfies normality, then

   q   i  (p, x)  ≥  q   i  (p, x′)  ,

and therefore, by the identity above,

   h   i  (p, v (p, x) )  ≥  h   i  (p, v (p, x′) )  .

Given that  v( p, x)  is increasing in income  x , this shows that normality of   q   i   implies 

that the Hicksian demand function   h   i ( p, u)  is increasing in utility  u . Vice versa, if we 

take two utility levels  u  and  u′  with  u ≥ u′ , then monotonicity of   h   i   in  u  requires

   h   i  (p, u)  ≥  h   i  (p, u′)  ⇔  q   i  (p, e (p, u) )  ≥  q   i  (p, e (p, u′) )  .

As  e( p, u)  is increasing in  u , this shows that   q   i   must be increasing in  x , i.e., good  

i  is a normal good. Summarizing, we conclude that monotonicity (normality) of 

  q   i ( p, x)  in  x  is equivalent to monotonicity of the Hicksian demand   h   i ( p, u)  in  u .3

We can use this equivalence to establish the revealed preference characterization 

of rationalizable behavior as specified in Definition 4. This characterization pro-

vides nonparametric testable implications for the observed dataset  S  to be consistent 

with utility maximization under the additional assumption of normal demand. In 

particular, we can show that rationalizability under normal demand holds if and only 

if the dataset  S  satisfies the  N-GARP.

3 We refer to Fisher (1990) for a more formal statement of this argument.
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DEFINITION 5: For  M ⊆ {1, …, n} , a dataset  S =  {(  p t  ,  q t  )} t∈T    satisfies  N-GARP 

if there exist numbers   ( u t  ) t∈T    and vectors   ( h t,v  ) t,v∈T   ( h t,v   ∈  핉  +  n  )  such that for all  

r, s, t, v ∈ T ,

 •   h t,t   =  q t   ;

 •  if  u t   ≥  u v  , then  p r    h r,v   ≤  p r    h s,t   ;

 •  if  u t   >  u v  , then  p r    h r,v   <  p r    h s,t   ;

 •  if  u t   ≥  u v  , then  h  r,v  
i   ≤  h  r,t  

i   for all i ∈ M .

The following proposition contains our main theoretical result.4

PROPOSITION 2: A dataset  S =  {(  p t  ,  q t  )} t∈T    is rationalizable by normal demand 

on the subset  M (M ⊆ {1, …, n})  if and only if it satisfies  N-GARP.

Similar to Proposition 1, we obtain that rationalizability imposes the existence 

of utility numbers   u t    that satisfy a series of  if-then conditions. In our  N-GARP defi-

nition, each vector   h t,v    represents the Hicksian demand bundle at prices   p t    for the 

utility level associated with the bundle   q v    (captured by the number   u v   ). In other 

words,   h t,v   = h(  p t  ,  u v  ) .
Rationalizability requires the numbers   u t    and vectors   h t,v    to satisfy the four conditions 

in Definition 5. The first condition states for each observation  t ∈ T  that the Hicksian 

demand   h t,t   = h(  p t  ,  u t  )  must equal the observed Marshallian demand   q t   = q(  p t  ,  x t  ) . 
The second and third conditions impose GARP (as formulated in Proposition 1) on 

the sets   (  p t  ,  h t,v  ) t,v∈T   , which consist of observed prices   p t    and Hicksian demand vectors 

  h t,v   = h(  p t  ,  u v  ) . To grasp the intuition behind these conditions, assume that   u t   ≥  u v   . 

Then,   h r,v   = h(  p r  ,  u v  )  represents the Hicksian demand at prices   p r    and utility level   u v   , 

which is situated on the intersection of the indifference curve of   u v    and the hyperplane 

(tangent to this indifference curve) with slope   p r   . Now, given that   u t   ≥  u v   , it must 

be that all bundles that obtain utility level   u t    are above this hyperplane (because all 

bundles below the hyperplane have utility levels below   u v   ). Formally, for all  q  with  

 u(q) =  u t   , we must have   p r    h r,v   ≤  p r   q . Then, given that  u( h s,t  ) = u(h(  p s  ,  u t  )) =  u t   , 

it follows that   p r    h r,v   ≤  p r    h s,t   , which gives the second condition. The third condition 

has a similar interpretation. Finally, the fourth condition requires that the Hicksian 

quantities for each good  i ∈ M  are monotonically increasing in utility, which corre-

sponds to normal demand, i.e., if   u t   ≥  u v   , then   h  r,v  
i   =  h   i (  p r  ,  u v  ) ≤  h   i (  p r  ,  u t  ) =  h  r,t  

i   .5

Figure  1 presents a graphical illustration of the  N-GARP condition for a set-

ting with two normal goods. The figure shows two indifference curves correspond-

ing to utility levels   u 1    and   u 2   , with   u 2   >  u 1   . The two budget lines correspond 

4 Online Appendix I contains the proof of Proposition 2.
5 In principle, we can restrict the normality restriction to be imposed only on certain income regions. For exam-

ple, suppose that we only want to impose normal demands on the income range   [    y 
¯

   r   ,   y –  r   ]   for prices   p r   ; then it suffices 
to modify the fourth condition in Definition 5 as follows:

  if  u t   ≥  u v  ,  p r    h r,v   =  y r,v  ,  p r    h r,t   =  y r,t  , and  y r,v  ,  y r,t   ∈  [   y 
¯

   r   ,   y 
–  r  ]  ,

 then  h  r,v  
i   ≤  h  r,t  

i   for all i ∈ M .
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to  observation  (  p 1  ,  q 1  ) = (  p 1  ,  h 1,1  ) , which obtains utility level   u 1   , and observa-

tion  (  p 2  ,  q 2  ) = (  p 2  ,  h 2,2  ) , which obtains utility level   u 2   . We also depict two aux-

iliary,  dashed budget lines that are parallel to the observed budget lines (i.e., they 

correspond to the same relative prices). The (unobserved) Hicksian demand   h 2,1    

 corresponds to the bundle that would give the utility level   u 1    at prices   p 2   . Similarly,   h 1,2    

is  the bundle that would give utility level   u 2    at prices   p 1   . The  N-GARP condition  

requires that these (observed and unobserved) demands satisfy GARP and 

that   h 2,1   ≤  h 2,2    and   h 1,1   ≤  h 1,2   . In reality, however, we do not observe these indif-

ference curves, and, therefore, the  N-GARP condition only imposes that it must be 

possible to construct hypothetical bundles   h 1,2    and   h 2,1    that satisfy these requirements.

When comparing the conditions in Proposition 1 with those in Definition 5, it is 

clear that  N-GARP generally implies stronger rationalizability requirements than 

GARP.  N-GARP reduces to GARP (only) in the limiting case that does not impose 

normality for any good. We illustrate the difference between  N-GARP and GARP 

in Example 1, which contains a dataset that satisfies GARP but violates  N-GARP. 

It indicates that imposing normality can yield a more powerful revealed preference 

analysis. This is an attractive feature as normality assumptions are often little debat-

able and thus easy to make.

Finally, in online Appendix II, we show that the  N-GARP condition in Definition 5 

can be reformulated in terms of inequality constraints that are linear in unknowns 

and characterized by (binary) integer variables. These linear inequality constraints 

are easily operationalized, which is convenient from an application point of view.6

6 For example, we used the software package IBM ILOG CPLEX Optimization Studio for our empirical appli-
cation in Section III.
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Figure 1. Illustrative Example
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Example 1: We illustrate the difference between  N-GARP and GARP by means 

of a simple numerical example using a dataset  S  with two goods ( n = 2 ) and two 

observations ( T = {1, 2} ):

   p 1   =  [ 
4
  

4
 ] ,  p 2   =  [ 

3
  

5
 ] ,  q 1   =  [ 

8
  

1
 ] ,  q 2   =  [  

4
  

10
 ]  .

Figure  2 depicts the two quantity bundles and associated budget sets. From this 

figure, it is easy to verify that the set  S  satisfies GARP. In particular, the budget 

lines do not cross, which automatically implies consistency with GARP. More for-

mally, referring to Proposition 1, we have   p 1    q 1   = 36,  p 1    q 2   = 56,  p 2    q 1   = 29,  

and   p 2    q 2   = 62 . Then, using   u 1   = 0.1  and   u 2   = 0.2  obtains that all conditions in 

Proposition 1 are satisfied.

Next, we can show that the same dataset  S  violates  N-GARP for  M = {1, 2} , i.e., 

both goods are assumed to be normal goods. In particular, we prove that there do not 

exist numbers   u 1  ,  u 2    and vectors   h 1,1  ,  h 1,2  ,  h 2,1  ,  h 2,2    that simultaneously meet the four 

conditions in Definition 5. To see this, we begin by noting that the first  N-GARP 

condition imposes

(1)   h 1,1   =  q 1   =  [ 
8
  

1
 ] , and  h 2,2   =  q 2   =  [  

4
  

10
 ]  .

In addition, the second  N-GARP condition (using that   u 2   ≥  u 2   ) imposes

(2)   p 1    h 1,2   ≤  p 1    h 2,2   and  p 2    h 2,2   ≤  p 2    h 1,2   .
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Figure 2. Example Dataset that Violates  N-GARP but Not GARP
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Combining (1) and (2) obtains (using superscripts to indicate the quantities of goods 

1 and 2)

  4  h  1,2  
1   + 4  h  1,2  

2   ≤ 56 ,

  62 ≤ 3  h  1,2  
1   + 5  h  1,2  

2   .

These two inequalities together imply

(3)  62 ≤ 3 h  1,2  
1   + 5 h  1,2  

2   ≤ 3 h  1,2  
1   + 5 (14 −  h  1,2  

1  )  ⇔  h  1,2  
1   ≤ 4 .

On the other hand, because   p 1    q 1,1   = 36 <  p 1    q 2,2   = 56 , the third  N-GARP con-

dition in Proposition 5 requires

   u 1   <  u 2   .

Then, the fourth  N-GARP condition imposes (using that goods  1  and  2  are both 

normal)

   h 1,1   ≤  h 1,2   .

Combined with (1), this entails

   h  1,2  
1   ≥ 8 ,

which contradicts (3). Thus, we conclude that  N-GARP is violated.

We can also graphically illustrate this  N-GARP violation in Figure 2. To see this, 

we first note that the Hicksian demand   h 1,2    should lie below the dashed line asso-

ciated with the budget   p 1    q 2   . Also, if both goods are normal at the prices   p 1   , it must 

hold that   h 1,2    contains more of both goods 1 and 2 than   q 1    (i.e.,   h 1,2   ≥  q 1   ). Taken 

together, we conclude that   h 1,2    is situated in the triangular region formed by the 

 thick-dashed lines. Then, the conclusion that  N-GARP is violated follows from the 

observation that no   h 1,2    in this region is consistent with rationalizability of the con-

sumption observation  (  p 2  ,  q 2  ) . Specifically, any such   q 1,2    is strictly less expensive 

than the bundle   q 2    at prices   p 2   . As an implication, for the outlay   p 2    q 2    and prices   p 2    

associated with the quantity bundle   q 2   , the consumer could have chosen bundles 

strictly better than   h 1,2   . This implies that   h 1,2    and   q 2    cannot yield the same utility 

value for a strictly monotone utility function.

II. Cost of Living, Goodness-of-fit, and Predictive Success

In this section, we introduce some additional concepts and tools that will be use-

ful for our following application. First, we show how our testable conditions for 

normal demand can be used to identify cost-of-living indices for comparing indi-

vidual welfare in alternative  price-income regimes. Next, in their original formula-

tion, our revealed preference conditions for rational behavior under normal demand 
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define “exact” tests: data either satisfy the requirements or not. In our empirical 

application, we will use an Afriat-type Critical Cost Efficiency Index (CCEI) to 

assess how closely behavior complies with rational behavior. This index will serve 

as a  goodness-of-fit measure that has a specific interpretation as capturing the eco-

nomic significance of violations of our testable implications. Finally, we present the 

predictive success measure that we will use in Section III to compare the empirical 

performance of the alternative normality assumptions under study.

Cost-of-living Indices.—An important application of empirical demand analy-

sis consists of comparing consumers’ welfare in alternative  price-income regimes. 

More specifically, for two consumption observations  (  p t  ,  q t  )  and  (  p r  ,  q r  ) , we not only 

wish to know which combination is (revealed) “better” by the consumer, but also 

“how much better.” As utility theory is ordinal in nature, there is no unique answer to 

this last question. A popular method makes use of the money metric utility concept 

that was introduced by Samuelson (1974). In what follows, we will use this money 

metric representation of individual utility to compute cost-of-living indices associ-

ated with different  price-income situations. Technically, we adapt the nonparamet-

ric method that was developed by Varian (1982), based on the GARP concept in 

Definition 3.7 We will show that our  N-GARP characterization in Definition 5 easily 

allows for computing lower and upper bounds on individuals’ cost-of-living indices. 

This effectively set identifies these indices using the assumption of rationalizability 

under normal demand.

The money metric utility function gives the minimum expenditure required in 

observation  t  (with  price-income pair  (  p t  ,  x t  ) ) to attain the same utility level as under 

some reference  price-income regime  (  p r  ,  x r  ) . Formally, it is defined as

  μ ( p t  ;  p r  ,  x r  )  ≡ e ( p t  , v ( p r  ,  x r  ) )  ,

with  e( p, u)  the expenditure function quantifying the minimum income required to 

attain utility  u  at prices  p  and  v( p, x)  the indirect utility function giving the maxi-

mum utility level at prices  p  and income  x . In our  setup, the vector   q t,r    represents 

Hicksian demand at price   p t    and utility level   u r   , which itself equals  v (  p r  ,  x r  )  . Thus, 

we can simply write

  μ ( p t  ;  p r  ,  x r  )  = e ( p t  ,  u r  )  =  p t   h ( p t  ,  u r  )  =  p t    h t,r   .

Then, using our  N-GARP characterization of rationalizable consumer behavior 

under normal demand, we can define upper (or lower) bounds on  μ(  p t  ;  p r  ,  x r  )  by 

maximizing (or minimizing)   p t    q t,r    subject to the conditions in Definition 5. This 

implies optimization problems with a linear objective and linear inequality con-

straints that are characterized by integer variables (see also online Appendix II). It 

7 Varian (1982) refers to the money metric utility function as income compensation function. He considers wel-
fare comparisons between  price-income situations that are possibly unobserved. In the current paper, our focus is on 
comparing observed  price-income situations. Under specific assumptions regarding unobserved prices, it is fairly 
easy to extend our following reasoning to welfare comparisons that involve unobserved  price-income regimes.



VOL. 12 NO. 3 177CHERCHYE ET AL.: RP WITH NORMAL GOODS

defines an interval set of possible values for  μ(  p t  ;  p r  ,  x r  )  under the given normality 

assumptions.

In a following step, we can compare the welfare of some evaluated individual in 

consumption observation  t  and reference observation  r  by using the cost-of-living 

index

   c t,r   =   
 x t   − μ ( p t  ;  p r  ,  x r  ) 

  _____________  x t  
   =   

 x t   −  p t    h t,r  
 _  x t  

   .

In this expression, the numerator   x t   − μ(  p t  ;  p r  ,  x r  )  defines the compensating variation 

associated with the price change from   p r    to   p t   . It measures the difference between the 

individual’s potential income in the decision situation  t  (i.e.,   x t   ) and the income needed 

by the same individual under the prices   p t    to be equally well off, as in the reference 

situation  r  (i.e.,  μ(  p t  ;  p r  ,  x r  ) ). To obtain the cost-of-living index   c t,r   , we divide this 

compensating variation by the available income in observation  t . This compares the 

individual’s welfare in  t  relative to  r . If   c t,r    exceeds zero, the individual is better off in  

t  than in  r . Conversely, if   c t,r    is below zero, the individual is worse off in  t  than in  r .

Similar to before, our nonparametric characterization of rationalizable demand 

behavior allows us to nonparametrically identify upper and lower bounds on   c t,r    

(using set identification of  μ(  p t  ;  p r  ,  x r  ) ). These nonparametric bounds apply to any 

utility specification that rationalizes the observed consumption behavior in terms 

of normal demand. In our empirical application, we will conclude that an individ-

ual is better off in situation  t  than in situation  r  if the lower bound of   c t,r    is above 

zero. It means that for every specification of the individual utilities that rationalizes 

the observed consumption behavior, we obtain a value for   c t,r    that exceeds zero. 

Similarly, we can conclude that the individual is worse off in  t  than in  r  if the upper 

bound of   c t,r    is below zero. Finally, if the lower and upper bounds have opposite 

signs, we cannot reject the hypothesis that the individual is equally well off in both 

decision situations: we are unable to robustly (i.e., for any specification of the ratio-

nalizing utilities) conclude that the individual is better or worse off in  t  than in  r .

 Goodness-of-fit.—The revealed preference characterization in Definition 5 allows 

us to define sharp tests for rationalizable consumption behavior: either the data sat-

isfy the testable  N-GARP conditions or they do not. When the data do not satisfy 

these exact conditions, it is often interesting to empirically evaluate the degree of 

violation. For example, it may happen that the data are close to satisfying the exact 

rationalizability conditions, and we may want to include such almost rationalizable 

data in our further empirical analysis. To this end, we extend Afriat’s (1973) notion 

of CCEI to our specific setting. Intuitively, the CCEI quantifies the  goodness-of-fit 

of the rationalizability conditions in terms of minimal adjustments of the observed 

expenditure levels that are needed to exclude violations of the nonparametric ratio-

nalizability conditions. In other words, it quantifies the error that must be accounted 

for such that the (corrected) data satisfy the rationality restrictions.8

8 The CCEI was originally introduced by Afriat (1973) and further developed by Varian (1990). Choi et al. 
(2014) used the CCEI in a large-scale field experiment as a measure of consumers’ decision-making quality. 
Intuitively, they interpret low  CCEI values as revealing optimization errors arising from imperfect decision-making 
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Formally, to apply the CCEI concept to our  N-GARP characterization, we intro-

duce a parameter  e ∈ [0, 1] . Correspondingly, we adjust the last three (if-then) con-

ditions in Definition 5 for which  r = v  while keeping the other conditions intact. 

That is, we only change the conditions for which   h r,v    is equal to the observed bun-

dle   q v   . This obtains the following adapted conditions (for all  r, s, t, v ∈ T  ):

 • if   u t   ≥  u v   , then  e p v    q v   ≤  p v    h s,t   ,

 • if   u t   >  u v   , then  e p v    q v   <  p v    h s,t   ,

 • if   u t   ≥  u v   , then  e q  v  
i   ≤  h v,t    for all  i ∈ M .

For a given dataset  S , the CCEI equals the highest value of  e  such that the consump-

tion observations satisfy these adjusted rationalizability conditions.9 Obviously, 

higher  CCEI values signal a better fit of the rationalizability conditions. Next, as 

argued by Apesteguia and Ballester (2015, section V), the CCEI has two properties 

that are specifically attractive from a practical point of view. First, it satisfies conti-

nuity, which means that it never increases with the number of observations. Second, 

the CCEI satisfies rationality, which implies that it equals one if and only if the data 

are (exactly) rationalizable.

Let   e   ∗   represent the CCEI of a given dataset  S . Then, we can define the adjusted 

revealed preference test which, by construction, satisfies the modified  N-GARP 

restrictions in Definition 5. For this adjusted test, we can compute cost-of-liv-

ing indices by using the nonparametric procedure outlined above. In the follow-

ing section, our main empirical analysis will do so for the individuals with  CCEI 

values   e   ∗  ≥ 0.99 , which means that the observed behavior is sufficiently close to 

rationalizability.

Predictive Success.—One may be inclined to compare the empirical performance 

of alternative revealed preference conditions by comparing their pass rate, i.e., the 

proportion of individuals passing the conditions. However, this practice can be very 

misleading if one rationalizability condition is structurally weaker than the other. 

For example, any demand behavior that meets  N-GARP will by construction also 

satisfy GARP (but not vice versa). Thus, the pass rate for  N-GARP can never exceed 

the pass rate for GARP.

In order to solve this issue, one should account for the empirical stringency of the 

revealed preference conditions. A widely used measure for the power of revealed 

preference conditions is the  so-called Bronars index (Bronars 1987). This Bronars 

power computes the fraction of (simulated) random datasets that violate the ratio-

nalizability conditions subject to testing. A random dataset is then constructed by 

randomly selecting bundles from each of the observed budget hyperplanes. In gen-

eral, higher power values reveal more stringent revealed preference conditions. 

Thus, if one condition is weaker than the other, then its power will also be lower. 

For example, the power of GARP will never exceed the power of  N-GARP.

quality. We may use a similar interpretation of the CCEI results in our empirical application in Section III. See also 
Apesteguia and Ballester (2015) and Halevy, Persitz, and Zrill (2018) for related discussions. 

9 See online Appendix B for more information concerning the computation of the CCEI.
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Selten (1991) suggested to combine the pass rate and power of a given test into a 

 single-dimensional measure of “predictive success,” which is computed as

  predictive success = pass rate −  (1 − power)  

and always situated between  −1  and  1 .10 A well-performing revealed preference 

condition has a predictive success measure that is close to one, as this reveals both 

a high pass rate and high power; many observed individuals pass the test while 

almost no random behavior passes the test. A predictive success measure below 

zero implies that the pass rate for the randomly generated data exceeds the one 

for the observed data. This indicates the—obviously undesirable—situation that the 

revealed preference condition fits random behavior better than actual behavior. In 

principle, the higher the measure of predictive success, the better the empirical fit 

of the demand model that is tested. Demuynck (2015) introduced statistical tests for 

differences in predictive success associated with alternative behavioral models. We 

will use these statistical tools in our following application.

III. Illustrative Application

To evaluate the welfare effects of the 2008 financial crisis, we make use of a 

balanced panel drawn from the 2007, 2009, and 2011 waves of the PSID. By con-

sidering only three PSID waves, we can show that our methodology enables an 

informative empirical analysis even for short time series of consumption observa-

tions.11 Moreover, it seems more reasonable to assume stable individual preferences 

over a shorter time period. In online Appendix IV, we demonstrate the robustness 

of our main qualitative conclusions for a longer panel containing four consumption 

observations per individual (adding the 2013 PSID wave to our original dataset). 
This extra analysis also allows us to study the impact of the crisis over a longer time 

period.

Data and Setup.—The PSID, which was initiated in 1968, is a widely used survey 

of a national representative sample of 18,000 individuals living in 5,000 families in 

the United States. The dataset contains information on income, wealth, health, mar-

riage, childbearing, child development, education, and other  sociodemographic vari-

ables. Since 1999, the panel also provides additional expenditure information on a 

detailed set of consumption categories (see Blundell, Pistaferri, and  Saporta-Eksten 

2016 for more details).
Our empirical analysis specifically focuses on the welfare effects of the 2008 crisis 

for singles (with and without children). Thus, we exclude couples from our investi-

gation, which also conveniently avoids preference aggregation issues associated with 

10 Selten’s measure was popularized for revealed preference tests by Beatty and Crawford (2011).
11 In principle, it is possible to use our methodology with only two consumption observations per individual. 

However, it can be shown that in such a case, the  N-GARP-based lower bounds on the cost-of-living indices always 
equal the  GARP-based lower bounds by construction. Thus, by using three consumption observations per individ-
ual, we can illustrate the usefulness of normality assumptions for obtaining lower bounds that are more informative 
than the  GARP-based bounds.
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the welfare analysis of  multiperson households.12 We concentrate on individuals 

who are situated on the intensive margin of labor supply; that is, our subjects are 

actively working on the labor market in each period under study. We excluded the 

 self-employed to avoid issues regarding the imputation of wages and the separation 

of consumption from  work-related expenditures. After excluding observations with 

missing information (e.g., on wages, labor hours, or consumption expenditures), we 

end up with a sample of 821 individuals.

Table  1 in online Appendix  III reports summary statistics for our sample. We 

assume that individuals spend their full potential income on four consumption cat-

egories: food, housing, leisure, and other goods. We compute leisure quantities by 

assuming that each individual needs eight hours per day for personal care and sleep. 

Leisure equals the available time that could have been spent on market work but was 

not (i.e., leisure per week = ( 24 − 8) × 7 − market work). We calculate the indi-

viduals’ weekly expenditures (i.e., nominal dollars per week) on the three remaining 

consumption categories (food, housing, and other goods) as the reported annual 

expenditures divided by 52. The price of leisure equals the individual’s hourly wage 

for market work. The prices of food, housing, and other goods are  region-specific 

consumer price indices that have been constructed by the Bureau of Labor Statistics.

For our empirical analysis, we take it that the normality assumption is arguably 

debatable for leisure. Therefore, our following analysis will focus on two alterna-

tive scenarios: a first one in which we assume normality for all four goods (i.e., 

 N-GARP(4)) and a second one in which we only assume normality for the consump-

tion categories food, housing, and other goods (i.e.,  N-GARP(3)). We effectively do 

believe it plausible that the  nonleisure expenditures are normal, all the more because 

they pertain to aggregate consumption categories. We will conduct a  goodness-of-fit 

analysis (using the CCEI) as well as a welfare analysis (on the basis of cost-of-liv-

ing indices) for the  N-GARP conditions associated with our normality assumptions. 

We will compare (in terms of predictive success) our two  N-GARP models with 

the GARP model that makes no use of any normality assumption (recalling that 

 N-GARP reduces to GARP if no good is assumed to be normal).
In our following exercises, we will conduct separate  N-GARP-based and 

 GARP-based analyses for all 821 individuals whom we observe. Using our notation of 

Section II, this defines a dataset  S  with 3 observations (i.e.,  T = {2007, 2009, 2011} ) 
and 4 goods (i.e.,  n = 4 ) for every single in our sample. By analyzing each indi-

vidual separately, we fully account for preference heterogeneity across individuals.

 Goodness-of-fit.—We begin by using Afriat’s CCEI to check data consistency with 

 N-GARP and GARP for the sample of singles under study. Basically, the  GARP-based 

CCEI results reveal how well the assumption of utility maximization fits the observed 

12 Practical welfare analysis of  multiperson households often adopts a unitary assumption, which models these 
households as single decision-makers. However, this unitary assumption has been rejected by a large number of 
empirical studies (see, for example, Browning and Chiappori 1998 and Dauphin et al. 2011). This suggests the 
extension of our analysis toward collective household models, with  multiperson households consisting of mul-
tiple decision-makers, as an interesting avenue of  follow-up research. Such an extension can build on Cherchye, 
De Rock, and Vermeulen (2007,  2011), who developed the revealed preference characterization of rational con-
sumption for collective households.
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behavior, while the  N-GARP-based CCEI results indicate the empirical fit of our nor-

mality assumptions in addition to utility maximization. As explained in Section II, 

the CCEI evaluates model fit in terms of necessary adjustments of observed expen-

ditures to obtain data consistency with the ( N-GARP and GARP) rationalizability 

conditions that are subject to evaluation.  CCEI values are situated between zero and 

one, with higher values signaling a better fit.

Table 1 summarizes our CCEI results. The first row shows the number of indi-

viduals who satisfy the exact  N-GARP and GARP conditions (corresponding to 

CCEI = 1). The second row reports the number of individuals who are very close 

to rationalizability (characterized by CCEI ≥ 0.99). Generally, the  CCEI values 

for the  N-GARP conditions are below the  CCEI values for the GARP condition. 

This should not be surprising because, as explained above, the  N-GARP condi-

tions are more stringent than the GARP condition. Importantly, we find that the 

average  CCEI value is very high for both the  N-GARP and GARP tests: it equals 

0.9913 for  N-GARP(3), 0.9817 for  N-GARP(4), and 0.9987 for GARP. However, 

we also observe that the behavior of some individuals turns out to be quite far from 

exact rationalizability. For example, the minimum  CCEI value equals 0.6774 for 

 N-GARP(3), 0.6047 for  N-GARP(4), and 0.7451 for GARP.

Next, when comparing our findings for the  N-GARP(3) and  N-GARP(4) condi-

tions in Table 1, we observe that the  N-GARP(3) model provides a better fit. Once 

more, this is actually not surprising as the models are nested; the  N-GARP(4) model 

imposes stronger normality restrictions than the  N-GARP(3) model. From now on, 

however, we mainly focus on the  N-GARP(3) setting where we assume normality 

only for the consumption categories food, housing, and other goods. The reason 

for this is that (i) a priori the assumption of leisure being a normal good is often 

debated, and (ii) by switching from  N-GARP(3) to  N-GARP(4), we lose around 

100 more observations, while the improvement in tightness of the bounds is not 

significantly improved (see online Appendix IV).
Overall, the results in Table  1 provide rather strong empirical support for 

 N-GARP (as well as GARP) applied to our sample of individuals. In most cases, 

we need only (very) small expenditure adjustments to obtain consistency with the 

rationalizability conditions. In our following welfare analysis, we will focus on the 

subsamples of, respectively, 702 and 595 individuals with  N-GARP(3)-based and 

 N-GARP(4)-based  CCEI values greater than or equal to 0.99. As explained above, such 

Table 1—CCEI

N-GARP(3) N-GARP(4) GARP

CCEI = 1 (percent) 587 (71.50) 424 (51.64) 782 (95.25)
CCEI ≥ 0.99 (percent) 702 (85.51) 595 (72.47) 803 (97.81)
Mean 0.9913 0.9817 0.9987
Standard deviation 0.0296 0.0435 0.0124
Min 0.6774 0.6047 0.7451
25 percent 0.9980 0.9874 1.0000
50 percent 1.0000 1.0000 1.0000
75 percent 1.0000 1.0000 1.0000
Max 1.0000 1.0000 1.0000
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high  CCEI values signal behavior that is very close to exactly rationalizable, which 

empirically motivates using the assumption of rationality (with normal demand) for our 

welfare analysis. Online Appendix IV contains a robustness analysis that only includes 

the (587) individuals with  N-GARP-based CCEI equal to one (i.e., exactly rationaliz-

able behavior). Comfortingly, this additional analysis yields the same main findings.

Predictive Success.—The top part of Table 2 presents the predictive success mea-

sures for the various revealed preference conditions that are subject to evaluation. We 

consider rationalizability tests with CCEI equal to 1 and with CCEI at least 0.99. We 

also report (between square brackets) 95 percent asymptotic confidence intervals for 

the predictive success measures (obtained through the method of Demuynck 2015). 
Reassuringly, we find that all three rationalizability conditions (GARP,  N-GARP(3), 
and  N-GARP(4)) have a predictive success that is significantly above zero.

The bottom part of Table 2 provides results on hypotheses tests regarding differ-

ences in predictive success for the behavioral models under consideration. We test the 

null hypothesis of equal predictive success against alternative inequality hypotheses. 

Our results indicate that both the  N-GARP(3) and  N-GARP(4) models significantly 

outperform the GARP model in terms of predictive success. We also check whether 

the  N-GARP(3) model performs better than the  N-GARP(4) model. Interestingly, we 

do find that the hypothesis of equal empirical success is rejected against this alterna-

tive hypothesis when considering CCEI equal to one. However, this conclusion no 

longer holds when focusing on the slightly relaxed setting with CCEI at least 0.99.

Cost-of-living Indices.—We quantify the welfare effects of the 2008 crisis by cal-

culating cost-of-living indices. For each individual in our sample, we estimate the dif-

ference in cost of living between 2007 and 2011. More formally, we define this as the 

difference between the actual income in 2011 and the income that would be required 

in the same year (at 2011 prices) to be equally well off as in 2007:

   c 2011,2007   =   
 x 2011   −  p 2011    h 2011,2007  

  __________________   x 2011  
   .

Table 2—Predictive Success Measures

CCEI = 1 CCEI ≥ 0.99

 N-GARP(4) 0.1784 0.3207

[0.1442, 0.2126] [0.2901, 0.3513]

 N-GARP(3) 0.2550 0.3131

[0.2241, 0.2859] [0.2890, 0.3372]

GARP 0.1405 0.1171

[0.1259, 0.1551] [0.1071, 0.1271]

  H 1   p-value p-value

 N-GARP(3) > GARP 0.0000 0.0000

 N-GARP(4) > GARP 0.0143 0.0000

 N-GARP(3) > N-GARP(4) 0.0000 0.7411
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We use the nonparametric set identification procedure outlined above. Particularly, 

we compute  GARP-based and  N-GARP-based lower and upper bound on   c 2011,2007    

by using the rationalizability restrictions associated with GARP (in Definition 3) 
and  N-GARP (in Definition 5), respectively. As explained above, we focus on sub-

samples of “almost rational” individuals with an  N-GARP-based  CCEI value at 

least equal to 0.99. These subsamples contain 702 individuals for the  N-GARP(3) 
model and 595 individuals for the  N-GARP(4) model.

Tables 3 and 4 give a summary of our results for the sample of individuals under 

study. Columns  2–7 summarize our  N-GARP-based bounds and columns  8–10 

our  GARP-based bounds. Correspondingly,   Δ n    in column 4 and   Δ g    in column 7 

represent the differences between the respective upper and lower bounds. Finally, 

column 8 reports on the relative difference between   Δ n    and   Δ g   . This measures 

the extent to which the  N-GARP-based bounds are tighter than the  GARP-based 

bounds. In a sense, it quantifies the identifying power that specifically follows from 

our normality assumptions.

We observe that both the  N-GARP(3)-based and the  N-GARP(4)-based bounds 

are substantially tighter than the  GARP-based bounds. The mean (respectively, 

median) differences between the  N-GARP-based lower and upper bounds are 7 per-

cent and 4.3 percent (respectively, 2.9 percent and 1.2 percent) for the  N-GARP(3) 
and  N-GARP(4) subsamples, which is much below the differences of 14.4 per-

cent and 15.3 percent (respectively, 9.4 percent and 9.9 percent) between the 

 GARP-based bounds for the same subsamples. Moreover, the relative difference 

Table 4—Bounds on   c 2011,2007    for the  N-GARP(4) Subsample (595 Individuals)

 N-GARP(4)-based  GARP-based

    
 Δ g   −  Δ n1  

 _ 
 Δ g  

   Lower Upper   Δ n   Lower Upper   Δ g   

Mean −0.036 0.007 0.043 −0.038 0.114 0.153 0.758
Standard deviation 0.263 0.227 0.117 0.264 0.253 0.176 0.244
Min −3.044 −1.624 0.000 −3.044 −1.578 0.002 0.000
25 percent −0.124 −0.084 0.003 −0.124 0.000 0.043 0.636
50 percent −0.006 0.003 0.012 −0.007 0.046 0.099 0.835
75 percent 0.084 0.113 0.041 0.083 0.260 0.200 0.951
Max 0.831 0.897 2.099 0.830 0.899 2.285 1.000

 

Table 3—Bounds on   c 2011,2007    for the  N-GARP(3) Subsample (702 Individuals)

 N-GARP(3)-based  GARP-based

    
 Δ g   −  Δ n  

 _ 
 Δ g  

   Lower Upper   Δ n   Lower Upper   Δ g   

Mean −0.037 0.033 0.070 −0.038 0.107 0.144 0.469
Standard deviation 0.288 0.247 0.131 0.288 0.279 0.168 0.391
Min −3.044 −2.492 0.000 −3.044 −2.489 0.000 0.000
25 percent −0.120 −0.042 0.008 −0.120 0.000 0.042 0.011
50 percent −0.005 0.008 0.029 −0.006 0.040 0.094 0.500
75 percent 0.083 0.131 0.076 0.083 0.255 0.193 0.865
Max 0.830 0.897 2.099 0.830 0.899 2.285 1.000
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between   Δ n    and   Δ g    amounts to no less than 50 percent for about half of our sample, 

again showing a significant increase of identifying power when imposing normality.

As a following exercise, Figures 3 and 4 depict the empirical cumulative distri-

bution functions (CDFs) of our  N-GARP-based and  GARP-based lower and upper 

bounds for   c 2011,2007   . In line with our results in Tables 3 and 4, the  N-GARP-based 

CDFs are much closer to each other than the  GARP-based CDFs. From all this, we 
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may safely conclude that our (mild) normality assumptions do yield a consider-

ably more informative welfare analysis. Further inspection of Tables 3 and 4 and 

Figures 3 and 4 reveals that for our specific data, this improvement in identifying 

power is mostly driven by lower upper bounds (and to a lesser degree by higher 

lower bounds).

 Better-off and  Worse-off Individuals.—As explained in Section II, we can state 

that an individual is better off in 2011 than in 2007 if the lower bound of   c 2011,2007    

(LB) exceeds zero, while the individual is worse off in 2011 if the upper bound 

of   c 2011,2007    (UB) is below zero. These  better-off and  worse-off classifications are 

robust in that they hold for any specification of the individual utilities that rational-

ize the observed consumption behavior. Finally, if the lower and upper bounds have 

opposite signs (i.e., LB ≤ 0 and UB ≥ 0), we cannot robustly conclude that the 

individual is better- or worse-off in 2011.

Rows  2–4 of Tables 5 and 6 give the fractions of individuals who are classified 

as  better off,  worse off, and  cannot say according to our  N-GARP-based (column 3) 
and  GARP-based (column 4) bounds for   c 2011,2007   . Using our  N-GARP(3)-based and 

 N-GARP(4)-based bounds, we classify respectively 33.05  percent and 49.08 per-

cent of our individuals as worse off and 47.86 percent and 47.90 percent of the indi-

viduals as better off, with a residual 19.09 percent and 3.03 percent falling in the 

 cannot say category. By contrast, our  GARP-based bounds classify only 22.36 per-

cent ( N-GARP(3) subsample) and 22.86 percent ( N-GARP(4) subsample) of the 

individuals as worse off and, respectively, 47.58 percent and 47.56 percent as better 

off, now leaving about 30 percent of the individuals in the  cannot say category. We 

see that particularly, the fraction of individuals in the  worse-off category is sub-

stantially higher in the  N-GARP-based analyses than in the  GARP-based analysis. 

Correspondingly, the fraction of individuals in the  cannot say category is lower in 

the  N-GARP-based classifications than in the  GARP-based classification. These 

findings show that using normality assumptions obtains a significantly more infor-

mative classification of individuals after the 2008 crisis. Particularly, the  N-GARP 

Table 6— Worse-off and  Better-off Individuals for the  N-GARP(4) Subsample

 N-GARP(4) GARP

UB < 0 Worse-off in 2011 49.08 22.86

LB > 0 Better-off in 2011 47.90 47.56

LB ≤ 0 and 0 ≥ UB Cannot say 3.03 29.58

 

Table 5— Worse-off and Better-off Individuals for the  N-GARP(3) Subsample

 N-GARP(3) GARP

UB < 0 Worse-off in 2011 33.05 22.36

LB > 0 Better-off in 2011 47.86 47.58

LB ≤ 0 and 0 ≤ UB Cannot say 19.09 30.06
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restrictions for rational behavior enable a considerably better identification of the 

individuals who suffered from a welfare loss after the 2008 crisis.

Overall, Tables 5 and 6 provide further support for our earlier conclusion that 

(mild) normality assumptions can substantially improve the informative value of 

nonparametric welfare analysis. Moreover, our cost of living estimates reveal con-

siderable some heterogeneity across individuals. In online Appendix  IV, we inves-

tigate this further by relating these cost of living estimates to observable individual 

characteristics. A main finding is that individuals with higher potential incomes in 

2007 have been hit more severely by the crisis.13 Next, we also observe that having 

children correlates significantly with our estimated welfare effects. At this point, 

it is worth recalling that our empirical analysis considers singles who remained 

employed after the crisis. This contrasts with existing studies, which mainly focused 

on the extensive margin of labor supply.

IV. Conclusion

We presented a revealed preference characterization of rational consumer behav-

ior under the assumption of normal demand. The characterization is easily opera-

tionalized in practice, and it is flexible in that it can impose normality on any subset 

of goods. We have also shown the use of our characterization to analyze the welfare 

effects (in terms of cost-of-living indices) of changing  price-income regimes. As 

normality is often a plausible assumption to make, this provides a useful tool kit to 

remediate the lack of power that is frequently associated with empirical revealed 

preference analysis.

We used our novel methodology to evaluate the welfare impact of the 2008 

financial crisis for individuals situated on the intensive margin of labor supply. 

Particularly, we studied the labor supply behavior of a sample of singles drawn 

from the PSID. Our main focus was on comparing the  goodness-of-fit and iden-

tifying power of our nonparametric characterization of utility maximization, with 

and without normality assumptions. We found that the  goodness-of-fit results were 

hardly affected when imposing normality, providing good empirical support for our 

normality hypotheses. Next, and more importantly, we showed that using mild nor-

mality assumptions yields a substantially more powerful empirical welfare analysis: 

it obtained considerably sharper set identification of individuals’ cost-of-living indi-

ces and a significantly more informative classification of  better-off and  worse-off 

individuals after the 2008 crisis.
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