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Post-translational modifications of the polycystin proteins 

Dr Andrew Streets and Professor Albert Ong 

Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, 

Sheffield, UK 

Abstract 

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause 

of kidney failure and affects up to 12 million people worldwide. Germline mutations in two 

genes, PKD1 or PKD2, account for almost all patients with ADPKD. The ADPKD proteins, 

polycystin-1 (PC1) and polycystin-2 (PC2), are regulated by post-translational modifications 

(PTM), with phosphorylation, glycosylation and proteolytic cleavage being the best described 

changes. A few PTMs have been shown to regulate polycystin trafficking, signalling, 

localisation or stability and thus their physiological function. A key challenge for the future 

will be to elucidate the functional significance of all the individual PTMs reported to date. 

Finally, it is possible that site-specific mutations that disrupt PTM could contribute to 

cystogenesis although in the majority of cases, confirmatory evidence is awaited. 

 

Introduction 

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited renal 

disorder, affecting over 12 million people worldwide, with a prevalence of ca. 1/1,000 [1]. It 

is caused by germline mutations in one of two genes: PKD1 (80%) and PKD2 (15%) encoding 

the proteins PC1 and PC2 respectively. As ~7% of cases are genetically unresolved, the 

existence of a third locus (PKD3) has been postulated. Whole exosome sequencing of these 

families have identified mutations in two additional genes, GANAB and DNAJB11, which 

typically result in a late-onset atypical phenotype. GANAB, encodes the glucosidase II alpha 

subunit, and may account for уϬ͘ϯ й of ADPKD [2]. DNAJB11 is responsible for the regulation 

of normal protein folding and assembly in the ER [3]. Mutations in both genes result in a 

defect in the maturation and trafficking of PC1. 

Disease is believed to occur by a loss of function mechanism i͘e͘ by ͚two hit͛ or 
haploinsufficiency models [4]͘ In the ͚two hit͛ model͕ cystogenesis occurs in cells carrying a 
germline mutation on one allele; however a somatic mutation to the other allele is required 

to trigger cyst formation. The alternative hypothesis of cyst formation is haploinsufficiency, 

which supposes that mutations in one allele may be sufficient to initiate cyst formation and 

other non-cystic features in ADPKD. This is a gene-dosage-dependent mechanism in which 

gene expression level may be more variable due to the presence of only one functional allele. 

Lowering the level of PC1 or/and PC2, below a tissue specific threshold could predispose renal 

epithelial cells to stochastic events which trigger cyst initiation [5]. Human PKD1 may be 

particularly sensitive to a dosage reduction as abnormal splicing across intron 21 and 22 

typically results in a significant number of mRNA transcripts (28.8-61.5%) terminating early 

[6].  



In typical adult-onset disease, thousands of renal cysts are found in most ADPKD patients by 

the fifth decade, while only a few are evident before 20 years of age. However, in rare very-

early onset cases (under 2 years of age), the phenotype can be severe and is associated with 

a high prevalence of biallelic or compound heterozygous mutations in PKD1 [7, 8]. A high rate 

of somatic mutation in PKD1 has been reported in end-stage human ADPKD kidney cysts 

indicating that this could contribute to cyst progression in typical late-onset disease [9]. 

 

The polycystin proteins 

Polycystin-1 

PC1 is a 4,303 amino acid protein with a predicted unglycosylated molecular weight of 

462kDa. Its topology is that of a Type 1 receptor consisting of a large N-terminal extracellular 

region, a transmembrane region (11 predicted domains) and a short C-terminus [10]. The 

extracellular N-terminus (3000 aa) has a highly modular structure and contains various 

domains (LRR, WSC, C-lectin, LDL-A, PKD, REJ, GAIN) which give it the ability to perform 

multiple functions including cell recognition, cell-cell and cell-matrix adhesion [11-14].  Cis-

proteolytic cleavage mediated by the GAIN domain at the conserved G-protein coupled 

receptor proteolytic cleavage site (GPS) generates N- and C-terminal fragments (NTF, CTF) 

which remain tethered by non-covalent bonds [15].  Although PC1 has been localised to the 

primary cilium where it is proposed to act as a mechanoreceptor [16], a significant body of 

work has also reported its localisation to the lateral plasma membrane where a role in 

mediating and stabilising cell adhesion has been proposed [12, 17]. In this context, the 

presence of the GAIN domain typical of adhesion-GPCRs (ADGR) is suggestive that the latter 

could be its main site of action [18]. Overall PC1 is still considered an orphan receptor though 

experimental evidence that it could act as a co-receptor for Wnt and signal through PC2 in a 

non-canonical Wnt pathway (Wnt/Ca2+) has been demonstrated in some systems [19, 20]. 

Isolated PC1 domains (C-type lectin, LRR) have been shown to bind several extracellular 

matrix proteins in vitro [21, 22]. 

The polycystin-1 lipoxygenase A-toxin (PLAT) domain is evolutionarily conserved in all 

orthologues and paralogues of PC1 [23]. Located in the first intracellular loop, it may act as a 

protein scaffold regulating the intracellular signalling, trafficking and endocytosis of PC1 [24]. 

The PC1 intracellular C-terminus (CT1) comprising the last 200 amino acids is the most 

extensively studied region and contains several key motifs including a coil-coiled region which 

mediates interaction between PC1 and PC2 [17, 25].  

 

Polycystin-2 

PC2 is a Type 2 968 amino acid protein (109 kDa) with six transmembrane domains and 

intracellular N- and C-termini [26].  PC2 (TRPP2) has been adopted into the Transient Receptor 

Potential (TRP) channel superfamily as the founding member of the TRP(P) subfamily [27]. 

Although there is good evidence that PC1 and PC2 form a functional heterodimeric complex, 

its main location and site of action relevant to cyst formation remain controversial [5]. Similar 



to PC1, PC2 has been localised to primary cilia and the lateral plasma membranes [16, 17, 28, 

29]. However, PC2 is predominantly located in the ER as well as at the centrosomes, mitotic 

spindles and sorting endosomes [17, 20, 30-32].  

The localisation of PC2 and PC1 to primary cilia has led to ADPKD as a disease being adopted 

into the group of diseases known as ͚ciliopathies͛͘ Whether loss of cilia-localised PC2 in 

isolation is sufficient to lead to cyst formation remains uncertain. In addition, PC2 may 

function as an ER Ca2+ -regulated Ca2+-release channel, in association with IP3R and RyR in 

different cell types [33, 34]. There is also biochemical and functional evidence that PC2/TRPP2 

can with other TRP channel subunits such as TRPC1, TRPV4, TRPM3 to form channels with 

unique properties [35-37]. The relevance of these TRPP combinations to the pathogenesis of 

cystic disease remains undefined.  

The interacting motifs and stoichiometry for the formation of a PC1 and PC2 complex have 

been defined. PC2 has been shown to oligomerise via a coiled-coil domain in its C-terminus 

(CT2) to form trimers or dimers and this step appears to be critical for PC1 binding via a coil-

coiled domain in CT1 [38, 39]. PC2 is essential for PC1 maturation and its surface (and cilia) 

localisation and vice-versa [40]. However, the trafficking of PC2 into cilia does not always 

depend on PC1 expression or binding [41]. Co-regulation of PC2 by PC1 and vice-versa have 

been reported in some experimental systems [42-44]. The proposed role of PC1 as a flow-

activated mechanoreceptor regulating PC2 channel opening in primary cilia has been disputed 

by recent studies [16, 45, 46]. Finally, although there is agreement that PC2 is a Ca2+ 

permeable channel, there is disagreement about its ion selectivity (monovalent v divalent 

ions) and mode of activation or inactivation by Ca2+ depending on the model systems used 

[47]. One possibility is that these may differ between different subpopulations of PC2/TRPP2 

or in different locations. For instance, a recent study has proposed a role for ER PC2 in 

protection from cellular stress [48, 49]. 

Several PC2 structures including one complexed with PC1 have been recently published. Shen 

et al. were the first to report a ͚polycystin domain͛ in the large first extracellular loop, 

covalently linked to the first and second helices, and proposed a role for this domain in 

channel assembly and modulation [50]. Grieben et al. recently performed the first 

crystallisation of the full closed version of the protein, giving more insights into its structure 

and function [51]. They confirmed the existence of the polycystin domain, which they 

renamed the TOP domain (standing for Tetragonal Opening for Polycystins). Wilkes et al. 

recently reported the presence of two PCϮ conformational states͖ an ͛open͛ conformation 

where the lipid mediated interaction between the TOP and C-terminal domain lead to a larger 

opening of the funnel and a more ͛closed͛ state which restricts the passage of ions such as 

Ca2+, Na+ and K+ [52]. Ca2+ entry was thought to be mediated through a pore formed between 

the fifth and sixth transmembrane domains of the protein [51]. Of interest, a cryo-EM 

structure of truncated human PC1 (3049-4169aa) and PC2 (185-723aa) proteins 

demonstrated a 1:3 stoichiometry of the PC1/PC2 complex [53]. In this study, PC1 was found 

to interact with PC2 via an extracellular voltage gated ion channel (VGIC) fold providing a 

second level of interaction besides the C-terminal interactions previously reported. 



The function of several motifs in the N- and C-termini were however not clarified in these 

structural studies. For instance, the EF-hand motif of PC2 forms a pocket-like structure that 

binds to Ca2+ ions and could modify the conformation of the C-terminus: how this regulates 

channel function is not known [54]. Similarly, the regulatory functions of the phosphorylation 

residues reported in both N- and C-termini (see below) for channel opening or function 

remain unclear. 

 

Post-translational modifications 

In the past few decades, it has become apparent that the human proteome is vastly more 

complex than the human genome (Figure 1). While the human genome comprises between 

20,000 and 25,000 genes, the total number of proteins in the human proteome has been 

estimated at over 1 million demonstrating that single genes can encode multiple protein 

isoforms. Genomic recombination, transcription initiation at alternative promoters, 

differential transcription termination, and alternative splicing of the transcript are 

mechanisms that can generate different mRNA transcripts from a single gene. 

The increase in complexity from the level of the genome to the proteome is amplified by 

protein post-translational modifications (PTMs). PTMs are chemical modifications that play a 

key role in protein function regulating its activity, localisation, stability and interaction with 

other cellular molecules such as proteins, nucleic acids, lipids and cofactors.  

Post-translational modifications can occur on the amino acid side chains or at the protein's C- 

or N-termini (Table 1). They can extend the chemical repertoire of the 20 standard amino 

acids by modifying an existing functional group or introducing a new one such as phosphate. 

Phosphorylation is a very common mechanism for regulating the activity of enzymes and is 

the most common post-translational modification. Many eukaryotic and prokaryotic proteins 

also have carbohydrate molecules attached to them, a process called glycosylation which can 

promote protein folding, improve stability as well as serving regulatory functions. Attachment 

of lipid molecules, known as lipidation, often targets a protein or part of a protein attached 

to the cell membrane.  

Other forms of PTM consist of proteolytic cleavage, as in processing a propeptide to a mature 

form or removing the initiator methionine residue. The formation of disulfide (covalent) 

bonds between cysteine residues may also be referred to as a PTM. For instance, the peptide 

hormone insulin is cut twice after disulfide bonds are formed, and a propeptide is removed 

from the middle of the chain resulting in a protein consisting of two polypeptide chains 

connected by disulfide bonds.  

Sites that often undergo post-translational modification are those that have a functional 

group that can serve as a nucleophile in the reaction: the hydroxyl groups of serine, threonine, 

and tyrosine; the amine forms of lysine, arginine, and histidine; the thiolate anion of cysteine; 

the carboxylates of aspartate and glutamate; and the N- and C-termini. In addition, although 

the amide of asparagine is a weak nucleophile, it can serve as an attachment point for glycans. 

Rarer modifications can occur at oxidized methionines and at some methylenes in side chains.  



Some types of PTM occur as the consequence of oxidative stress. Carbonylation is one 

example that targets the modified protein for degradation and can result in the formation of 

protein aggregates. Specific amino acid modifications can be used as biomarkers indicating 

oxidative damage.  

 

Post-translational modification of polycystin protein and their functional significance 

Since the identification of the polycystin proteins, a great deal of effort has been made to 

understand their function within the cellular environment. It has become clear that the 

functions of these proteins could be regulated by distinct post-translational modifications. By 

far the most studied modification is phosphorylation but glycosylation, proteolytic cleavage, 

ubiquitination and lipidation have also been described. This section will describe these 

modifications and evidence for their functional significance. 

 

Polycystin phosphorylation 

Polycystin-2 

Phosphorylation of PC2 at multiple residues has been detected by mass spectrometry in 

several large-scale phosphoproteomic studies. The majority of these residues are highly 

conserved in vertebrates suggesting they may be essential for polycystin function although to 

date, only a few have been experimentally verified (https://www.phosphosite.org) (Figure 2). 

A summary of how phosphorylation of PC2 may regulate key cellular functions such as its 

subcellular localisation and/or trafficking, calcium permeability and cell cycle regulation is 

summarised in Figure 3.  

 

Serine 812 

The first phosphorylation site within the C-termini of PC2 was identified at Ser812 and this 

remains the most studied residue [55]. Phosphorylation at this site is important for channel 

function; loss of phosphorylation resulted in reduced sensitivity to PC2 channel activation by 

intracellular Ca2+ in ER-enriched liposomes [55]. A second study demonstrated a role for Ser812 

phosphorylation in regulating PC2 trafficking [56].  Ser812 is located in a cluster of acidic amino 

acid residues which were found to mediate interaction between polycystin-2 and the 

phosphofurin acidic cluster sorting (PACS) proteins, PACS-1 and PACS-2. Interaction with 

these PACS proteins proved essential for the retrograde trafficking of PC2 between the 

plasma membrane, Golgi and ER. Binding of PACS to PC2 was dependent on CK2 

phosphorylation at Ser812; mutation of Ser812 to alanine or disruption of the acidic cluster 

weakened PACS binding resulting in translocation of PC2 to the lateral plasma membrane. 

These observations were later confirmed in a zebrafish model [57]. In a third study, a 

phosphomimic Ser812D C-terminal protein (679-968aa) had lower affinity binding to PIGEA14 

compared to wild-type PC2, potentially regulating anterograde PC2 transport between the ER 

and Golgi [58, 59]. Finally, phosphorylation at Ser812 was reported to be important for PC2 



binding to ID2 (inhibitor of DNA binding 2), a member of the ID family of helix-loop-helix (HLH) 

transcription factors [60]. Phosphorylated PC2 bound ID2 retaining it in the cytoplasm, 

preventing its effect on p21 transcription leading to cell-cycle progression. 

 

Other serine residues 

Serine 76/80 

Although an initial study reported that PC2 was only phosphorylated at a single residue 

(Ser812) [55], a second GSK3-recognition site was next identified at Ser76 with a potential CK1 

priming site at Ser80 [61]. This phosphorylation event was required for PC2 trafficking to (or 

retention at) the lateral plasma membrane but not to primary cilia in kidney epithelial cells. 

The inability of a phosphodeficient Ser76 mutant to rescue the cystic phenotype in the 

zebrafish Pkd2 pronephric kidney further confirmed its functional significance [61].  

Serine 801 

A third PC2 phosphorylated residue (Ser801) mediated by protein kinase D (PrKD) was shown 

to be critical for PC2-mediated ER Ca2+ release and in mediating PC2 regulation of proliferation 

[62]. Interestingly, a reported missense mutation, Ser804N, which lies within the PrKD 

consensus sequence abolished Ser801 phosphorylation [62, 63]. Phosphorylation at Ser801 by 

PrKD thus appears to be essential for PC2 channel function in the ER in response to growth 

factor stimulation.   

Serine 829 

A fourth site at Ser829 was identified by several groups. In the first study, AurA kinase was 

identified as the relevant kinase and was shown to reduce the ability of PC2 to limit the 

amplitude of ER Ca2+ release in kidney epithelial cells [64]. A second study reported that 

Protein kinase G (PKG) could phosphorylate PC2 at Ser829, inhibiting flow induced Ca2+ influx 

in M1-CCD cells; the authors proposed Ser721 as a second relevant PKG site [65]. Finally, 

protein kinase A (PKA) was shown to phosphorylate PC2 at Ser829 [44, 66]. In this study, Ser829 

phosphorylation led to enhanced ATP-dependent ER Ca2+ release and loss of growth 

suppression in cycling cells. Of significance, constitutive Ser829 phosphorylation detected with 

a phosphospecific antibody was observed in PC1 null or mutant cells. The molecular basis of 

this is the recruitment of protein phosphatase 1 (PP1) by the PC1 C-terminus, a function that 

is lost when PC1 is mutated [67]. This observation suggested a different paradigm of disease 

pathogenesis with an inhibitory rather than a cooperative relationship between PC1 and PC2 

[44].  

Other potential sites 

Studies of the worm PC2 homologue has shown that phosphorylation of Ser534 by CK2 was 

important in PC2 ciliary localisation and its function during male mating behaviour [68]. 

Evolutionary conservation of this CK2 site in human PC2 (Thr683) suggests it͛s potential 

importance although this has yet to be shown experimentally. 



 

Polycystin-1 

The functional significance of PC1 phosphorylation is less well defined although several 

potential sites of interest have been reported. Tyrosine phosphorylation of PC1 was first 

demonstrated implicating a role for tyrosine phosphorylation in PC1-mediated focal adhesion 

complexes [69, 70]. C-src, FAK, PKA and a novel kidney cAMP-dependent kinase protein kinase 

X (PRKX) can phosphorylate CT1 in vitro. Site-directed mutagenesis identified Tyr4237 as the 

specific target site for c-src, Ser4252 and Ser4169 as specific target sites for PKA [71-73] and 

Ser4166 as the specific target site for PRKX [72]. Outside the C-terminus, PC1 can be 

phosphorylated at Ser3164 within the PLAT domain by PKA [24]. This event reduces its binding 

affinity to PI4P and recruits β-arrestins and the clathrin adaptor AP2 to trigger PC1 

internalization. Finally, PC1 in ADPKD cells has been reported to be hyperphosphorylated (by 

phospholabelling with 32P) and proposed to contribute to the disruption of a PC1/E-cadherin 

complex [74]. Although the relevant sites were not identified in this paper, an increase in PC1 

phosphorylation could result from loss of PP1 binding to CT1, similar to what has been  

observed for CT2 (see above, Figure 3). 

 

Other post-translational modifications of polycystins 

Glycosylation 

The polycystin proteins are highly glycosylated. Sequence predictions indicate 60 N-linked 

sites for PC1 and experimentally, several different glycosylated forms of endogenous PC1 

have been identified. Treatment with PNGase F (to cleave N-linked sugars) and 

endoglycosidase H (Endo H) (to differentiate high-mannose sugars) led to the identification 

of Endo Hʹresistant and sensitive forms of PC1. An Endo Hʹsensitive and an Endo H-resistant 

form of PC1 were found to interact with PC2, with the latter enriched in plasma membrane 

fractions [17]. It has been estimated that 50% of PC1 is EndoH resistant and localised to the 

cell surface and that PC2 is critical for this trafficking [40].  

Sequence predictions indicate 5 N-linked sites for PC2 (all in the first extracellular loop). 

Unexpectedly, no EndoH resistant fraction has been consistently found suggesting that the 

majority of (Endo H-sensitive) PC2 is retained within the ER where it exerts its major functions 

[17, 30].  An alternative mechanism proposes that a small fraction of PC2 traffics from the cis-

Golgi to the cilium without going through the classical secretory pathway [75], possibly 

mediated by an N-terminal RVxP motif (Figure 3) [41]. Nonetheless, PC2 in human urine 

extracellular vesicles has been reported to be predominantly EndoH-resistant [76]. Similarly, 

another group reported a minor EndoH-resistant PC2 cilia fraction complexed with PC1, that 

transited the Golgi via a Rabep1/GGA1/Arl3-dependent ciliary targeting mechanism [77]. N-

glycosylation is linked to protein stability and mutation of PRKSCH (glucosidase II E subunit) 

reduces the abundance of PC2 probably through effects on protein folding and/or translation 

efficiency [78] (see below). 

 



Proteolytic cleavage 

GPS cleavage 

A key post-translational modification of PC1 is the ability to undergo cleavage via a GPCR 

proteolysis site (GPS) motif situated distal to the REJ-GAIN domain [79]. GPS cleavage of PC1 

has been shown to regulate intracellular trafficking, localisation and function of the protein 

[80-83]. Cleavage is thought to occur shortly after ER processing and results in the formation 

of two distinct fragments (NTF, CTF) that are non-covalently associated (Figure 4). The 

functional importance of this PTM in vivo was demonstrated by the characterisation of a 

knock-in mutant mouse (Pkd1V/V) with a missense mutation (T3041V) disrupting the GPS 

cleavage site [84]. Surprisingly, although GPS cleavage was completely prevented, mutant 

Pkd1V/V mice had a hypomorphic phenotype, characterised by delayed onset of cystogenesis, 

predominant distal tubule involvement and lack of extrarenal cysts indicating a possible role 

for the uncleaved form in prenatal life, in other tubular segments and extrarenal tissues. GPS 

cleavage does not however appear to be essential for PC1 maturation [81]. 

An essential role for GPS cleavage in the cilia trafficking of PC1 has been proposed [77] 

although cilia localisation can be normal in some mutants [85, 86]. Around 30% of all reported 

pathogenic PKD1 mutations are located in the REJ-GAIN region with the potential to disrupt 

GPS cleavage (http://pkdb.mayo.edu) [15]. 

 

Other cleavage events 

Several groups have reported that CT1 may undergo proteolytic cleavage to release smaller 

fragments (14, 32, 100kDa) (Figure 4) that translocate to the nucleus to regulate gene 

transcription, in co-operation with other transcription factors such as STAT6, STAT3 and 

TCF/E-catenin [87-89]. A G-protein activation motif has been shown to be involved in the 

activation of transcription factor AP-1 mediated signalling [90, 91]: mutation of this motif 

(L4132Delta) leads to cyst formation [92]. Intriguingly, a CT1 fragment has been identified in 

mitochondria and could regulate mitochondrial morphology and function [93]. One caveat is 

that all of these studies were performed using heterologous or recombinant PC1. However, a 

recent study of native PC1 in human urine extracellular vesicles identified three other 

proteolytic cleavage sites, two of which could generate PC1 fragments similar in size to those 

previously reported (11, 94kDa) (Figure 4) [76]. Similar to PC1, a low percentage of PC2 (13%) 

was also found to be cleaved proximal to the coiled-coil domain (aa835-873, CC2) [76]. Unlike 

GPS cleavage, the functional relevance of these cleavage events is unclear. 

 

Ubiquitination 

Ubiquitin is conjugated to a lysine residue in the substrate protein by a series of enzymes 

either singly (mono) or as part of a chain (poly) ubiquitination. Ubiquitination can target a 

protein for degradation via the proteasome and lysosome, alter their cellular location, affect 

their activity, and promote or prevent protein interactions. PC2 has been reported to be 



ubiquitinated following interaction with Herp and ATPase p97, components of the ER-

associated degradation (ERAD) pathway [94]. Of interest, this PTM is inhibited by PRKCSH, the 

E subunit of glucosidase II, which when mutated results in Autosomal Dominant Polycystic 

Liver Disease (PCLD1) [95]. 

TAZ, a core component of the Hippo pathway and an adaptor protein in the E3 ubiquitin ligase 

complex can also target PC2 for degradation [96, 97]. The kinase Nek1 phosphorylates TAZ at 

a site essential for the ubiquitination and proteosomal degradation of PC2. Loss of TAZ or 

mutations in Nek1 are associated with renal cysts in vivo in the context of increased PC2 

expression. PKD2 transgenic mice, like PKD1 transgenic mice, develop PKD underscoring the 

importance of gene dosage in cyst formation [98].  

Conversely, PC2 expression has also been shown to be specifically reduced in mice with biliary 

damage, being modulated post-translationally through the ERAD/proteasome pathway and 

by ER-stressors and NO-donors through the autophagy pathway via post-translational 

modification by ubiquitin [99].  

Siah1 regulates the degradation of endogenous polycystin-1 via the ubiquitin-proteasome 

pathway [100]. The binding of Siah1 to CT1 induces ubiquitination and degradation of PC1 in 

response to cell cycle progression through p21. 

 

Sumoylation 

PC2 has recently been shown to be post-translationally modified by SUMO1 (small ubiquitin-

like modifier 1) protein in arterial smooth muscle cells (myocytes) [101]. At physiological 

intravascular pressures, PC2 exists in approximately equal proportions as either non-

sumoylated or triple SUMO1-modifed proteins. SUMO-PC2 recycles, whereas unmodified PC2 

is surface-resident. Depending on the intravascular pressure and intracellular calcium levels, 

SUMO-PC2 either recycles to the plasma membrane or undergoes degradation in lysosomes. 

This post-translational modification allows the physiological regulation of PC2 surface 

abundance and pressure-mediated activation in myocytes and thus control of arterial 

contractility. 

 

Palmitoylation 

PC1 has been reported to be palmitoylated at its C-terminus, altering its expression levels and 

surface membrane localisation [102]. 

 

Conclusions 

Accumulating evidence has revealed that the polycystin proteins undergo a variety of PTMs 

affecting every aspect of their biology including trafficking, localisation, interaction, channel 

activity, signalling and stability. The best described changes involve phosphorylation, 



glycosylation, proteolytic cleavage and ubiquitination. A key challenge for the future will be 

to elucidate the functional significance of these modifications and their relevance to disease. 
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Figure Legends 

Figure 1. Post-translational modifications are key mechanisms that increase proteomic 

diversity 

While the genome comprises 20,000 to 25,000 genes, the proteome is estimated to 

encompass over 1 million proteins. Changes at the transcriptional and mRNA levels increase 

the size of the transcriptome relative to the genome, and the myriad of different post-

translational modifications exponentially increases the complexity of the proteome relative 

to both the transcriptome and genome. 

 

Figure 2. Experimentally verified polycystin phosphorylation sites 

A total of five phosphorylation sites have been experimentally verified in polycystin-1 and six 

in polycystin-2. A significantly larger number have been identified in high throughput MS 

proteomic screening studies but as of yet have not been verified experimentally 

(https://www.phosphosite.org). Kinases that have been experimentally validated are shown 

above each residue. 

 

Figure 3. Putative role of phosphorylation in the subcellular functions of the polycystins in 

kidney tubular cells 

Phosphorylation at Ser76 is required for PC2 trafficking to or retention at the lateral plasma 

membrane.  Retrograde trafficking of PC2 between plasma membrane, Golgi and ER is 

dependent on Ser812 phosphorylation.  PC2 transport to the ciliary membrane independent of 

Golgi trafficking may occur via an N-terminal RVxP motif; alternatively PC2 complexed to PC1 

could traffic to cilia via a Rabep1/GGA1/Arl3 dependent mechanism (dotted arrows). 

Phosphorylation at Ser829, Ser812 and Ser801 regulates PC2 channel activity. CT1 

phosphorylation can modify GPCR signalling. Phosphorylation of PC1 at Ser3164 (PLAT) 

mediates its internalisation from the plasma membrane. Increased phosphorylation of CT1 

and CT2 at specific residues may result from the loss of Protein Phosphatase-1 (PP1) binding 

to CT1 in PKD1 truncating mutations. 

 

Figure 4. Domain structure of polycystin-1 indicating sites of proteolytic cleavage 

Four putative cleavage sites have been identified in PC1. The GPS site (black arrowhead) has 

been mapped to HisͲLeuϯϬϰϴͲΎThrϯϬϰϵ with ciƐͲproteolytic cleavage occurring between LeuϯϬϰϴ 
and ThrϯϬϰϵ͘ Three smaller proteolytic cleavage products of ϵϰͲϭϬϬkDa ;PϭϬϬͿ͕ ϯϮkDa and ϭϭͲ
ϭϰkDa ;CTTͿ respectively have been reported ;broken arrowsͿ͘ The blue arrowheads indicate 
ϯ other proteolytic cleavage sites recently reported for PCϭ present in human urine 
extracellular vesicles͘ 
 

 



 

  



Post translational 

modification 
Definition Frequency  

Phosphorylation  
The addition of a phosphate group, usually to 

serine, threonine, and tyrosine 
58383  

Acetylation  
The addition of an acetyl group, either at the N-

terminus of the protein or at lysine residues. 
6751  

N-linked glycosylation  
The addition of a glycosyl group to an asparagine 

residue 
5526  

Amidation  
Formed by oxidative dissociation of a C-terminal 

Gly residue 
2844  

Hydroxylation  
The addition of an oxygen atom to the side-chain 

of a Pro or Lys residue 
1619  

Methylation  
The addition of a methyl group, usually at lysine 

or arginine residues 
1523  

O-linked glycosylation  
The addition of a glycosyl group to serine or 

threonine residues 
1133  

Ubiquitylation  
The covalent linkage to the protein ubiquitin 

usually at lysine residues 
878  

Sulfation The addition of a sulfate group to a tyrosine 504  

Sumoylation 
The covalent linkage to the SUMO protein usually 

at lysine residues 
393 

Palmiytoylation 
Attachment of palmitate, a C16 saturated acid 

usually at cysteine residues 
271 

Myristoylation 
Attachment of myristate, a C14 saturated acid 

usually at glycine residues 
140 

Farnesylation 
The addition of an isoprenoid group (e.g. Farnesol 

and geranylgeraniol) usually at cysteine residues 
77 

Deamidation 
The conversion of glutamine to glutamic acid or 

asparagine to aspartic acid 
55 

S-nitrosylation 
Covalent attachment of a nitric oxide group (-NO) 

to cysteine 
53 

 

Table 1. Common post translational modifications and their experimentally observed 

frequency curated from Swiss-Prot (adapted from Khoury et al. 2011)(46).  
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