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RESEARCH ARTICLE Open Access

Physical activity assessment by
accelerometry in people with heart failure
Grace O. Dibben1* , Manish M. Gandhi2, Rod S. Taylor3,4, Hasnain M. Dalal1,3, Brad Metcalf5, Patrick Doherty6,

Lars H. Tang7,8,9, Mark Kelson10 and Melvyn Hillsdon5

Abstract

Background: International guidelines for physical activity recommend at least 150 min per week of moderate-to-

vigorous physical activity (MVPA) for adults, including those with cardiac disease. There is yet to be consensus on

the most appropriate way to categorise raw accelerometer data into behaviourally relevant metrics such as

intensity, especially in chronic disease populations. Therefore the aim of this study was to estimate acceleration

values corresponding to inactivity and MVPA during daily living activities of patients with heart failure (HF), via

calibration with oxygen consumption (VO2) and to compare these values to previously published, commonly

applied PA intensity thresholds which are based on healthy adults.

Methods: Twenty-two adults with HF (mean age 71 ± 14 years) undertook a range of daily living activities

(including laying down, sitting, standing and walking) whilst measuring PA via wrist- and hip-worn accelerometers

and VO2 via indirect calorimetry. Raw accelerometer output was used to compute PA in units of milligravity (mg).

Energy expenditure across each of the activities was converted into measured METs (VO2/resting metabolic rate)

and standard METs (VO2/3.5 ml/kg/min). PA energy costs were also compared with predicted METs in the

compendium of physical activities. Location specific activity intensity thresholds were established via multilevel

mixed effects linear regression and receiver operator characteristic curve analysis. A leave-one-out method was

used to cross-validate the thresholds.

Results: Accelerometer values corresponding with intensity thresholds for inactivity (< 1.5METs) and MVPA

(≥3.0METs) were > 50% lower than previously published intensity thresholds for both wrists and waist

accelerometers (inactivity: 16.7 to 18.6 mg versus 45.8 mg; MVPA: 43.1 to 49.0 mg versus 93.2 to 100 mg). Measured

METs were higher than both standard METs (34–35%) and predicted METs (45–105%) across all standing and

walking activities.

Conclusion: HF specific accelerometer intensity thresholds for inactivity and MVPA are lower than previously

published thresholds based on healthy adults, due to lower resting metabolic rate and greater energy expenditure

during daily living activities for HF patients.

Trial registration: Clinical trials.gov NCT03659877, retrospectively registered on September 6th 2018.
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Background
Maintenance of adequate physical activity (PA) is a

key lifestyle recommendation for many chronic dis-

ease populations, including heart failure (HF) patients,

with benefits including improvements in exercise

capacity, health-related quality-of-life and reduced all-

cause and HF-specific mortality and hospital admis-

sions [1–4]. Progressively, clinical trials are relying on

accelerometers to objectively measure levels of PA

and inactivity, to investigate the relationship between

PA, inactivity and HF disease progression [5], or to

evaluate the effect of a PA or exercise programme in

primary or secondary prevention in HF [6]. However,

there is yet to be consensus on the most appropriate

way to convert raw acceleration data into behaviour-

ally relevant metrics, particularly in chronic disease

populations.

International PA recommendations for public health

and cardiac patients are based on time spent in

moderate-to-vigorous PA (MVPA) [7, 8]. In order to

derive information on the amount of time spent in

different PA intensities from accelerometers, cut-

points or intensity thresholds derived from calibration

studies are applied to the raw data. Previous studies

measuring PA and inactivity patterns in HF patients

have used intensity thresholds based on calibration

studies involving young, healthy individuals rather

than HF-specific populations [9–12]. Applying these

thresholds to HF patients assumes the energy cost for

a given activity is the same for everyone, which may

lead researchers to misclassify PA levels of people

with HF due to the lack of consideration for an indi-

vidual’s exercise tolerance [13, 14]. Prince et al. [15]

have shown that application of multiple published

thresholds resulted in widely varying interpretations

of PA levels in patients with coronary artery disease,

emphasising the need for caution when deciding

which thresholds to use in clinical populations. Fur-

thermore, some commercially available PA monitors

use privately owned, proprietary algorithms to trans-

form the raw data into units of activity. This can

complicate interpretation of results both in clinical

and non-clinical populations where these devices have

not been validated for use in research, but also across

studies using different brands of accelerometer or PA

monitor. Improving the way in which PA is measured

in HF patients will allow for better monitoring, classi-

fication and treatment allocation of HF patients.

Therefore recent publications have called for popula-

tion specific calibration studies [13, 14].

We conducted a laboratory-based calibration study

aiming to estimate the acceleration values for hip- and

wrist-worn accelerometers which correspond to both in-

activity and MVPA in patients with HF via calibration

with oxygen consumption (VO2). A secondary aim was

to compare the derived thresholds to current generic in-

tensity thresholds. We hypothesized that the derived ac-

celerometer thresholds would be lower than the generic

thresholds based on calibration studies of healthy adults,

due to the reduced exercise capacity and breathlessness,

dominant symptoms of HF.

Methods
Study design

This was a single centre, observational study of a cohort

of HF patients. The design was based on previous cali-

bration studies [11, 12, 16].

Participants

A sample of 22 adults with HF were recruited from the

Royal Devon and Exeter NHS Foundation Trust HF

clinic between March 2018 and October 2018. Inclusion

criteria were adult (≥18 years) outpatients with a diagno-

sis of HF confirmed by a hospital specialist, New York

Heart Association (NYHA) class I to III symptoms, who

were able to give informed consent. The exclusion cri-

teria were: acute decompensated HF, contraindication to

exercise testing or PA, resident in a long term care facil-

ity, unwilling or unable to travel to the research site, pa-

tients unable to understand the study information, and

judged unable to participate for any other reason.

The study protocol conforms to the 1975 Declaration

of Helsinki, ethical approval was granted by Cambridge

South Research Ethics Committee (18/EE/0019), and the

trial registration ID is: NCT03659877. Participants gave

informed consent prior to data being collected.

Activities

Participants attended the sports science laboratory at

University of Exeter St Luke’s campus in the UK. They

were asked to take their medication as normal, and to

not eat or drink caffeinated or calorie containing foods

or drinks prior to the visit which was scheduled in the

morning. This fasting period was required to avoid error

in resting metabolic rate (RMR) measurement associated

with increased metabolic rate with digestion, absorption

and metabolism of dietary nutrients. Breakfast was pro-

vided after RMR measurement, prior to any physical ac-

tivities being performed. The laboratory protocol

consisted of a series of activities (listed in order of com-

pletion, Table 1), chosen based on previous calibration

studies [11, 12, 16] and selected with the help of a local

HF patient and public involvement group to be repre-

sentative of daily living activities for HF patients. The

duration of each activity was chosen to optimise the like-

lihood of steady state metabolism being achieved.

ISWT was performed to measure exercise capacity

and gauge rating of perceived exertion (RPE) over the
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completed stages, which informed the light (RPE 11)

and moderate (RPE 13) walking paces. Standardised in-

structions were given prior to the test, and no encour-

agement given throughout [18, 19]. Stopping criteria

were when the participant was too breathless to con-

tinue, unable to maintain the required speed, or they de-

cided to stop. At the end of the ISWT and each walking

activity, participants were asked to sit and rest quietly

until they felt ready to complete the next task. Other ac-

tivities had a 1 min transition period. Participants that

used walking aids in their daily life, were allowed to do

so throughout the activities as required. The patient visit

lasted approximately 3 h in total, most of which was ad-

ministrative or resting time, with up to 45min of phys-

ical tasks.

Measures

Anthropometric measures

Prior to the activities, weight was measured, to the near-

est 0.1 kg using an electronic scale (Seca, Hamburg,

Germany), height was measured to the nearest 0.1 cm

using a stadiometer (Seca, Hamburg, Germany), both

without shoes. Blood pressure was assessed using a man-

ual sphygmomanometer (Accoson, England). Body mass

index was also calculated.

Oxygen consumption (VO2)

VO2 was measured throughout each activity with a port-

able Oxycon mobile breath-by-breath ergospirometry

system, (VIASYS Healthcare GmbH, Hoechburg,

Germany). This system has been shown to be a reliable

and valid method of measuring energy expenditure [20].

Standardised gas and volume calibration was performed

within 1 h before each participant visit according to

manufacturer’s specifications [21]. The flow meter was

calibrated automatically. VO2 was expressed in millilitres

per kilogram per minute (ml/kg/min).

Accelerometry

Throughout each activity, participants wore 3 GENE

Activ accelerometers (Activinsights, Kimbolton, UK);

one on each wrist, secured using a watch strap; and on

the waist, secured using an elasticated waist band over

the left iliac crest. Acceleration was measured between

-8 g and 8 g, and raw triaxial acceleration recorded at

100 Hz. The GENEActiv accelerometer has been vali-

dated for both hip- and wrist-worn measurement of PA,

and to distinguish between inactivity, light PA, and

MVPA in healthy adults [22].

Rating of perceived exertion

Before starting any activities, participants were

instructed on how to use the Borg 15 point RPE scale

[23], which was reported during the last 30 s of each

ISWT level and during the last minute of all other

activities.

Data reduction

Immediately after testing was completed, the accelerom-

eters and ergorespirometry system were removed and

data were downloaded to a personal computer.

Oxygen consumption data

VO2 was averaged over minutes 10–20 of lying down,

and over the last minute of all other activities. VO2 data

for each individual for each activity was converted into

metabolic equivalents (METs) in two different ways;

standard METs calculated using the standard formula

Table 1 List of activities performed in order, their duration, and associated notes

Activity Duration Notes

Laying down on a bed 30 min Patients laid down in low- or semi-Fowler’s position (as per patient preference) [17].
RMR was directly measured during minutes 10–20.

Sitting on the bed 5min

ISWT Performed until
stopping criteria met

Sitting watching TV 5min

Standing washing and drying
dishes

5 min

Sitting quietly 5 min

Walking at a pace perceived to
be light

3–5 min* Pace derived from ISWT (RPE 11)

Walking at a pace perceived to
be moderate

3–5 min* Pace derived from ISWT (RPE 13)

Light pace walk carrying 2 × 1.5
kg shopping bags

3–5 min* Pace derived from ISWT (RPE 11)

* Patients unable to complete 5 min walking did a minimum of 3 min to optimise the likelihood of steady state metabolism being achieved. RMR resting

metabolic rate, ISWT incremental shuttle walk test, RPE rating of perceived exertion
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(VO2/3.5 ml/kg/min), and measured METs using each

individual participants measured RMR (VO2/RMR). For

the purpose of comparison to the general population,

predicted METs for each activity were taken from the

compendium of physical activities [24]. Activities with

METs ≥3.0 were considered MVPA, and < 1.5 METs as

inactivity. Sedentary time is defined as a combination of

sitting or reclining and low energy expenditure during

waking hours [25]. The time spent below 1.5 METs

measured by wrist worn accelerometry can only measure

inactivity, and not the specific posture required to be de-

fined as sedentary time, therefore we use the term

inactivity.

Accelerometer data

GENEActiv data were downloaded using GENEActiv PC

software (version 3.2; Activinsights, Kimbolton, Cam-

bridge, UK) and averaged over 5 s epochs, which is con-

sidered adequate for reporting different activities [26].

Each axis (x, y, z) of the raw tri-axial data was multi-

plied by 1000 to transform the signals from g to milli-

gravity units (mg), to ensure the subsequent

accelerometer thresholds would be comparable to prior

literature. Raw tri-axial data were then summarized into

a single vector magnitude using three common

approaches:

(1) gravity-subtracted sum of vector magnitudes

(SVM) (eq. 1), where the vector magnitude is calculated

in each epoch and 1000 mg is subtracted, when the ac-

celerometer is static and the earth’s gravitation pull is

the only acceleration, the result is 0 [22].

SVM ¼
1

n
�
X

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 þ y2 þ z2
p

Þ − 1000mg j ð1Þ

(2) mean amplitude deviation (MAD) (eq. 2), which

describes the typical distance of data points around the

mean [27].

MAD ¼
1

n
�
X

j ri − r j ð2Þ

Where;

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2i þ y2i þ z2i

q

r ¼ mean vector magnitude within the time period of interest

(3) Euclidean Norm Minus One (ENMO) (eq. 3),

where vector magnitude is calculated in each epoch,

1000 mg is subtracted, and negative ENMO values

rounded to 0 [28].

ENMO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2ð Þ
p

− 1000mg ð3Þ

During our data processing it was observed that at low

magnitude of acceleration, ENMO returned a high

frequency of 0’s, making it severely limited in classifying

inactivity and light PA. This observation has also been

identified in another study [29]. Therefore ENMO was

excluded from further analysis.

In line with the VO2 data, MAD and SVM values were

averaged over minutes 10–20 of lying down, and the last

minute of all other activities.

Data analysis

Conservatively assuming a ROC AUC of 0.85 (based on

lowest AUC previously reported [11, 12, 16], and as-

sumed null AUC of 0.5 (no association) at 90% power

and 5% alpha, a minimum sample size of 18 patients was

required.

Initial data checks

Repeated measures correlations (rRM) were calculated to

establish the presence and strength of the within-

participant association between both accelerometer mea-

sures (SVM and MAD) and the measured METs as a ne-

cessary precursor to applying ROC curve analysis and

prediction models to establish accelerometer cut-points

for 1.5 and 3.0 METs. This was achieved by utilising the

sum of squares (SS) values from an ‘analysis of covari-

ance’ model with METs as the outcome variable, partici-

pant number as the independent factor variable, and the

accelerometer measure as the continuous covariate:

rRM = SQRT [covariateSS / (covariateSS + residualSS)] [30].

The rRM values were interpreted according to Cohen’s

effect size i.e. weak, r = 0.1 to 0.29; moderate r = 0.3 to

0.49; strong r ≥ 0.5.

Intensity threshold derivation

Based on methods used in previous calibration studies

[11, 12, 16] we used a combination of receiver-operator

characteristic (ROC) analysis and mixed effects regres-

sion model analysis methods to establish accelerometer

thresholds for inactivity (< 1.5 METs) and MVPA (≥3

METs). A different threshold was produced for each

combination of ‘data analysis method’ by ‘body location’

by ‘data reduction method’ separately. The robustness of

each data analysis and data reduction technique were

taken into account in order to decide which accelerom-

eter thresholds should be recommended for future use.

ROC analysis was performed using the ‘roctab’ and

‘roccomp’ STATA commands. The continuous mea-

sured MET values were coded into the following inten-

sity categories: inactivity (< 1.5 METs: yes/no), MVPA

(≥3.0 METs: yes/no) to create binary indicators. The mg

values that maximised the combination of sensitivity and

specificity were selected as the threshold values. AUC

values for each ROC curve calculated were defined as

excellent (≥0.90), good (0.80–0.89), fair (0.70–0.79), poor

(0.60–0.69) or failure (< 0.60).
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Multilevel mixed effects linear regression modelled the

accelerometer-derived mg values across the range of

measured METs achieved during the different activities.

This analysis was performed using the ‘xtmixed’ STATA

command where METs was entered into the model as

both a fixed and random effect. This allowed the ‘mg

against METS’ slopes and intercepts to vary between in-

dividuals. The resulting regression equation was used to

calculate intensity thresholds for inactivity (< 1.5 METs)

and MVPA (≥3.0 METs).

Sensitivity analysis

Sensitivity analyses were undertaken by repeating the

ROC analysis and multilevel mixed effects linear regres-

sion excluding participants that used a walking aid, as

this may have affected accelerometer readings, and ex-

cluding washing up as an activity, as this involves high

levels of wrist movement, but little waist movement to

explore the impact on the resulting accelerometer

thresholds and model fits.

Validation analysis

In order to validate the derived intensity thresholds (via

multilevel mixed effects linear regression) a leave-one-

out cross validation method was used. One observation

was left out and used as the test dataset, and a multilevel

mixed effects linear regression model was fitted and

used to predict the left out observation, this was then re-

peated sequentially for all possible observations. A me-

dian split of the actual acceleration values and the

predicted values were cross-tabulated to obtain a ‘per-

centage of correct predictions’.

Statistical analyses were performed using Stata (V.15.0;

StataCorp, College Station, Texas, USA). Leave-one-out

cross validation analysis was performed using the R pro-

gramming language and environment (V3.6.1). All data

are expressed as mean values and standard deviations

unless otherwise stated. The level of significance was set

at p < 0.05.

Results
Table 2 details the characteristics of the study

participants.

Accelerometry and METS

All participants completed all activities within the study

protocol. Data from the ISWT were not included in the

threshold generation analysis due to the small numbers

of participants that reached the latter stages. All three

accelerometers failed to record for one participant so

they were omitted from further analysis. For a second

participant, the left wrist accelerometer failed to record,

so only their right wrist and waist data was included.

Accelerometer outputs (SVM and MAD), METs (stand-

ard, measured and predicted), and RPE scores for each of

the activities are reported in Table 3. For all activities,

measured METs ranged 33–35% higher than standard

METs. Similarly, measured METs ranged 7–105% higher

than the compendium predicted METs [24].

Figure 1 shows the relationships between SVM and

measured METs and MAD and measured METs for

each participant at each accelerometer wear location.

Accelerometer values increased in line with the increase

in METs. There was a strong correlation between SVM

and METs (left wrist rRM = 0.84, right wrist rRM = 0.80,

waist rRM = 0.86, all p < 0.001). The correlation was weak

between left wrist MAD and METs (rRM = 0.19, p =

0.026), moderate between right wrist MAD and METs

(rRM = 0.33, p < 0.001), and strong between waist MAD

and METs (rRM = 0.67, p < 0.001).

ROC curve analysis

ROC analysis results are presented in Additional file 1.

GENEActiv accelerometers at all locations were able to

discriminate between inactivity, and MVPA. SVM gave

more precise discrimination across all three accelerom-

eter wear locations, and both inactivity and MVPA

(AUC = 0.93 to 0.99) compared to MAD (AUC = 0.61 to

0.97). All derived inactivity and MVPA thresholds were

lower than the commonly used thresholds previously

published at all wear locations [11, 12].

Multilevel mixed effects regression analysis

Table 4 shows the multilevel mixed effects regression

model coefficients and constants, and the derived in-

activity and MVPA intensity thresholds calculated by in-

putting 1.5 METs and 3.0 METs respectively. All derived

thresholds for inactivity were much lower than the

threshold for inactivity of 45.8 mg commonly applied to

all populations [12]. Right wrist: SVM = 13.3–18.6 mg,

MAD = 14.2–18.4 mg. Left wrist: SVM = 14.4–16.9 mg,

MAD = 15.4–18.8 mg. Waist: SVM = 7.6–11.1 mg,

MAD = 1.0 mg.

Crucially, even the highest HF-derived MVPA threshold

(49mg) is much lower than the MVPA threshold of 93.2

mg or 100mg that are commonly applied to all populations

[11]. Right wrist: SVM= 43.1-49mg, MAD= 24.7–29.5mg.

Left wrist: SVM= 43.6–47.0mg, MAD= 20.7–24.2mg.

Waist: SVM= 40.6–47.2mg, MAD= 2.4–2.6mg. MVPA

thresholds did not differ by location (wrist or waist) for

SVM, but were much lower at the waist compared to the

wrist for MAD.

Sensitivity analysis

Excluding aided walking activity data during the ROC

analysis made slight differences to the AUC (differences

ranging from − 0.01 to 0.04%), and made small
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differences to the derived thresholds (differences ranging

from − 5.7 to 5.3 mg) across all accelerometer wear loca-

tions and data reduction methods (additional file 1). Ex-

cluding walking data of patients who used walking aids,

plus all washing and drying dishes data during the ROC

analysis made little difference to the AUC (differences

ranging from − 0.2 to 0.11%), and threshold differences

ranged from − 5.7 to 20.4 mg (additional file 1).

In the multilevel mixed effects regression analysis, ex-

cluding aided walking activity data made minimal differ-

ence to the inactivity thresholds (differences ranging

from 0 to 0.2 mg), and MVPA thresholds (differences

ranging from 0.1 to 3.5 mg) across all accelerometer

wear locations and data reduction methods (Table 4).

Similarly, when excluding walking data of patients who

used walking aids, plus all washing and drying dishes

Table 2 Patient characteristics

Characteristic N = 22 patients Mean ± SD unless otherwise stated

Male (n, %) 17 (77)

Age (years) 70.7 ± 14.1

Body Mass Index (kg/m2) 28.1 ± 4.4

LVEF (%) 34.5 ± 14.0

Reduced LVEF < 40% (n, %) 14 (64)

Mid-range LVEF 40–49% (n, %) 4 (18)

Preserved EF ≥50% (n, %) 4 (18)

NYHA class (n, %)

I 1 (4)

II 18 (82)

III 3 (14)

IV 0

Dilated cardiomyopathy (n, %) 14 (64)

Ischaemic heart disease (n, %) 8 (36)

ICD/CRT/Pacemaker (n, %) 13 (59)

ACE-I/ARB/ARNI (n, %) 21 (95)

Beta-blocker (n, %) 22 (100)

MRA (n, %) 14 (64)

Loop diuretic (n, %) 17 (77)

Hypertension (n, %) 11 (50)

Diabetes (n, %) 6 (27)

COPD (n, %) 4 (18)

Arthritis (n, %) 2 (9)

AF (n, %) 11 (50)

Stroke (n, %) 5 (23)

Comorbidities (hypertension, diabetes, COPD, arthritis, AF, stroke) (n, %)

0 comorbidity 6 (27)

1 comorbidity 4 (18)

2 comorbidities 5 (23)

3 comorbidities 4 (18)

4+ comorbidities 3 (14)

ISWT distance (m) 286.4 ± 190.6

RMR (mL O2·kg
−1·min−1) 2.67 ± 0.66

Data presented as mean ± standard deviation or as number (percentage). LVEF left ventricular ejection fraction, NYHA New York Heart Association, ICD implantable

cardioverter defibrillator, CRT cardiac resynchronisation therapy, ACE-I angiotensin-converting enzyme inhibitor, ARB angiotensin receptor blocker, ARNI

angiotensin II receptor blocker neprilysin inhibitor, MRA mineralocorticoid receptor antagonist, COPD chronic obstructive pulmonary disease, AF atrial fibrillation,

ISWT incremental shuttle walk test
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data during the multilevel mixed effects regression ana-

lysis were minimal for inactivity (differences ranging

from − 5.3 to 3.5mg) and MVPA (differences ranging − 2.4

to 6.6 mg) across all accelerometer wear locations and

data reduction methods (Table 4).

Validation analysis

Leave-one-out cross validation (Additional file 2) of the

multilevel models showed that the model fit for SVM at

each wear location was acceptable but appeared to under

predict at high PA and MET levels. Proportion of cor-

rect predictions were high (right wrist: 96%; left wrist:

99%, waist: 95%). Models using MAD performed less

well with lower proportions of correct predictions (right

wrist: 69%; left wrist: 64%; waist: 87%).

Comparing the robustness and goodness of fit across

all the data reduction methods, data analysis methods

and the resulting models, the best fit for the data ap-

peared to be when using SVM data reduction and multi-

level mixed effects regression analysis with all data.

Discussion
The aim of this study was to estimate the hip- and

wrist-worn accelerometer values which correspond to

inactivity and MVPA in HF patients. This is the first

study to derive HF specific accelerometer intensity

thresholds for time spent inactive and in MVPA. Inten-

sity thresholds corresponding to inactivity were much

lower than those previously published based on young

healthy adults [12]. Although less investigated than

MVPA, inactivity thresholds of < 50mg or < 40mg have

been previously proposed for GENEActiv accelerometers

[12, 31, 32]. This suggests the possibility that researchers

using generic intensity thresholds are concluding that

HF patients are more inactive when they may actually be

engaging in light intensity activities.

Similarly, accelerometer thresholds corresponding to

MVPA were much lower than those derived from other

calibration studies both in healthy adults and older

adults [11, 14]. Applying intensity thresholds developed

in younger, healthier populations to HF patients assumes

the energy cost for a given activity is the same for every-

one, with no consideration for an individual’s exercise

capacity [13]. In line with previous studies, we showed

HF patients require greater energy expenditure to

complete walking and self-paced daily living activities,

where METs calculated using measured RMR were

higher than METs calculated using the standard RMR

estimate of 3.5 ml/kg/min [33–36]. Additionally, mea-

sured METs were higher than the predicted METs from

the compendium of physical activities [17]. Often, self-

reported PA measures use the compendium to inform

activity estimates and it is also used to prescribe PA [37,

38]. Our study clearly highlights the limitations of using

standard RMR values, and existing MET tables to

estimate the time HF patients spend in MVPA.

The average measured RMR for this sample of HF pa-

tients was 2.67 ml/kg/min, 24% less than the standard

Table 3 Mean (SD) accelerometer values, METS, and RPE for each activity

Physical activity Accelerometer values: SVM Accelerometer values: MAD METS
(measured
RMR)* (N =
21)

METS
(standard
RMR)†

(N = 21)

Predicted
METS‡

(N = 21)

RPE
score
(N =
21)

Right wrist
(mg) (N =
21)

Left wrist
(mg) (N =
20)

Waist
(mg)
(N = 21)

Right wrist
(mg) (N =
21)

Left wrist
(mg) (N =
20)

Waist
(mg)
(N = 21)

Laying down 4.7 (1.9) 4.8 (2.3) 3.7 (0.8) 3.3 (4.7) 2.1 (4.2) 0.4 (0.3) 1.0 (0.0) 0.8 (0.2) 1.0 6.5
(1.2)

Sitting (fasted) 7.3 (2.7) 8.7 (4.8) 4.3 (0.9) 13.0 (19.9) 13.8 (13.6) 0.6 (0.5) 1.2 (0.2) 0.9 (0.2) 1.3 6.5
(1.1)

Sitting watching TV 8.4 (3.2) 6.6 (2.8) 4.1 (0.9) 14.3 (14.1) 10.4 (12.2) 0.9 (1.5) 1.3 (0.2) 1.0 (0.2) 1.3 6.4
(0.8)

Standing washing & drying dishes 74.4 (22.4) 55.1 (18.9) 8.7 (2.5) 54.3 (24.7) 45.4 (16.7) 2.0 (2.7) 2.6 (0.5) 1.9 (0.4) 1.8 8.9
(2.3)

Sitting quietly 9.8 (4.8) 14.4 (14.1) 4.3 (1.0) 18.5 (24.0) 34.8 (35.0) 0.8 (0.7) 1.4 (0.2) 1.1 (0.3) 1.3 7.1
(1.7)

Light pace walk (average pace 1.6
mph)

57.8 (17.3) 62.6 (25.1) 62.9
(28.8)

27.9 (23.3) 24.4 (23.3) 3.2 (2.5) 4.1 (1.0) 3.0 (0.6) 2.0 10.6
(2.2)

Moderate pace walk (average
pace 2.2 mph)

79.2 (27.3) 76.9 (31.1) 86.0
(40.2)

34.1 (23.9) 26.7 (17.0) 4.3 (2.5) 4.7 (1.1) 3.5 (0.8) 2.8 12.9
(1.5)

Light pace walk carrying
shopping bags (2 × 1.5 kg)
(average pace 1.6 mph)

55.5 (20.7) 56.9 (20.9) 66.5
(29.8)

24.7 (33.2) 16.4 (27.3) 3.3 (1.4) 4.4 (0.9) 3.2 (0.6) 2.5 13
(2.5)

SVM sum of vector magnitude, MAD mean amplitude deviation, METS metabolic equivalents, RPE rating of perceived exertion, ISWT incremental shuttle walk test

*Measured METS = VO2 (ml/kg/min) measured during each activity / VO2 (ml/kg/min) measured at rest (resting metabolic rate).

†Standard METS = VO2 (ml/kg/min) measured during each activity / 3.5 (ml/kg/min).

‡Predicted METS taken from most similar activity in the compendium of physical activity
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Fig. 1 Trellis plot showing acceleration values in mg vs intensity in METs for each activity and fitted regression lines, for SVM (blue) and MAD

(orange), for a right wrist, b left wrist, c waist worn accelerometers
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3.5 ml/kg/min, consistent with RMRs reported previ-

ously in older adults [33], and HF patients [35]. The ap-

plication of standard RMR for MET calculations is

common, including in previous calibration studies [11,

12], however several studies have shown the inaccuracy

of using estimated RMR in elderly and clinical

Table 4 Mixed effect regression models and resultant inactivity and MVPA intensity thresholds for SVM and MAD

Coefficient
(95% CI)

Constant (95%CI) Inactivity Threshold (< 1.5
METs) (mg) (95% CI)†

MVPA Threshold (≥3.0
METs) (mg) (95% CI)†

SVM

Right wrist

All patients (n = 21, obs = 168) 17.9
(15.4 to 20.5)***

−8.3
(−14.2 to −2.3)**

18.6 (8.8 to 28.4) 45.5 (31.9 to 59.1)

Excluded aided walking activity data‡ (n = 21, obs =
159)

20.2
(17.6 to 22.9)***

−11.7
(− 17.6 to −5.9)***

18.6 (8.7 to 28.5) 49.0 (35.1 to 62.9)

Excluded aided walking activity data and washing up
activity data §(n = 21, obs = 138)

19.8
(17.7 to 22.0)***

−16.4
(− 19.9 to − 13.0)***

13.3 (6.7 to 19.9) 43.1 (33.3 to 52.9)

Left wrist

All patients (n = 20, obs = 160) 18.0
(15.5 to 20.5)***

−10.3
(− 15.4 to −5.2)***

16.7 (7.8 to 25.6) 43.6 (38.5 to 56.3)

Excluded aided walking activity data‡ (n = 20, obs = 151) 20.1
(17.7 to 22.5)***

−13.2
(− 18.2 to −8.2)***

16.9 (8.3 to 25.5) 47.0 (34.8 to 59.2)

Excluded aided walking activity data and washing up
activity data § (n = 20, obs = 131)

19.9
(17.6 to 22.2)***

−15.5
(− 19.6 to − 11.5)***

14.4 (6.8 to 21.85) 44.3 (33.2to 55.2)

Waist

All patients (n = 21, obs = 168) 22.0
(18.3 to 25.7)***

−25.4
(−30.5 to − 20.2)***

7.6 (−3.1 to 18.4) 40.6 (24.3 to 57.0)

Excluded aided walking activity data‡ (n = 20, obs = 159) 22.9
(19.6 to 26.2)***

−26.6
(−31.7 to − 21.5)***

7.7 (− 2.3 to 17.8) 42.0 (27.1 to 57.0)

Excluded aided walking activity data and washing up
activity data § (n = 21, obs = 138)

24.0
(20.2 to 27.9)***

−24.9
(− 29.5 to − 20.4)***

11.1 (0.78 to 21.49) 47.2 (31.0 to 63.32)

MAD

Right wrist

All patients (n = 21, obs = 168) 5.3
(2.5 to 8.0)***

10.4 (3.1 to 17.8)** 18.3 (6.9 to 29.7) 26.2 (10.7 to 41.7)

Excluded aided walking activity data‡ (n = 21, obs = 159) 7.4
(4.5 to 10.3)***

7.3 (−0.1 to 14.6) 18.4 (6.6 to 30.1) 29.5 (13.4 to 45.6)

Excluded aided walking activity data and washing up
activity data § (n = 21, obs = 138)

7.0
(4.2 to 9.8)***

3.7 (−2.6 to 10.0) 14.2 (3.6 to 24.8) 24.7 (9.9 to 39.5)

Left wrist

All patients (n = 20, obs = 160) 2.8 (0.3 to 5.2)* 14.6 (7.5 to 21.7)*** 18.7 (7.9 to 29.5) 22.8 (8.3 to 37.3)

Excluded aided walking activity data‡ (n = 20, obs = 151) 3.7
(1.0 to 6.3)**

13.3 (6.1 to 20.5)*** 18.8 (7.6 to 29.9) 24.2 (9.1 to 39.4)

Excluded aided walking activity data and washing up
activity data § (n = 20, obs = 131)

3.5 (0.8 to 6.2)* 10.1 (3.2 to 17.0)** 15.4 (4.4 to 26.3) 20.7 (5.7 to 35.6)

Waist

All patients (n = 21, obs = 168) 0.9
(0.7 to 1.2)***

−0.5 (−0.9 to 0.0) 1.0 (0.2 to 1.7) 2.4 (1.3 to 3.5)

Excluded aided walking activity data‡ (n = 21, obs = 159) 1.0
(0.8 to 1.2)***

−0.6
(−1.1 to − 0.1)*

1.0 (0.2 to 1.8) 2.5 (1.4 to 3.6)

Excluded aided walking activity data and washing up
activity data § (n = 21, obs = 138)

1.1
(0.8 to 1.3)***

−0.6
(−1.0 to − 0.2)**

1.0 (0.3 to 1.7) 2.6 (1.5 to 3.6)

MVPA moderate-to-vigorous physical activity, SVM sum of vector magnitudes, MAD mean amplitude deviation, METS metabolic equivalents

†95% CI calculated using upper and lower bounds of coefficient and constant in formula.

* p < 0.05, ** p < 0.01, *** p < 0.001

‡ Excluded walking activity data for n = 3 patients using walking aids.

§ Excluded walking activity data for n = 3 patients using walking aids and all washing up activity data
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populations including HF patients [33–35]. Although the

mechanism for decreased RMR in HF patients compared

to healthy individuals is currently unknown, decline with

increasing NYHA class has been shown, and may be in-

fluenced by changes in skeletal muscle physiology asso-

ciated with a reduced cardiac output in HF [35]. It may

be argued that our lower RMR is due, to some extent, to

being measured whilst supine, rather than sitting, how-

ever we measured supine RMR in line with current best

practices [17].

Data reduction and analysis techniques

We explored 3 data reduction approaches for generating

a single value of acceleration from the x, y, z axes. We

found that ENMO returned a high frequency of 0’s

across all activities, which has also been observed by

others [29], and therefore excluded it from further ana-

lysis. SVM had stronger correlations with METS, pro-

duced higher AUC values in the ROC analysis, and

returned better model fit predictions in the leave-one-

out cross validation analysis compared to MAD.

ROC analysis was less robust than multilevel mixed ef-

fect regression analysis when using MAD, with poor-fair

AUC for wrist accelerometers. This may be due to the

dichotomisation of MET data in the ROC analysis,

which leads to a loss of statistical power, whereas the ab-

solute MET values are used in the multilevel mixed ef-

fect regression analysis. Furthermore, the multilevel

mixed effect regression correctly accounts for the clus-

tering of measures within individuals which ROC ana-

lysis does not.

Therefore we recommend studies measuring PA levels

in HF patients with accelerometers use the thresholds

derived using SVM and multilevel mixed effect regres-

sion for all patients, i.e. inactivity (right wrist: 18.6 mg,

left wrist: 16.7 mg, waist: 7.6 mg) and MVPA (right wrist:

45.5 mg, left wrist: 43.6, waist: 40.6 mg).

Strengths and limitations

Strengths of this study include the use of both wrist-

and waist-worn accelerometers with known reliability

and validity, comparison of multiple data reduction algo-

rithms, and comprehensive data analysis of raw acceler-

ation data captured at a high sampling frequency. We

were thus able to generate HF specific intensity thresh-

olds, enabling more accurate differentiation between in-

activity, and MVPA behaviours of HF patients. In

contrast to previous calibration studies we have indi-

vidually measured RMR, and used this to more accur-

ately measure METs for each activity for each individual

[11, 12]. We selected representative HF patients from a

hospital clinic, who were heterogeneous in exercise cap-

acity and age, factors known to affect PA measurement

[13, 14, 32], and determined activities with the assistance

of a HF Patient and Public Involvement group to repre-

sent typical daily living, with the majority of PA and ex-

ercise from walking and household activities.

We recognise that this study has some limitations. It

was based on small, single-centre sample of HF patients,

therefore we are unable to determine how the thresholds

may vary between NYHA classes or sex, for example. In

addition, it is difficult to determine whether HF medica-

tions taken by the patients (100% patients taking β-

blockers) influenced VO2 or heart rate. The PAs were

undertaken in laboratory conditions rather than free-

living which also limits the generalisability of the result.

Attempting to apply a single threshold to all within a

population may not be possible since individual capaci-

ties vary [39]. Employing a threshold or cut-point tech-

nique to derive PA metrics from accelerometers may not

be as accurate as newer techniques such as machine

learning that are being explored in public health studies

[40, 41]. However, whilst PA recommendations are

based on classes of PA intensity rather than specific be-

haviours, these techniques are still pragmatic to use until

consensus is reached.

Implications and future research

We have developed a new approach that better captures

PA in HF patients using accelerometry. Our results sug-

gest that application of previously published intensity

thresholds based on calibration studies of adults without

chronic disease potentially risks underestimation and

misclassification of PA in HF patients. Larger studies,

using our approach are now required to clarify PA levels

in the various severity levels of HF, taking account of co-

morbidity. We suggest power calculations should take

into account the small numbers of patients that reach

the latter stages of the ISWT to ensure spread of pa-

tients fitness levels represented.

This study also has important implications for PA and

exercise prescription. It is vital both the patient and the

clinician are aware of the PAs that will count as MVPA

and benefit the patient, as prescribing activities that are

too intense may lead to decreased motivation and adher-

ence to PA guidelines or cardiac rehabilitation [42]. Our

results show that any walking activity, including at a

slow speed, would be sufficient for HF patients to accu-

mulate minutes of MVPA. Researchers should avoid ap-

plying accelerometer thresholds, estimated MET values

from look-up tables or standard RMR values, which are

based on healthy populations to patients with HF, and

refer to studies such as ours where the specific clinical

population has been studied.

Conclusions
HF specific accelerometer intensity thresholds for both

inactivity and MVPA were substantially lower (< 50%)
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than previously published and commonly used intensity

thresholds. Using cut-points or intensity thresholds

based on calibration studies of younger, healthy adults

assumes energy expenditure is the same for everyone, re-

gardless of an individual’s exercise capacity. We demon-

strated that HF patients had measured RMR values

which were 24% lower than the standardised value of

3.5 ml/kg/min, and require more energy to perform typ-

ical daily living activities, including walking and house-

hold activities, with higher measured MET values

compared to METs calculated using assumed RMR, or

METs predicted from the compendium of physical activ-

ities. We thereby demonstrate that the application of

generic PA thresholds may result in a misclassification

and underestimation of the true amount of MVPA

undertaken by HF patients.
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