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Scalable Parallel Generation of Partitioned, Unstructured Meshes

D.C. Hodgson, P.K. Jimack, P. Selwood and M. Berzins

School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK

In this paper we are concerned with the parallel generation of unstructured meshes for
use in the finite element solution of computational fluid dynamics problems on parallel dis-
tributed memory computers. The use of unstructured meshes allows the straightforward
representation of geometrically complicated domains and is ideally suited for adaptive
solution techniques provided the meshes are sensibly distributed across the processors.
We describe an algorithm which generates well-partitioned unstructured grids in parallel
and then discuss the quality of this mesh and its partition, and how this quality can be
maintained as the mesh is modified adaptively.

1. INTRODUCTION

The usual approach to solving finite element (or finite volume) problems in parallel on a
distributed memory machine is to decompose the mesh into a number of subdomains and
to allocate each of these subdomains to a processor. This decomposition of the elements of
the mesh should have two main features. Each subdomain should contain approximately
the same number of node points (or elements for cell-centered finite volumes), so as to
achieve “load-balancing”. Also, the number of node points (or edges for cell centered
finite volumes) which lie on the boundary between different subdomains (we will refer to
such points as “interpartition boundary vertices/edges”) should be kept to a minimum
since the amount of interprocessor communication will depend upon this number.

There has been a considerable amount of research into the problem of partitioning an
existing mesh across distributed memory in a manner compatible with the above (see for
example [4,9] and references therein). However these methods assume that the mesh is
not held in a distributed manner across a multi-processor machine but is stored in one
place. This is clearly prohibitive since the size of the mesh is constrained by the memory
available on the single processor on which it is stored. In addition, if we wish to solve very
large problems in parallel we do not want the mesh generation and partitioning to be a
serial bottleneck. For these reasons the main contribution of this paper is to illustrate a
technique for generating an automatically partitioned mesh in parallel. This technique is
outlined in the next section and its performance is analyzed and discussed in section 3.

In section 4, a number of extensions of the work are considered, including its ap-
plication to time-dependent problems using adaptivity through local h-refinement and
derefinement. Here being able to generate a well-partitioned initial mesh in parallel is not
sufficient since the refinement process will destroy the load-balance as time progresses.
The issue of dynamically modifying the existing partition is therefore addressed.



2. THE PARALLEL MESH GENERATOR

In order to create a mesh in parallel, the domain must be split up into subregions
which can then be meshed simultaneously and independently. Our method does this by
producing in serial an initial coarse, or background, triangulation (tetrahedralization in
3-d) of the domain, using a Delaunay algorithm as described in [14], and then distributing
this background grid across the processors in an intelligent manner before meshing begins.

This distribution of the background grid is performed so as to ensure that each processor
will generate a mesh of about the same size and the number of interpartition boundary
vertices will be very low. In order to achieve this, a weighted dual graph of the background
grid is first produced, as shown in figure 1. Here, the weight of each graph vertex is equal to
the number of nodes that it is estimated will be generated within the background element
to which that vertex corresponds (W, say), and the weight of each graph edge is equal
to the number of nodes that it is estimated will be generated along each background
edge (face in 3-d) to which that graph edge corresponds (W, ) say). This weighted
dual graph is then partitioned using a recursive spectral bisection algorithm, such as
described in ([3,9]). Spectral algorithms seek to partition the graph so that the number of
boundary vertices is minimized subject to the constraint of maintaining load-balance. This
means that, provided our estimates, Wy and We(, ), are reliable, the partition of the
background grid should be very well-suited for the parallel generation of our unstructured
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Figure 1. An example of a coarse background grid in 2-d along with its weighted dual
graph (with vertex weights W) and edge weights W ). Also shown are some typical

point distribution values (d;, d; and d).

The mesh generation itself also uses the same Delaunay algorithm [14], this time in
parallel on each processor. Two options are available: either each processor can Delaunay
mesh the union of those background elements which it has been allocated, or it can mesh



each of its background elements separately. In either case, the density of the generated
mesh is governed locally through the use of point distribution values at each coarse grid
vertex. These allow different target mesh spacings to be specified throughout the domain,
as described in [14]. An additional, and equally important, use for these point distribu-
tion values is to allow the estimates Wy and We(,,m) to be formed very cheaply using
straightforward geometric formulae. For example, in two dimensions, the simple estimate

Area of Element /¢
Wy = (d,'-|—dj+dk)2
3

proves to be surprisingly reliable, where the point distribution values, d;, d; and dy, are
shown in figure 1 (see [5] for further details).

This mesh generation procedure appears to be both well load-balanced and highly
scalable. The load balance comes from the fact that each processor is generating a mesh
contribution of about the same size, even on a highly irregular mesh, whilst the scalability
comes from the fact that the only sequential steps are applied to the coarse background
grid rather than the final mesh itself. Moreover, once the background grid has been
partitioned there is no need for any inter-processor communication to take place (providing
consistent algorithms are used to mesh subdomain boundaries so as to ensure that they
match-up on neighbouring processors). In contrast with this, the methods described in
[1] and [6] both farm out subregions to processors for meshing, without distributing them
in a considered manner. This means that the generated mesh may not be very well
balanced across the processors and that there is no guarantee that subregions sharing a
processor will be connected. It is therefore always necessary to repartition these meshes
once they have been generated in parallel. On the other hand, the parallel generator
suggested in [7] is designed to produced meshes that are already well partitioned, using a
“wavefront” approach to split up a background grid. However, no attention is explicitly
paid to keeping the number of interpartition boundary vertices low, so the quality of the
partitions produced is likely to be affected by this.

3. PERFORMANCE

The algorithm described in the previous section has been implemented using MPI ([8])
so as to ensure portability. It has been run successfully on a variety of platforms, including
a distributed memory computer (a 64 node Intel hypercube), a shared memory computer
(an 8 processor SGI Power Challenge) and also on a cluster of 16 SGI Indy workstations.

The outcomes of some typical computations are shown in Figure 2 and Table 1. Here,
an unstructured mesh has been generated around a NACAQ012 aerofoil using a point
distribution function which is suitable for a supersonic flow (free stream Mach number =
2.0) with a moderate Reynolds number (R e = 500). The coarse background grid contains
1239 elements and the mesh that is generated contains almost half a million elements.
The generation times for this mesh were 62.2 seconds on the Intel i860 (using 8 processors)
and 40.2 seconds on a cluster of 8 Indy workstations. As can be seen, the mesh density
varies enormously throughout the domain, yet each partition is of a very similar size.
Demonstrating that the number of interpartition boundary vertices is also low is quite
hard to do quantitatively for an example of this size, however one can see from the shaded
coarse mesh in Figure 2 that the subdomains are all connected and have compact shapes.
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Figure 2. The coarse background mesh (with shading to illustrate how it has been parti-

and the final mesh generated around a NACAQ012 aerofoil.

)

tioned into 8 subregions



Table 1
Details of the parallel generation of a 447 403 element unstructured mesh around a

NACAO0012 aerofoil.

Subdomain | Vts. | %age diff. | i860 | Indys
1 28639 +0.6 | 62.2 | 40.2
2 28061 -1.4 | 51.1 | 31.3
3 28928 +1.6 | 62.1 | 35.2
4 27925 -1.9 | 51.7 | 29.1
> 28552 +0.3 | 47.2 | 214
6 28215 -0.9 | 52.8 | 27.7
7 28763 +1.1 | 50.6 | 25.3
8 28613 +0.5 | 50.2 | 22.1

Experiments with larger meshes have shown that as the number of processors and the
mesh size increase the generator can be shown to scale reasonably well. For example,
using 16 nodes on the Intel 1860 to generate a mesh in excess of a million elements takes
little over 100 seconds. Also, the maximum difference in the size of each subregion always
appears to be between —5% and +5% of the average size.

The generation of separate Delaunay meshes within each element of the background
grid means that the final mesh is only locally Delaunay. This does not appear to affect
the quality of this mesh adversely however since the number of coarse elements is always
far smaller than the number of elements actually generated.

It is important to stress that, even though the number of vertices generated by each
processor is about the same, the time taken by each processor varies more greatly. This is
entirely due to the fact that the mesh being generated is of such a variable density, which
causes some processors to be allocated many fewer background elements than others. It
is these processors which are the last to finish since the sequential generation algorithm
used, [14], is slower at generating a few large meshes than a large number of moderate
meshes. Ideally therefore, the density of the coarse mesh should be made to reflect the
required final mesh density everywhere. When this is done, the variation in meshing times
between processors falls of drastically (thus leading to greater efficiency).

Another improvement that can be made to the algorithm as it is described above, is to
attempt to reduce further the small (5%) variations in the mesh sizes on each processor.
Such variations can still lead to a noticeable drop in the efficiency of a parallel solver, and
so a small amount of post-processing of the partition may be worthwhile. One solution is
to move a background element (and its sub-mesh) from one processor to another which
contains fewer nodes, while keeping the total number of interpartion boundary vertices
as low as possible.

4. EXTENSION TO ADAPTIVE SOLUTION METHODS

Generation of the initial fine mesh is only one part of the solution process. The use of
adaptive methods means that the initial mesh will have to be both refined and coarsened
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Figure 3. An unstructured 3-d mesh which accurately represents a steep front which is
about to be advected from left to right.

in different areas on the basis of computed error estimates. This problem of dynamic load
balancing during the adaptive solution of time-dependent problems has been considered
by a number of authors, such as [2,11,12]. This problem is essentially the same as that
already described above: where an existing partition has a low number of interpartition
boundary vertices but a less than perfect load balance.

The problem is illustrated by Figure 3 which shows a three dimensional tetrahedral
mesh, generated using the code of [10], that is used to represent a simple function with a
shock. This is used as initial data for the linear advection equation, with the shock be-
ing advected to the right. In [10] an unstructured mesh adaption algorithm is described
which is suitable for just this class of problem. As the front advects, the mesh is refined
immediately ahead of it and coarsened immediately behind it. A key issue for any parallel
solver is therefore to ensure that as the mesh changes, each processor maintains a roughly
equal share of the elements and unknowns. One way to achieve this would be to generate
an entirely new mesh every few time-steps, using the technique of Section 2. Alterna-
tively, one could use conventional hierarchical refinement and derefinement but form a
new partition of the mesh whenever adaptivity has occurred. Both of these approaches
seem inefficient however, as they fail to make the best use of the existing partition.

The approach here is to make use of hierarchical refinement and derefinement of a
coarse background grid, and to only consider altering the partition of this background
grid after each adaptive step has occurred. As with the original mesh generation, this has
the advantage that the partitioning problems considered are always much smaller than
if one were to attempt to directly partition the mesh at its finest level. Moreover, it is
possible to use repartioning techniques such as those provided by the software package
JOSTLE ([13]), to ensure that the partition before refinement is used as the basis for the



Total number of % Imbalance
Adaptivity cycles ‘ Timesteps | Before Repartitioning | After Repartitioning
0 0 - 2.22
5 15 25.67 2.9
10 30 10.97 0.84
15 45 19.56 2.69
20 60 15.98 1.46

Table 2

Partition imbalance for a mesh adapting to follow a shock

partition after refinement whenever possible. This has the further advantage that most
of the background elements (and therefore the data for the sub-meshes within them) will
remain on the same processor as they were before the adaptive step.

As an example of this, the mesh shown in Figure 3, which contains two levels of re-
finement beneath the background grid, is partitioned equally across 4 processors. As the
solution evolves, the load balance of the initial partition is lost, as some of the coarse
elements (to the right) refine further, whilst others derefine. Table 2 shows how the im-
balance in the partitioning occurs as the solution evolves. Note that by using JOSTLE
to repartition the weighted dual graph of the background grid, we can regain the bal-
ance, and hence the efficiency, of the partition. Moreover, the vast majority of the coarse
elements (and their sub-mesh data) remain in the same memory locations as before the
repartitioning.

This simple three-dimensional example again demonstrates that the approach of work-
ing mainly with the weighted dual graph of a background grid appears to have significant
potential. There are still a number of issues associated with this which should be ad-
dressed, but the underlying approach seems to be both efficient and effective.

There are two main difficulties which are currently being investigated further. Firstly,
after a very large number of adaptive steps it may be necessary to discard the present
partition altogether and repartition the problem from scratch. This is most likely to
occur if the background grid is excessively coarse or if extremely high levels of refinement
are being used in small, localized regions. The other issue is that of whether the local
repartitioning of the coarse background mesh can itself be efficiently implemented in
parallel which is desirable from a scalability point of view.
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