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Abstract: Polyelectrolyte nanocomposites rarely reach a stable state and aggregation often occurs.

Here, we report the synthesis of nanocomposites for the oral delivery of insulin composed of

alginate, dextran sulfate, poly-(ethylene glycol) 4000, poloxamer 188, chitosan, and bovine serum

albumin. The nanocomposites were obtained by Ca2+-induced gelation of alginate followed by

an electrostatic-interaction process among the polyelectrolytes. Chitosan seemed to be essential

for the final size of the nanocomposites and there was an optimal content that led to the synthesis

of nanocomposites of 400–600 nm hydrodynamic size. The enhanced stability of the synthesized

nanocomposites was assessed with LUMiSizer after synthesis. Nanocomposite stability over time and

under variations of ionic strength and pH were assessed with dynamic light scattering. The rounded

shapes of nanocomposites were confirmed by scanning electron microscopy. After loading with

insulin, analysis by HPLC revealed complete drug release under physiologically simulated conditions.

Keywords: chitosan; alginate polysaccharide nanocomposite; stability; LUMiSizer

1. Introduction

Marine biopolymers have gained much attention for the development of drug delivery systems.

Several mild methods are available for the synthesis of nanocomposites composed of polyelectrolytes [1]

that avoid the use of organic solvents [2] and protect the integrity of the polymers and bioactive

molecules [3].

The inability to synthesize insulin in the pancreas is the cause of diabetes mellitus [4], the sixth

most common cause of death in the world [3]. Insulin administration is indispensable for the treatment

of type 1 patients and is required at a later stage in patients with type 2 diabetes [5]. Surprisingly, only

20% of subcutaneously administered insulin reaches its target [6], and oral bioavailability of insulin is

even lower at 1%–2% [7,8]. Thus, the development of a drug delivery system that protects insulin from

the acidic environment of the digestive system and enzymatic degradation, while enhancing its uptake

by the intestinal cells, is a highly sought-after goal [3,9].
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Chitosan (CS) is a linear polycationic polysaccharide obtained from the deacetylation of chitin

(Figure 1). Chitin is a polymer of broad distribution in nature, including marine sources such as

shrimp, crab, and squid, among others. CS has been used in oral delivery due to its biocompatibility,

non-immunogenicity, nontoxicity, biodegradability, and mucoadhesiveness [3,10,11]. The pKa of this

aminopolysaccharide [12] is around 6.5 [8]. Therefore, CS can be used to obtain nanocomposites

when interacting with polyanions at a pH below its pKa [4]. In this context, several attempts have

been made to develop drug delivery systems consisting of CS and other macromolecules, such as

alginate (ALG) [2,13,14], dextran sulfate (DS) [1,11,15,16], poloxamer [17], or acetylated gum [18], or

by using crosslinkers such as tri-polyphosphate groups [19]. Typically, the resulting systems are of

nanometric size; however, their z potential (ζ) were found to be lower than |25|mV, which is known as

the instability region, defining stability as the ability of the nanocomposites to avoid self-aggregation.

In water, polyelectrolyte nanocomposites with a ζ higher than +25 mV or lower than −25 mV tend

to avoid self-aggregation due to repulsive electrostatic forces [20,21]. In addition to the electrostatic

stabilisation, the steric stabilisation of the nanocomposites can be obtained by protein–polysaccharide

interactions [22].

ALG is a linear polyanionic polysaccharide isolated from brown marine algae (Figure 1).

Chemically, it is composed of mannuronic acid residues (M; pKa = 3.38) which are linked by β-1-4

linkage to its C5-epimer, guluronic acid residues (G; pKa = 3.65) [23]. ALG has been used to develop

nanocomposites due to its capacity to form gels after interacting with dicationic ions. A suspension of

ALG in a pre-gel state can be stabilised by the addition of a polycationic polymer [3,13,14]. ALG-based

nanocomposites have been used for the oral delivery of drugs because they resist the acidic pH of the

stomach, protecting the encapsulated drug, and swell in the intestinal pH [6,10,13] where the payload

can be delivered. Moreover, ALG favours the loading of insulin in CS-based nanoparticles [24].

DS is a branched polyanion polysaccharide consisting of glucose residues linked by α-1-6 linkage

in the main chain and α-1-3 linkage with glucose in ramifications (Figure 1). DS has 2.3 negative

charges per monomer [15] and interacts electrostatically with CS [1,16].

Poloxamer 188 is an amphiphilic molecule consisting of a hydrophobic propylene oxide, which is

surrounded by two hydrophilic parts of polyethlylene oxide (Figure 1). Poloxamer forms micelles in

hydrophilic solvents [25–27] and is incorporated in gels through hydrogen bonds [17], stabilising the

gels sterically by reducing the aggregation [28].

Poly(ethylene glycol) (PEG) 4000 (Figure 1) acts by stabilising the nanocarrier system and

enhancing the penetration of nanoparticles through the mucus layer of the intestine [8].

Bovine serum albumin (BSA) is a protein which prevents aggregation and protects protein loaded

in nanostructures from acidic and enzymatic degradation [22,29].

In summary, chitosan, alginate and dextran sulfate are polyelectrolytes used for the formulation

and drug delivery systems because they can load and release bioactive molecules. PEG 4000 and

poloxamer 188 are non-electrolyte polymers that act in stabilising the structures. BSA is a protein that

stabilises the final structure once it is formed.
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Figure 1. Chemical structure of alginate (a) reproduced with permission from Pan et al., Minerals;

published by MDPI, 2019 [30], dextran sulfate (b) reproduced with permission from Quiñones J.P.;

Peniche H. and Peniche C; published by MDPI, 2018 [31], poloxamer 188 (c) reproduced with permission

from Radacsi et al., Crystal Growth & Design, 2012 [32], chitosan (d) reproduced with permission from

Quiñones J.P.; Peniche H. and Peniche C; published by MDPI, 2018 [31], and polyethylene glycol 4000

(e) reproduced with permission from Zia et al., Algae Based Polymers, Blends, and Composites;published

by Elsevier, 2017 [33]. The ideal structure of the nanocomposites is also plotted (f).

The potential of chitosan-containing multinanolayers ζ has been shown to depend on pH and

ionic strength of the media [34]. Aiming at exploitation of chitosan-containing nanocomposites in oral

delivery of insulin, some fundamentals of physicochemical properties of this biopolymer cannot be

overlooked. The development of nanocomposites for oral delivery of insulin, which do not aggregate

in suspension, is the central objective of this work. We describe the production of nanocomposites with

strong resistance to aggregation, using different molecular weight (MW) and different concentrations

of CS. Characterisation and stability these nanocomposites are evaluated over ionic strength and pH,

and the insulin release behaviour is assessed within simulated gastric and intestinal fluids.

2. Results

The main goal of this study was to obtain stable nanocomposites for the oral delivery of insulin.

Previously, natural biopolymers have been used extensively for developing drug delivery carriers.

Woitiski et al. (2009) [29] developed nanocomposites composed of CS, ALG, poloxamer 188, PEG 4000,

DS, and BSA. This system showed a good encapsulation efficiency [29] but low stability, which resulted

in aggregation after the synthesis. In this work, we modified the preparation of such nanostructures in

terms of three aspects: first was decreasing the pH of the BSA solution to 4.6, the second was removing

the buffer phosphate from the synthesis process, and the third change was varying the content and type

of CS. The rationale for these changes was based on the fact that electrostatic interactions are mainly

responsible for leading to the synthesis of these polyelectrolyte nanocomposites. Polyelectrolytes are

characterised by the presence of charges along their structures that determine the inter- and intra-chain
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interactions. The increase of the ionic strength screens the charges on the polyelectrolytes and the

electrostatic interactions and the conformation of the polymers are disrupted.

According to the factors above, the electrostatic nature of the polymers is of utmost importance,

as can be seen in Table 1, displaying ζ potential and size distribution of polymeric species implicated

in the synthesis of nanocomposites. ALG and DS are polyanionic polymers and CS is a polycationic

polymer. It also can be appreciated that although poloxamer and PEG 4000 are not polyelectrolytes,

these polymers showed negative and positive natures, respectively. Finally, it can be noted that at pH

5.1, the BSA was almost uncharged and decreased the pH of the suspension to 4.6, whereas the BSA

became slightly positively charged and monodisperse (Table 1).

Table 1. ζ potential of polymeric species implicated in the synthesis of nanocomposites.

Polymeric Species pH
ζ Potential

(mV)

Relative
Abundance

(%)

Size
Distribution

(nm)

Relative
Abundance

(%)

Alginate 4.9
−52 ± 6
+3 ± 4
−11 ± 3

89.7
7.2
3

385 ± 165
113 ± 33

76.1
23.2

Dextran sulfate 4.9
−54 ± 8
−119 ± 5
−100 ± 4

81.2
5.4
5.2

1220 ± 888
4844 ± 578

90.4
5.8

Poloxamer 188 4.9
−41 ± 6
−22 ± 5

69.9
30.1

638 ± 377
5036 ± 683

95.7
4.3

LMW CS 7 × 10−4 g/mL 4.6 +42 ± 8 *
477 ± 256
41 ± 28

4888 ± 769

80.9
16.0
3.2

LMW CS 1 × 10−5 g/mL 4.6
+35 ± 6
+8 ± 6

76.8
23.2

298 ± 101
37 ± 14

5463 ± 253

87.5
12.1
0.4

MMW CS 1 × 10−5 g/mL 4.6
+35 ± 8
+58 ± 2
+69 ± 8

70.6
11.0
3.1

493 ± 305
4453 ± 1049

46 ± 18

75.6
12.7
11.7

PEG 4000 4.6
+29 ± 7
+5 ± 4

83.
16.7

517 ± 267
4 ± 1

5038 ± 613

80.9
16.0
3.2

BSA 5.1 +2 ± 5 *
25 ± 5

1113 ± 137
8 ± 2

82.5
10.2
5.0

BSA 4.6 +10 ± 3 *
13 ± 2
9 ± 1

72.0
28.0

* When no value is discriminated, the percentage is equal to or higher than 99%. CS: chitosan, LMW: low molecular
weight, MMW: medium molecular weight, PEG: poly(ethylene glycol).

Before paying attention to the actual nanocomposites it is important to have information about

chitosan solutions. As can be seen in Figure 2, the size distribution for low MW (LMW) CS at

10−5 g/mL (dark grey solid line) revealed the presence of two populations, one of them located in 10 s

of nanometres of diameter and the second one around a few 100 s of nanometres in hydrodinamic

diameter. However, at a higher concentration, namely, 7 × 10−4 g/mL, LMW CS (grey dashed line)

the populations were enlarged and became larger than one micron. A third population was enlarged

around 1000 s of nanometres, although this population was negligible in the size distribution by

number. It is important to point out that the size by intensity distribution of LMW CS 7 × 10−4 g/mL

was quite similar to that of the medium MW (MMW) CS at 10−5 g/mL (black solid line). Despite the

great differences in the size distribution of LMW CS and MMW CS at 10−5 g/mL, both of them had
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the same moles of amine groups per molecular weight (Table 2). In this work, we used LMW and

MMW CS in two different concentrations, namely, 1 × 10−5 g/mL and 1 × 10−7 g/mL, for preparing

nanocomposites, although nanocomposites prepared with LMW CS solution at 7 × 10−4 g/mL were

used as a reference. Because the volumes of polymer solutions were not changed, the CS content

in the nanocomposites was 70 or 7000 times less in nanocomposites prepared with CS solutions at

1 × 10−5 g/mL and 1 × 10−7 g/mL, respectively.

 

ƺ

ƺ ƺ

ƺ

ƺ ƺ

ƺ ƺ

ƺ ƺ ƺ

ƺ ƺ ƺ

In
te

ns
ity

 (%
)

0

2

4

6

8

10

12

14

16

Size (d. nm)

1 10 100 1000

N
um

be
r (

%
)

0
2
4
6
8
10
12
14
16
18
20
22
24

 

ƺ

ƺ ƺ

ƺ

ƺ

ƺ

ƺ

ƺ

Figure 2. Comparison of the size of CS in solution at pH 4.6. LMW CS 7 × 10−4 g/mL (grey dashed

line), LMW CS 1 × 10−5 g/mL (dark grey solid line), and MMW CS 1 × 10−5 g/mL (black line).

Table 2. Moles of amine groups in CS solutions, obtained from the degree of acetylation (DA) of CS.

Concentration of CS (g/mL)
Moles of Amine Groups per MW

in LMW
Moles of Amine Groups per MW

in MMW

1 × 10−7 1.2 × 10−8 Not used

1 × 10−5 1.2 × 10−6 1.2 × 10−6

7 × 10−4 5.7 × 10−4 5.7 × 10−4

Once the nanocomposites were synthesized, as can be observed in Figure 3, which displays the

size distribution of nanocomposites as a function of the type and amount of CS, the size distribution

of the nanocomposites prepared with LMW CS 7 × 10−4 g/mL solution resulted in three populations:

one sized around 100 s of nanometres (300 nm) and the other two having hydrodynamic diameters

above 1 micron (namely, 1500 and 4300 nm). When decreasing the concentration of the LMW CS

solution used for the synthesis of the nanocomposites, a decrease in the hydrodynamic diameter of

the final nanocomposites was observed. As can be seen from Figure 3, the hydrodynamic size of the

nanocomposites was dependent on the CS content. Thus, nanocomposites prepared with 1 × 10−5 g/mL

solution showed lower hydrodynamic size (300 nm) than those prepared with 1 × 10−7 g/mL LMW

CS solution (900 nm). It is important to point out that similar size distribution was detected when

preparing the nanocomposites with MMW CS solutions (500 nm for 1 × 10−5 g/mL and 900 nm for

1 × 10−7 g/mL). These results reinforce the hypothesis of the existence of electrostatic interactions

between the polymers.
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Figure 3. Size of nanocomposites as a function of the type and amount of CS. Nanocomposites prepared

with LMW CS solutions at 7 × 10−4 g/mL (dark red line), 10−5 g/mL (red solid line), or 10−7 g/mL

(pink line), or MMW CS solutions at 10−5 g/mL (blue line) or 10−7 g/mL (light blue line) were plotted.

Despite the positive charge of the BSA solution at pH 4.6 (Table 1), the adsorption of this protein

on the nanocomposites was not enough to change the ζ potential on the nanostructures, as can be

appreciated by the fact that all the synthesized nanocomposites were negatively charged (Table 3). These

results revealed the presence of negatively charged polymers on the surface of the nanocomposites.

Table 3. ζ potential of nanocomposites composed of CS at different concentrations. The results

correspond to the average and standard deviation of six measurements.

Formulation Concentration (g/mL) ζ Potential (mV)

LMW CS

7 × 10−4
−28 ± 9

1 × 10−5
−28 ± 5

1 × 10−7
−30 ± 11

MMW CS
1 × 10−5

−31 ± 5

1 × 10−7
−33 ± 10

The final nanocomposites prepared with CS solutions at 10−5 g/mL or 10−7 g/mL showed stability

in terms of keeping the nanometric size after two months, as the synthesis process was kept at 4 ◦C

and protected from light (Figure 4).

The stability of the nanocomposites immediately after synthesis was also analysed by transmittance

profile while centrifuging analyses, performed with LUMiSizer equipment and software [35,36]. This

methodology allows for the recording of the migration of the nanocomposites within the suspension

while centrifugation is performed. The instability index is a measure of the stability of the suspensions.

This parameter is acquired by comparing the transmittance profiles from different suspension samples

centrifuged at the same time. During the centrifugation process, the nanocomposites in the suspensions

are forced to move due to centrifugal force, which acts on the particles in the suspension. Therefore,
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the stable equilibrium of forces, which kept the nanocomposites separated, is disrupted. Thus, the

lower the instability index is, the more stable the nanocomposite suspension. According to the results

displayed in Table 4, the more stable nanocomposites were prepared with MMW CS solution at

10−5 g/mL, followed by those prepared with LMW CS solution at the same concentration. On the

contrary, the reduction in the CS content, with no regard to its MW, increased the instability of the

final nanocomposites. It is important to point out that the hydrodynamic diameters determined for

the nanocomposites upon this technique based on particle velocity distribution for sedimentation

phenomena were in good agreement with those values obtained by dynamic light scattering.
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Figure 4. Evolution of the hydrodynamic diameter of nanocomposites after synthesis. Nanocomposites

prepared with LMW CS solutions at 10−5 g/mL (red line) or 10−7 g/mL (pink line) or MMW CS solutions

at 10−5 g/mL (blue line) or 10−7 g/mL (light blue line) were plotted.

Table 4. Instability index and particle size distribution of the nanocomposites prepared. Analysis was

carried out with LUMiSizer. The instability index and span are adimensional parameters. Populations

are described by their median (50% in the cumulative analyses) and span (width) of the particle

size distribution.

Nanocomposites Prepared with Instability Index Median (nm) Span (×90 to ×10)/×50

LMW CS solution at 10−5 g/mL 0.155 485.4 0.7741

LMW CS solution at 10−7 g/mL 0.560 857.3 0.7879

MMW CS solution at 10−5 g/mL 0.125 465.4 0.7004

MMW CS solution at 10−7 g/mL 0.625 924.1 0.7980

The transmittance profiles of the suspension along the time are used to determine the velocity of

migration of the nanocomposites in the suspensions. Again, those containing the same amount of CS,

with no regard to the MW of the polymer, yielded similar results. Nanocomposites prepared with

CS solutions at 10−5 g/mL showed the lowest migration velocities, whereas those prepared with CS

solutions at 10−7 g/mL moved faster in the suspensions (Figure 5).

The scanning electron microscopy (SEM) images (Figure 6) revealed the rounded shape of the

nanocomposites synthesised.
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Figure 5. Velocity of sedimentation of the synthesized nanocomposites. This parameter was analysed

with LUMiSizer after samples were centrifuged, as indicated in the Materials and Methods section.
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Figure 6. Scanning electron microscope images of nanocomposites prepared with LMW CS solutions

at 10−5 g/mL (upper left) or at 10−7 g/mL (upper right), or MMW CS solutions at 10−5 g/mL (lower left)

or at 10−7 g/mL (lower right). All images were made at a magnification of 2000×. The scale bars in the

images represent 4.52 µm.

The environmental properties of the suspension such as the ionic strength and the pH play an

important role in the stability of polyelectrolyte-based nanocomposites [19]. In this work, the effect of

the increment of the ionic strength was studied by adding KNO3 up to 0.2 M. At this value the ionic

strength was higher than that of either simulated gastric fluid (SGF) or simulated intestinal fluid (SIF)
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to which nanocomposites were exposed. The increase in the ionic strength led to a reduction in the

hydrodynamic diameter of the nanocomposites in less than 24 h. According to the results (Table 5), the

nanocomposites prepared showed slightly differences in the hydrodynamic size after 24 h of exposure.

It is known that when the ionic strength of the medium increases, the polyelectrolytes increase its

flexibility and consequently adopt conformations that reduce its expansion in space [37].

Table 5. Evolution of the hydrodynamic diameter of nanocomposites exposed to 0.2 M KNO3. The

hydrodynamic diameter, indicated as z-average, is expressed in nanometres and corresponds to the

time before increasing ionic strength (T0), just after increasing ionic strength (T1), and after 2 h (T2) or

24 h (T24) of the change.

CS used in the
Formulation

Size (d. nm)

T0 T1 T2 T24

LMW CS 10−5 g/mL 478 ± 132 374 ± 60 236 ± 44 271 ± 53

LMW CS 10−7 g/mL 896 ± 225 534 ± 137 388 ± 92 311 ± 75

MMW CS 10−5 g/mL 600 ± 179 271 ± 52 246 ± 61 269 ± 49

MMW CS 10−7 g/mL 1181 ± 335 512 ± 163 341 ± 77 278 ± 57

Given the interest on the nanocomposites prepared with CS solutions at 1 × 10−5 g/mL, the

evaluation of the influence of pH was assessed. According to the results, one can notice that

nanocomposites upon exposition to pH 1 or pH 7.4 suffered aggregation, as can be detected by the

increase in the hydrodynamic size of the structures (Table 6). In some cases, the resulting aggregate

was big enough to precipitate or flocculate, and then the clearance of the suspension occurred. This is

the explanation for the extreme decrease in the hydrodynamic diameter reported after changing the

pH of the suspension.

Table 6. Evolution of the hydrodynamic diameter of nanocomposites exposed to pH 1 (top) and pH

7.4 (bottom). The hydrodynamic diameter, indicated as z-average, is expressed in nanometres and

corresponds to the time before changing pH (T0), just after changing pH (T1) and after 2 h (T2) of

the change.

CS Used in the Formulation
Size (d. nm), pH 1 Size (d. nm), pH 7.4

T0 T1 T0 T1 T2

LMW CS solution at 10−5 g/mL 509 ± 121 2 ± 0 520 ± 119 1223 ± 17 1535 ± 93

MMW CS solution at 10−5 g/mL 389 ± 73 5404 ± 0 486 ± 141 46 ± 5 48 ± 5

The HPLC analyses revealed that the insulin entrapment efficiency was close to 100% in all the

cases that were studied, as no free insulin was detected after the synthesis of the nanocomposites. The

entrapment efficiency was also measured by a direct method; this was found in analysing the release

of insulin from nanocomposites in SIF for three hours with shaking. According to the results depicted

in the Table 7, and considering that the insulin concentration when preparing the nanocomposites was

78.2 µg/mL, nanocomposites prepared with LMW CS solutions were found to release higher amount

of insulin (>90%) compared with those prepared with MMW CS.

Table 7. Insulin release from the nanocomposites prepared with different CS solutions.

CS used in the Formulation Concentration of Insulin Released Release (%)

LMW CS solution at 10−5 g/mL 73.7 ± 19.0 94.3

LMW CS solution at 10−7 g/mL 73.2 ± 17.2 93.6

MMW CS solution at 10−5 g/mL 63.9 ± 2.7 81.7

MMW CS solution at 10−7 g/mL 63.1 ± 3.8 80.7
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Insulin release under physiological conditions was performed by dialyzing nanocomposite

suspensions in SGF for 2 h, which resulted in the release of 30.4% and 24.2% in the case of nanocomposites

prepared with LMW CS solutions at 10−5 g/mL and 10−7 g/mL, respectively, and 28.3% and 27.4% in the

case of nanocomposites prepared with MMW CS solutions at 10−5 g/mL and 10−7 g/mL, respectively.

Then, the nanocomposites were transferred into SIF up to 24 h. The cumulative insulin release fitted

well with the total amount of insulin used for the formulations (Figure 7).
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Figure 7. Insulin release from nanocomposites prepared with LMW CS solutions at 10−5 g/mL (red line)

or 10−7 g/mL (pink line), or MMW CS solution at 10−5 g/mL (blue line) or 10−7 g/mL (light blue line).

Vertical line represents the change from simulated gastric fluid (SGF) to simulated intestinal fluid (SIF).

3. Discussion

The formulations of nanocomposites under study involved some polyelectrolytes (ALG, CS,

and DS) and other non-polyelectrolyte polymers (poloxamer 188 and PEG 4000). In the synthesis

process, polymeric chains with opposite charges interacted through attractive forces entrapping

non-polyelectrolyte chains and hydrophilic drugs, such as insulin, which were present in the suspension.

Once the core of the nanocomposites was formed, BSA was used for coating in order to protect

nanocomposites obtained from the aggregation. Also, electrostatic interactions drove the interaction of

the BSA with nanocomposites. Due to the role of the electrostatic interactions, the ζ potential of the

polymers in the suspension was of utmost importance and, consequently, was obtained experimentally.

It is important to point out that BSA in solution at pH 5.1, as in the standard formulation, had a ζ

potential close to 0 mV. Therefore, no electrostatic repulsive forces would appear on the surface of the

nanocomposites and the aggregation of the entire structures was promoted, as it has been proposed

previously [38]. Nevertheless, the reduction of the pH of BSA suspension to 4.6 resulted in the increase

of the ζ potential to +10 ± 3 mV, and thus electrostatic repulsive forces appeared on the surface of

the BSA-coated nanocomposites, avoiding the interaction among them. Our results indicate that the

BSA changed its conformation when reducing the pH of the solution, as the interaction with the

nanocomposites and their resulting stability were different depending on the pH of the solution of

the BSA.

Regarding the elimination of phosphate buffer, this change was based on the knowledge that

by increasing the ionic strength, the flexibility of the polyelectrolyte changes resulted in changes

in their conformation. Moreover, the ionic charges on the polyelectrolytes were screened, resulting

in a change in the interactions among molecules. As a result, non-stable nanocomposites were

obtained [39,40]. On the contrary, if nanocomposites were synthesised in low ionic strength conditions,

being performed without buffer phosphate, the resulting structures were more stable in aqueous

suspension. Furthermore, if the ionic strength of the media was increased, the nanocomposites would

not aggregate, becoming smaller instead as a result of the change in the flexibility of the polyelectrolytes.

Finally, the concentration of the CS in solution was an important parameter regarding the size of

structures in the CS solution. As it has been reported previously [39,41], CS chains become entangled at
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high concentration and larger structures are obtained. With regard to the effect of CS, we also included

CS with different molecular weights (MW) to study the effect of the chain length.

Varying the amount of CS in the final nanocomposites had an impact on their size in the same

way as described previously [41]. These authors found a proportion between AuNP/CS or CS/SFN that

gave a population with an optimum distribution of sizes of nanocomposites in each system, and an

effect of chitosan was claimed. In both cases, nanocomposites were obtained because of the electrostatic

interaction between polyelectrolytes. If the proportion of CS or the polyanion in the system was

low, large aggregates were obtained. Only a narrow range of proportions yielded nanocomposites

with a stable size. Similarly, in this work, those nanocomposites prepared with LMW CS solution at

a concentration of 7 × 10−4 g/mL yielded nanocomposites, microcomposites, and some millimetric

composites, which cannot be detected by dynamic light scattering. By reducing the concentration of

LMW CS solution to 10−7 g/mL, a broad peak, which spanned from 10 s of nanometers to microns in

hydrodynamic diameter, was obtained. However, when the concentration of LMW CS was 10−5 g/mL,

the nanocomposites obtained were sized in the nanometric range.

The resulting nanocomposites, no matter the amount of CS, showed a negative ζ potential,

revealing the presence of CS and PEG 4000 in the inner part of the nanocomposites, in which ALG

and DS were likely to be exposed to the surface. The ζ potential of the nanocomposites revealed the

electrostatic repulsive interactions among nanocomposites and indicated that the BSA adsorbed on the

nanocomposites played a key role in the stabilisation via steric interactions. This contribution of BSA

has been previously reported [22,42].

Another property of all the nanocomposites was their stability, defined as no aggregation, at

least, in the two months after synthesis, with no variation in the ionic strength or pH, and kept under

refrigeration and protected from light.

On the basis of the principles of the centrifugation process and assuming the spherical shape

of the nanocomposites in suspension, which could be inferred from the SEM images, the migration

velocity could be expressed as in Equation (1):

ω2rθV

f
∆ρ = vm (1)

where ω2 is the angular velocity, rθ is the distance to the rotation axis, V is the volume of the particle, f

is the friction coefficient, ∆ρ is the difference between the density of the particle and the density of the

solvent, and vm is the migration velocity. Applying the equations of the friction coefficient and the

volume of the sphere, one can obtain Equation (2):

kr2
= vm (2)

where k is a constant and r2 is the square of the particle radius. Taking nanocomposites prepared with

LMW CS solutions as an example, and considering the hydrodynamic diameters obtained by DLS, one

can establish
r2

LMW CS 10−5

r2
LMW CS 10−7

=

vm LMW CS 10−5

vm LMW CS 10−7
, (3)

0.11 =

vm LMW CS 10−5

vm LMW CS 10−7
. (4)

Thus, Equations (2)–(4) fit well with our experimental results in which the migration velocity of

the nanocomposites prepared with CS solution at 10−7 g/mL was 10-fold the velocity of those prepared

with CS solution of 10−5 g/mL. Moreover, it can be assumed that nanocomposite suspensions prepared

with CS solution at 10−7 g/mL became more heterogeneous after the centrifugation, as can be observed

from the difference in the migration velocities of the particles present in the suspension, revealing
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the presence of populations of nanocomposites showing different hydrodynamic radii. This result

revealed that the nanocomposites prepared with CS solutions at 10−7 g/mL were indeed more instable.

The increase in the ionic strength of the media resulted in the screening of the electrostatic forces.

The screening effect depended on the magnitude of the increment and the exposure of the charges.

Increasing the ionic strength up to 0.2 M with KNO3 had an impact in the size of nanocomposites similar

to that obtained when increasing the ionic strength of the suspensions containing nanocomposites

composed of gold nanoparticles (AuNP) and CS (AuNP/CS). In [41], an increase of the ionic strength

produced a decrease in the hydrodynamic diameter of the nanocomposites AuNP/CS, indicating that

that nanocomposites became more compact.

The strong increase in the hydrodynamic size of nanocomposites while changing medium pH

either to 1 or to 7.4 can be related to changes in the conformation of the polyelectrolytes involved

in the nanocomposites. At pH 1, polyelectrolytes within the nanocomposites are below their pKa

and consequently carboxylic groups in alginate and sulfate in the dextran sulfate are not ionized [43].

Because amine groups in CS are protonated, repulsive electrostatic forces appear among different chains.

Therefore, no attractive electrostatic interaction among polyelectrolytes takes part, and hydrogen

bonding among chains becomes the main force, determining the gelation of the alginate [44,45], as

well as the interaction among PEG and poloxamer with polyelectrolytes. Nevertheless, given that

under high ionic strength conditions no aggregation was observed, despite the screening of charges, it

is more likely that the denaturation of the BSA, which occurred at pH 2, is the triggering process [46].

The opposite situation was found at pH 7.4. Carboxyl groups in alginate and the sulfate groups

in DS are ionized [45]. Amine groups in CS are not ionized and CS becomes non-soluble. Then,

repulsive electrostatic forces among ALG and DS predominate resulting in the swelling of the structures.

Although BSA structure is not disrupted, the effect of BSA is not enough to maintain nanocomposites as

discrete units due to changes occurred in the interactions among polymers within the nanocomposites.

The insulin entrapment efficiency was close to 100%, as it was demonstrated by indirect methods.

On the other hand, the direct method for the analysis of entrapment efficiency resulted in the release

from 81% to 94%, approximately, of insulin when incubated under SIF for 3 h with shaking. This can

be interpreted as the insulin retention within the disrupted nanocomposites.

Under physiological conditions, nanocomposites face a great variety of ionic strength and pH

successively. Thus, the way in which the nanocomposites are modified upon those changes cannot

always be predictable. This fact can shed some doubts about the effect on the insulin release from

nanocomposites. Interestingly, when nanocomposites are incubated under simulated gastric conditions,

the insulin is not fully released. This can be interpreted as the nanocomposites acting to protect

the insulin, which would be denatured in SGF. Insulin is released upon the exposure to simulated

intestinal conditions. Together with insulin protection in gastric conditions, it is one of the objectives

pursued when developing oral drug delivery systems for this peptide, that is, to obtain a structure

that protects the payload from the effects on the gut and releases the payload in the intestine, where it

can be absorbed. Moreover, the CS contained in the nanocomposites could enhance the absorption

of the peptide. As it has been previously reported, CS induces the transient opening of paracellular

routes [47,48], which allow the absorption of insulin [8,49].

4. Materials and Methods

4.1. Materials

Low viscosity alginic acid sodium salt from brown algae, which has an M/G ratio of 1.56 [37]

(A2158; 100–300 cP, 2% 25 ◦C, data from the manufacturer); LMW CS (448869-250G) with an MW in

the range of 50,000 to 190,000 Da; MMW CS (448877-250G) with an MW in the order of 250,000 Da,

with the degree of acetylation being around 20% in both cases (data from manufacturer); and BSA

(A1933-25G) were purchased from Sigma-Aldrich Chemie (Schnelldorf, Germany).
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Dextran sulfate sodium salt from Leuconostoc spp. (5000 Da) and poly(vinylpyrrolidone) K 90 were

purchased from Fluka (Buchs, Switzerland); poloxamer 188 (Kolliphor 188) was kindly supplied by

BASF (Ludwigshafen , Germany); PEG 4000 was purchased from Fisher Scientific (Leicestershire, UK);

calcium chloride was from Riedel-de-Haën (Bucharest, Romania); lactic acid 90% was from VWR BDH

Prolabo (Leicestershire, UK); hydrochloric acid 37% and sodium hydroxide were from Merck KGaA

(Gernsheim, Germany); and recombinant human insulin 100 IU/mL Actrapid from Novo nordisk A/S

(Bagsværd, Denmark).

Stock solutions were prepared in ultrapure water. CS was dissolved in 0.5% (v/v) of lactic acid

solution. Solutions were filtered through Millipore #2 filter paper (pore diameter of 0.7 µm) under

vacuum. SnakeSkin dialysis Tubing 10,000 MWCO (regenerated cellulose membrane) was purchased

from Thermo Fisher Scientific Inc., Waltham, USA. Vivaspin 20 100,000 MWCO polyethersulfone (PES)

for ultrafiltration was purchased from Sartorius. Spectra/Por dialysis membranes 100,000 MWCO for

the release assays were acquired from Biotech CE Tubing.

4.2. Methods

4.2.1. Stock Solutions

In the first step of the nanocomposite synthesis, a solution, that we shall call A, of a final

concentration of 6 × 10−4 g/mL in alginic sodium salt; 2 × 10−4 g/mL DS 5000 Da; and 4 × 10−4 g/mL

poloxamer 188, and 6 × 10−5 g/mL insulin was obtained after stirring for 24 h at room temperature.

The pH was adjusted to 4.9 with HCl 0.1 M. A similar solution without insulin was also prepared for

the synthesis of blank nanocomposites.

A stock solution of 2 × 10−3 g/mL calcium chloride was prepared.

LMW or MMW CS was dissolved at final concentration equal to 10−3 g/mL. Solubility was

stimulated by adding 0.5% (v/v) acid lactic and stirring for 24 h at room temperature. Afterwards,

the acidic pH of the solution was increased to 4.6 with NaOH 1 M. The solution was filtered through

Millipore #2 paper under vacuum. Then, CS solutions were diluted with MilliQ water to reach a final

concentration of 10−5 g/mL or 10−7 g/mL. After 24 h of stirring, a decrease in pH was observed and the

pH was readjusted to 4.6.

For the synthesis of nanocomposites, 3.5 × 10−3 g/mL PEG 4000 was dissolved in the solution of

CS. After stirring for 24 h, the pH of the solution was readjusted to 4.6 once again. It was observed

that, for solutions containing CS at final concentration 10−5 g/mL, the pH increased to 4.8. In these

cases, the pH was readjusted with no more than one drop of diluted HCl. For solutions containing CS

at a final concentration 10−7 g/mL, the pH decreased to 3.9, which was readjusted with two drops of

diluted NaOH. The solution containing CS and PEG is denominated B.

A 1 × 10−2 g/mL BSA solution was obtained after stirring for 4 h at room temperature. Later, the

pH was set at 4.6 with HCl 0.1M.

All solutions were kept at 4 ◦C until use at room temperature.

4.2.2. Nanocomposite Preparation

Calcium chloride solution (7.5 mL) was added by dropwise extrusion into 117.5 mL of solution

A. Then, 25 mL of solution B composed of 10−5 g/mL or 10−7 g/mL of LMW or MMW CS was added

dropwise. Lastly, 25 mL of BSA was added dropwise. Nanocomposite dispersions were concentrated

using regenerated cellulose membrane with tubing nominal dry thickness of 10,000 MWCO and a

dialysis solution of 10% poly(vinylpyrrolidone) K 90 for 24 h at 4 ◦C.

4.2.3. Measurements

A Malvern Zetasizer Nano ZS (Malvern Instruments Ltd, Malvern, UK) was used to measure

the hydrodynamic size. Measurements were carried out at 25 ◦C and 173◦ angle relative to the

source. The time autocorrelation function of the scattering intensity fluctuations was used to estimate
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the hydrodynamic diameter distribution. In the case of CS measurements, each assay consisted of

100 measurements, and in case of nanocomposites, each assay consisted of 6 measurements. In both

cases, the number of runs was established by the software in order to reach the quality criteria. Each

run lasted 10 s with no delay between measurements. Nanocomposite measurements were carried out

after synthesis. Each curve in a plot represented the average of the measurements performed, in a

protocol that was confirmed to give very reproducible intensity and number distributions. Distribution

by intensity allowed the characterization of particle size, whereas distribution by number, which

was obtained by the software assuming the particles to be spherical, the homogeneity of the sample,

and the accuracy of the distribution by intensity, allowed the relative populations of the particles to

be estimated.

The ζ potential, which is a measure related with the electrical charge in the surface of a particle,

was also obtained with the same apparatus. Each assay consisted of three automated measurements.

To study stabilisation after synthesis, the nanocomposite suspensions were kept under refrigeration

and protected from light. The measurement of the size of the nanocomposites were performed up to

73 days later, following the indications mentioned above.

To study the stability of the nanocomposites exposed to different pH, the pH of the suspension

was set at 1 by adding a solution of HCl or to pH 7.4 by adding a solution of NaOH of the convenient

concentration. In order to study the effect of the increase in the ionic strength, KNO3 was added to the

suspension until a final concentration of the salt equal to 0.2 M. Changes in the hydrodynamic sizes

were recorded immediately after the pH or ionic changes and after 2 h and after 24 h. Each analysis

consisted of six measurements. Finally, the average and the statistic deviation were calculated for

each suspension.

For the determination of the insulin entrapment efficiency, the nanocomposite suspension was

ultrafiltered using a Vivaspin 20 100,000 MWCO PES by centrifugation at 6000 g for 60 min at 4 ◦C. The

recovered eluent was filtered and diluted 1:2 (v:v) in absolute ethanol and measured in triplicate by

high-performance liquid chromatography (HPLC).

Simultaneously, the same suspension of nanocomposites was diluted in a ratio of 1:6 in simulated

intestinal fluid (SIF) without pancreatin (USP31-NF26) and stirred vigorously in an orbital shaker for

180 min at room temperature. Then, a sample was diluted 1:2 in absolute ethanol and centrifuged for

10 min at 13,500× g at room temperature. After that, the supernatant was filtered using filters with a

size pore of 0.22 µm. Finally, the filtrate was assayed in triplicate by HPLC. The insulin entrapment

efficiency is the difference between the initial amount of insulin and that measured in the supernatant

of the nanocomposites suspension.

For the determination of the insulin release profile in enzyme-free simulated digestive fluids,

15 mL of suspension containing nanoparticles were incubated in 45 mL of simulated gastric fluid (SGF)

without pepsin (USP31-NF26) at 37 ◦C for 120 min under stirring, followed by incubation in 45 mL of

SIF without pancreatin (USP31-NF26) for 180 min. Sample aliquots were collected and replaced by

the same volume of fresh incubation medium at predetermined times. To determine insulin released

from the nanocomposites, samples were diluted at 1:2 in absolute ethanol, centrifuged at 13,500× g for

15 min, and the supernatant was assayed for insulin in triplicate by HPLC.

Insulin was assayed using an LC-2010 HT HPLC system (Shymadzu Co., Kyoto, Japan) equipped

with a quaternary pump, a UV detector set at 214 nm, a reversed-phase X-Terra RP 18 column

5 µm, 4.6 × 250 mm (Waters Co., Milford, CT, USA), and Purospher STAR RP-18 precolumn 5 µm,

4 × 4 mm (Merck KGa, Darmstadt, Germany). The mobile phase consisted of acetonitrile (A) and 0.1%

trifluoroacetic acid (TFA) aqueous solution (B) operated in gradient mode at a flow rate of 1.0 mL min−1

set at 30:70 (A/B) changed to 40:60 (A/B) in 5 min for elution during 5 min, and changed to 30:70 (A/B)

in 1 min for elution during 1 min. The chromatograms were recorded, and the peak area responses

were measured using an automatic integrator. The method was validated and reported to be linear in

the range 1.4–112 µg mL−1 (R2 = 0.9998).
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Stability over centrifugation was determined by LUMiSizer 611/610 photometric pulsed

near-infrared light emitting diods (NIR-LED), at 870 nm (LUM GmbH, Berlin, Germany). LUMiSizer

is a new methodology used to test the stability of particles present in a sample. This technique takes

advantage of the capacity of the particles in a suspension to reduce the transmittance, which depends

on the concentration in terms of mass per volume (g/mL) through the sample in which they are

suspended. Combining this feature with the migration of particles in a suspension because of the

centrifugation force, the migration of particles along the sample can be seen. Measurements were

carried out at 25 ◦C in rectangular polyamide cell with 10 mm optical path length and polypropylene

stopper (110-135XX). Samples were centrifuged at 1056 relative centrifugal acceleration (RCA) until

200 profiles were recorded, taking one every 60 s. In total, 300 profiles were then recorded at 1878 RCA,

taking one every 90 s. The instability index is calculated on the basis of the clarification (increase in

transmission due to phase separation by sedimentation) at a given separation time, divided by the

maximum clarification. The instability index ranges from 0 (more stable) to 1 (more unstable). Relative

instability allows comparison of the aggregation and sedimentation speed of nanocomposites, which

were centrifuged in the same way. The calculus of the instability index was made by choosing a range

in the region of interest in a cell where instability was evident. The analysis time was fixed according

to the period of time during which changes in instability were linear for each sample.

The size determination of the particles was performed by using LUMiSizer. For this, analyses were

made in three positions of the region of interest in the cell in which the changes in profiles were most

pronounced, revealing greater instability of the system. As a result, the software yielded statistical

values of the size of the particles of the sample expressed as the harmonic mean in nanometres, and

some percentage distributions of size particles in nanometres.

LUMiSizer also allowed the velocity of sedimentation of the particles to be measured in micrometers

per seconds (µms−1). For this, it was necessary to fix the range in the region of interest in the cell where

the most significant changes were detected. Then, a time interval was chosen where particle migration

was linear, and the software calculated the velocity of migration of the particles in that region for the

time period selected.

5. Conclusions

We report the synthesis of nanocomposites with different amounts of two different types of CS.

The main objective was to obtain stable nanocomposites for the delivery of insulin. As we have shown,

the nanocomposites prepared with a CS solution at 1 × 10−7 g/mL, with no regard to the MW, showed

larger hydrodynamic size than those prepared with CS solution at 1 × 10−5 g/mL, namely, reducing

100 times the CS content resulted in a 2.5-fold increase in size when using LMW CS and 1.7-fold

increase when using MMW CS.

All the nanocomposites prepared showed no aggregation after 60 days, which indicates that the

formulations obtained were stable for their storage under refrigeration conditions and protected from

light. According to the LUMiSizer analyses, the nanocomposites that contained less CS were less stable

against centrifugation. The nanocomposites prepared showed good stability against the increment of

the ionic strength of the medium, but they collapsed when exposed to pH 1 or 7.4. Interestingly, the

HPLC analyses revealed that these nanocomposites were able to protect the insulin from physiological

gastric conditions while the peptide was fully released under physiological intestinal conditions, where

it could be available for the interaction with absorptive mucosa.
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