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Abstract 25 

Human sensorimotor decision-making has a tendency to get ‘stuck in a rut’, being biased towards 26 

selecting a previously implemented action structure (‘hysteresis’). Existing explanations cannot 27 

provide a principled account of when hysteresis will occur. We propose that hysteresis is an 28 

emergent property of a dynamical system learning from the consequences of its actions. To 29 

examine this, 152 participants moved a cursor to a target on a tablet device whilst avoiding an 30 

obstacle. Hysteresis was observed when the obstacle moved sequentially across the screen between 31 

trials, but not with random obstacle placement. Two further experiments (n = 20) showed an 32 

attenuation when time and resource constraints were eased. We created a simple computational 33 

model capturing dynamic probabilistic estimate updating that showed the same patterns of results. 34 

This provides the first computational demonstration of how sensorimotor decision-making can get 35 

‘stuck in a rut’ through the dynamic updating of its probability estimates. 36 
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Significance Statement 37 

Humans show a bias to select the organisational structure of a recently carried out action, even 38 

when an alternative option is available with lower costs. This ‘hysteresis’ is said to be more efficient 39 

than creating a new plan and it has been interpreted as a ‘design feature’ within decision-making 40 

systems. We suggest such teleological arguments are redundant, with hysteresis being a naturally 41 

emergent property of a dynamic control system that evolved to operate effectively in an uncertain 42 

and partially observable world. Empirical experimentation and simulations from a ‘first principle’ 43 

computational model of decision-making were consistent with our hypothesis.  The identification of 44 

such a mechanism can inform robotics research, suggesting how robotic agents can show human-45 

like flexibility in complex dynamic environments. 46 
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Introduction 47 

Humans are creatures of habit and often repeat behaviours - despite the selected action having 48 

a higher cost than an available alternative. This propensity can be seen when humans continue to 49 

use the road well-travelled when moving between two buildings even after construction work has 50 

created a shorter route. The phenomenon is particularly remarkable because adult humans are 51 

generally so adept at selecting optimal movement patterns (Trommershäuser et al., 2008). Indeed, 52 

the ability of humans to rapidly and efficiently execute actions far exceeds the capabilities of even 53 

the most sophisticated robotic systems (Dogar & Srinivasa, 2012). The incredible repertoire of 54 

skilled behaviour in humans reflects the presence of learning processes that have been trained over 55 

the countless occasions when adults have interacted with the external world. These myriad 56 

interactions allow the human nervous system to accurately estimate the costs associated with 57 

various behaviours and thereby select an optimal (or close to optimal) action when presented with 58 

a goal directed task. The issue of relevance within this manuscript relates to the observation that 59 

adult humans will select different options on different occasions as a function of whether the choice 60 

is made de novo or following a previous successful action – despite the choices having the same 61 

relative costs on both occasions. 62 

The tendency to show a bias towards a previously selected action plan can be described as 63 

‘hysteresis’ (or the sequential effect) and is well-studied. Hysteresis effects have been found in 64 

grasp selection (Cohen & Rosenbaum, 2004, 2011; Dixon et al., 2012; Kelso et al., 1994; Kent et al., 65 

2009; Rosenbaum & Jorgensen, 1992; Schütz et al., 2011; Short & Cauraugh, 1997; Weigelt et al., 66 

2009), hand selection (Rostoft et al., 2002; Schweighofer et al., 2015; Weiss & Wark, 2009), and 67 

hand path priming experiments (Jax & Rosenbaum, 2007, 2009; van der Wel et al., 2007). However, 68 

there are no satisfactory explanations to account for this phenomenon. In fact, most explanations 69 

are teleological in nature: it is proposed that modifying a previously used action is more cognitively 70 

efficient than planning from scratch, so hysteresis exists to increase planning efficiency 71 
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(Meulenbroek et al., 1993; Rosenbaum et al., 2007; Schütz & Schack, 2019; Weiss & Wark, 2009), as 72 

indexed by reduced reaction times (RTs) when using the same action as previously (Valyear et al., 73 

2018). The problem is that such interpretations do not provide a principled account that can 74 

explain when hysteresis will occur, why its magnitude differs under different task constraints, or 75 

why its presence is a function of the costs of the available choices.  76 

We propose that the process of ‘getting stuck in a rut’ is an emergent property of a decision-77 

making system that dynamically learns from the consequences of its actions. In order to deal with 78 

unpredicted changes in the world (and adapt to novel environmental states), an efficient system 79 

must frequently update its estimates of the success probabilities associated with a given action (in 80 

Bayesian terms, the system must continually update its priors). To update these estimates, humans 81 

must use feedback about the outcomes of their actions – actions which cause the environment to 82 

transition to a new state. We suggest that this principle – the updating of success probabilities – will 83 

naturally result in a system that shows hysteresis. In fact, it is common practice in computer science 84 

to model the environment as a POMDP (POMDP; Kaelbling et al., 1998) when designing agents that 85 

need to act under uncertainty. In a POMDP, the agent does not directly observe the environment’s 86 

state but receives an observation which is a function of the state of the environment following an 87 

action executed by the agent. POMDPs reflect well the challenges faced by the human nervous 88 

system which must infer the hidden states of the environment from the sensory inputs that follow 89 

an action (as a Markov blanket separates the nervous system from the external world; Friston, 90 

2010). The important point from the perspective of this manuscript is that the external world is not 91 

static and this means that a human agent must frequently update its internal representation (i.e. the 92 

approximate conditional density on the causes of sensory input) in order to act optimally in a noisy 93 

and changing world. The dynamical updating of the internal representation enables the human to 94 

predict the sensory input that will result from a generated action. The ability to make accurate 95 

predictions allows a human to generate an action that will produce a desired change in the sensory 96 
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input (i.e. achieve a goal-directed change in the external environment). It follows that efficient 97 

action selection requires frequent updating of the success probabilities associated with a given 98 

action. We hypothesised that this updating would produce hysteresis as an emergent property of 99 

the dynamical learning system.  100 

In order to explore hysteresis, we needed to design a canonical task that would allow us to 101 

parametrically vary critical task parameters, reflect a naturalistic action, and produce data 102 

amenable to computational modelling. We also needed a task that would allow us to examine 103 

behaviour on a trial-by-trial basis so that we could address issues relating to the frequency of 104 

updating (e.g. whether we would observe hysteresis on a trial-by-trial basis or whether it was only 105 

manifest after a number of iterations of a given action structure). We decided to use aiming 106 

movements (moving an end effector from a start point to a target location) to meet our task 107 

requirements. We therefore created a simple multi-trial sensorimotor decision-making task in 108 

which participants needed to move around an obstacle (left or right) to hit a target (where the 109 

reward was the same for each choice). We manipulated obstacle position on each trial across blocks 110 

such that it either moved systematically across the screen or was randomly positioned across trials 111 

(Figure 1). We predicted that participants would show a strong bias towards repeating previously 112 

selected actions in the sequential condition, even when the obstacle position indicated an 113 

alternative route would be preferable. We expected that this effect would be diminished in blocks 114 

where obstacle position moved randomly across the screen.  115 

We wished to explore whether the empirical data generated through our empirical 116 

investigations could be captured by a model that incorporated dynamic probabilistic estimate 117 

updating (i.e. whether hysteresis could be captured through a POMDP type model). We therefore 118 

created a model of human decision-making (Figure 2) that included a trial-by-trial update of the 119 

success probabilities associated with one action versus another. The goal of the model was to 120 
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simulate how an agent would respond to a choice between two options that both allow a given goal 121 

to be achieved but have different costs. The output of the model was an action that would cause the 122 

environment to transition (with a given probability) to a new state. The model was arranged such 123 

that after an action is executed the agent receives an observation which is a function of the new 124 

environmental state. This input was then used to update the success probabilities associated with 125 

the action. In many choice tasks, there is also a difference in the reward associated with the options 126 

(Dreher & Tremblay, 2009; Gold & Shadlen, 2007; Mushtaq et al., 2016), so our model incorporated 127 

an estimate of the reward to allow future studies to explore behaviour in such tasks (but in the 128 

reported experiments the reward was identical across options).  129 

We were also interested in exploring the dynamical aspects of decision-making under 130 

temporal constraint. Converging evidence suggests that the decision-making process is governed by 131 

neural circuits that accumulate noisy evidence for possible options over time, with a decision 132 

triggered when sufficient evidence is accumulated to cross an action threshold (Bogacz et al., 2006; 133 

Brody & Hanks, 2016; Gold & Shadlen, 2007). It seems reasonable to suppose that the action 134 

threshold will be a function of the available time period within which a decision must be made (i.e. 135 

temporal constraints will push the system towards making a choice that might be different were 136 

more time available to weigh up the respective costs of the different options). Notably, the existence 137 

of evidence accumulation processes predicts that actions will be selected more rapidly (i.e. RTs will 138 

decrease) when there is a bias towards one action versus another. This suggests that RTs will be 139 

faster in the presence of hysteresis. Once more, it is important to emphasise that we are proposing 140 

that hysteresis is an emergent property of a dynamic learning system where faster RTs are a useful 141 

by-product of the system’s organisation rather than the planned product of a system designed with 142 

an inbuilt function to produce hysteresis.  143 
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On the assumption that evidence accumulation processes are a core component of 144 

sensorimotor decision-making, we anticipated finding RT differences as a function of the magnitude 145 

of hysteresis associated with a given task. We further hypothesised that relaxing the temporal 146 

constraints of the task would attenuate the size of the hysteresis effect (as the available time can be 147 

used to more fully evaluate the costs of either action, reducing the reliance of the decision-making 148 

system on previous successes and failures to inform current action selection). In Experiment 2, we 149 

directly manipulated the temporal constraints of the task by creating a ‘waiting period’ before 150 

which an action could be executed. In Experiment 3, we indirectly manipulated the temporal 151 

constraints by decreasing the ‘higher order’ cognitive demands of the task. We reasoned that 152 

decreasing the cognitive constraints would allow the task goal to be identified more rapidly and 153 

thereby create a longer period in which the respective costs of the alternative actions could be 154 

computed.  155 

 156 

Methods 157 

Participants 158 

In Experiment 1, 152 adults (41 males, 100 females; mean age 22.51 years, range 18– 39 years; 139 159 

self-reported right-handed; eleven participants did not report age or gender) were recruited as part 160 

of a larger motor control project. Participants for Experiment 2 (n = 20, 1 male, 19 females; mean 161 

age 19.09, range 18-20 years; 20 self-reported right-handed) and Experiment 3 (n = 20, 1 male, 19 162 

females; mean age 18.86 years, range 18-20 years; 18 self-reported right-handed) were recruited 163 

through word of mouth from the University of Leeds undergraduate population. All had normal or 164 

corrected-to-normal vision and provided informed consent to participate. Participation in these 165 

studies was incentivised through remuneration of £2 on completion of the experiment. Ethical 166 

approval was obtained from the University of Leeds ethics committee. 167 
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Procedure 168 

Participants sat at a desk with a touchscreen computer tablet (Lenovo ThinkPad Helix 2, 169 

1920x1080 pixels, 11.6” screen, 60Hz refresh rate) placed directly in front of them and interacted 170 

with the screen using a stylus (sampled from the screen digitiser at a rate of 100Hz) in their chosen 171 

hand. Participants were shown a pictorial instruction sheet prior to starting the experiment that 172 

explained how to complete a single trial. Prior to starting the experiment, participants were 173 

instructed that each trial should be completed as quickly and accurately as possible. The core trial 174 

structure was the same across all three experiments and key differences for each study are detailed 175 

below and presented in Figure 1.  176 

 177 

Experiment 1: Biases in Sensorimotor Decision-making 178 

In Experiment 1, we introduced a novel sensorimotor decision task in which participants were 179 

asked to select one of two possible routes around an obstacle to reach a target using a stylus on a 180 

tablet display. During each trial, participants had to stay within a 200mm high by 106mm wide 181 

workspace, displayed as a rectangle on the screen. Participants began each trial by placing the 182 

stylus on the screen and moving the cursor (5mm diameter circle) to a start-point (10mm diameter 183 

circle, horizontally central) at the bottom centre of the screen. Events in the scene (e.g. entering the 184 

start-point) were triggered when the perimeter of the cursor intersected the perimeter of another 185 

object. After a randomly sampled delay (generated by a random number generator) between 300-186 

600ms (across all participants and experiments, there was a grand mean delay of 448ms (SD = 187 

9ms), with the mean average delay across participants ranging from 423– 475ms), the start-point 188 

changed to a colour and shape combination, randomly selected from a list of three of each (cyan, 189 

magenta, yellow; circle, square, triangle); a check-point (10mm diameter circle, horizontally 190 

central) appeared in the top centre of the screen; and an obstacle (30mm wide x 10mm high 191 
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rectangle) appeared equidistant between the start- and check-points, vertically central to the 192 

screen. The distance between the start and check-points was 140mm. Participants were instructed 193 

to remember the colour they were shown and move as quickly and accurately after stimulus display 194 

to the checkpoint. Participants were allowed up to 2 seconds ‘preparation time’ in the start-point. 195 

Upon leaving the start-point the coloured shape disappeared, and the participant had up to 500ms 196 

to reach the check-point. 197 

Upon entering the check-point, the obstacle disappeared. The participant then had to wait in 198 

the check-point. After a randomly sampled delay (generated by a random number generator) 199 

between 300-600ms (across all participants and experiments, grand mean delay = 450ms, SD = 200 

11ms, range = 418–476ms), three targets at the bottom of the screen appeared, spaced equally in 201 

the horizontal axis. Each target had an invisible 10mm diameter circle used to detect the cursor 202 

hitting. The vertical distance between the check-point and targets was 150mm, with 30mm spacing 203 

between targets horizontally. Each target had a randomly assigned colour and shape combination, 204 

selected by randomly shuffling the list of three colours and three shapes and allocating the 205 

combinations to each target. Participants were instructed to move as quickly and accurately to the 206 

target of the same colour that was shown at the start-point. Participants were allowed up to 2 207 

seconds in the check-point. After leaving the check-point the participant had up to 1 second to 208 

reach the target.  209 

A trial was successfully completed when the participant moved to the correct target. There 210 

were several ways to fail a trial: hitting the obstacle or task boundaries; spending too long in the 211 

start or checkpoint; moving too slowly between the start- and check-points, or moving too slowly 212 

between the check-point and target; leaving the checkpoint before the targets were revealed; and 213 

moving to the wrong coloured target. If a failure was triggered the trial was immediately 214 

terminated. Once a trial finished, visual feedback was presented for 1 second to indicate the 215 
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outcome of a trial, where the target turning green indicated a successful trial, and an object turning 216 

red indicated a failed trial. For failed trials, the object that turned red indicated the type of failure 217 

(e.g. if the participant hit the obstacle, it would turn red). Across all trials a running score was 218 

shown in the top left of the screen, which increased by one after each successful trial. After visual 219 

feedback had been presented for 1 second, the start-point was shown on the screen, and 220 

participants were able to begin a new trial. During the experimental trials, the mean within-subject 221 

time between the start of successful trials was 4.17 seconds, and 3.67 seconds for unsuccessful 222 

trials.  223 

The experiment comprised a total of 106 trials and took approximately 10 minutes to 224 

complete. This included 4 example trials, 6 practice trials, 9 baseline trials, and 87 experimental 225 

trials made up in 3 blocks of 29 trials, shown in Figure 1d. During the example trials, the instructor 226 

showed the participant a set of 4 standard trials including two successful trials and two failed trials. 227 

Participants were provided 6 practice trials to make sure they understood the task mechanics, 228 

which included text feedback after every trial to indicate the outcome, in addition to the regular 229 

visual feedback. A baseline block followed that aimed to make participants move as quickly as they 230 

could (while maintaining accuracy) by giving text feedback telling them they needed to move more 231 

quickly if their movement time between the start- and check-point was slower than their previous 232 

fastest time (following the baselining block, across all experiments the within-subject mean 233 

movement time between the start and check-point = 369ms, SD = 47ms, range = 249 – 452ms). 234 

During each of these three blocks, the obstacle was located horizontally central to the screen, and 235 

after the completion of each block, text was displayed for 10 seconds on the screen to indicate the 236 

participant was starting a new phase of the experiment.  237 

The experimental trials were then organised into three blocks, presented to the participant as 238 

one uninterrupted block. The three conditions were where the obstacle’s horizontal position moved 239 
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sequentially between trials from the left of the screen to the right (Rightward), from the right of the 240 

screen to the left (Leftward), and where the obstacle’s positions were randomly shuffled (Random). 241 

The order of the three conditions was randomly allocated per participant. Each obstacle position 242 

was presented once per block. Twenty-nine obstacle positions were used with extreme positions of 243 

-34.2mm and 34.2mm, with equally spaced jumps between each position.  244 

The experimental task was developed using Unity (Unity Technologies, 2018; version 2018.1) 245 

and the Unity Experiment Framework (Brookes et al., 2019).  246 

 247 

Experiment 2: Decreasing Temporal Constraints 248 

Experiment 2 was conducted to explore whether easing the temporal constraints placed on the 249 

decision-making system could attenuate hysteresis. In Experiment 2, participants were forced to 250 

wait while the stimuli were shown before executing the movement. Upon entering the start-point a 251 

red box appeared surrounding the start point and the participant’s cursor. While the red box was 252 

visible the participant was not allowed to leave the start-point or the trial would terminate in 253 

failure. In common with Experiment 1, there was a randomly sampled delay of between 300-600ms 254 

before the stimuli were presented. However, in Experiment 2 the red box remained on the screen 255 

after stimulus display. After 1.5 seconds the red box disappeared, and the participant completed the 256 

rest of the trial as described in Experiment 1. Differences between these Experiments are 257 

illustrated in Figure 1b. In Experiment 2, the mean within-subject time between the start of 258 

successful trials was 5.50 seconds, and 4.22 seconds for unsuccessful trials in the experimental 259 

block.  260 

 261 

Experiment 3: Reducing Task Cognitive Demands 262 
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Experiment 3 was conducted to explore whether reducing the cognitive demands associated 263 

with the task could attenuate hysteresis. Participants were presented with only one target after 264 

waiting in the check-point, with the colour shown at the start of the trial always matching that of 265 

the target. The remainder of the trial followed the same structure as Experiment 1 (differences 266 

illustrated in Figure 1c). In Experiment 3, the mean within-subject time between the start of 267 

successful trials was 3.96 seconds, and 3.30 seconds for unsuccessful trials in the experimental 268 

block. 269 
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 270 

Figure 1. Trial and block structure of the experiments. (a) A complete trial for Experiment 1. Red dashed lines 271 
indicate potential movement trajectories and filled circle indicates movement endpoint. In Step (i), participants 272 
moved to a start-point and waited 300-600ms until it changed to a colour and a shape indicating the target 273 
shape colour. Simultaneously, an obstacle and a checkpoint appeared. Participants were allowed 2000ms 274 
planning time at the start-point before moving around the obstacle to the checkpoint (<500ms) and waited 275 
300-600ms until 3 targets appeared. Participants were allowed up to 2000ms in the checkpoint before moving 276 
to the target that matched the colour shown at the start-point (<1000ms). (b) For Experiment 2, step (i) of 277 
Experiment 1 was replaced by two steps. Participants moved to a start-point and were immediately shown a 278 
red box around the start-point, indicating they could not leave. After a random 300-600ms delay, the stimuli 279 
were revealed but the red box remained on screen for a further 1500ms. (c) For Experiment 3, steps (iv) and 280 
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(v) of experiment 1 were changed so only one target was revealed, of the same colour and shape as the start-281 
point. (d) The block structure of the experiments. Participants completed a practice and baselining block, where 282 
the obstacle was always central to the screen, before completing a shuffled order of the Rightwards block 283 
(obstacle moves from the left to the right between trials), Leftwards block (the obstacle moves from the right 284 
to the left between trials), and Random block (obstacle moves randomly between trials). 285 

 286 

A Computational Model of Action Selection 287 

Figure 2 shows a computational model where the selection of an action can be influenced by 288 

successful completion of a previous action (because the estimate of the probability of success is 289 

dynamically updated on a trial-by-trial basis).  290 

 291 

Figure 2. A probabilistic choice model for action selection. In a trial, the ‘value’ for the two actions (going left or 292 
right around the obstacle) is calculated from the current costs, rewards and biases built up over previous trials. 293 
The values are input to the soft argmax function which gives the probability of selecting the left action. A 294 
random number is uniformly sampled and if it is below the probability of the left action then left is selected, 295 
otherwise right is selected. The outcome of executing the associated action is observed and the selection and 296 
outcome are used to update the biases for each action according to a reinforcement learning rule.  297 

 298 

The model weights the probability of action selection (going left or right around the obstacle) 299 

by the ‘value’ of each action, where we define value as a combination of the costs, rewards, and a 300 

bias term reflecting the increased probability of success from repeating the previous action. The 301 

model comprises four free parameters – a scaling parameter for each of the cost, bias, and reward 302 

terms, 𝑠𝑐 , 𝑠𝑏 , 𝑠𝑟, respectively, which are used to bring the terms to the same scale so the relative 303 
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importance of each can be compared, and the rate at which biases are accumulated, 𝑟, which has a 304 

value in the range [0, 1]. Formally, the ‘value’ of the action 𝑖 is defined as: 305 

𝑉𝑖 =
𝑠𝑐

𝑐𝑖
+ 𝑠𝑏 × 𝑏𝑖 + 𝑠𝑟 × 𝑅𝑖 (1) 

where 𝑐 is the expected cost, 𝑅 is the reward and 𝑏 is the action bias accumulated over the previous 306 

trials. 𝑅 is normalised about the minimum reward, so a total reward of 1 vs 3 becomes a normalised 307 

reward of 0 vs 2, so that the effect of an additional reward can be isolated. In this formulation, the 308 

expected cost of an action is evaluated perfectly but the model could be modified to include a 309 

distribution of the possible expected costs for an action. The reciprocal of the costs was used as a 310 

high cost should give a lower valuation of the action, whereas a high reward should give a higher 311 

valuation (thus, no transformation was used). The value was converted to selection probabilities 312 

using the soft argmax function. A random number was sampled from a uniform distribution 313 

between 0 to 1, and the left action selected if the random number was below the output probability 314 

and vice versa.  315 

Action selection and outcome were used to update the biases associated with each action, 316 

according to the following reinforcement learning formula: 317 

𝑏𝑡+1,𝑖  = {

𝑏𝑡,𝑖 + 𝑟(1 − 𝑏𝑡,𝑖) if 𝑖 = 𝑠

𝑏𝑡,𝑖 + 𝑟(0 − 𝑏𝑡,𝑖)
if 𝑖 ≠ s
or 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡 = fail

        

 (2) 

where 𝑡 is the current trial number, 𝑟 is the bias rate, and 𝑠 is the selected action. It is assumed 318 

participants start with no bias and thus, biases are set to zero on the first trial.  319 

In the experiments, the reward for successfully completing either action was the same, so the 320 

reward term in the model was not included. For simplicity, this model assumed the cost function 321 

was the path length of the movement trajectory. In fact, there is considerable debate (Todorov, 322 

2004) within the sensorimotor research literature over the measure used for optimisation 323 
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(candidates include path length, movement duration, normalised jerk, end-point variability, torque 324 

etc). We note that most of these factors co-vary and emphasise that there is a strong tendency for 325 

participants to select the shortest possible movement trajectory in unconstrained task settings 326 

(Tresilian, 2012). The observed paths were smooth and roughly symmetrical about the centre (see 327 

Figure S1 in Supplementary Materials) so path length was approximated by fitting the shortest 328 

parabola capable of connecting the start point to the target whilst passing the obstacle on either 329 

side. To aid model convergence, path lengths were divided by the minimum possible path length 330 

(140mm).  331 

The model was fit to the choice data for the three experiments using Bayesian estimation via 332 

Stan (Carpenter et al., 2017; version 2.18.2). Each model was fitted with eight chains of 5,000 333 

warmup samples and 5,000 iteration samples, giving 40,000 samples per posterior distribution. 334 

Convergence was assessed by visually inspecting chain behaviour and confirming the Gelman-335 

Rubin statistic, �̂�, was below 1.1 (maximum 1.01) for all parameters (Gelman, 2004; Gelman & 336 

Rubin, 1992). Posterior distributions for each parameter were summarised using the 95% highest 337 

density interval (HDI), the 95% of most credible parameter estimates. The empirical priors used for 338 

model fitting are shown below. The scale of the model parameters was assessed by adjusting them 339 

until data containing hysteresis was observed. Aside from informing parameter scaling, the priors 340 

were then selected to be uninformative. Note that increasing the width of the priors doesn’t affect 341 

the results of the modelling. 342 

𝑠𝑐 , 𝑠𝑏 ~ 𝑁(0, 25)
𝑟 ~ 𝑁(0.5, 0.2)

 343 

To check the model fit, datasets were simulated using each experimental list of obstacle 344 

positions from the real data. For each experiment, 10,000 samples of the posterior distribution 345 

were drawn, and each combination was used to simulate a new data set. For each combination of 346 

experiment and obstacle position, the probability of committing an error, extracted from the 347 
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collected data, was used to simulate error trials. If a sampled number from a uniform distribution 348 

between 0 and 1 was below the error rate for the current experiment and obstacle position, the 349 

trial was classed as a failed trial and no action was selected. Each new dataset was summarised 350 

using a logistic fit for each of the three conditions, and at each obstacle position the minimum and 351 

maximum predicted probability of going right around the obstacle from all the logistic fits was 352 

taken, representing the credible range of possible data given the posterior distribution. The real 353 

data were then overlaid with the credible range to visualise the model fit.  354 

Data Analysis 355 

The output from Unity included the experimental condition; the cursor position, sampled at 356 

100Hz and output in millimetres; the timestamp when Unity’s physics engine detected participants 357 

had left the start-point; the position of the obstacle, output on the scale -1 to 1, where -1 indicated 358 

the obstacle touched the left wall and 1 indicated the obstacle touched the right wall; the direction 359 

participants moved around the obstacle, detected by Unity’s physics engine when participants 360 

moved past the leading edge of the obstacle; and the outcome of each trial. The extreme obstacle 361 

positions used were -0.9 and 0.9 (-34.2mm and 34.2mm respectively), which ensured participants 362 

could only go around the obstacle in one direction at these positions. The average error rate across 363 

the three experiments was 14.8%, 95% CI = [14.3, 15.4].  364 

Stylus position data were filtered using a dual-pass Butterworth second-order filter with a cut-365 

off frequency of 10Hz. To detect movement onset, the time where movement speed rose above 366 

50mm/s closest to the Unity’s timestamp of the participant leaving the start-point was classed as 367 

movement start. For Experiment 1 and Experiment 3, reaction time (RT) was calculated as the 368 

difference in time between the obstacle being shown and movement start, whereas for Experiment 369 

2 it was the difference between the red box disappearing and movement starting.  370 
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RT data were pre-processed by removing trials where no RT was present (117 trials, 0.7%), 371 

where RTs were lower than 100ms (36 trials, 0.2%, to account for participants anticipating stimuli 372 

presentation), then grouping within participant and condition and removing trials outside 2SD of 373 

the mean (826 trials, 4.9%), and then grouping by condition and experiment and removing 374 

participant’s conditions outside 2SD of the mean (240 trials, 1.4%). This RT data cleaning process 375 

was necessary to reduce heteroscedasticity and ensure normal residuals from models.  376 

This process removed one participant (Experiment 1, mean RT = 608ms), six participant 377 

conditions (Experiment 1, mean RT = 587ms), and 1,219 trials in total (7.3% of observations) from 378 

the RT analysis. The remaining trials had a mean RT of 403ms. Of the trials removed, 7.2% were 379 

trials 1 and 2 in the experiment, likely because participants had only seen the obstacle presented 380 

central to the screen up to that point. Analysis performed on RT data was done on the inverse of RT 381 

to increase normality, and back-transformed when reporting. Choice data was pre-processed by 382 

removing trials where no movement past the obstacle was detected, removing 283 trials (1.7% of 383 

observations).  384 

Analysis of the choice and RT data was performed using mixed-effect modelling, utilising the 385 

lme4 package in R (Bates et al., 2015; version 1.1-21). Following Barr et al. (2013), when the 386 

maximal random structure did not converge, the optimal random-effects structure was identified 387 

using forward model selection, with each mixed-effect model having a random intercept for 388 

participant. The effect of each variable was found using likelihood ratio testing, using the afex 389 

package (Singmann et al., 2019; version 0.23.0). Post-hoc comparisons were performed using the 390 

multcomp package (Hothorn et al., 2008; version 1.4.8), and corrections for multiple comparisons 391 

were made using the Bonferroni-Holm method. The MuMIn package (Barton, 2020; version 1.43.6) 392 

was used to report marginal 𝑅2 (variance explained by fixed effects), 𝑅𝑚
2 , and conditional 𝑅2 393 
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(variance explained by fixed and random effects), 𝑅𝑐
2, for the models (Nakagawa et al., 2017). The 394 

95% confidence intervals for values are reported in square brackets throughout.  395 

To examine changes in action selection, a mixed-effect logistic regression was performed. The 396 

fixed effects were the obstacle’s position, the condition, the experiment, and all combinations of the 397 

interactions between these variables. The model had a random intercept for each participant. While 398 

a model with a random slope for obstacle position converged, the single repetition of each condition 399 

led to an artificially steep main effect slope of obstacle position, so was not included in the model. 400 

The default condition was Random, the default experiment was Experiment 1, and the default 401 

obstacle position was 0. To understand whether hysteresis changed with experiment, the log-odds 402 

(LO) of going right around the obstacle at the central obstacle position was compared between 403 

conditions. Hysteresis was quantified as the increased LO of going right at the central obstacle 404 

position in the Rightwards condition compared to the Leftwards condition. We compared this 405 

across experiments.  406 

To investigate changes in RT, a mixed-effect linear regression was performed. The fixed effects 407 

were the trial number in the block, the condition, the experiment, and all combinations of the 408 

interactions between these variables. The model had a random intercept for participant, with 409 

random slopes of condition. The default condition was Random and the default experiment was 410 

Experiment 1. The trial number in block was centred about the middle trial. To understand how 411 

RTs were affected, the estimated marginal mean (EMM) RT at the central obstacle position was 412 

compared between conditions. The difference in RT between the sequential conditions and Random 413 

was then compared between experiments.  414 

The large sample size in Experiment 1 presented opportunity for more detailed analysis of 415 

hysteresis. We expected that, while there would be no global hysteresis in the Random condition, 416 

participants might exhibit biases within this block on a trial-by-trial basis. To explore this, a mixed 417 
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effect logistic regression was performed to understand how much the previous trial biased the 418 

current trial inside the Random block. The fixed effects were the obstacle’s position, the prime 419 

condition – whether the participant went left (Left Previous) or right (Right Previous) on the 420 

previous trial, and the interaction between the two. The model had a random intercept for 421 

participant. As with the analysis of choice with condition, a random slope of obstacle position was 422 

omitted to avoid artificially inflating the main effect slope of obstacle position. The default prime 423 

condition was Left Previous. The default obstacle position was 0. To understand how selection was 424 

influenced by the previous trial, the LO of going right at the central obstacle position was compared 425 

between prime conditions.  426 

As well as choices being biased by the previous trial, we found RTs were shorter when 427 

participants repeated their previous action when compared to switching action. To investigate the 428 

relationship between RT and hysteresis, a mixed-effect linear regression was performed on the 429 

Random condition, splitting the data by whether the participant switched or repeated the previous 430 

trial’s direction. The model had fixed effects of trial number, switch condition, and the interaction of 431 

the two, a random intercept for participant and a random slope of switch condition per participant. 432 

The default switch condition was repeated. The trial number in block was centred about the middle 433 

trial. The estimated mean RT at the central obstacle position was compared between switch 434 

conditions.  435 

All statistical analyses and data processing were performed using custom-written scripts in R 436 

(R Core Team, 2018; version 3.5.2). Upon publication, all analyses code and model fits will be 437 

available through https://github.com/immersivecognition, and the complete dataset will be made 438 

available through the University of Leeds Data Repository.   439 
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Results 440 

Choice Analysis 441 

 We first examined whether our group-level manipulations resulted in action selection 442 

biases. Hysteresis would result in participants going right around the obstacle more often in the 443 

Rightwards condition (where the obstacle moved from the left of the screen to the right between 444 

trials) and going left around the obstacle more often in the Leftwards condition (where the obstacle 445 

moved from the right of the screen to the left between trials), whereas the Random block (where 446 

the obstacle moved randomly between trials) should show no overall bias. We predicted that the 447 

degree of this bias would diminish when participants were provided with more planning time 448 

(Experiment 2) and when action execution was performed under a reduced cognitive task load 449 

(Experiment 3).  450 

 The experimental task was successful in revealing hysteresis (Figure 3a), with the effect 451 

was diminished in Experiment 2 (Figure 3b) and Experiment 3 (Figure 3c).  452 
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 453 

Figure 3. Comparison of experimental and simulated data for choices between experiments. The points and 454 
solid lines represent experimental data, and the ribbons represent simulated data. The points indicate mean 455 
proportion of participants who passed the obstacle on the right for each obstacle position. The solid lines 456 
represent the fit of a logistic regression for the experimental condition. Data was simulated using the decision-457 
making model, with 10,000 samples of the posterior distribution used to simulate choices, and each new data 458 
set summarised with a logistic regression. The ribbon represents the minimum and maximum predicted 459 
probability of going right from the regressions of the simulated data. The conditions are Rightwards (where 460 
the obstacle moves from the left of the screen to right between trials), Random (where the obstacle moves 461 
randomly between trials), and Leftwards (where the obstacle moves from the right of the screen to left between 462 
trials . 463 
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 We performed a mixed-effect logistic regression to predict the direction participants chose 464 

on a given trial. The model (χ2(17) = 18,206.60, p < 0.001, 𝑅𝑚
2  = 0.94, 𝑅𝑐

2 = 0.95) revealed a 465 

significant main effect of position (χ2(1) =4,627.52, p < 0.001) and condition (χ2(2) = 1,330.53, p < 466 

0.001), but no significant effect of experiment (χ2(2) = 2.61, p = 0.272). There were significant 467 

interactions between position and condition (χ2(2) = 54.01, p < 0.001), and condition and 468 

experiment (χ2(4) = 94.53, p < 0.001), but no significant interaction between position and 469 

experiment (χ2(2) = 4.60, p = 0.100), or between position, condition and experiment (χ2(4) = 4.36, p 470 

= 0.359).  471 

Bonferroni-Holm corrected comparisons were performed to see how the log-odds of passing 472 

the obstacle on the right changed with condition and experiment at the central obstacle position. In 473 

Experiment 1, participants were significantly more likely to go right in Rightwards compared to 474 

Random (LO = 2.52 [2.18, 2.86], p < 0.001), and significantly less likely to go right in Leftwards 475 

compared to Random (LO = -2.18 [-2.51, -1.85], p < 0.001), indicating participants were more likely 476 

to continue using the previous direction in the sequential conditions. Further, participants were 477 

more likely to go right in Rightwards compared to Leftwards (LO = 4.70 [4.28, 5.12], p < 0.001). 478 

This comparison gives the increased log odds of passing the obstacle on the right at the central 479 

obstacle positions between the sequential conditions, and is the measure of hysteresis used 480 

throughout.  481 

In Experiment 2, where participants were forced to wait in the start-point for 1.5 seconds 482 

while the obstacle was shown before being allowed to move, they were significantly more likely to 483 

go right in Rightwards compared to Random (LO = 0.82 [0.05, 1.59], p = 0.026), but not in 484 

Leftwards compared to Random (LO = -0.07 [-0.80, 0.65], p = 0.811). Furthermore, participants 485 

were more likely to go right in the Rightwards trials compared to Leftwards (LO = 0.89 [0.11, 1.68], 486 

p = 0.023), indicating hysteresis was present, but to a lesser extent compared to Experiment 1. 487 
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In Experiment 3, where participants were presented with a reduced cognitive task load, they 488 

were significantly more likely to go right in Rightwards compared to Random (LO = 1.24 [0.44, 489 

2.03], p < 0.001), and significantly less likely to go right in Leftwards compared to Random (LO = -490 

2.30 [-3.21, -1.39], p < 0.001). Participants were more also likely to go right in Rightwards 491 

compared to Leftwards (LO = 3.54 [2.54, 4.54], p < 0.001) indicating the presence of some 492 

hysteresis but attenuated relative to Experiment 1. 493 

To investigate how the magnitude of hysteresis changed between the experiments, the 494 

increased log odds of going right in the Rightwards condition compared to the Leftwards condition 495 

were compared across experiments. Participants in Experiment 2 showed significantly less 496 

hysteresis than participants in Experiment 1 (LO = -3.81 [-4.70, -2.93], p < 0.001), and participants 497 

in Experiment 3 also showed significantly less hysteresis than participants in Experiment 1 (LO = -498 

1.16 [-0.09, -2.24], p = 0.012).  499 

These results indicate that the experiment interventions designed to: (i) decrease temporal 500 

constraints and (ii) decrease cognitive task load reduced the magnitude of hysteresis in 501 

Experiments 2 and 3 respectively (relative to Experiment 1). We note that the impact seems to be 502 

more pronounced for planning time increase (Experiment 2) relative to task load reduction 503 

(Experiment 3). 504 

Simulations from the action selection model were fit with the experimental data. The 95% HDI 505 

of the posterior distributions for each parameter are summarised in Table 1 (the full posterior 506 

distributions for each parameter are visualised in Figure S2 in Supplementary Materials). To 507 

understand whether the bias changed between experiments, the posterior distribution for the bias 508 

scaler parameter in Experiments 2 and 3 were subtracted from that of Experiment 1. This showed 509 

that the bias scaler estimate in Experiment 2 was lower than in Experiment 1 (mean difference = -510 

1.60, 95% HDI = [-1.18, -2.02]), and the estimate in Experiment 3 was also lower than in 511 
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Experiment 1 (mean difference = -0.82, 95% HDI = [-0.38, -1.25]), indicating hysteresis was 512 

attenuated by reducing the contribution of biases, built up through previous successes and failures, 513 

towards action selection under reduced temporal constraints and cognitive load. 514 

 515 

Table 1 

Mean and 95% highest density interval (HDI) estimates of the decision-making model parameters. 

  Mean [95% HDI]  

Experiment Cost scaler Bias Scaler Bias Rate 

Experiment 1 39.26 [37.36, 41.24] 2.69 [2.53, 2.86] 0.32 [0.28, 0.36] 

Experiment 2 

(Reduced temporal constraints) 

41.96 [36.59, 47.84] 1.09 [0.71, 1.48] 0.43 [0.27, 0.62] 

Experiment 3 

(Reduced task demands) 

37.63 [32.94, 42.82] 1.87 [1.48, 2.29] 0.35 [0.21, 0.50] 

 516 

The posterior distributions were then used to simulate new data so that predictions from the 517 

model could be compared to the experimental data. Ten thousand samples of the posterior 518 

distribution were taken, and each used to simulate new responses to the experiments. Each new 519 

dataset was summarised with a logistic regression for each condition, and the upper and lower limit 520 

for these predictions used to visualise the model’s predictions. These predictions are shown as 521 

coloured ribbons in Figure 3 per experiment. Note that the observed selection probabilities lie 522 

within the range of the model’s predictions, with distinct separations between the two sequential 523 

conditions for Experiments 1 and 3 around the central obstacle positions, but for Experiment 2 the 524 

two sequential conditions share considerable overlap, consistent with the experimental data.  525 

The results thus far indicate participants are biased towards repeating previously used action 526 

structures when the obstacle moves between trials in a sequential manner. While most hysteresis 527 
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studies employ similar sequential trial designs, some have also found hysteresis when stimuli are 528 

varied randomly across trials (Jax & Rosenbaum, 2007; Valyear et al., 2018). Thus, we explored 529 

whether the participant’s selection on a current trial was biased by the direction they passed the 530 

obstacle on the previous trial in the Random block. Analysis of the data for repeated and switched 531 

trials from the Random block in Experiment 1 provided support for this idea (Figure 4).  532 

 533 

Figure 4. Empirical and simulated data for choices in Experiment 1 Random condition. The points and solid 534 
lines represent experimental data, and the ribbons represent simulated data. The points indicate mean 535 
proportion of participants who passed the obstacle on the left for each obstacle position. The solid lines 536 
represent the fit of a logistic regression for the experimental condition. Data were simulated using the decision-537 
making model, with 10,000 samples of the posterior distribution used to simulate choices, and each new data 538 
set summarised with a logistic regression. The ribbon represents the minimum and maximum predicted 539 
probability of going right from the regressions of the simulated data. The conditions are Left Previous (where 540 
the participant passed the obstacle on the left on the previous trial), and Right Previous (where participants 541 
passed the obstacle on the right on the previous trial).  542 

 543 

A mixed-effect logistic regression was performed on data from the Random block from 544 

Experiment 1 to predict the direction participants went on the current trial. The model (χ 2(3) = 545 

4,406.80, p < 0.001, 𝑅𝑚
2  = 0.91, 𝑅𝑐

2 = 0.93) showed a significant main effect of position (χ 2(1) = 546 

2,215.09, p < 0.001) and prime condition (χ 2(1) = 96.62, p < 0.001), but there was no significant 547 

interaction between position and prime condition (χ 2(1) = 0.16, p = 0.688). A comparison was 548 
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performed to see how the log-odds of passing the obstacle on the right changed with prime 549 

condition at the central obstacle position. Participants were significantly more likely to go right in 550 

the Right Previous condition compared to the Left Previous condition (LO = 1.51 [1.19, 1.83], p < 551 

0.001). The increased log odds of going right were smaller for the two prime conditions when 552 

compared to the two sequential conditions from the analysis reported above - indicating biases 553 

accumulate over longer action sequences than just the previous trial.  554 

To understand whether similar trial-to-trial biases emerged in the decision-making model, the 555 

parameter posterior distributions (10,000 samples) from Experiment 1 were used to simulate new 556 

datasets. The responses to the Random condition were then extracted, and each new dataset was 557 

summarised using a logistic regression per prime condition. The minimum and maximum predicted 558 

probability of going right from these regressions was used to visualise the model’s predictions and 559 

are represented as ribbons in Figure 4. Consistent with the observed experiment data, the model 560 

shows a distinct separation between the two prime conditions, with Right Previous cases being 561 

more likely to go right at the central obstacle positions.  562 

Reaction Times Analysis 563 

Participants in Experiment 1 showed a reduction in RT in the sequential conditions compared 564 

to the Random condition (Figure 5a). Collapsing across all trials, the mean RT in the Random 565 

condition was 417ms [414, 419], compared to 387ms [385, 389] in the Rightwards condition and 566 

388ms [386, 390] in the Leftwards condition. In Experiment 2, RTs were lower than in Experiment 567 

1 and there seemed to be no RT benefits in the sequential conditions (Figure 5b), with a mean RT in 568 

the Random condition of 368ms [363, 373] compared to 381ms [375, 387] in the Rightwards 569 

condition and 380ms [374, 386] in the Leftwards condition. In Experiment 3, RTs were again lower 570 

than in Experiment 1 with a large RT benefit in the sequential conditions (Figure 5c). The mean RT 571 
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in the Random condition was 379ms [374, 385] compared to 331ms [327, 336] in the Rightwards 572 

condition and 342ms [337, 347] in the Leftwards condition.  573 

 574 

Figure 5. Comparison of RTs for each condition between experiments. The open circles show the mean RTs 575 
for each participant. The solid circles show the mean RT for each combination of condition and experiment 576 
across all participants, and the error bars show the 95% confidence intervals around the estimate of the 577 
mean. The conditions are Rightwards (where the obstacle moves from the left of the screen to the right 578 
between trials), Random (where the obstacle moves randomly between trials), and Leftwards (where the 579 
obstacle moves from the right of the screen to the left between trials).  580 

 581 

To understand how RTs were affected by biases, a linear mixed-effect model was conducted to 582 

predict RTs on a given trial. The model [χ2(22) = 2,337.69, p < 0.001, 𝑅𝑚
2  = 0.10, 𝑅𝑐

2 = 0.49] showed a 583 

significant main effect of trial (χ2(1) = 7.53, p = 0.006), condition (χ2(2) = 104.22, p < 0.001), and 584 

experiment (χ2(2) = 30.30, p < 0.001). There were significant interactions of trial and condition 585 

(χ2(2) = 28.45, p < 0.001), and condition and experiment (χ2(4) = 50.58, p < 0.001), but no 586 

significant interaction between trial and experiment (χ2(2) = 2.47, p = 0.291). There was a 587 

significant interaction between trial, condition and experiment (χ2(4) = 19.72, p < 0.001).  588 

Bonferroni-Holm corrected comparisons were performed to see how RTs changed with 589 

condition and experiment at the middle trial in the block, where the benefits of hysteresis would be 590 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted June 3, 2020. . https://doi.org/10.1101/2020.06.02.127860doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.127860
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

 

expected. In Experiment 1, the Random condition (EMM = 417ms [410, 425]) was significantly 591 

slower than the Leftwards (EMM = 389ms [381, 397], p < 0.001) and Rightwards conditions (EMM 592 

= 387ms [380, 396], p < 0.001), but there was no significant difference between the Leftwards and 593 

Rightwards conditions (p = 0.659). Participants were ~30ms faster in the sequential conditions 594 

than in the Random condition, indicating RT savings from choice perseveration.  595 

In Experiment 2, there were no significant differences between the Random (EMM = 368ms 596 

[352, 385]) and Leftwards condition (EMM = 380ms [361, 402], p = 0.151), the Random and 597 

Rightwards condition (EMM = 382ms [361, 404], p = 0.151), or between the Leftwards and 598 

Rightwards condition (p = 0.877).  599 

In Experiment 3, the Random condition (EMM = 380ms [363, 398]) was significantly slower 600 

than the Leftwards (EMM = 342ms [326, 359, p < 0.001) and Rightwards conditions (EMM = 331ms 601 

[316, 348], p < 0.001), but there was no significant difference between the Leftwards and 602 

Rightwards conditions (p = 0.093). Participants were 40-50ms quicker in the sequential conditions 603 

than in the Random condition, showing savings that were marginally larger than those observed in 604 

Experiment 1. 605 

To investigate whether the magnitude of RT reduction changed between experiments, we 606 

compared the difference in RT of the Random condition to the sequential conditions between 607 

experiments. The difference in RT between the Random and Leftwards conditions was significantly 608 

lower in Experiment 2 compared to Experiment 1 (p < 0.001), but significantly higher in 609 

Experiment 3 compared to Experiment 1 (p = 0.005). The difference in RT between the Random 610 

and Leftwards conditions was significantly lower in Experiment 2 compared to Experiment 1 (p < 611 

0.001) but there was no difference between Experiment 3 and 1 (p = 0.074).  612 

In the Random block of Experiment 1 participants showed a reduction in RT for repeated 613 

choices compared to switched choices (Figure 6). Collapsing across all trials and participants, the 614 
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mean RT in the Repeated condition was 407ms [404, 410] compared to 430ms [427, 433] in the 615 

Switched condition.  616 

 617 

Figure 6. Comparison of RTs inside Experiment 1’s Random condition. The open circles show the mean RTs 618 
for each participant. The solid circles show the mean RT for each switch condition across all participants, and 619 
the error bars show the 95% confidence intervals around the estimate of the mean. The conditions are 620 
Repeated (where participants made the same choice on the current trial as on the last trial), and Switched 621 
(where participants switched choice from the previous trial).  622 

 623 

To understand how RTs changed with switch condition on a given trial, a linear mixed-effect 624 

model was performed. The model [χ2(5) = 197.71, p < 0.001, 𝑅𝑚
2  = 0.03, 𝑅𝑐

2 = 0.48] showed a 625 

significant main effect of trial (χ2(1) = 14.23, p < 0.001) and switch condition (χ2(1) = 97.79, p < 626 

0.001), but no interaction between trial and switch condition (χ2(1) = 0.19, p = 0.663). A 627 

comparison was performed to see how RTs changed with switch condition at the middle trial in the 628 

block. The repeated condition (EMM = 407ms [400, 415]) was significantly faster than the switched 629 

condition (EMM = 429ms [421, 438], p < 0.001), indicating participants had an RT benefit from 630 

repeating only a single previous choice. The difference between the Switched and Repeated 631 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted June 3, 2020. . https://doi.org/10.1101/2020.06.02.127860doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.127860
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

 

conditions was lower than the difference between the Random and the sequential conditions from 632 

the earlier analysis, indicating RT savings may be a cumulative process, building up across trials.  633 
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Discussion 634 

Our goal was to examine the bias shown by skilled adult humans towards selecting a 635 

previously selected action structure when alternative options that would be selected in de novo 636 

conditions were available. To this end, we created a simple obstacle avoidance aiming task. We 637 

found participants exhibited hysteresis effects when the obstacle moved systematically in one 638 

direction between trials. In blocks where the obstacle moved randomly, there was no global 639 

hysteresis effect. The random blocks did, however, show trial-by-trial biases - with action selection 640 

being influenced by the previous movement. We were also interested in exploring the impact on 641 

hysteresis of changing the temporal constraints of the task. The rationale for manipulating the 642 

temporal constraints was based on the growing evidence that human decision-making involves 643 

evidence accumulation processes. The existence of such processes suggests that humans may 644 

choose to act before a full evaluation of the costs associated with the available action options has 645 

been completed (i.e. as soon as an action reaches a threshold it is selected). It follows that providing 646 

a longer time period for decision-making might cause a different action to be selected (as the 647 

available time can be used to more fully evaluate the costs, reducing the reliance of the current 648 

decision on previous successes and failures). We used two manipulations to alter the temporal 649 

constraints of the task. In Experiment 2, we directly manipulated the temporal constraints by 650 

preventing action until a 1500ms time window had elapsed. In Experiment 3, we indirectly altered 651 

the constraints by decreasing the cognitive demands of the task (reasoning that less time spent 652 

identifying the task goal would provide more time for evaluating the respective costs of the 653 

available actions). The results showed that the hysteresis effect was practically eliminated in 654 

Experiment 2 and attenuated in Experiment 3. 655 

Our investigation of hysteresis was motivated by our hypothesis that hysteresis is the 656 

naturally emergent property of a dynamical learning system that is operating in an uncertain world. 657 

In order to test our hypothesis we created a simple POMDP type computational model that 658 
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incorporated dynamic probabilistic estimate updating. We used this model to simulate behavioural 659 

responses for the experimental tasks and found that it was able to capture the empirical data. This 660 

finding suggests that there is no need to invoke the existence of a bespoke ‘hysteresis function’ 661 

within the sensorimotor system, and provides support for our hypothesis that hysteresis is an 662 

emergent property of a dynamical learning system. 663 

The results reported within this manuscript emphasise the dynamical nature of human 664 

sensorimotor decision making. The challenge for the human nervous system is to maintain optimal 665 

action selection in a noisy and uncertain world. The only way that the nervous system can maintain 666 

its efficiency is through an ongoing evaluation of the accuracy of its internal representation of the 667 

external world, and frequent updating of its probability estimates. The current findings suggest that 668 

this updating occurs on a trial-by-trial basis (though the biases we observed also accumulated 669 

across multiple trials). This paints a picture of a system that is continually adapting, and ensuring 670 

that its actions are precisely tailored to the external environment. This observation calls into 671 

question the classical distinctions between sensorimotor control and sensorimotor learning. It 672 

appears that human control systems appear stable because they have been refined over long 673 

periods of time through interactions with a world that obeys consistent rules described by 674 

Newtonian mechanics– but controllers are nevertheless updated continually on the basis of 675 

feedback from every interaction. Our findings also highlight the dynamics of decision-making in 676 

terms of the system needing to make choices under time constraints (where there are strong 677 

evolutionary pressures favouring species who react swiftly). In line with the existence of evidence 678 

accumulation processes, we found that the hysteresis effect was attenuated when the temporal 679 

constraints of the task were eased. This emphasises the tendency within the system to select the 680 

first action to cross a pre-specified threshold, favouring recently successful actions, rather than wait 681 

until the full costs of all options have been exhaustively evaluated. The success of such a strategy is 682 
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witnessed by the fact that Homo sapiens remained standing after the evolutionary arms race of the 683 

past gigayear. 684 

Our experiments have focussed on the sensorimotor system but the general phenomenon of 685 

hysteresis can be observed in other aspects of human behaviour. For example, hysteresis effects 686 

have been observed in perceptual decision-making tasks where choices are biased by previous 687 

decisions (Abrahamyan et al., 2016; Akaishi et al., 2014; Urai et al., 2019). The magnitude of the 688 

perceptual bias tends to depend on whether the previous decision was rewarded or not 689 

(Abrahamyan et al., 2016; Hermoso-Mendizabal et al., 2018). These hysteresis effects (typically 690 

described as choice-history biases) have been successfully implemented in evidence accumulation 691 

models of decision-making. We argue that the existence of hysteresis within the perceptual system 692 

can be explained through the same mechanisms that we used to account for hysteresis in 693 

sensorimotor decision-making (i.e. the presence of Bayesian type processes operating within the 694 

brain, where priors are continually updated with new sensory information to create posterior 695 

probability estimates). It is possible that similar mechanisms can account for reports of hysteresis 696 

in higher order cognition (often described as ‘perseveration’). There is a growing consensus that 697 

the sensorimotor system provides the phylogenetic and ontogenetic foundations of higher order 698 

cognition (Raw et al., 2019; Wilson, 2002). The postulated links between the sensorimotor and 699 

cognitive system might suggest a close relationship between sensorimotor hysteresis and 700 

perseveration type behaviours. This may prove a fruitful line of investigation for future studies. 701 

Previous accounts of hysteresis have assumed that the sensorimotor system has a ‘hysteresis’ 702 

function whose purpose is to create an advantage when planning a new movement. It is argued that 703 

modifying a previously used plan would be more cognitively efficient than planning a new one from 704 

scratch, so hysteresis exists to improve planning efficiency (Meulenbroek et al., 1993; Rosenbaum 705 

et al., 2007; Schütz & Schack, 2019; Weiss & Wark, 2009), as indexed by reduced RTs when 706 
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performing the same action as previously (Valyear et al., 2018). On the basis of previous reports we 707 

fully expected to find reduced RTs when the hysteresis effect was present. Moreover, we 708 

anticipated the presence of reduced RTs on the theoretical basis that evidence accumulation 709 

processes will cause actions to be selected more rapidly when there is a bias towards one action 710 

versus another. In line with these expectations, we observed a decrease in the average RT on the 711 

sequential trials in Experiment 1 relative to the random trials. In Experiment 2, participants were 712 

given a substantial time to select the goal directed action and the RTs were similar to the sequential 713 

trials in Experiment 1 regardless of trial type. In Experiment 3, the task demands were decreased 714 

and there was a commensurate reduction in RT (consistent with a large body of literature showing 715 

that RT is a function of task complexity). Notably, the sequential trials within Experiment 3 showed 716 

hysteresis (relative to the random trials within the experiment) and were associated with faster 717 

RTs than the random trials (producing the fastest RTs across all three experiments as predicted by 718 

the presence of hysteresis and the reduced task complexity).  719 

The work presented within this manuscript addresses issues from the field of ‘Human-Like-720 

Computing’ where researchers attempt to bridge the gap between models of human decision-721 

making and the models used in artificial intelligence and robot motion control. Stochastic models of 722 

actions, observations, costs and rewards are the main tools used in modelling and planning robot 723 

motion, including tasks that involve reaching behind obstacles (Dogar & Srinivasa, 2012). An 724 

improved understanding of human decision-making can inform the development of such robot 725 

motion models. The identification of the hysteresis bias allows roboticists and computer scientists 726 

to decide whether their agents are operating within environments that are sufficiently constrained 727 

so that control schemes can seek to ameliorate hysteresis. Alternatively, hysteresis may suggest 728 

mechanisms through which a robotic agent can show human-like flexibility and adaptability in 729 

complex dynamic environments. Moreover, the identification of hysteresis as an emergent property 730 

can help improve the legibility and predictability available within human-robot interactions. It 731 
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follows that investigations into human biases (such as hysteresis), and their formal description 732 

through mathematical models can be useful in robot motion and control. Thus, the approach 733 

adopted within this manuscript provides an interesting avenue for future investigations by 734 

roboticists, psychologists and computer scientists. 735 
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