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Summary

The plant Golgi apparatus is responsible for the processing of
proteins received from the endoplasmic reticulum (ER) and
their distribution to multiple destinations within the cell. Golgi
matrix components, such as golgins, have been identified and
suggested to function as putative tethering factors to mediate
the physical connections between Golgi bodies and the ER net-
work. Golgins are proteins anchored to the Golgi membrane
by the C-terminus either through transmembrane domains
or interaction with small regulatory GTPases. The golgin N-
terminus contains long coiled-coil domains, which consist of
a number of a-helices wrapped around each other to form a
structure similar to a rope being made from several strands,
reaching into the cytoplasm. In animal cells, golgins are also
implicated in specific recognition of cargo at the Golgi.Here,
we investigate the plant golgin Atgolgin-84A for its subcellular
localization and potential role as a tethering factor at the ER—
Golgi interface. For this, fluorescent fusions of Atgolgin-84A
and an Atgolgin-84A truncation lacking the coiled-coil do-
mains (Atgolgin-84AA1-557) were transiently expressed in
tobacco leaf epidermal cells and imaged using high-resolution
confocal microscopy. We show that Atgolgin-84 A localizes to
a pre-cis-Golgi compartment that is also labelled by one of the
COPII proteins as well as by the tether protein AtCASP. Upon
overexpression of Atgolgin-84A or its deletion mutant, trans-
port between the ER and Golgi bodies is impaired and cargo
proteins are redirected to the vacuole.

Correspondence to: Verena Kriechbaumer, Plant Cell Biology, Department of Bio-
logical and Medical Sciences, Oxford Brookes University, Oxford OX3 OBP, UK. Tel:
+44(0)1865488403; e-mail: vkriechbaumer@brookes.ac.uk

Introduction

The eukaryotic cell contains a highly complex network of
membrane-bound organelles vital for the synthesis, modi-
fication, quality control and packing of proteins, lipids and
polysaccharides into transport vectors to mediate either
secretion or intracellular accumulations (Vitale & Denecke,
1999). This endomembrane system, also known as secre-
tory pathway, plays diverse roles in cell growth, polarity
and development, stress responses and protein storage. A
better understanding of the endomembrane system in plants
can drive improvement in food production and plant-based
products with medicinal, nutritional and commercial value.
The plant endomembrane system comprises the endoplasmic
reticulum (ER), the Golgi apparatus, the vacuolar system
and the plasma membrane. These membrane systems are
transiently connected by intermediate compartments: the
trans-Golgi network (TGN), the prevacuolar compartment or
endosome, and the late prevacuolar compartment (Foresti &
Denecke, 2008; Foresti et al., 2010; De et al., 2012).

The plant Golgi apparatus is composed of numerous stacks
of membrane-bound cisternae, each of which constitutes a
discrete Golgi body. Golgi bodies are responsible in part for the
processing of proteins received from the ER and their distribu-
tion to the plasma membrane and other compartments. The
plant Golgi apparatus also synthesizes complex polysaccha-
rides for the cell wall, membrane lipids and glycolipids, and
is involved in further processing of N-glycans (Schoberer &
Strasser, 2011). Golgi morphology is different between king-
doms, and the mechanisms by which this structure and orga-
nization is maintained while providing vital functions for the
cell is still poorly understood.

In animal cells, the Golgi apparatus has a perinuclear
ribbon-like structure around the ER and is mostly stationary.
In plants, there are many discrete Golgi bodies and these are
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dispersed and motile (Hawes & Satiat-Jeunemaitre, 2005).
Plant cells have many Golgi bodies that are physically con-
nected to the ER (Sparkes et al., 2009), and each is composed
of stacked, flattened membrane cisternae. In each plant
Golgi body, the cisternae are polarized between the cis-face,
receiving cargo from the ER, and the trans-face, sending cargo
forward to post-Golgi organelles. Based on resident enzyme
activities (Schoberer & Strasser, 2011), each Golgi stack is
subdivided into distinct cisternae from the cis- to medial-
and the trans-face to enable compartmentalized modification
of substrates (Moore et al., 1991; Andreeva et al., 1998;
Hawes et al.,, 2008). The TGN also functions as the early
endosome (Foresti & Denecke, 2008). Fluorescence recovery
after photobleaching analyses showed that the integrity of
the Golgi apparatus is maintained through remodelling of
the cisternae with their membranes being reabsorbed in the
ER and subsequently retrieved back to the Golgi stack. It was
demonstrated in plant cells that fluorescent protein fusions
of integral membrane enzymes distributed to the different
cisternae can cycle in and out of the Golgi body within 5 min
(Brandizzi et al., 2002; Schoberer et al., 2010). These results
support that the Golgi cisternae are remodelled continuously.

Protein trafficking to and from the Golgi body is mediated by
coated membranes. Expression of COPII dominant-negative
mutants or for example chemical inhibition of COPI allows the
study of these different routes. It is known that disrupting any
of these routes leads to the reabsorption of Golgi membranes
into the ER (Satiat-Jeunemaitre et al., 1996; Andreeva et al.,
2000; Saint-Jore et al., 2002; Stefano et al., 2006), which af-
fects not only Golgi membrane integrity but also ER molecu-
lar composition. Proteins that have to exit the Golgi body are
exocytosed from the cell or are transported to vacuolar com-
partments. In addition to Golgi-dependent vacuolar traffick-
ing, direct routes from the ER to the vacuole also exist (Hara-
Nishimura et al., 1998; Vitale & Denecke, 1999; Chrispeels &
Herman, 2000).

Plant Golgi bodies are composed of discrete units of
stacked membrane-bound cisternae that are found distributed
throughout the cytoplasm of the cell. Interestingly, they move
rapidly along the ER network in an actin-dependent way while
maintaining their structure during motility. It has been sug-
gested that Golgi bodies may be surrounded by a dense pro-
teinaceous matrix that excludes ribosomes, maintains the
structure of individual Golgi bodies and contributes to the
transport of proteins through Golgi bodies (Staehelin & Moore,
1995; Hawes, 2005; Lowe, 2011; Xiang & Wang, 2011).

Golgi bodies maintain a physical connection to the plant
ER through the function of several putative Golgi matrix
components, including the golgin proteins (Gilson et al.,
2004; Latijnhouwers et al., 2005; Renna et al., 2005; Lati-
jnhouwers et al., 2007; Matheson et al., 2007; Osterrieder,
2012; Osterrieder et al., 2017). Golgins are commonly found
to act as tethering proteins and have been implicated in the
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organization and maintenance of Golgi stacks (Ramirez &
Lowe, 2009). Mammalian golgins are defined by the pres-
ence of long coiled-coil domains, as well as attachment to
Golgi membranes via their C-termini [either by tail-anchor
transmembrane domains (TMDs) or through binding to small
GTPases] (Ramirez & Lowe, 2009; Goud & Gleeson, 2010;
Munro, 2011). These features allow the golgins to extend
over a significant distance into the cytoplasm, which is an
ideal characteristic allowing for capturing or tethering of
other membranes, such as transport vesicles, Golgi cisternae
or cytoskeletal elements (Preisinger et al., 2004; Efimov et al.,
2007). This conformation also enables the golgins to form
homo- or heterodimers with other golgins, GTPases or soluble
SNARE proteins (Sztul & Lupashin, 2006). Several putative
golgins have been identified in Arabidopsis thaliana, all of
which localize to Golgi bodies, and interaction partners have
been identified for some of the golgins (Gilson et al., 2004;
Latijnhouwers et al., 2005; Renna et al., 2005; Latijnhouwers
et al., 2007; Matheson et al., 2007; Osterrieder, 2012).

Among the identified Arabidopsis golgins is Atgolgin-84A
(Latijnhouwers et al., 2007; Osterrieder, 2012) (previously
termed Golgin Candidate 1, GC1), a homologue of mam-
malian golgin-84. Golgin-84 is a mitotic phosphoprotein
(Diao et al., 2003); it interacts with the mammalian Rab1 pro-
tein (Diao et al., 2003; Satoh et al., 2003) and features a cy-
toplasmic coiled-coil domain and a C-terminal TMD required
for Golgi body targeting (Bascom et al., 1999). The overex-
pression of Golgin-84, the expression of a mutant version and
the siRNA-mediated depletion of the protein, results in a dis-
ruption of the Golgi ribbon into large cytoplasmic fragments.
These fragments still retain their stacked organization but are
significantly reduced in size (Diao et al., 2003). In animal
cells, there is strong evidence for the involvement of golgin-
84 role in vesicle trafficking. Cells lacking golgin-84 have de-
fects in the maturation of certain plasma membrane proteins
and an accumulation of intra-Golgi vesicles containing Golgi
residents (Sohda et al., 2010). Golgin-84 proteins, as well as
several other mammalian golgins, are involved in tethering
specific transport vesicles destined for different regions of the
Golgi body (Wong & Munro, ). In plants, the first studies on
Atgolgin-84A found that the protein located mainly to the cis-
Golgi with a preference for cisternal rims (Latijnhouwers et al.,
2007).

Since the initial identification of Atgolgin-84A, the res-
olution of light microscopy techniques has improved such
that cis- and trans-Golgi compartments can now be distin-
guished from one another with relative ease. Using these tech-
niques, we can now identify the suborganellar localization of
Atgolgin-84A. Furthermore, using highly sensitive variable
angle epifluorescence microscopy (VAEM), novel behaviours
of Atgolgin-84A can be observed, hinting at the existence of
a pre-cis-Golgi compartment that plays a key role in correct
targeting of proteins for secretion.
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Materials and methods

Molecular biology

Fluorescent GFP fusions of full-length Atgolgin-84A and
truncated Atgolgin-84A used were published in Latijnhouw-
ers et al. (2007). An mCherry fusion for the full-length
Atgolgin-84A was created using the previously published
pENTR1A clones (Latijnhouwers et al., 2007) using Gate-
way® cloning technology according to the manufacturer’s in-
structions (Life Technologies). Constructs were cloned into the
binary expression vector pPB7WGC2-mCherry (Karimi et al.,
2005). Constructs were transformed into the Agrobacterium
tumefaciens strain GV3101::mp90. The following markers
were used for colocalization assays and secretion assays:
MnSI-mRFP (Schoberer et al., 2019), ST-GFP (Boevink et al.,
1998), mRFP-AtCASP (Renna et al., 2005; Latijnhouwers
et al., 2007; Osterrieder et al., 2017) and SP-mCherry (Da
Costa et al., 2010).

Transient expression of fluorescent protein fusions in tobacco leaf
epidermal cells

Transient expression of fluorescent protein fusions in tobacco
(Nicotiana tabacum SR1 cv Petit Havana) leaves was carried out
by Agrobacteria-mediated infiltration as described by Sparkes
et al. (2006). Transformed agrobacteria are grown overnight
at 28°C in LB media with appropriate selective agents and then
pelleted by centrifugation (2200 g) for 5 min at room tempera-
ture. The pellet is then washed once and suspended in an infil-
tration buffer composer of 5 mg mL~! glucose, 50 mM MES, 2
mM Na3;PO,4-12H,0 acetosyringone. This bacterial solution is
appropriately diluted in infiltration buffer to an ODgg 0.1 and
infiltrated into 5—6 week old tobacco leaves grown at 21°C un-
der greenhouse conditions and then transferred to an incuba-
tor and kept at 23°C for 2—4 days prior to imaging.

Stable expression in Arabidopsis plants

Stable Arabidopsis plants were created using the Agrobact
eria-mediated floral dip method described by Clough & Bent
(1998). Pelleted transformed Agrobacteria were resuspended
in solution composed of 5% sucrose, 500 uL L~! Silwet 77.
Flowering Arabidopsis stems were dipped into this solution
and agitated briefly for up to 1 min, and the whole plant was
wrapped in cling film for 24 h. Seeds from the dipped plants
were collected and grown on % Murashige and Skoog medium
with Hygromycin B selection. All imaging was performed in
4-7 days-old T1 seedlings.

Confocal microscopy

Images obtained by confocal microscopy were acquired us-
ing the Zeiss LSM 880 AxioObserver with Airyscan using the
Zeiss PlanApo x100/1.46 NA oil immersion lens for image

and timeseries acquisition. Brefeldin A (BFA) treatments and
secretion assays were performed with excitation at 488 nm
(GFP) and 561 nm (mCherry) with emission between 489—
536 nm and 588-633 nm for GFP and mCherry, respectively.
High-resolution imaging of Atgolgin4A localization was per-
formed using the Airyscan detector with GFP and mCherry
excitation at 488 and 561 nm, respectively, and emission
at 495-550 nm (GFP) and 570-615 nm (mCherry). Addi-
tional imaging was performed using a Zeiss Axio-Observer
zl with a x100/1.46 NA oil immersion lens. Sample ex-
citation at 488 nm was accomplished using the attached
iLas2 TIRF optical system capable of orbital excitation. Laser
power was varied according to sample quality and all time-
series were obtained with an Andor iXon cooled EMCCD
camera.

Secretion assay

For the secretion assay by confocal microscopy, the effector
(full-length golgin or mutant, respectively) was infiltrated 24 h
prior to cargo infiltration and plants were imaged 3 days after
cargo infiltration.

Drug treatment

BFA treatment of tobacco leaf samples was carried out as de-
scribed (Brandizzi et al., 2002). BFA was dissolved in DMSO at
10 mg mL™! and stored at —20°C. Tobacco leaf pieces with an
approximate size of 3 x 3 mm were cut and incubated abax-
ial side down for 30 min-2 h in a freshly prepared 100 ug
mL! BFA working solution at room temperature. To wash out
BFA, leaf samples were transferred into a petri dish with dis-
tilled H,O, suspended abaxial side down, and incubated for
1-3.5 h at room temperature depending on the protein
tested.

Golgi flipping assay

The likelihood of Golgi bodies marked by transiently expressed
ST-GFP and GFP-Atgolgin-84AA1-557 to flip 90° within a
set time period was assessed using confocal microscopy. Time-
series of 11.51 s were collected of both conditions using con-
focal microscopy and Golgi bodies were scored according to
whether the Golgi bodies flipped approximately 90° during
that time period.

Golgi body spatial distribution analysis

To quantify the spatial distribution of Golgi bodies throughout
tobacco leaf epidermal cells, images of tobacco leaf epidermal
cell transiently expressing ST-GFP and GFP-Atgolgin-84A
were collected using the VAEM methods described previously.
These images were cropped to the largest possible rectangle
that contained only visible cell area. The co-ordinates of all
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(A) GFP-Atgolgin-84A tobacco 3dpi

LIVING ON THE EDGE 161

GFP-Atgolgin-84A
stable in Arabidopsis

Fig. 1. Expression of GFP-Atgolgin-84A in tobacco and Arabidopsis leaf epidermal cells. (A) GFP-Atgolgin-84A labels ring-shaped structures at 3 dpi.

Pairs of Atgolgin-84A rings and accumulation of Atgolgin-84 A between ring-shaped structures are frequently observed (inset). (B) GFP-Atgolgin-84A

stable expression in Arabidopsis shows localization in ring-shaped structures as in tobacco and pairs of ring-shaped structures are also observed (inset).

Scale bars, A = 1 um, B = 2 um. Representative images are shown. Biological replicas n = 5 with at least five technical repeats each.

Golgi bodies within the image were obtained using the Image]
multi-point selection tool. The distance between the identified
Golgi bodies was analysed in R using the emstreeR (Euclidian
spanning tree) package (March et al., 2010) and the tripack
package for Delaunay triangulation of points (Renka et al.,
2016).

Results

Subcellular and suborganellar localization of Atgolgin-84A

In order to characterize the localization of Atgolgin-84A, the
protein was expressed as a fluorescent fusion protein (GFP-
Atgolgin-84A) and infiltrated in tobacco leaves. Epidermal
cells of infiltrated tobacco plants were imaged with a confo-
cal microscope with Airyscan detector. In plants imaged after
72 h (3 dpi), ring-shaped structures were labelled with rings
frequently connected in pairs (Fig. 1A). Upon expression of
GFP-Atgolgin-84A, about 20% of Golgi stacks were paired
up compared to no Golgi pairs detected in ST-RFP expressing
cells (n = 8 with 20 Golgi bodies counted for each). In order
to confirm the localization observed in tobacco, Arabidopsis
Columbia-0 (Col-0) plants were stably transformed with GFP-
Atgolgin-84A. Asfluorescence was not detected in the T2 gen-
eration, leaf epidermal cells of T1 plants were imaged. Stable
expression in Arabidopsis shows the same localization pattern
as in tobacco plants (Fig. 1B).

VAEM, a method highly sensitive to variation in fluores-
cence intensity across samples, reveals a nonuniform distribu-
tion of GFP-Atgolgin-84A across the observed ring structure.
GFP-AtCASP, an ER-Golgi tether that decorates the same ring
structures as GFP-Atgolgin-84A, shows an even distribution
(Figs. 2A, C and E). GFP-Atgolgin-84 A accumulates in specific
subregions of the ring-shaped structure (Figs. 2B, D and E).

These regions of high fluorescence consistently localize to the
interface of clustering Golgi bodies. This observation was par-
ticularly evident in transient overexpression of GFP-Atgolgin-
84A in tobacco, where numerous Golgi bodies can be seen
forming aggregates of two or more Golgi bodies, which persist
despite rapid translocation of these Golgi aggregates through
the cytoplasm. The attachment of these Golgi stacks appears
to be mediated by the subregions with the highest accumu-
lation of the GFP-Atgolgin-84A (Fig. 2F). These aggregates
can also be maintained by the formation of tubular extensions
between GFP-Atgolgin-84A rings, with each tubular exten-
sion originating and terminating at a point of GFP-Atgolgin-
84 A accumulation (Fig. 2G). Aggregations of more than two
Golgi stacks are also regularly observable, with contact be-
tween multiple Golgi bodies maintained by a singular region
of high GFP-Atgolgin-84A accumulation (Fig. 2H). Another
commonly observed phenomenon in GFP-Atgolgin-84 A over-
expression is the formation of small tubular extensions at-
tached to individual Golgi bodies. These tubules are capable of
elongation and shrinkage and can proceed the movement of
Golgi bodies (Fig. 2I) or can trail behind a moving Golgi body.
Connections between Golgi bodies can be tubules but also in-
creased fluorescent intensity of GFP-Atgolgin-84A between
Golgi body aggregates. When Golgi bodies move apart, these
regions of increased intensity appear as tubular connections
between the two Golgi bodies (Fig. S1A). When Golgi bodies
connected by a tubule move closer together, the tubule be-
tween the Golgi shortens until the pair of Golgi bodies is con-
joined at a point of relatively increased GFP-Atgolgin-84A flu-
orescence (Fig. S1B). Thirty-five percent of the tubules are not
connected to another Golgi body in the field of view, 20% are
observed between pairs of Golgi bodies and 45% of tubules
are formed between Golgi body aggregates that are so close to-
gether that the connection is not easily observable (Fig. 2J).
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GFP-atcAasp|®) GFP-Atgolgin-84A

0,
35% Extended

tubules

- "

with no visible
tubules

Fig. 2. Characteristics of GFP-Atgolgin-84A transient expression in tobacco. Comparison of the fluorescence distribution of GFP-AtCASP (A) and GFP-
Atgolgin-84A (B) when transiently overexpressed in tobacco leaf epidermal cells. White dotted lines mark regions upsampled and magnified (x3) to provide
close ups of GFP-AtCASP structures (C) and GFP-Atgolgin-84 A structures (D) pseudocoloured using a modified LUT (E). Scale bars = 1 um. (F-I) Montages
of timeseries capturing common behaviours of GFP-Atgolgin-84A labelled structures, including (F) association of two Golgi bodies by apparent fusion of
GFP-Atgolgin-84A rings; (G) connection of Golgi bodies maintained by tubular extensions, (H) the formation of large clusters of multiple Golgi bodies,
(I) and tubular extension development independent of Golgi body aggregation. Images collected using VAEM, Scale bars = 2 um. (J) Golgi tubules are
quantitatively characterized in Golgi aggregates with visible tubular connections, tubular extensions with no further Golgi bodies attached and tubules
not visible due to aggregation. Biological replicas n = 3 with 59 ‘events’ observed.
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(A) GFP-Atgolgin-84A ST-mRFP

MnSI-mRFP

(B)  GFP-Atgolgin-84A

GFP-AtCASP mCherry-Atgolgin-84A
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Fig. 3. Coexpression of GFP-Atgolgin-84 A and Golgi markers in tobacco plants. (A) Coexpression of GFP-Atgolgin-84A with ST-mRFP, (B) MnSI-mRFP.
(C) Coexpression of mCherry-Atgolgin-84 A with GFP-AtCASP. Insets show enlarged structures for colocalization. Line profiles indicated by the white ar-

row show colocalization for Atgolgin-84 A and AtCASP but not ST-mRFP or MNSI-mRFP. Scale bars = 1 um. Representative images are shown. Biological

replicas n > 10 for every combination with at least five technical repeats each.

Ninety percent of Golgi body aggregates remain stable for the
duration of time series imaged (8.5 s). However, when Golgi
bodies are found further apart from each other, and connected
by tubules, the tubule breaks 29% of the time or forms a
tight aggregate 3% of the time (Fig. S2). Therefore, it appears
that when Golgi bodies are further apart and connected by a
tubule, this connection is more likely to fail. This is most likely
due to the separation of the Golgi bodies by the movement
of the surrounding cytoplasm and actin cytoskeleton being
stronger than the tubular connection. Successful tethering of
Golgi bodies by a tubule is a relatively rare event, occurring in
5% of the observed cases. In 53% of cases, the tubule extends
from the area of highest GFP-Atgolgin-84A fluorescence and
repeatedly retracts and re-extends without forming a connec-
tion with another Golgi body. In 42% of cases, the tether re-
treats into the GFP-Atgolgin-84 A ring and does not re-extend
for the period observed. In all cases where a tethering event
does not occur, the tubule does not come into contact with
another Golgi body, instead it extends through the cytoplasm
without attaching to another Golgi body and simply collapses
(Fig. S3).

In order to characterize its localization in the Golgi
body, GFP-Atgolgin-84A is coexpressed using Agrobacterium-
mediated infiltration in tobacco plants with various Golgi
markers (Fig. 3) starting with the well-described Golgi marker
sialyltransferase (ST, Fig. 3A). ST labels the medial/trans-Golgi
(Munro, 1995; Boevink et al., 1998; Renna et al., 2005). The
ring-shaped structures labelled by GFP-Atgolgin-84 A and the
medial/trans-Golgi cisternae labelled by ST-mRFP move to-
gether, but the two fluorescent fusion proteins appear to la-
bel different Golgi subcompartments (Fig. 3A, inset). Further-
more, the previously described Golgi glycosylation enzyme
Golgi-a-mannosidase I (MnSI, Fig. 3B) (Schoberer et al., 2010;
Schoberer et al., 2019) located in the cis/medial-Golgi stacks
is expressed alongside Atgolgin-84A. Atgolgin-84A shows a
distinct shift from the cis/medial-Golgi enzyme MnSI (Fig. 3B,
inset). Colocalization was also tested with the golgin AtCASP
(Latijnhouwers et al., 2007; Osterrieder et al., 2017). GFP-
AtCASP and mCherry-Atgolgin-84A colocalize (Fig. 3C) plac-
ing Atgolgin-84A in a pre-cis Golgi compartment.

To test if such a pre-cis compartment colocalizes with ER-
exit sites (ERES) (Zeng et al., 2015), mCherry-Atgolgin-84A
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AtSar1a-GFP

mCherry-Atgolgin-84A

Merged

Fig. 4. Coexpression of AtSarla-GFP and mCherry-Atgolgin-84A in tobacco plants. AtSarla-GFP is coexpressed with mCherry-Atgolgin-84A. Fluo-

rescence of the two constructs reveals overlapping rings shown in front view (A) as well as imaged sideways (B). Insets show enlargements. Line profiles

indicated by the white arrow show colocalization. Scale bars = 1 um. Representative images are shown. Biological replicas n = 5 with at least five technical

repeats each.

is coinfiltrated with the ERES marker AtSarla-GFP (Fig. 4),
a GTPase associated with COPII coat formation (Thompson
et al., 1994; Wang et al., 2014). Indeed, mCherry-Atgolgin-
84A colocalizes with AtSarla-GFP (Fig. 4A) and no shift be-
tween the labels is observed when the cisternae are imaged
sideways (Fig. 4B).

Atgolgin-84A overexpression reduces the mean distance between
Golgi bodies

As it has been shown that GFP-Atgolgin-84A overexpression
can result in the formation of tubular extensions connecting
groups of Golgi bodies, the effect of Atgolgin-84 A overexpres-
sion on the spatial distribution of Golgi bodies was assessed.
The mean distance between Golgi bodies marked by either
ST-GFP (Fig. 5A) in comparison to Golgi bodies labelled by
GFP-Atgolgin-84A or GFP-Atgolgin-84AA1-557, respec-
tively, was measured using two methods. In the Euclidian
minimum spanning tree method (MST), all Golgi bodies are
joined to each other in such a way that the length of the ver-
tices joining the points is minimized (Fig. 5B). In the Delaunay
triangulation method (Fig. 5C), all Golgi bodies are joined, yet
no point is within the circumcircle of any generated triangle.
Both of these methods revealed a significant reduction in
the mean distance between Golgi bodies, weighted by the
number of Golgi bodies present in each image, marked by
overexpression GFP-Atgolgin-84A compared to the over-

expression of ST-GFP. Results from four biological repeats
with 92 technical repeats of GFP-Atgolgin-84A overexpres-
sion and 90 technical repeats of ST-GFP overexpression
are shown in Figure 5(D) for MST (Wilcoxon rank sum,
p-value = 3.6x10713) and in Figure 5(E) for the Delaunay
triangulation (Wilcoxon rank sum, p-value < 2.2x1071°).
Expression of the deletion mutant GFP-Atgolgin-84AA1-557
did not result in such reduction in the mean distance (MST:
Wilcoxon rank sum, p-value = 0.3633, Fig. 5F; Delaunay
triangulation: Wilcoxon rank sum, p-value = 0.08789,
Fig. 5G).

Atgolgin-84 A imaging during Golgi disassembly upon BFA
treatment

To gain insight into the behaviour of Atgolgin-84A labelled
structures, we studied its response to BFA treatment and com-
pared this response to that of ERES or cis-Golgi markers (Oster-
rieder et al., 2009; Schoberer et al., 2010). To this end, tobacco
leaf epidermal cells transiently expressing GFP-Atgolgin-84A,
the ERES marker AtSar1a-GFP or the cis/medial-Golgi marker,
MnSI-mRFP, respectively, were incubated in a BFA solution or
DMSO as a control (Figs. 6A—C). If Atgolgin-84A is located at
the cis-Golgi, a redistribution of the protein into the ER after
BFA treatment as shown for the cis-Golgi markers (Schoberer
et al., 2010) is predicted. MnSI-mRFP relocalizes to the ER
network after BFA treatment (Fig. 6D). AtSar1a-GFP labels the

© 2020 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society, 280, 158-173

85US01 7 SUOLULLOD A0 3[cedl|dde 8Ly Ag peusenob a1e sajolie YO ‘9sn JOSa|ni o} Akeidi 18Ul JUQ AB]IAA UO (SUOIIPUOD-PUR-SLUB)W0D A8 | 1M Ale.q Ul |uo//Saiy) SUOIPUOD pue WS | 81 89S *[2202/2T/Tz] U0 Akeiqiauliuo A8]IM n'ae'spes @ equilu-<yi oqqius> AQ 9¥62T IWI/TTTT'OT/I0p/W0d A8 | Aeiq 1 pul|uo//Scny Wouy papeojumoq ‘Z ‘0202 ‘8T8ZS9ET



w

Golgi (log10(nm))

Atgolgin-84A
Normalized distance between

Oniginal

®  MST

Golgi (log10(um))
\ e - =
S S & 2

Atgolgin-84A A1-557
Normalized distance between

N
o

~

ST Atgolgin-84AA1-557

LIVING ON THE EDGE 165

N w

Normalized distance between
Golgi (log10(nm))

ST Atgolgin-84A

@ Delaunay

COn

\,/

" l’

ST  Atgolgin-84AA1-557

-

'
N

Normalized distance between
Golgi (log10(um))

Fig. 5. Mean distance between Golgi bodies upon transient overexpression of ST-GFP and GFP-Atgolgin-84 A or GFP-Atgolgin-84AA1-557. (A—C) The
spatial distribution of Golgi bodies revealed by transient overexpression of ST-GFP (A) with the distance between Golgi bodies calculated either by the
MST method (B) or by Delaunay triangulation (C). Calculated distances represented by cyan lines. (D-G) Boxplot comparison of the log mean distance
between Golgi bodies (weighted by number of Golgi bodies per image) calculated by using the MST method: GFP-Atgolgin-84A (n= 3, 92 cells) compared
to ST-GFP (n = 3, 90 cells) in D, GFP-Atgolgin-84AA1-557 (n = 2, 10 cells) compared to ST-GFP (n = 2, 10 cells) in F and Delaunay triangulation:
GFP-Atgolgin-84A (n = 3, 92 cells) compared to ST-GFP (n = 3, 90 cells) in E, GFP-Atgolgin-84AA1-557 (n = 2, 10 cells) compared to ST-GFP (n = 2,

10 cells) in G.

cytoplasm and puncta (Fig. 6E). Atgolgin-84A mainly labels
puncta after BFA treatment (Fig. 6F) indicating differences in
distributional persistence of a golgin and a cis-Golgi enzyme

(Osterrieder et al., 2009).

Localization of the truncated protein Atgolgin-84AA1-557
lacking the long coiled-coil domain

Atgolgin-84A is predicted to have long coiled-coil domains
and these are suggested to be the tethering motif in the
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MnSI-mRFP

(A)

DMSO

1.5h BFA

AtSar1a-GFP

GFP-Atgolgin-84A
'

Fig. 6. BFA treatment of tobacco leaves expressing MnSI-mRFP, AtSar1a-GFP or GFP-Atgolgin-84A. Small pieces of tobacco leaves expressing (A) MnSI-
mRFP, (B) AtSarla-GFP and (C) GFP-Atgolgin-84 A were incubated in water containing 0.1% DMSO as a control. All three protein fusions labelled Golgi
bodies (C, arrow) as seen in nontreated leaves. After incubation in BFA for 1.5 h, (E) AtSarla and (F) Atgolgin-84 A relocalize to the cytoplasm and puncta
(E and F, arrows). (D) MnSI-mRFP relocalizes to the ER. Scale bars = 2 um. Representative images are shown. Biological replicas n = 3.

golgin structure (Fig. 7A). In order to investigate the func-
tion of the coiled-coil domains, an Atgolgin-84AA1-557 con-
struct was obtained by deleting the N-terminal region pre-
dicted to be coiled-coil (Latijnhouwers et al., 2007) (Fig. 7B).
The Atgolgin-84 A deletion mutant comprises the TMD, and
approximately 100 amino acids preceding the TMD. This re-
gion (amino acids 558-707) is necessary and sufficient for
Golgi localization (Latijnhouwers et al., 2007).
GFP-Atgolgin-84AA1-557 transiently expressed in tobacco
leaf epidermal cells labels ring-shaped structures with pro-

LCR
(A) aa0 [ ]
86-98

(B)

288-427

truding tubules (Fig. 8, white arrows). These tubules are ca-
pable of elongation and retraction over time. Some of these
thin tubules are connecting ring-shaped structures (Fig. 8, yel-
low arrows), others are mobile and can also show branching
(Fig. 8, white arrows).

To investigate the suborganellar localization, mCherry-
Atgolgin-84AA1-557 was coexpressed with the ERES marker
AtSarla-GFP (Fig. 9). As the full-length version, Atgolgin-
84AA1-557 colocalizes with the ERES marker indicating sim-
ilar localization for full-length and truncated proteins.

TMD

CC CcC LCR
u 707
692-702

666-688
TMD

LCR
=707

692-702
666-688

455-556

aa 557

Fig. 7. Schematic representation of the Atgolgin-84A full-length protein and deletion mutant Atgolgin-84AA1-557. (A) Predicted structure of the full-

length Atgolgin-84A protein featuring two coiled-coil domains (CC, in green), two low complexity regions (LCR, in pink) and a transmembrane domain
(TMD, in blue). The TMD at the C-terminus anchors the golgin to the Golgi membrane. (B) Atgolgin-84A deletion mutant containing the TMD and 109

amino acids preceding the predicted TMD.
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GFP-Atgolgin-84AA1-557

Fig. 8. Time-lapse images of GFP-Atgolgin-84AA1-557 expression in tobacco leaf epidermal cells. GFP-Atgolgin-84AA1-557 labels ring-shaped struc-
tures with long tubules. Some tubular structures connect several ring-shaped structures (yellow arrows). Tubular structures can elongate and retract
and can branch into two tubular structures (white arrows). Scale bars, 1 pm. Time points given in seconds. Representative images are shown. Biological

replicas n = 3.

The coiled-coil domain in Atgolgin-84A is involved in Golgi
dynamics

During imaging of Atgolgin-84AA1-557, it was observed
that the ring-shaped structures often flip and turn 90° in re-
spect to the cell surface (Fig. 10A), which is not the case when
expressing a Golgi marker, such as ST-GFP alone. This ability
to flip sideways by 90° was quantified for ST-GFP and GFP-
Atgolgin-84AA1-557 by counting how many ring-shaped
structures flip and do not flip during a time series of 11.51
s (Fig. 10B). When expressing ST-GFP, only 9% (13 out of
140) of Golgi bodies are flipping sideways and 91% were fac-
ing forward (Fig. 10B). When GFP-Atgolgin-84AA1-557 is
coexpressed with ST-GFP, 43% of the Golgi bodies (59 out of
136) flip sideways and only 57% are observed facing forward
(Fig. 10B).

The effect of overexpression of Atgolgin-84A in protein trafficking

Overexpression of Atgolgin-84A results in Golgi body aggre-
gates and can occasionally cause necrosis in tobacco leaves

mCherry-Atgolgin-84AA1-55

resembling the locked version of the dominant-negative mu-
tant Sar1-GTP that impairs the trafficking between ER and
Golgi (Osterrieder et al., 2009). In addition, compartments
labelled by the Atgolgin-84AA1-557 exhibit long tubular
structures. The effects in disrupting the Golgi body either by
generating pairs of Golgi bodies or by the induction of long
tubules can influence the entry of cargo into the Golgi. To
test the hypothesis that Atgolgin-84A influences the rate of
protein trafficking, a signal peptide (SP) from the Arabidopsis
chitinase fused to mCherry (SP-mCherry) is used as cargo.
SP-mCherry has been used before as a marker for the default
secretion pathway (Da Costa et al., 2010). SP-mCherry enters
the secretory pathway via the SP, and after cleavage of the
SP, mCherry is transported to the Golgi apparatus and as
it is lacking any other sorting signals by default arrives at
the extracellular matrix (Figs. 11A, B). If the overexpression
of GFP-Atgolgin-84A or GFP-Atgolgin-84AA1-557 has an
effect on protein transport, SP-mCherry should not accu-
mulate in the apoplast (Fig. 11C). As expected, SP-mCherry
alone mainly labels the apoplast with less than 10% of cells

Fig. 9. Coexpression of AtSarla-GFP and mCherry-Atgolgin-84AA1-557 in tobacco leaf epidermal cells. AtSarla-GFP coexpression with mCherry-
Atgolgin-84AA1-557 reveals similar location of both fusion proteins. Inset shows enlargement. Line profiles indicated by the white arrow show colocal-
ization. Scale bars = 1 um. Representative images are shown. Biological replicas n = 10 with at least five technical repeats each.
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Fig. 10. Analysis of Golgi flipping when expressing ST-GFP alone or with Atgolgin-84AA1-557. (A) Schematic representation of Golgi flipping. (B) Bar
graph representing the number of Golgi bodies that flip sideways during time series when expressing ST-GFP with or without Atgolgin-84AA1-557. Golgi

bodies were quantified in two biological replicas; n > 60 Golgi bodies were assessed per independent experiment.

showing additional vacuolar labelling (Da Costa et al., 2010)
(Fig. 11A). Coexpression of SP-mCherry with Atgolgin-84A
or Atgolgin-84AA1-557 results in the mCherry signal be-
ing detected predominantly in the vacuole (Figs. 11D-F). A
fraction of SP-mCherry is detected in the apoplast when the
truncated golgin construct is expressed (Fig. 11F).

Discussion

Atgolgin-84A is located in a pre-cis-Golgi subcompartment

Atgolgin-84A does not colocalize with medial/trans- and cis-
Golgi markers (Figs. 3A, B) but moves together with the Golgi
cisternae. Coexpression of Atgolgin-84A with the tethering
protein AtCASP (Fig. 3C) and AtSarla-GFP, a COPII compo-
nent, labelling ERES, shows colocalization of the constructs
(Fig. 4) indicating that Atgolgin-84A is located in a pre-cis-
Golgi subcompartment. Atgolgin-84A could have a role in
tethering COPII components to the Golgi during assembly
of the transporters. The ability of golgins, including golgin-
84, to tether vesicles in mammalian cells was shown in vitro
using purified golgins and isolated vesicle fractions (Malsam
et al., 2005) as well as in intact cells (Wong & Munro, 2014).
Atgolgin-84A and AtSarla could also label the site of cargo
arrival at the Golgi. Such Golgi entry sites have been suggested
as sites of protein import and Golgi membranes behave as a
single secretory unit moving along the ER (Silva et al., 2004)
but do not exclude the existence of isolated ERES with a differ-
ent machinery.

In coexpression with MnSI-mRFP (Fig. 3B), GFP-Atgolgin-
84A was not detected in the centre of the Golgi cisternae,
whereas MnSI-mRFP labels the centres of cisterna indicating
that Atgolgin-84A could be tethered at the rims of the cister-

nae. Such differences in distribution were previously shown
in photobleaching experiments; GFP-tagged glycosylation
enzymes, such as mannosidases, were found to diffuse freely
without constraints within the Golgi membranes (Schoberer
& Strasser, 2011). GFP-Atgolgin-84A is also detected in ag-
gregates with high intensity of fluorescence connecting the
ring-shaped structures (Fig. 2H), whereas cis-Golgi markers,
such as MnSI, do not accumulate in-between the ring-shaped
structures (Fig. 3B). Atgolgin-84A accumulates in specific
subregions of the ring-shaped structure. These protein ac-
cumulations are the contact sites of Golgi pairing as well as
tubule extension (Fig. 2). Clustering analysis revealed that
overexpression of Atgolgin-84A induces Golgi clustering
(Fig. 5). It is hypothesized that Golgi bodies are generated
from a pre-existing ones or an ERES (Hawes et al., 2010);
hence, golgin overexpression might inhibit the separation of
the cisternae and as such cause Golgi clusters. In addition,
interactions between the pre-existing Golgi bodies could
contribute to the cluster formation.

BFA treatment shows that Atgolgin-84A does not redistribute to
the ER and instead stays in puncta that could be the Golgi matrix

Also upon BFA treatment, Atgolgin-84A behaves more like
the ERES marker AtSarla than the cis-Golgi marker MnSI
(Fig. 6). Atgolgin-84A and AtSarla-GFP do not redistribute
to the ER during BFA treatment as do cis-Golgi markers, such
as MnSI (Schoberer et al., 2010). Sarla is only recruited to
the ERES during assembly of the transport carrier and there-
fore remains cytoplasmic when ER and Golgi membranes hy-
bridize in one compartment upon BFA treatment. In compar-
ison, Atgolgin-84A is found in puncta, which could indicate
a role in maintaining the Golgi body, acting as a scaffolding
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Fig. 11. Secretion assay using transient expression of SP-mCherry in tobacco leaf epidermal cells. (A) All fluorescent fusions were expressed alone as
controls: SP-mCherry is detected in the apoplast. GFP-Atgolgin-84A and GFP-Atgolgin-84AA1-557 are detected in ring-shaped structures. Schematic
diagrams indicate the apoplast localization of SP-mCherry when only SP-mCherry is expressed (B) and the changed SP-mCherry localization upon ex-
pression of GFP-Atgolgin-84 A o GFP-Atgolgin-84AA1-557 (C). Coexpression of SP-mCherry with GFP-Atgolgin-84 A (D) or GFP-Atgolgin-84AA1-557
(E). Expression of GFP-Atgolgin-84 A or GFP-Atgolgin-84AA1-557 changes SP-mCherry localization and mCherry is detected predominantly in the vac-
uole. Scale bars = 50 um. (F) Quantification of the number of cells showing different labelling by mCherry. Number of cells counted per each different
protein expression combination in three biological replicas, technical replicas n>47.
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linked to other elements of a putative Golgi matrix during bio-
genesis. These could represent matrix substructures during re-
assembly of the Golgi. A Golgi matrix was suggested in mam-
malian cells as after detergent-treatment of Golgi membranes
a proteinaceous exoskeleton remains that is retaining Golgi
structure (Kristen, 1978; Staehelin & Moore, 1995). In plant
cells, intercisternal elements and a ribosome-excluding zone
around the Golgi body were shown by electron microscopy;
this has been suggested to be an equivalent of the Golgi matrix
(Kristen, 1978; Staehelin & Moore, 1995). Other proteins to
remain in Golgi remnants upon BFA treatment are the SNARE
protein AtSYP31 (Witte et al., 2011; Ito et al., 2012; Ito et al.,
2018) and the Arabidopsis mannosidase MNS3 (Schoberer
etal., 2019).

Atgolgin-84A as an ER tether involved in maintaining Golgi body
orientation

Overexpression of the Atgolgin-84AA1-557 (Figs. 5F, G) did
not result in the formation of Golgi aggregates as observed
with the full-length protein (Figs. 5D, E), indicating that the
coiled-coil domains are necessary for pairing of Golgi bod-
ies. Upon expression of the deletion mutant, an increase of
Golgi body flipping and a decrease of Golgi bodies facing for-
ward were observed in comparison with expression of the
medial/trans-Golgi marker ST-GFP (Fig. 10). One possible ex-
planation for this is that the deleted long coiled-coil domain
is responsible for keeping the Golgi body perpendicular to
the cell wall and that expression of GFP-Atgolgin-84AA1-
557 could potentially lead to impaired ER-Golgi tethering.
Atgolgin-84A could work together with AtCASP to tether ER
and Golgi. When a dominant-negative truncation of AtCASP
is expressed, the ER and Golgi bodies are still connected, but a
gap is visible between both compartments (Osterrieder et al.,
2017).

Atgolgin-84.A could have a role in protein trafficking

Overexpression of both the golgin GFP-Atgolgin-84 A and its
truncation results in the redirection of a chitinase SP from
the apoplast to the vacuole (Fig. 11). One hypothesis is that
both golgin overexpression and the overexpression of a de-
fective truncated protein can disrupt the tether between ER
and Golgi and thereby also disrupt ER-Golgi transport and im-
pair trafficking between ER and Golgi. However, further ex-
periments, such as analysis of cargo protein glycosylation, are
required to determine at which point in the secretory path-
way the SP-mCherry trafficking is disrupted. It is rather unex-
pected that expression of both full-length and deletion mutant
shows similar responses in terms of SP transport. This could
be due to titration effects and/or disruption of fine-tuning in
transport routes by changes in Atgolgin-84A protein levels in
overexpression and a potential dominant-negative effect by
the truncated version. It might also be due to Atgolgin-

84A overexpression inducing pairs of Golgi bodies (Fig. 1)
and Golgi aggregation (Figs. 5D, E), which could affect the
structure of the organelle impairing entry of cargo into the
Golgi. Upon overexpression of the deletion mutant protein
lacking coiled-coil domains, the distance between ER and
Golgi could be increased or the connection between com-
partments could be loosened preventing proper docking of
cargo transporters. All these could compromise Golgi struc-
ture leading to the activation of an alternative pathway
for cargo export from ER to the vacuole. The fact that ST-
mRFP and MnSI-mRFP still reach the Golgi and do not show
any ER retention or mistargeting to the vacuoles suggests
that ER to Golgi transport is unaffected. However, transport
of membrane proteins and soluble proteins is fundamen-
tally different because soluble proteins do not require sig-
nals to mediate secretion but they require sorting signals
to avoid secretion by default in order to reach vacuoles or
other organelles instead. In contrast, Golgi-resident mem-
brane proteins may require specific signals to reach post-Golgi
compartments.

If the transport of soluble proteins is compromised, cells
could be responding to GFP-Atgolgin-84A overexpression by
exporting unnecessary cargo from the ER and send it to the
vacuole for degradation (Wang et al., 2018). Trafficking to
the vacuole can be either through a Golgi-dependent route
or a Golgi-independent route directly from the ER in precur-
sor accumulating vesicles and fuse directly to the protein stor-
age vacuole (Hara-Nishimura et al., 1998; Vitale & Raikhel,
1999; Chrispeels & Herman, 2000). The Golgi-independent
route has been described for the plant-specific insert in tobacco
cells when the Golgi-mediated route is impaired by the expres-
sion of dominant-negative mutant of GTPases, for example,
the Sar1-GTP locked version (Pereira et al., 201 3; Vieira et al.,
2019). The pre-cis-Golgi also contains proteins with specific
roles in protein sorting (Tto et al., 2018), suggesting that there
might be a recognition of cargo before the entry in the cis-
Golgi body. This could explain the Golgi bypass reported for
some vacuole-targeted proteins (Pereira et al., 2013; Vieira
etal., 2019).

A hidden ribbon structure: pearls on a string

In plants, dynamic extensions have been observed in a number
of different organelles: stromules from plastids, peroxules from
peroxisomes and matrixules from mitochondria (Mathur et al.,
2012). It is possible that the observed Golgi tubules are not
an artefact at all, but that the Atgolgin-84A fusions simply re-
veal a network of tubular connections that connect individual
Golgi bodies. If this can be confirmed independently, it would
suggest that plant cells also contain a single Golgi apparatus,
except that in plants it is not forming a juxtanuclear cluster as
observed in mammalian cells, but covers the entire cell cortex,
possibly to supply the cell wall with essential polysaccharides
and cell wall proteins.
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Interestingly, the tubular extensions protruding from Golgi
bodies and connecting individual Golgi bodies observed with
Atgolgin-84A fusions are very similar to tubules observed
with a newly designed fluorescent fusions of the plant K/HDEL
receptor (ERD2) that retains biological activity (Silva-Alvim
etal., 2018). The ERD2 gene product was previously shown to
exhibit a dual ER-Golgi localization, but this was based on C-
terminal fusions, which have lost biological activity. The new
fusion (YFP-TM-ERD2) is exclusively observed at the Golgi ap-
paratus and in tubular extensions that connect two or more
Golgi bodies. It is yet unclear if ERD2 Golgi residency is due to
the presence of a very fast ER export signal, or due to a Golgi-
retention signal. Golgi retention was shown to be the clue to
the apparent insensitivity of MNS3 to BFA-induced redistribu-
tion observed for MNS1 and other Golgi residents. The results
could, therefore, indicate that Atgolgin-84 may act in concert
with ERD2 to mediate the accumulation of soluble protein in
the ER, but further work is required to specifically test this
hypothesis.

Taken together, we suggest that Atgolgin-84 A islocated in a
pre-cis-Golgi compartment, is involved in ER-Golgi tethering
and potentially also Golgi-Golgi tethering, and may play an
important function in the trafficking of proteins between the
two first organelles of the secretory pathway.
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Supporting Information section at the end of the article.

Figure S1: Quantification of Golgi tubules.

Figure S2: Tubule categories.

Figure S3: Movies showing that when a tethering event does
not occur, the tubule does not come into contact with another
Golgi body, instead it extends through the cytoplasm without
attaching to another Golgi body and then collapses.
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