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Abstract: This work establishes a tensegrity model of spider dragline silk. Tensegrity systems are
ubiquitous in nature, being able to capture the mechanics of biological shapes through simple and
effective modes of deformation via extension and contraction. Guided by quantitative microstructural
characterization via air plasma etching and low voltage scanning electron microscopy, we report
that this model is able to capture experimentally observed phenomena such as the Poisson effect,
tensile stress-strain response, and fibre toughness. This is achieved by accounting for spider silks’
hierarchical organization into microfibrils with radially variable properties. Each fibril is described as
a chain of polypeptide tensegrity units formed by crystalline granules operating under compression,
which are connected to each other by amorphous links acting under tension. Our results demonstrate,
for the first time, that a radial variability in the ductility of tensegrity chains is responsible for high
fibre toughness, a defining and desirable feature of spider silk. Based on this model, a discussion
about the use of graded tensegrity structures for the optimal design of next-generation biomimetic
fibres is presented.

Keywords: spider silk; scanning electron microscopy; plasma etching; mesoscale modelling; tensegrity
systems; biomimetic fibres

1. Introduction

It is generally accepted that the remarkable mechanical performance of spider silk dragline
originates from a hierarchical organization of proteins into a hydrogen bonded structure of ordered
crystalline β-sheets, embedded in a disordered amorphous matrix [1–6]. However, at the mesoscale,
it has also been shown that silk assembles into nanofibrils with diameters ranging from ~30 nm [3]
to more than 100 nm [2,5] and that a fibre has structurally and functionally distinct regions; a load
bearing core (consisting of inner (1800–2300 nm), and outer (300–400 nm) sections [2,7,8]) surrounded
by protective lipid (10–20 nm), glycol (40–100 nm), and skin (50–100 nm) layers [2].

From a biomimetic perspective, the mechanical properties of spider silk are often held as a gold
standard for industrial fibre production (see the recent review paper [9]). The review studies presented
in [10,11] report values of spider dragline silk tensile strength and toughness that range in the intervals
1.1–1.8 GPa and 100–400 MJ/m3, respectively (Table 1). In dry conditions, spider silk dragline is
instead generally assumed to conserve its volume under stretching, which implies the presence of a
Poisson’s effect associated with the lateral contraction of the fibre [12,13]. An investigation into the
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elastic response of different types of spider silk has shown that the Poisson’s ratio of the cross-section
area during stretching can vary from 0 up to 1.52 [14]. This suggests that the Poisson’s ratios of silk
fibres may range well outside the interval [−1.0, 0.5], making them hyperelastic isotropic materials [15].
This is most likely a consequence of the composite nature of the fibre, which induces a strongly
anisotropic response of the material during deformation [16]. Of particular interest though is the link
between the Poisson’s ratio of the whole silk fibre and that of the individual fibrils, since it has been
reported in literature that the latter maybe significantly greater than the former [5]. Uncovering this
relationship is important, as unusual, positive, or negative Poisson’s ratios are actively being used to
design mechanical metamaterials exhibiting unconventional mechanical behaviours (refer, e.g., to [17]
and references therein).

Table 1. Relative density, tensile strength, and toughness of different materials.

Material
Relative
Density

Tensile
Strength (GPa)

Toughness
(MJ/m3)

Toughness per
Unit Mass (kJ/kg)

Nephila inaurata silk [7] 1.3 1.6 200–400 154–308
Argiope trifasciata silk [10] 1.3 1.2 100 77
Nephila clavipes silk [10] 1.3 1.8 130 100

Araneus silk [11] 1.3 1.1 160 123
High tensile steel [11] 7.8 1.5–3.0 6 0.77

Kevlar 49 fibre [11] 1.4 3.6 50 36

Whilst there have been several concerted modelling efforts to relate silk’s structures to its
mechanical properties [3–8,18,19], accounting for the precise contributions of each of these structural
elements on a fibre’s mechanical response has been inconclusive. Consider, e.g., the role played by the
interfaces between the fibrils, which some studies define as mechanically weak and responsible for easy
slippage of adjacent fibrils [6], while other studies observe the presence of heterogeneous protrusions
along such surfaces determining a non-slip kinematics and energy dissipation due to interlocking
effects [20]. In addition, while the literature to-date is populated by a number of multiscale and
hierarchical approaches to the mechanics of the dragline silk [1–6,18], and there is experimental evidence
of the partitioning of the spider silk fibres into layers with different mechanical behaviours [7,8],
one observes that the grading of the mechanical properties along the radial coordinate of silk fibres has
not been extensively investigated.

Experimentally, a granular-type, hierarchical model of spider dragline has been proposed in [5],
on the basis of microstructural atomic force microscopy (AFM) and scanning electron microscopy
(SEM) characterization [7]. Such a model effectively explains the formation of spider silk fibrils in the
form of chains of crystalline granules, whose geometry appreciably changes during the synthesis of
the material as it moves through the gland, silk duct, and finally as the fibre. However, the model
presented in [5] does not attempt to characterize the experimentally observed anisotropic response of
the material [14].

Insights into these critical challenges may be provided through the window of tensegrity modelling.
Most of the available mechanical models of silk adopt either particle-type models and coarse-graining
approaches, or finite element models (see, e.g., the review paper [18]). The tensegrity paradigm leads
to an alternative type of modelling, which describes a spider fi as a 3D continuum composed of
lower-order continua. The latter consist of 1D rods carrying tensile and compressive forces, hereafter
respectively named tendons and struts. Skelton and Nagase [19] have observed that a tensegrity model
of a spider silk fibre that accounts for the transverse stiffening effect played by the crystalline granules
leads to an increase of the overall tensile stiffness, as compared to a tendon-only model.

The present work introduces, for the first time, graded tensegrity modelling of the spider dragline
fibre informed by the results of plasma etching and low-voltage SEM microstructure identification
tests [7]. The proposed model describes the generic silk fibril as a chain of tensegrity units composed
of axial and oblique tendons, and transverse struts. The size of the tensegrity granules varies along the
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radial coordinate, and matches the nanostructures revealed by SEM imaging after exposure of the fibre
to plasma etching, which have shown to be related to fibre mechanical properties [7].

Our proposed tensegrity model not only replicates Poisson’s effect under longitudinal
stretching [12–14], but also accurately reproduces the experimental stress vs. strain response of the fibre
under tensile loading and captures the enhanced toughness of the material through crack-deflection [6]
and crack-stopper [21] mechanisms. The given model relates such mechanisms to regional-dependent
deformation modes of the fibrils, and scale effects for the fibrils’ ductility [22,23]. In particular, such a
model explains the mismatches occurring between the Poisson’s ratios of the individual fibrils and
the overall fibre [5]. It makes a first step towards the modelling of the three-dimensional anisotropic
response of silk fibres [14] through simple, uniaxial (tension/compression) force mechanisms at the
nanoscale [24].

2. Microstructural Characterization of the Nephila Dragline Silk through Plasma Etching

An earlier study on plasma etching tests (40 kHz, 100 W, and 0.3 mbar pressure) and low voltage
(LV) SEM Secondary Electron Hyperspectral Imaging (SEHI) of silk fibres spun by a single mature
Nephila inaurata female has been presented in Ref. [7] revealing important links between ordered
nanostructures and mechanical properties in fibres reeled under different conditions. Here, a reduction
of the power to 66 W permitted gradual plasma etching and imaging to be performed on the same
fibre, revealing nanostructural changes within the fibre cross-section.

Figure 1A–C illustrates LV-SEM micrographs (see experimental details in Supporting Information
(SI), p.1) of the lateral surface of the plasma etched fibre at different etching times and the current
diameter of the fibre, while Figure 1B–F shows the particle analysis of the nanostructures observed
in the etched fibre. One recognizes the white regions in the Figure 1A–C, corresponding to granules
consisting of ordered microcrystalline domains assumed to contain both, β-sheet structures and glycine
residues [25] forming a microcrystalline area also described as a nonperiodic lattice (npl) crystallite
structure [26] or a collection of small staggered sections of β-sheet [27]. These crystallite domain
structures are seen to align in chains to form nanofibrils; see SI, Figure S1. For quantitative image
analysis, the images are converted into binary images in which the black regions represent the granules
of microcrystalline domains (Figure 1D–F).

According to the studies on the multilayer organization of the spider dragline of
Nephila clavipes [2,7], the image shown in Figure 1A belongs to the core region of the fibre, with the
layer visible after 1.5 min treatment (layer #1) most probably representing the structure present in the
outer core. The layers etched for 6 min (Figure 1B) and 10 min (Figure 1C) exemplify the inner core
(layers #2 and #3, respectively, the selection of representative etching times and images is described in
the page 2 of supplementary information). Figure 1G shows an analysis of the size and distribution of
the crystalline granules observed in the microstructures of Figure 1, which has been performed through
the image processing software Fiji:ImageJ (v. 1.52t, National Institutes of Health, 9000 Rockville Pike,
Bethesda, Maryland 20892, USA). This data reveals that the maximum correlation repeat distance
between the microcrystalline granules a and their average diameter b monotonically increase with the
treatment time. The percentage area of such granules instead also markedly increases when passing
from layer #1 to layer #3, and slightly decreases when passing from layer #1 to layer #2.
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Figure 1. (A–C) SEM micrographs obtained after plasma etching at different exposure times of the
same Nephila inaurata silk fibre. The analysed fibre had an initial diameter of 5.02 µm and was spun at
a reeling speed of 20 mm/s. (D–F) Particle analysis of the nanostructures observed in the above panels
respectively. Insets: Variable size of the proposed tensegrity units. (G) Statistical analysis of size and
distribution of the crystalline granules nanostructures the proposed tensegrity units are based upon.
(H) Geometry of a generic unit: a and a’ denote the transverse and longitudinal dimensions of the unit,
respectively; d1, d2 and d3 indicate the diameters of the individual members.

3. Tensegrity Modelling

We now formulate a mechanical model of a spider dragline silk fibre. This combines a hierarchical
organization of the material with tensegrity architectures [3] (Figure 1). The applicability of tensegrity
concepts to the mechanical modelling of the spider dragline silk has been recognised previously [19,24].
This applicability is based on the observation that as silk is formed under tension by a wet spinning
process and in the web the fibre dries in a stressed state, it can be assumed that the molecules are
effectively locked into an oriented state by their intermolecular hydrogen bonds [28]. In the present
study, we model the composite structure forming the core of the fibre as a collection of fibrils running
parallel to the fibre axis [2,19], which are described as chains of tensegrity units. Given that the outer
lipid, glycol, and skin layers contribute minimally to the overall mechanical response of the spider silk
fibre, they are ignored here [2,7,8].

The generic tensegrity unit is formed by longitudinal and diagonal tensile elements hereafter
referred to as tendons (or strings), marked in red in Figure 1H, and by transverse compressive struts (or
bars) marked in blue. The tendons correspond to composite rods formed by amorphous chains that are
attached to crystalline domains at their extremities. The struts reproduce the compressive stiffening
effect that is played by β-sheet plated crystals in the circumferential direction [19]. The geometry
of the units changes when moving along the radial coordinate of the fibre, in agreement with the
nanostructures revealed by the SEM images illustrated in the previous section. Figure 1D–F (insets)
illustrates that the tensegrity units forming layers #1, #2, and #3 are inscribed in spheres with diameters
equal to 65, 98 and 150 nm based on a values in Figure 1G. It is worth observing that the β-sheet
domains contribute significantly to both the transverse compressive stiffness and the longitudinal
tensile stiffness in the fibre. Since the diameter of the longitudinal tendons range between 40–100 nm
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(see Figure 1) and the minimum transverse dimension of the β-crystallites is in the order of a few
nm [3], the result is that at the extremities of the tendons there are clusters of ordered regions of
β-sheets. Such clusters form hinged joints linking the tendons each other.

Let us now describe the response of the fibre to a longitudinal stretching deformation through the
engineering strain ε̂ = (ℓ − L)/L (positive in extension). Here, L denotes the unstretched length of the
fibril, and ℓ denotes the stretched length of the fibre. Under such a loading condition, the tendons
forming the tensegrity units of the fibrils are loaded in tension, while the struts are loaded in
compression (Figure 2). The transverse contraction of the struts produces a radial (engineering) strain
ε̂r = (D− d)/D, (positive in contraction) where D and d, respectively, denote the undeformed and the
contracted (deformed) diameters of the fibre, respectively (Poisson’s effect) [12–14].

 

ఈܧఉܧ

 

௦ܧ ൌ ఉܧ Ƹ௦ߝ

Figure 2. (A) Bundle of tensegrity fibrils (red members are tendons, while blue members are struts)
and deformation mechanism under tensile loading. (B) The tendons are loaded in tension, while the
struts are loaded in compression. Stress-strain responses of struts (C) and tendons (D) alongside their
respective mechanical parameters. (E) Fracture of a fibril at the interface between two adjacent units.

A peculiar phenomenon that affects the tensile response of dragline silk fibres is the yielding
effect produced by the breaking of the (weak) hydrogen bonds forming the matrix of the fibre under
stretching, which appreciably reduces the axial stiffness of the fibre [29,30]. To explain these phenomena,
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the current model makes use of the stress-strain responses of tendons and struts that are illustrated in
Figure 2. Let us denote the elastic modulus of β-sheet crystal domains by Eβ, and the pre-yielding
elastic modulus of the noncrystalline domains by Eα.

The stress-strain response of the struts is characterised by an elastic phase with Young modulus
Es = Eβ, since these members are supposed to be fully crystalline. The initial elastic response extends
up to a buckling event occurring when the local engineering strain reaches the critical value ε̂sc .
The buckling phase is assumed to be elastic, and is associated with a marked decrease in the axial
stiffness of the member, as compared to the initial elastic phase (refer, e.g., to [31]). The post-buckling
phase features an initial “soft” branch, with tangent elastic modulus Esc ≪ Es, and next a “hard” branch
with tangent elastic modulus Esd

= Es. The latter describes the combined effects of the densification of
the material under moderately large axial strains, and the progressive stiffening of the members in
the post-buckling regime [31]. We assume that such a phase initiates when the strut’s strain reaches a
given threshold value ε̂sd

= 10% (Figure 2D). For what concerns the tendons, we characterise the initial
(pre-yielding) response of such members, which are formed by a blend of crystalline and noncrystalline
domains, through the following composite Young modulus, Et:

Et = x Eβ + (1− x)Eα (1)

Here, x is the volume fraction of β-sheet crystals. The yielding of the tendons is assumed to
occur when the local engineering strain reaches a threshold value ε̂ty . The incremental response the
post-yielding regime, up to tensile failure, is described by a reduced tangent elastic modulus Ety <

Et [32] (Figure 2C).
On assuming Eβ = 160 GPa [30,33], and Eα = 2.7 GPa [34], hereafter we make use of the material

properties listed in Figure 2D. The assumed value of Eβ, which whilst significantly higher than the
experimental Young’s moduli of β-sheet nanocrystals reported in the literature [33,35], is imported from
the theoretical study presented in [30]. It refers to the rigid response of the β-crystalline domains in the
pre-yield and pre-buckling regimes in tension and compression, respectively. It is worth observing
that the fraction of crystalline domains reported in Figure 1 matches the percentages the crystalline
granules observed in the microstructures of Figure 2.

The tendons and the struts are assumed to have a cylindrical shape. The diameters of
such members change with the microstructure parameters a and b, as shown in Figure 1H.
In particular, the diameter d of the struts is let to coincide with the average diameter b. of the
microcrystalline granules. Let us now denote fibrils of Type 1, 2, and 3 the fibrils that
exhibit (a = 65 nm, b = 33 nm), (a = 98 nm, b = 41 nm) and (a = 150 nm, b = 53 nm), respectively.
The fibril distribution depicted in Figure 3 assumes that the cross-section of dragline silk fibre is
composed of a packing of 1470 fibrils of Type 1 in the annulus bounded by the circle with radius
2422 nm and the circle with radius 1967 nm (layer 1: outer core of the fibre); a packing of 446 fibrils of
Type 2 in the annulus bounded by the circles with radii 1967 nm and 1570 nm (layer 2: intermediate
core); and a packing of 325 fibrils of Type 3 in the remaining inner core of the fibre (Figure 3A). All such
packings are polar-symmetric.

The microstructure parameter a′ defines the longitudinal spacing of the tensegrity units in the
generic fibril, as shown in Figure 1G. We model the variation of this parameter with the radial
coordinate by interpolating the values taken in correspondence with the layers #1,2,3, where we assume
a′ = a. The interpolating function plotted in Figure 3B shows a′ on the vertical axis and the radial
coordinate r with origin at the centre of the fibre on the horizontal axis. One observes that it results
in a′ = 339 nm at the centre of the fibre (r = 0), and a′ = 51 nm at the boundary of the fibre’s core
(r = 2422 nm). The assumption of a piecewise constant distribution of a with the radial coordinate
allows us to simplify the packing of the fibrils across the fibre; while the assumed piecewise linear
variation of a′ with r leads us to capture the crack deflection effect between adjacent grains [6]. We also
neglect the load carrying capacity of the matrix in between the fibrils material [6,36].
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Figure 3. (A) Spatial distribution of the fibrils over the fibre cross-section. (B) Interpolation function of
the microstructure parameter a′.

It is known that the ductility of a material, as well as other key mechanical parameters, increases
when the scale of the microstructure gets finer [22,23]. The SEM characterization presented in Figure 1
shows that the microstructure parameters a and b appreciably increase moving towards the centre of
the fibre. This implies the presence of larger crystalline domains at the inner core than at the outer core
of the fibre (see also Figures 1 and 3B) [7,37,38]. We hereafter introduce a scale effect on the amplitude
of the failure strain (or strain at break) of the fibrils ε̂ fu . The ductility of the material is measured by
the ratio between ε̂ fu and the yield strain of the fibril ε̂ fy

. The strain parameters ε̂ fy
and ε̂ fu refer to

the tensile response of the overall fibril, and mark the first bending point of the stress-stain response,
and the break strain of the fibril, respectively. Due to the geometry of the tensegrity unit shown in
Figure 1H, it is clear that ε̂ fy

coincides with the yield strain ε̂ty of the tendons aligned with the fibrils
axis, while ε̂ fu coincides with the strain that determines the rupture of the fibril at the interface between
adjacent units (Figure 2E). Characteristic values of ε̂ fu are found in the interval 0.20–0.30 for dry spider
silk fibres tested in air in the literature [10,11,39]. These estimates account for marked interspecific
and intraspecific variabilities [40], which are also related to mechanical alignment parameters [29],
the reeling speed [7] and testing procedures [13]. With reference to the Nephila inaurata silk fibres
analysed in the present work, we assume that ε̂ fu varies linearly with the radial coordinate r in the
interval r ∈ [0, 750] nm Here, it results in (a = 150 nm, b = 53 nm), and the microstructure parameter
a′ varies in between 339 nm (r = 0) and 236 nm (r = 750 nm). Specifically, we assume ε̂ fu = 0.220 at
r = 0, and ε̂ fu = 0.265 at r = 750 nm. We keep ε̂ fu constantly equal to 0.265 for r > 750 nm.

4. Predicting Tensile Stress-Strain Response

Let us employ the tensegrity model illustrated in the previous section to predict the response of
the Nephila silk fibres under stretching to large deformations. We make use of the path-following
algorithm in strain control presented in [41], which numerically approaches quasi-static deformations
of tensegrity structures in the large deformation regime. Our predictions of the engineering and
true stress-strain curves of the fibre are illustrated in Figure 4A. The engineering stress σ̂ is obtained
by dividing the summation of the pulling forces acting on the individual fibrils by the initial cross
section area of the fibre Â. The true stress σ is instead obtained by dividing the total pulling force
by the deformed cross section area A. Finally, the true strain ε is linked to ε̂ through the equation:
ε = log(1 + ε̂) [32].
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Figure 4. (A) Engineering (σ̂ − ε̂) and true (σ− ε) stress-strain curves predicted by the tensegrity
model, in comparison with the experimental results (black dashed line) for the engineering stress-strain
response (exp. curve) [7]. Fluctuations of the predicted stress-strain curves at high strains (red and
blue solid lines) are due to progressive fibril rupture. Secondary axis denotes the Poisson’s ratios of the
whole fibre (ν̂) and Type-3 fibrils (ν̂(3)). (B,C) Different views of the deformed configurations of the
whole fibre (B), and a Type-3 fibril (C) at ε̂ = 0.265.

Figure 4A shows that the engineering stress-strain curve σ̂− ε̂ predicted by the tensegrity model
is in good agreement with the experimental curve obtained through the experimental setup illustrated
in [7]. Such a setup consists of a testing machine equipped with a 5 N loading cell, which stretches a fibre
sample with 5 mm gauge length at the controlled strain rate of 3.3× 10−2 s−1. The predicted yield strain
of the fibre coincides with that of the axial tendons, i.e., it results ε̂ fy

= ε̂ty = 3.5%. The experimentally
observed value of the fibre breaking strain is 0.265, and this justifies the assumptions made about the
distribution of ε̂ fu across the core of the fibre at the end of the previous section. Selected snapshots of
the deformation of the silk fibre predicted by the tensegrity model are given in Figure 5, for different
values of the engineering strain ε̂. A finer matching between the experimental and predicted yield
points of the stress-strain curves in Figure 4A can be obtained by suitably grading the value of the
yield strain of the tendons across the radial coordinate. We do not account for such a refinement in the
present work in order to keep the tensegrity model as simple as possible.
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Figure 5. Snapshots of fibre deformation under different values of the applied longitudinal strain ε̂.
The quantity ε̂r denotes the radial strain that accompanies ε̂ due to Poisson’s effect. (A–D): Longitudinal
sections of the stretched fibre in correspondence with different levels of strain. (E) transverse
cross-section E-E of the fibre under ε̂ = 0.260 and ε̂r = 0.121 (r and l, respectively, denote radial and
longitudinal axes; dashed lines mark the undeformed configuration of the fibre).

Figure 4A also shows the predicted variation of the Poisson’s ratio ν̂ = ε̂r
ε̂ =

(D−d)
(ℓ−L)

×
L
D with the

engineering strain ε̂. Here, we assume D = 2 × 2422 = 4844 nm, which corresponds to the initial
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(undeformed) diameter of the core of the fibre (see Section 4). The deformed diameter d was computed
by summing up the deformed diameters ai of the individual fibrils (Figure 3A). An ν̂ vs. ε̂ plot is
experimentally hard to obtain, resulting in experimental fluctuations [12,42], but Figure 4A highlights
that the tensegrity model is actually able to predict a deformation-dependent behaviour of the Poisson’s
ratio. Such a behaviour was to be expected since we are accounting for large strains [43]. One observes
that ν̂ increases under growing axial strains, by approaching the value ν̂ = 0.426 at ε̂ = 0.265. In parallel,
we observe small and oscillating (positive/negative) values of the volumetric strain e = V−V0

V0
(V0

denoting the initial volume, and V denoting the strained volume), i.e.,: e = +0.005 for ε̂ = 0.006, and
e = −0.006 for ε̂ = 0.265. The current model predicts nonuniform radial strains, the different fibrils
that form the fibre. The largest radial strains are observed in the Type-3 fibrils occupying the inner

core of the fibre (Figure 3A), which grow up to ε̂(3)r =0.172 for ε̂ = 0.265. Type-1 and Type-2 fibrils
instead experience very small radial strains remaining always lower than 0.5%, up to fibre rupture.
The current model indeed confines the radial deformation mechanism to the inner core formed by
the type 3 fibrils, whose radius is equal to 65% of the overall fibre radius (see Figure 3). The larger
dimensions of the members composing the type 3 fibrils, as compared to those characterizing the struts
and tendons of type 1 and type 2 fibrils (Figure 1G,H), determines indeed the achievement of more

relevant axial forces in such members. This results in a Poisson’s ratio ν̂(3) = ε̂
(3)
r
ε̂ of the Type-3 fibrils

that is actually larger than the global (or average) Poissons’s ratio ν̂ (Figure 4B,C), since this quantity
reaches the value ν̂(3) = 0.65 for ε̂ = 0.265. (ν̂ = 0.426).

The deformation mode predicted by the current model qualitatively matches the experimental
results presented in [5] for Nephila clavata fibres, which report microfibrils Poisson’s ratios greater than
0.5, against an average Poisson’s ratio lower than 0.5. It is an easy task to prove that the following

geometric relation relates the strain measures e, ε̂, ε̂r: e =
(

πd2ℓ
4 −

πD2L
4

)

/
(

πD2L
4

)

= (1− ε̂r)
2(1 + ε̂ )− 1.

By solving the equation e = 0 for ε̂r, one gets ε̂r =0.111 for ε̂ = 0.265 (i.e., ε̂r = 0.418 ε̂). The tensegrity
model approximatively reproduces such a result, by returning ε̂r = 0.113 for ε̂ = 0.265, that is,
ε̂r = 0.426 ε̂. Guinea et al. [12] report a mean value of 0.993 and a standard deviation ±0.013 for the
volume ratio V

V0
of Argiope trifasciata fibres obtained through forced silking at different spinning speeds,

under longitudinal strains ε̂ ∈ [0, 0.45]. The corresponding mean volumetric strain e = V
V0
− 1 is equal

to −0.007. The experiments conducted by such authors highlight alternance of positive and negative
values of the volume ratio V

V0
in proximity of the condition with zero volumetric strain. We are led to

conclude that the present model accurately predicts the fibre volume conservation in the large strain
regime, being also able to reproduce the small fluctuations of the volumetric strain experimentally
observed in [12].

5. Predicting Fracture and Toughness

We have already observed that several available predictions of fibre fracture/failure in dragline
silk account for the hierarchical organization of the material into microfibrils [1–6,18]. However, the
link between such a phenomenon and the variation of the size and density of the crystalline domains
has only been investigated qualitatively to-date [7]. Examining the fracture response of our tensegrity
model, we observe that it predicts a progressive breakage of the microfibrils, starting within the inner
core of the fibre. The first fibril breaks under an engineering strain ε̂ = 0.22 (see the values of ε̂ fu given
at the end of Section 3). The results in Figure 5E highlight that the portion of the core of the fibre
bounded by the circle with radius r = 300 nm is composed of all broken (fractured) fibrils, for ε̂ = 0.24.
The fractured region of the fibre extends to the region bounded by the circle with radius r = 600 nm
at ε̂ = 0.260. As we have already noted, the current model predicts complete failure of the fibre at
ε̂ = 0.265, which corresponds to the experimentally observed breaking strain.

The progressive fibril ruptures give rise to the fluctuations of the predicted stress-strain curves
in Figure 4, which is a common feature in experimental silk tensile testing [29,44]. Studies dealing
with Argiope trifasciata fibres report fracture surfaces that do not show voids and cracks at the skin-core
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interface [36,39]. The fractographic analyses presented in [36,39] observe a “globular” (or “mosaic”)
structure of the cross-section of the fractured fibre. The morphology of the fracture surface is also
influenced by the applied strain rate and the presence of structural defects. Yazawa et al. observe
in a recent study [45] that spider dragline silk fibres of Nephila clavata tend to break at macroscopic
structural defects at low strain rates, and at microfibrils at faster strain rates. They also observe that
during stretching, the longitudinal alignment of crystalline regions is prevalent in dry conditions,
while the amorphous chains tend to appreciably align with the longitudinal axis under stretching
at high relative humidity (RH) conditions. The morphologies of the fracture surfaces given in [45]
highlight fibre’s rupture due breaking of microfibrils under strain rates greater or equal to 3.3× 10−2s−1,
at 43% RH.

The current model predicts a mosaic-like configuration of the fractured fibre for ε̂ = 0.260
(Figure 5E). It reproduces a fibril-breaking fracture mode initiating at the core of the fibre and
propagates outwards. It is worth observing the tendons forming the tensegrity model formulated in
the present work are made of a composite material that mixes amorphous and crystalline domains
(cf. Section 3). Such members tend to align with the longitudinal axis under stretching, as shown in
Figure 4C. The current assumption of graded distributions of the diameters and the failure strains of
the fibrils leads us to predict a ductile tensile response of the fibre, and effectively explains its enhanced
toughness [7,10,11]. This is due to the progressive deflection of the crack front along the interfaces
separating fibrils with different breaking strains [6,36]. The toughness predicted by the tensegrity
model up to ε̂ = 0.265 amounts to 268.79 MJ/m3, which is just slightly greater than the experimental
value of 261.97 MJ/m3 [7]. We refer the reader to Videos S1 and S2 of Supplementary Materials for
an illustration of the stretching deformation of the fibrils of Type 3, and the whole fibre, respectively,
with the latter synced with the engineering stress-strain curve of Figure 4A.

6. Designing Biomimetic Fibres

Researchers have been trying to recreate the properties of spider silk through artificial spinning
for several decades now, with mixed success, [9,46–48]. In the comprehensive review by Koeppel et
al. [49], the authors relayed that the general consensus across the field is that the excellent properties of
many artificial silk fibres are mainly derived from a stretch-induced orientation of the fibrils, the high
crystalline fraction of the material, and effective fibril linking (through the use of high molecular weight
proteins).

The results of the present study highlight that it would be convenient to refine the strategy
proposed in [48], with the aim of introducing a graded crystalline nanostructure of the fibrils (see
Section 4). The grading of the nanostructure should be performed so as to alternate regions with large-
and small-sizes of crystalline domains, by progressively reducing, e.g., the transverse dimension of the
fibrils when moving towards the boundary of the fibre (see Figure 6B).

We propose that this is most readily achievable, as-in nature, through a careful control of protein
interactions and applied flow fields during silk processing, essentially “locking in” structures during
silk’s solidification [50,51]. Such a graded microstructure leads to a nonuniform distribution of the
fibrils’ break strains, which is in turn responsible for the enhancement of the material toughness and
other mechanical properties, as has been shown in Section 4.
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Figure 6. Design of artificial fibres with graded tensegrity architecture (B) may enable higher
performance space to be accessed, as well as a graded crystalline nanostructure of the fibrils, compared
to random structure (A).

7. Concluding Remarks

The present study has demonstrated that tensegrity modelling of the spider dragline silk is able
to capture the experimentally observed tensile stress-strain response of the silk fibre, the Poisson
effect related to the radial contraction of the cross-section, and the enhanced fracture toughness of
the material. Graded modelling of spider silk ductility was able to effectively explain the enhanced
toughness of the material through crack-deflection and crack-stopper mechanisms [6,20,21]. The given
tensegrity model is relatively simple in terms of deformation mechanisms and the flow of forces, as it
assumes the presence of only stretched and compressive members within the spider dragline fibre, and
no bending stresses. It has been informed by the SEM imaging of Nephila inaurata silk treated with
plasma etching at different times, allowing us to account for the grading of the size and the volume
fraction of the crystalline domains by moving along the radial coordinate of the fibre.

Future directions of the present work will be aimed at improving the proposed model of
silk fibres, which represents a first step toward a comprehensive hierarchical modelling of spider
dragline silk based on tensegrity concepts. Through future work, we aim at accounting for rate-
and humidity-dependent properties of struts and tendons; twisting and waving of the fibrils [3];
the inclusion of shear and bending modes [24,34], and supercontraction-induced variation of the
material properties [52,53]. We also plan to model a variety of fracture initiation mechanisms, and
to account for different, experimental, and theoretical predictions of the mechanical properties of the
amorphous and crystalline β-sheet domains, as extensions to the present study. The enriched model is
being applied to several types of natural silk, including different varieties of spider and silkworm silks.
An additional extension of the present research will both outline and refine the processing parameters
for artificial spinning, with the aim of developing novel biomimetic fibres with tensegrity architecture,
allowing for grading of crystallinity and exceptional material toughness.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/8/1510/s1,
Video S1: Stretching deformation of fibrils of Type 3. Video S2: Stretching deformation of the whole fibre.
Document S1: Supporting Information on “Understanding low voltage SEM images” and “Optimisation of plasma
exposure times”, including: Figure S1: SEM image the edge of the fibre after air plasma exposure to 66W for

http://www.mdpi.com/2079-4991/10/8/1510/s1
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1.5 min; Figure S2 left: untreated fibre, right: after 1 min exposure to plasma; Figure S3 left: after 2min exposure to
plasma, right: after 6min exposure to plasma.
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