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Abstract 
Over the last few decades, there have been two main streams of data used for driving 
behaviour research:  trajectory data collected from the field (using video recordings, 
GPS, etc.) and experimental data from driving simulators (where the behaviours of the 
drivers are recorded in controlled laboratory conditions). Previous research has shown 
that the parameters of car-following models developed using simulator data are not 
directly transferable to the field. In this research, we investigate the differences in detail 
and compare alternative methods to overcome the problem. Two types of approaches 
are tested in this regard: 1) econometric approaches for increasing model transferability: 
Bayesian updating and Combined Transfer Estimation, 2) joint estimation using both 
data sources simultaneously. Car-following models based on ‘stimulus-response’ 
framework are developed in this regard, using experimental data collected at the 
University of Leeds Driving Simulator (UoLDS) and detailed trajectory data collected 
at the Interstate 80 (I-80), CA, USA and UK Motorway 1 (M1). Estimation results of 
the initial models show that car-following models using driving simulator data are 
closer to the UK (M1) data than the I-80, but not directly transferable. Performances of 
the proposed approaches for improving transferability are evaluated using t-tests for 
individual parameter equivalence and Transferability Test Statistic (TTS). The results 
indicate that the transferability can be improved after parameter updating and 
Combined Transfer Estimation is found to outperform the other approaches. The 
findings of this study will enable more effective usage of driving simulator data for the 
estimation of mainstream mathematical models of driving behaviour while the 
techniques used can be applied to other types of econometric models. 
 
Author keywords: car-following model, driving simulator, trajectory data, 
transferability, joint estimation, Bayesian updating, Combined Transfer Estimation  
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1. Introduction 
Driving decisions and consequently vehicle interactions, are crucial factors for 
evaluating traffic performance and driving safety. Driving behaviour models, which are 
mathematical approximations of drivers’ decisions regarding longitudinal and lateral 
movements (e.g. acceleration-deceleration, lane-changing, etc.), have been widely 
studied in the past few decades (Saifuzzaman & Zheng, 2014; Toledo, 2007; Zheng, 
2014). Of particular interest are car-following models, which aim to replicate the 
accelerations and decelerations of the driver while closely following a lead vehicle in 
the front. Such models are crucial for increasing the realism of the microsimulation 
tools as well as safety and emission analyses. 
 
Car-following (and microscopic driving behaviour models in general) are typically 
developed using two types of data, (a) driving simulator (where drivers drive an 
instrumented vehicle in a simulated roadway) and (b) road traffic data. Driving 
simulator data are collected following standardised procedures and are more 
controllable and reproducible compared to actual road traffic. Furthermore, driving 
simulators allow researchers to manipulate the surrounding conditions (e.g. geometric 
layout of the road, number and type of vehicles, level of aggressiveness of other road 
users, etc.) as well as driver specific conditions (e.g. level of distraction and fatigue). 
They also allow analysts to run multiple hypothetical scenarios for the same driver and 
observe driving behaviour for longer time horizons. 
 
The advantages of driving simulators provide the researchers with the opportunity to 
shift from the development of models completely based on a Newtonian laws of motion 
approach (i.e. considering only speed, headway etc.) and incorporate further aspects of 
driving behaviour that can be later applied in microscopic simulation tools. For 
instance, Saifuzzaman and Zheng (2014) highlighted in their literature paper the need 
to incorporate human factors in existing car-following model specifications. Also, 
researchers in psychology (Brackstone & McDonald, 2003; Hancock, 1999; Van 
Winsum, 1999) have questioned the existing engineering car-following modelling 
approaches that omit the effects of drivers’ characteristics. Along the same direction, 
(Laagland, 2005) suggested a series of approaches to incorporate drivers’ aggression in 
microscopic driving behaviour models. Apart from traditional microscopic simulation 
tools, accurate driving behaviour models can be also applied and improve the 
performance of integrated simulation and hardware-in-the-loop systems (Buse et al., 
2018; Chen et al., 2019; Fouladinejad et al., 2011; Y. Zhao et al., 2016; Y. Zhao et al., 
2012) where a variety of simulators as driving, traffic and network are combined. It is 
essential for the human participant of these systems to face realistic and expected 
behaviour from the surrounding traffic. 
 
Driving simulators offer a research environment where many of the aspects of driving 
behaviour related to human factors can be investigated, recorded and potentially used 
in modelling approaches. However, there is scepticism regarding simulator fidelity 
(physical and behavioural) and how well drivers’ behaviour in a simulator matches with 
their behaviour on real roads (Lee, 2003). On the other hand, traffic data collected from 
the field best represents true driving behaviour, but have several limitations: short 
observation time, measurement errors, complex confounding of influencing factors, 
less control on the external factors and absence of driver characteristics in particular. It 
may be noted that besides these two sources, naturalistic driving data collected using 
instrumented vehicles (e.g UDRIVE, SHRP2 etc.) have also been used in research, but 
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given the very high costs involved, the availability of these data is still limited. 
Moreover, like driving simulator data, naturalistic data are likely to be prone to 
behavioural incongruence; and similar to real road traffic data, the external variables 
are often not fully controllable, and it is not possible to test the effects of hypothetical 
scenarios. 
 
Several studies have attempted to investigate the validity of driving simulators 
concerning drivers’ behaviour. Driving simulators’ behavioural validity is usually 
approached in terms of absolute (when the patterns and the magnitude of values are 
similar to real driving) or relative validity (when the patterns are similar but the 
magnitudes differ). Godley et al. (2002) investigated behavioural validity in terms of 
speed. Their research included two types of driving tasks (instrumented vehicle and 
driving simulator). While their results showed a similar pattern of deceleration in both 
environments, they noted that drivers adopted faster speed in naturalistic driving 
conditions and only relative validity prevails. In the same direction, Yan et al. (2008) 
developed a scenario based on a real signalised intersection and studied simulator 
validity in terms of speeding and surrogate safety measures. The results showed 
absolute validity regarding speeding, however, participants adopted riskier behaviours 
in the driving simulator, thus the safety measures had only relative validity. Bella et al. 
(2007) reproduced a real two-lane road section composed of 11 parts and tested validity 
in speed. This study confirmed relative but also absolute validity for most of the 
examined cases. Risto and Martens (2014) compared the differences in headway choice 
between an instrumented vehicle and driving simulator without finding significant 
deviations. Finally, McGehee et al. (2000) compared drivers’ reaction times in real and 
simulated environment and found statistical equivalence between the two cases. In 
more research studies, Branzi et al. (2017) and Hussain et al. (2019) confirmed relative 
validity of simulator data while the former study also found evidence of absolute 
validity in some of the scenarios. With respect to some additional indicators of driving 
behaviour, Yun et al. (2017) found absolute validity, in terms of lane-changing 
behaviour while Karimi et al. (2020) reported significant proximity of gap acceptance 
behaviour during passing manoeuvres between driving simulator and field behaviour. 
 
The development of driving behaviour models based on simulator data has already been 
reported in literature (Farah et al., 2009; Hou et al., 2014). However, since only relative 
validity has been established, it remains questionable whether this type of data is 
suitable for direct use in microsimulation tools for traffic flow and policy analysis. 
Recent research has shown that the parameters of car-following models developed 
using simulator data are not directly transferable to the field, although the models as a 
whole are transferable (Papadimitriou & Choudhury, 2017). However, the 
Papadimitriou and Choudhury (2017) study acknowledges a major limitation - the 
model framework used in evaluating transferability ignores reaction time and driver 
heterogeneity – which have been identified as a crucial factor affecting car-following 
behaviour (K. I. Ahmed, 1999; Koutsopoulos & Farah, 2012; Toledo, 2007; Van 
Hinsbergen et al., 2015). Further, the paper does not provide any guidance on how to 
close the gap between the models developed using the simulator and the real road data. 
 
In this research, we aim to address the research gaps in the previous studies by 
investigating alternative methods to improve the transferability of car-following 
models. A better understanding of the differences between the two sources of driving 
behaviour data (video trajectories and driving simulator) could allow for the estimation 
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of car-following models from driving simulator data adjusted by real traffic data. This 
correction could potentially increase the behavioural realism of these models, assuming 
that the latter data represents the ground truth with respect to drivers’ behaviour. At the 
same time, driving simulator data allows for the implementation of extreme scenarios 
while information regarding drivers’ attributes can also be available as e.g. in 
Paschalidis et al. (2019) and can be incorporated in the model specifications. In this 
paper, advanced model structures that incorporate the reaction time (and acknowledges 
the associated heterogeneity) are used in this regard to address the limitations of the 
previous study (Papadimitriou & Choudhury, 2017). Experimental data collected at the 
University of Leeds Driving Simulator (UoLDS) and detailed trajectory data collected 
at the Interstate 80 (I-80), CA, USA and UK Motorway 1 (M1) are used for this purpose. 
Based on a review of the literature, two main approaches are tested  
 

• Econometric approaches for improving model transferability, 
• Joint Estimation using both data sources simultaneously. 

 
The econometric approaches for improving transferability refer to model parameter 
updating techniques. These techniques aim to reduce the differences between two 
contexts. Joint estimation takes models one step further by allowing the specification 
of scale parameters that account for the differences between two contexts and at the 
same time consider the effects of variables that are known only for one of the contexts.  
The key contribution of the paper is the systematic framework: to test the initial 
transferability of the models estimated using the two kinds of data, implementing the 
updating techniques, and the subsequent re-evaluation of the different updating 
techniques. The framework, though demonstrated for specific datasets, can be used in 
other datasets and other types of driving behaviour models – even though the exact 
findings may be context-specific. 
 
The remainder of the paper is organised as follows: the next section describes the 
methodological background. This is followed by the case study description and some 
preliminary analysis of data. Then, the results of the model estimation are presented 
which are followed by the transferability and joint estimation results. The paper 
concludes with a discussion section. 
 
2. Background of the analysis 
 
2.1 Car-following model 
 
Basic structure 
The model structure is based on the stimulus-response GM car-following model (Gazis 
et al., 1961). In the original GM model, acceleration choices for a vehicle are a function 
of its speed, space headway and relative speed with the lead vehicle. The original 
specification is as follows  
         

 Įnሺtሻ = Į 
Vnሺtሻȕ

ǻXnሺtሻȖ ǻVn(t - Ĳn) (1) 
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where ǻXn is the space headway at time t, Vn is the following vehicle speed, ǻVn is the 
relative speed between the following and the lead vehicle and Ĳn is the reaction time. 
Finally, Į, ȕ and Ȗ are constants.  
 
Based on the GM model, several extensions have been suggested. Herman and Rothery 
(1965) have been the first to highlight that passenger cars have different acceleration 
and deceleration capacity. In order to address this shortcoming in the GM model, (K. I. 
Ahmed, 1999) introduced acceleration-deceleration asymmetry within a stimulus-
response framework as presented in Equation 2 
 

 an
cf,gሺtሻ = sൣXn

cf,gሺt-Ĳnሻ൧ × f ሾǻVnሺt - Ĳnሻሿ + İn
cf,gሺtሻ (2) 

 
where s[.] represents sensitivity, as a vector of explanatory variables and f[.] represents 
the stimulus, given as the relative speed. Also, İcf,g is a normally distributed disturbance 
term while g represents the car-following regime (acceleration or deceleration). In the 
present study, an adaptation of the GM model is applied where the sensitivity and 
stimulus parts are represented by Equations 3 and 4 respectively 
 

 sൣXn
cf,gሺt - Ĳnሻ൧ = Įg 1

ǻTnሺtሻȖg (3) 

   
 f ሾǻVnሺt - Ĳnሻሿ = ǻVn(t - Ĳn)Ȝg

 (4) 
 
where ǻTn is the time headway, ǻVn is the relative speed between the subject and the 
lead vehicle and Ĳn is the reaction time. Finally, Įg, Ȗg and Ȝg are parameters to be 
estimated and g indicates the type of regime. It is worth highlighting that instead of 
applying the original GM model specification, the sensitivity part has been modified in 
order to consider only time headway, as per the recent literature (Papadimitriou & 
Choudhury, 2017). 
 
The reaction time distribution 
The current model specification also allows for the incorporation of reaction time. 
Following examples in the existing literature (K. I. Ahmed, 1999; Kusuma, 2015), 
reaction time is assumed to follow a log-normal truncated distribution as presented in 
Equation 5  
 

 f ሺĲnሻ= ۔ۖەۖ
ۓ 1

ĲnıĲ
ĳ ቆlnሺĲnሻ -ȝĲ

ıĲ
ቇ

ĭ ቆlnሺĲmaxሻ -ȝĲ
ıĲ

ቇ  - ĭ ቆlnሺĲminሻ -ȝĲ
ıĲ

ቇ               if Ĳmin < Ĳn ≤ Ĳmax

                           0                                                otherwise

 (5) 

 
where ĳ(.) is the standard normal distribution density function, ĭ(.) is the cumulative 
normal distribution, Ĳn is the reaction time of driver n, ȝĲ is the mean of the distribution 
of ln(Ĳn), ıĲ is the standard deviation and Ĳmax, Ĳmin are the bounds of truncation. 
Truncation is required since reaction time is finite. The bounds are set deterministically 
while the mean and the standard deviation are estimated simultaneously with the rest 
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of the model parameters. The bounds of reaction time have been set between 0 and 4 
seconds (K. I. Ahmed, 1999; Kusuma, 2015). 
 
Likelihood Function  
The assumption of the car-following model is that a driver accelerates if the relative 
speed is positive and decelerates if it negative. Given this, the distribution of 
acceleration decisions, conditional on reaction time Ĳ, is presented as follows 
 

 f ൫an
cf,gሺtሻ|Ĳn൯=f ൫an

cf,accሺtሻ|Ĳn൯įሾǻVn(t - Ĳn)ሿ
f ൫an

cf,decሺtሻ|Ĳn൯(1-įሾǻVn(t - Ĳn)ሿ)
 (6) 

 
where  
 

įሾǻVn(t - Ĳn)ሿ= ቄ 1    if ǻVn(t - Ĳn) ≥ 0
      0         otherwise             

 
Assuming that the disturbance terms are normally distributed, the acceleration 
decisions can be expressed as follows 
 

 f ൫an
cf,gሺtሻ|Ĳn൯=

1
ıİcf,g

ĳ ൭an
cf,gሺtሻ - sൣXn

cf,gሺt - Ĳnሻ൧ × f ሾǻVnሺt - Ĳnሻሿ
ıİcf,g

൱ (7) 

 
where g א (acc,dec).  
 
In the current specification, the acceleration observations of each driver n are assumed 
to be independent while the correlation among the decisions of the same driver (i.e. 
inter-respondent heterogeneity in driving behaviour) is captured through the reaction 
time distribution. Thus, the conditional joint density of the acceleration sequential 
observations, of a driver n, is the product of the conditional densities of the acceleration 
decisions is expressed as follows 
 

 f ሺanሺ1ሻ,anሺβሻ,…,anሺTnሻȁĲnሻ= ෑ f (anሺtሻTn

t=1

ȁĲnሻ (8) 

 
The unconditional form of the distribution above is expressed in Equation 9 
 

 f ൫anሺ1ሻ,anሺβሻ,…,anሺTnሻ൯= න f ሺanሺ1ሻ,anሺβሻ,…,anሺTnሻȁĲnሻĲmax

Ĳmin
f (Ĳn)dĲ (9) 

 
At the final step, the model is estimated by maximizing the log-likelihood function of 
the acceleration observations as expressed in Equation 10 
 

 δδ=  lnൣf ൫anሺ1ሻ,anሺβሻ,…,anሺTnሻ൯൧σ

n=1

 (10) 

 
The log-likelihood function has been maximised using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm implemented in the software R (Team, 2013). 
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2.2 Evaluating Model Performance and Transferability 
The basic concept of transferability refers to the transfer of a model estimated in one 
context to a different one. The main motivation to consider transferability (Rossi et al., 
2013) is  
 

• to reduce the efforts in model development (using the same structure of the 
model previously identified), 

• tȠ reduce or eliminate the need for a large data collection in the application 
context. 

 
In literature, there are limited studies of transferability in the domain of driving 
behaviour modelling; Papadimitriou and Choudhury (2017) investigated transferability 
between driving simulator and field data using simple model specifications while in a 
recent MSc Thesis, Chang (2018) investigated transferability of gap-acceptance models 
at freeway merging locations for different levels of congestion. However, 
transferability has been investigated in detail in several other fields of transportation 
and beyond. The lion’s share is dedicated to the investigation of transferability with the 
application of discrete choice modelling (Atherton & Ben-Akiva, 1976; Ben-Akiva & 
Bolduc, 1987; Ben-Akiva et al., 1994; Koppelman & Wilmot, 1982), however, other 
modelling approaches can also be found (Hadayeghi et al., 2006; Wilmot, 1995). 
  
A review of the literature revealed several formal statistical tests of transferability  
(Sikder et al., 2013) among which the t-tests of individual parameter equivalence and 
Transferability Test Statistic (TTS) have been found to be most widely used and have 
been thus selected for this study. 
 
The t-tests of individual parameter equivalence compare parameter estimates of 
equivalent variables between the two models as e.g. in (Galbraith & Hensher, 1982). 
The t-stat differences can be expressed as shown in Equation 11 
 

 
tdiff,k=

ȕest,k- ȕappl,kඨቆȕest,k
test,k

ቇβ

+ ቆȕappl,k
tappl,k

ቇβ
 

(11) 

 
where ȕest,k is the the parameter estimate of the kth parameter of the transferred 
(simulator data) model and test,k is its t-statistic while ȕappl,k is the the parameter estimate 
of the kth parameter of the application context (video trajectory data) model and tappl,k 
is its t-stat. The null hypothesis of parameter equivalence is rejected at the 95% level 
of confidence if |tdiff,k|>1.96. 
 
The TTS (Atherton & Ben-Akiva, 1976) assesses whether the null hypothesis of 
statistical equivalence between the transferred and the application context model is 
rejected or not. The TTS can be calculated as 
 

 TTSappl = -β ቂδδappl൫ȕest൯ - δδappl ቀȕapplቁቃ (12) 
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where LLappl(ȕest) is log-likelihood on the application context data using transferred 
context parameters and LLappl(ȕappl) is the log-likelihood on the application context data 
using application context parameters, i.e. new estimates. The TTS value follows a chi-
squared (Ȥ2) distribution and the degrees of freedom are equal to the number of model 
parameters, assuming that the parameters of the transferred model are fixed 
(Koppelman & Wilmot, 1982). At 95% level of confidence, the models are classified 
statistically different (i.e. non-transferable) if Ȥ2

 > Ȥ2
critical. 

 
2.3 Methods to Improve Transferability 
 
Parameter updating 
Findings from previous studies indicate that temporal transferability of a model is 
improved by updating the model parameters with some information from the 
application context e.g. Santoso and Tsunokawa (2005). Several updating approaches 
have been suggested in the literature. Two of the most common techniques are Bayesian 
updating and Combined Transfer Estimation. 
 
Bayesian updating 
The Bayesian updating process follows the Bayes theorem in which prior information 
about the model is combined with a random sample from the application context to 
obtain updated information that is important in reducing doubt during prediction (Dey 
& Fricker, 1994). The parameters estimated with the trajectory data can be used as the 
prior information in this case and the following formula can be used 
 

 ȕupt= ቆȕest
ıest

β +
ȕappl

ıappl
β ቇ ቆ 1

ıest
β +

1
ıappl

β ቇ-1

 (15) 

 
where ȕest is the parameter of the estimation (driving simulator) context model, ıest is 
its standard deviation, ȕappl is the parameter of the application (real driving) context 
model and ıappl is its standard deviation. 
  
Combined Transfer Estimation 
The Combined Transfer Estimation method (Ben-Akiva & Bolduc, 1987) can be 
considered as an extension of Bayesian updating. If the transfer bias (the difference 
between the real values in the parameter vectors of the estimation and the application 
context) does not exceed a critical point, Combined Transfer Estimation is a more 
efficient updating technique, compared to Bayesian updating. The updated parameters 
are estimated as 
 

 ȕupt= ቆ ȕest
ıest

β +ĮĮ'
+

ȕappl

ıappl
β ቇ ቆ 1

ıest
β +ĮĮ'

+
1

ıappl
β ቇ-1

 (16) 

  
where Į = ȕest-ȕappl and Įǯ=ȕappl-ȕest. 
 
In the existing literature, there are examples where the results of Combined Transfer 
Estimation outperformed Bayesian updating (Karasmaa, 2007; Santoso & Tsunokawa, 
2005, 2010). 
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Joint Estimation 
The joint estimation of models using various data sources has been introduced in the 
discrete choice modelling field (Ben-Akiva et al., 1994) and mostly refers to the 
combination of stated-preference (SP) and revealed-reference (RP) data. The 
motivation for data combination is the estimation of enhanced models that exploit the 
advantages of the various data sources while at the same time minimise their 
shortcomings, by allowing variations in their scales. A basic example regarding the 
application of this approach could be the reduction of hypothetical bias of a SP survey 
and improvement of the accuracy of parameter estimates, through joint estimation with 
RP data. The joint estimation process provides estimates of the common parameters but 
since the variances of the disturbance terms between SP and RP are likely to be 
different, an additional scale parameter is introduced to capture this variation. For 
model identification purposes, the scale of RP is normalised to one while only the scale 
of SP is estimated. Within a car-following context, S. Hoogendoorn and Hoogendoorn 
(2010) provided a methodological framework for joint estimation of driving simulator 
and real traffic data and suggested a weighting correction to account for the differences 
in sample sizes. However, in their estimation, they considered the contribution of 
driving simulator data as equal and did not investigate any potential behavioural bias 
deriving from its hypothetical nature. 
 
3. Case study 
The datasets used for the model estimation are described in the present section. Initially, 
the characteristics and attributes of each site are provided followed by a preliminary 
descriptive analysis.   
 
3.1.1 Data 
 
I-80 trajectory data (USA) 
The  first of the vehicle trajectories data used in the analysis, has been collected at the 
Interstate 80 (I-80), CA, USA, within the framework of the Next Generation SIMulation 
(NGSIM) project (Halkias & Colyar, 2006) and have been extensively used in other 
studies (Aghabayk et al., 2012; Koutsopoulos & Farah, 2012). The observations have 
taken place on 13 April 2005. The length of the road segment is approximately 500 
meters (1650 feet) and comprises of five lanes plus a high occupancy vehicle (HOV) 
lane (Figure 1-left). The vehicles’ trajectories referring to the observations from 4.00 
p.m. to 4.15 p.m. have been further processed by Punzo et al. (2011) and Montanino 
and Punzo (2013). The final dataset includes information regarding the position, speed, 
acceleration, lane, size and type of each vehicle.  
 
Motorway 1 trajectory data (UK) 

The Ȃ1 (UK) disaggregate vehicle trajectory data was collected and first introduced by 
Kusuma (2015). The data was collected between Junction 42 and Junction 43 of the M1 
motorway network in the United Kingdom from an overpass located 620 m downstream 
from Junction 42 (near the city of Leeds) in May 2013. Because of the camera angle 
and features of the trajectory extraction software, only data from the first 320 m were 
found to be usable. An overview of the road section is presented in Figure 2. The road 
section consists of five traffic lanes, three main and two auxiliary lanes. 
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Figure 1: (left) I-80 motorway data collection site, (right) Screenshots of the 

motorway 
 
Driving simulator data 
The driving simulator data has been collected at the University of Leeds Driving 
Simulator (UoLDS). The UoLDS is a high fidelity, dynamic simulator (eight degree of 
freedom motion system), with all driver controls, such as steering wheel and braking 
pedal, available and fully functional, while there is also a fully operating dashboard. 
The vehicle is placed in a 4m diameter spherical projection dome. The dome provides 
fully textured 3-D graphical scene with a horizontal field of view of 250o and 45o 
vertical. The raw data output consists of observations of 60Hz frequency. 
 

 
Figure 1: Data collection site at the M1 motorway, UK 

 
The data collection has taken place in the context of the “σext Generation Driving 
Behaviour εodels” project (σG-DBM) that focused on  development of driving 
behaviour models that explicitly account for the effects of observed and unobserved 
static and dynamic driver characteristics in his/her decisions and the calibration of 
driving behaviour models combining experimental data collected from the University 
of Leeds Driving Simulator (UoLDS) and actual traffic data collected using video 
recordings. 
 
The full data collection process involved around 90 minutes of total driving. 
Participants have had first a short briefing about the simulator and its operation 
followed by a practice session of approximately 15 minutes duration to get familiarised 
with the simulated environment and vehicle dynamics (i.e. motion system). For safety 
reasons, participants have been accompanied and guided by a researcher in the back 
seat, during the practice run, as required by the UoLDS protocol. This approach is 
followed to ensure that participants are familiar with the operation of the vehicle and 
suffer no ill-effects from simulator exposure, such as virtual environment nausea, 
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vertigo or visual/vestibular discrepancies. After the practice session, participants started 
the main driving sessions; an urban and a 3-lane motorway environment, with a short 
break in between. Both settings were based on UK road environments. In total, 36 
drivers (17 females, 19 males) aged from 19 to 57 years old have successfully 
completed the motorway setting that has been used in the current analysis (Figure 1-
right) for the model specification and estimation. 
 
The motorway has been composed of six main sections approximately 6km long each, 
connected with some shorter road segments specified as intersections. In each of the 
main road segments, different traffic scenarios have been implemented (e.g. aggressive 
traffic, slow moving traffic, different levels of time pressure etc.), while the role of 
intersections has been to provide a smoother transition and also reduce potential 
residual effects from previous road segments, as no specific events have been planned 
in these locations. The details of each of the motorway sections is presented in Table 1. 
 

Table 1: The motorway sections in the driving simulator. 
Code Scenario Time pressure state 
M1 No events Green 
M2 Aggressive surrounding traffic Green 
M3 Aggressive surrounding traffic Amber – Red 
M4 Slow traffic Green – Amber – Red 
M5 No events Amber – Red 
M6 No events – Hard braking event Green – Amber – Red 

 
One of the main objectives of the study has been the investigation of drivers’ behaviour 
under time pressure hence, participants have been deliberately subjected to time 
pressure. During their briefing session, participants have been instructed that they have 
had to reach their destination within 35 minutes else, a monetary penalty would be 
imposed if they are late. An emoji placed on the dashboard of the vehicle (Figure 3) has 
been used as an indicator of their performance. The emoji could have three different 
states, namely, green, amber and red.  Participants have been instructed that the green 
state would indicate they have been doing well, in terms of time, while the red would 
indicate that they have been late. The intermediate amber emoji denoted that they have 
been marginally fine in terms of time. That is, they would receive a red emoji if they 
have had further delay in the remaining driving tasks. The introduction of an amber 
state has been decided to make the shift from green to red emoji more convincing to the 
participants. 
 

 
Figure 2: Time pressure emoji 

 
Although participants have been informed that the state of the emoji have been related 
to their performance, it has been pre-decided in order to induce time pressure in specific 
road segments. It may be noted that the choice of three different emoji to indicate time 
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pressure, has been preferred to a conventional countdown timer, since it would be easier 
to manipulate. 
 
3.1.2 Preliminary analysis 
All datasets included in the analysis refer to motorway settings however, apart from the 
different nature of the data (field traffic and driving simulator) there have also been 
some additional differences that could affect the results of the car-following models. 
The main differences are outlined below. 
 

• The road environments differ in terms of the surroundings (i.e. landscape) and 
also infrastructure characteristics, such as the number of lanes.  

• Levels of congestion and traffic flow among the field traffic and simulator sites 
may vary. 

• The video datasets include trajectories from several vehicles with different 
capabilities in terms of acceleration/deceleration while the trajectories of the 
driving simulator data always refer to the same vehicle. 

• The I-80 data has been collected in the USA while the driving simulator data 
have been collected in the UK hence, cultural differences may exist. 

• Vehicle capabilities may vary among the various datasets because of temporal 
difference in the data collection dates.     

 
Within an effort to reduce the differences among the various data sources, the data has 
been processed to include sections that are as similar as possible to one another in terms 
of traffic characteristics. Moreover, data processing has been also applied to consider 
data that better meet the requirements for the estimation of car-following models. As a 
first step, relationships regarding the surrounding traffic such as relative speed, 
acceleration of lead vehicle etc. have been extracted from all datasets. Regarding the I-
80 trajectory dataset, only cars that have not attempted a lane-changing manoeuvre 
during the observation period have been included in the analysis. This approach has not 
been applied to the M1 (UK) data as the occurrence of lane changes has been frequent 
and very few observations would have remained. Thus, only the data from the auxiliary 
lanes has been removed.  
 
With respect to the driving simulator data, a different approach has been followed in 
order to investigate its similarity to the trajectory data and consider more comparable 
cases. Each of the six main sections of the simulated motorway has been compared to 
the other datasets in terms of acceleration, speed, relative speed with the lead vehicle, 
time and space headway values. The aim has been to select values, that would be later 
used for the estimation of the car-following model, as close as possible to those 
observed in the field. After the examination of the descriptive statistics of the 
aforementioned variables and the visual inspection of their histograms (Figure A.1 - 
Appendix), the section with the slow-moving surrounding traffic (M4) has been 
selected, out of the whole motorway. The latter included all levels of time pressure, as 
shown in Table 1. Given that drivers in real life may be under time pressure, this 
condition of the simulator scenario is expected to capture some of its effect in the 
parameter estimates of the car-following model. The histograms of the aforementioned 
key variables for all three data sets are presented in Figure A.1 of the Appendix. 
 
The considered observation frequency has been 1 observation/sec in all datasets. Also, 
in order to avoid free-flow observations and following the findings in S. P. 
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Hoogendoorn (2005), an upper bound of 4s has been applied in the observed time 
headway; all the values above that threshold, are treated as free-flow and excluded from 
the analysis. For the final estimation, the I-80 trajectory dataset is composed of 469 
individuals and 14,826 observations, the M1 data of 619 individuals and 3,302 
observations while the driving simulator dataset 36 individuals and 7,191 observations. 
Table 2 summarises the descriptive statistics for some main variables across all datasets. 
 
The descriptive statistics indicate that there are differences in the examined variables 
of the two datasets. These differences are further investigated with an independent 
samples t-test between the field and driving simulator data. ȉhe p-values of the 
δevene’s test are significant for all variables, apart from time headway for the I-80 data, 
which indicates that the variances of all the variables are different between the video 
trajectory and the driving simulator datasets. Additionally, the results of the t-test for 
the equality of means show that the means of all variables are significantly different as 
well. These findings point out that there are variations in the traffic variables (and thus 
in traffic conditions) between the video and simulator datasets, which may affect the 
models’ results. An additional remark with respect to congestion levels of the driving 
simulator data – as potentially reflected by the ranges of speeds and headways – is that 
it lies between the I-80 and the UK M1 video data. Though these differences impose 
extra challenge in the transferability of the models, in practical cases, this is very likely 
to be the reality (i.e. the simulator data being available for a small subset of participants, 
fixed variations in simulated traffic whereas actual road traffic having  larger 
variability) leading to difficulties in reproducing observed traffic flow patterns in 
simulator. 
 
4. Estimation results 
The estimation results are summarised in Table 3. After some initial interpretation of 
the models’ parameters, the individual models are further investigated and compared 
via sensitivity analysis. In the M1 data, the majority of acceleration observations has a 
negative value (Figure A.1) possibly due to the higher rates of lane-changing. The 
model estimation hence required constraining the acceleration and deceleration 
definitions based on the sign of the observed acceleration value as opposed to the sign 
of the relative speed difference (as proposed by Kusuma 2015). 
  
The estimated reaction time distributions are illustrated in Figure 4. The reaction time 
distribution from the I-80 data ranges between 0-2s and is mainly centred slightly above 
0.5s. On the other hand, the estimated distributions based on the M1 and simulator data 
cover the whole range of truncation however, the mean of the latter distribution has a 
higher value with a peak between 1.5s and 2s. This may be an indication of different 
response patterns for the relative speed stimulus between the field and video contexts. 
Some further discussion with respect to their differences is presented together with the 
analysis of the individual models. 
 
4.1.1 Individual Models 
 
Model 1: Car-following model based on driving simulator data (UK) 
The estimated car-following acceleration of Model 1 is shown in Equation 17 
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T
able 2: D

escriptive statistics of the tw
o datasets 

 

Variable 
Driving simulator data (1) I-80 Video data (2) M1 Video data (3) 

(1) & (2) t-tests (1) & (3) t-tests 
Levene's 
test for 
equality 

of 
variances 

t-test 
for 

equality 
of 

means 

Levene's 
test for 
equality 

of 
variances 

t-test 
for 

equality 
of 

means 

Min Mean Max sd Min Mean Max sd Min Mean Max sd p-value p-value p-value p-value 

Speed (m/s) 7.67 14.71 35.93 4.74 1.52 8.42 26.08 3.58 15.95 26.16 40.77 4.21 0.000 0.000 0.000 0.000 
Acceleration 

(m/s2) 
-10.04 -0.09 1.90 0.67 -4.73 -0.04 2.90 0.93 -6.73 -1.08 5.88 1.16 0.000 0.000 0.000 0.000 

Time headway (s) 0.42 1.82 3.98 0.69 0.58 2.34 4.00 0.68 0.18 1.73 3.99 0.87 0.801 0.000 0.000 0.000 
Space headway 

(m) 
5.79 25.93 106.70 14.13 4.24 18.94 80.14 8.70 4.65 45.21 144.12 24.4 0.000 0.000 0.000 0.000 

Relative speed 
(m/s) 

-19.23 -0.81 8.98 6.11 -5.80 -0.05 5.40 1.20 -13.59 -1.49 15.47 2.9 0.000 0.000 0.000 0.000 
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able 3: M
odels param

e
ter estim

ates, t-test of ind
ividual param

eter equivalence and 
T

T
S

 results 

  
Driving simulator data Video trajectory data - ǿ80 Video trajectory data – M1 t-tests of individual parameter 

equivalence (Model 1) (Model 2) (Model 3) 

Variable Parameter estimate 
Robust Parameter 

estimate 

Robust Parameter 
estimate 

Robust Models 1 & 2 Models 1 & 3 

t-ratio t-ratio t-ratio t-stat t-stat 
  

  
    

  

Reaction time 
distribution 

       

ȝt 0.664 14.66 -0.3973 -16.42 0.6204 5.72 20.67 0.37 

ıt 0.3536 2.69 0.3257 66.48 0.6517 4.63 0.21 -1.55 
         

Car-following 
acceleration 

        

Constant 0.3506 6.96 0.8304 13.77 0.4283 4.59 -6.11 -0.73 

time headway (s) 0.2856 1.85 0.792 8.99 0.0218 0.19 -2.85 1.37 

relative speed (m/s) 0.6787 9.71 0.8982 20.58 0.4694 1.37 -2.66 0.60 

ıacc 0.3367 25.26 0.7318 76.71 0.6976 9.07 -24.10 -4.62 
         

Car-following 
deceleration 

        

Constant -0.255 -5.47 -0.5128 -16.03 -0.9206 -25.25 4.56 11.25 

time headway (s) 0.4798 2.66 0.1941 2.36 0.2609 8.67 1.44 1.20 

relative speed (m/s) 0.7043 9.38 0.928 25.98 0.5195 18.91 -2.69 2.31 

ıdec 0.6893 16.61 0.8007 75.16 0.7545 42.55 -2.60 -1.44 
 LL = -5610.845 LL = -17240.88 LL = -3857.24   

 ȡ2 = 0.320 ȡ2 = 0.138 ȡ2 = 0.463  

 Adj. ȡ2 = 0.319 Adj. ȡ2 = 0.137 Adj. ȡ2 = 0.461  

  obs = 7191 obs = 14826 obs = 3302   

Transferability Test Statistic (TTS) 

Summary statistics   Simulator to ǿ-80 data transferability Simulator to UK data transferability 

Degrees of freedom (Dof)  10 10 

δδest (ȕtransf)  -27126.16 -7118.384 

δδapplic(ȕappl)  -17240.88 -3857.238 

-β[δδapplic(ȕtransf) -δδapplic(ȕappl)]   19770.56 6522.29 
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Figure 3: Reaction time distributions of the car-following models 

 

 an
cf,accሺtሻ = 0.γ506

1
ǻTnሺtሻ0.β856  |ǻVn(t - Ĳn)|0.6787 + İn

cf,accሺtሻ (17) 

 
where İn

cf,accሺtሻ~N(0, 0.33672). 
 
In a similar way, Equation 18 presents the deceleration component of Model 1 
 

 an
cf,decሺtሻ = -0.β55

1
ǻTnሺtሻ0.47λ8  |ǻVn(t - Ĳn)|0.704γ + İn

cf,decሺtሻ (18) 

 
where İn

cf,decሺtሻ~N(0, 0.68932). 
 
The acceleration and deceleration constants both have the expected signs and are 
statistically significant at 0.05 level. Moreover, the parameters of time headway both 
have positive signs but the parameter for acceleration regime is significant at the 0.1 
level. The positive sign for the time headway parameter of the acceleration regime 
implies that drivers tend to react less to the leader’s speed as time headway increases 
and they get closer to a free-flow state. Regarding the deceleration regime, the positive 
sign of the time headway parameter indicates that drivers adopt smaller decelerations 
at larger headways. The schematic interpretation of the aforementioned parameters and 
their effects on acceleration/deceleration are illustrated in the next section. Finally, the 
parameters of relative speed are significant for both acceleration and deceleration 
regimes. It is worth mentioning that the estimates are in accordance with the a-priori 
expected values (smaller than 1) as the acceleration or deceleration capabilities of the 
driver are constrained by the vehicle capability. The impact of each parameter is 
depicted more explicitly in the sensitivity analyses presented in the next section. 
Finally, Figure 4 shows the reaction time distribution as expressed by the estimated 
mean and standard deviation. The distribution extends approximately to the whole 0-4s 
range and its peak is between 1.5s and 2s. The estimated distribution of reaction time 
is 
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 f ሺĲnሻ= ቐ 1
0.γ5γ6 Ĳn

ĳ ቆlnሺĲnሻ - 0.664
0.γ5γ6 ቇ               if 0 < Ĳn ≤ 4

                    0                                         otherwise
 (19) 

 
 
Model 2: Car-following model based on the I-80 video data (USA) 
The estimated car-following acceleration of Model 2 is presented in Equation 20 
 

 an
cf,accሺtሻ = 0.8γ04

1
ǻTnሺtሻ0.7λβ  |ǻVn(t - Ĳn)|0.8λ8β + İn

cf,accሺtሻ (20) 

 
where İn

cf,accሺtሻ~N(0, 0.73182). 
 
The deceleration component of Model 2 is shown in Equation 21: 
 

 an
cf,decሺtሻ = -0.51β8

1
ǻTnሺtሻ0.1λ41  |ǻVn(t - Ĳn)|0.λβ8 + İn

cf,decሺtሻ (21) 

 
where İn

cf,decሺtሻ~N(0, 0.80072). 
 
The results of the car-following model estimation based on the I-80 trajectory data are 
presented in Table 3. All the parameters have expected signs and are significant at 0.05 
level. Moreover, the values of relative speed parameters are below 1, as a-priori 
expected. The reaction time distribution (Figure 4) extends between 0-2s while its peak 
is approximately after 0.5s. This outcome suggests that drivers’ reaction time in real 
traffic is smaller compared to simulated driving (i.e. the drivers respond faster to the 
relative speed stimulus in field traffic conditions. This might be a potential indication 
that drivers perceive changes in traffic conditions differently in the simulator compared 
to field traffic driving (where a crash occurrence would have genuine consequences). 
The estimated distribution of reaction time is shown in Equation 22 
 
 

 f ሺĲnሻ= ቐ 1
0.γβ57 Ĳn

ĳ ቆlnሺĲnሻ + 0.γλ7γ
0.γβ57 ቇ               if 0 < Ĳn ≤ 4

                    0                                         otherwise
 (22) 

 
 
Model 3: Car-following model based on the M1 video data (UK) 
The estimated car-following acceleration of Model 3 is presented in Equation 23 
 

 an
cf,accሺtሻ = 0.4β8γ

1
ǻTnሺtሻ0.0β18  |ǻVn(t - Ĳn)|0.46λ4 + İn

cf,accሺtሻ (23) 

 
where İn

cf,accሺtሻ~N(0, 0.69762). 
 
Finally, the deceleration component of Model 3 is shown in Equation 24: 
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 an
cf,decሺtሻ = -ͲǤλβ06

1
ǻTnሺtሻβ60λ  |ǻVn(t - Ĳn)|0.51λ5 + İn

cf,decሺtሻ (24) 

 
where İn

cf,decሺtሻ~N(0, 0.75452). 
 
With respect to the acceleration regime, only the constant parameter is significant, 
which implies that acceleration behaviour at the M1 weaving section is captured to a 
lesser extent by the car-following model. On the other hand, the parameters related to 
the deceleration regime are all significant with expected values and signs. It is worth 
mentioning that the deceleration constant has a higher absolute value compared to the 
respective parameters of the driving simulator and I-80 models. This finding is an 
additional indication that the type of the data collection site had an impact on the 
parameter estimates, as the higher rate of lane-changing may have also resulted in more 
frequent and higher deceleration. The mean of the reaction time distribution (Figure 4) 
is between the I-80 and driving simulator data models. This finding may denote higher 
alertness at the congested driving conditions of the USA data than the UK weaving 
section. The estimated distribution of reaction time is shown in Equation 25 
 

 f ሺĲnሻ= ቐ 1
0.6517 Ĳn

ĳ ቆlnሺĲnሻ - 6β04
0.6517 ቇ               if 0 < Ĳn ≤ 4

                    0                                         otherwise
 (25) 

 
4.1.2 Model comparison and sensitivity analysis 
The initial evaluation of the estimated parameters shows that their signs are expected 
while most of them are significant. The current section investigates the effects of 
models’ variables in the car-following acceleration (deceleration) to further assess the 
parameter estimates and ultimately compare the extent and nature of differences 
between the two models. Figure 5 depicts the sensitivity analysis for all parameters 
while the transferability of the model based on driving simulator data is then compared 
with the two field traffic data sources. 
 
Focusing on Model 1 (driving simulator), the results indicate that the value of 
acceleration slightly decreases with the increase of time headway. This pattern reflects 
drivers’ expected behaviour in acceleration state, as also explained earlier. τn the other 
hand, the absolute value of deceleration increases with the decrease of time headway. 
This outcome meets the expectations, since drivers will decelerate to a higher extent 
when time headway is short and relative speed is negative (deceleration regime), while 
it also indicates drivers’ safety concerns; as time headway decreases, drivers decelerate 
to avoid collision. These interpretations also apply for the patterns related to time 
headway with respect to Model 2 (I-80) and Model 3 (M1). Starting from the latter 
model, the slope of acceleration is similar to the simulator context however, the values 
are higher. On the other hand, deceleration values are of considerably higher magnitude 
both compared to the simulator and the I-80 results. This finding is expected 
considering the high deceleration constant value of that model and can be an outcome 
of manoeuvre behaviour that takes place at the weaving section and potentially higher 
variance in the deceleration behaviour and alertness. Regarding the acceleration-time 
headway plot of Model 2, the observed steeper slopes, which also result in higher 
absolute acceleration/deceleration values, may highlight the differences in drivers’ 
sensitivity between simulated and real driving. In the acceleration regime, the 
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aforementioned differences could indicate a higher variance in traffic conditions – 
which influences applied acceleration - or suggest that drivers have higher sensitivity 
in the decrease of time headway during real road traffic conditions. A similar trend is 
also observed in the deceleration regime of this model - as the plots show that 
deceleration rate is in general higher - compared to the driving simulator case. This 
outcome might be an effect of the smaller variance in traffic conditions of the simulated 
scenario (as happens in the acceleration regime), but given the higher value of the 
standard deviation parameter in the deceleration regime, and thus a potentially higher 
variance in observed behaviour, it might also indicate that drivers assess or perceive 
risk in a different way (e.g. absence of real danger) and this behaviour could influence 
their deceleration decisions. 
  
Regarding relative speed, acceleration and deceleration reach their maximum absolute 
values when the former is maximum and minimum, respectively, in both models. The 
obtained acceleration-regime trends follow the underlying theory of the current car-
following model as drivers’ acceleration tends to increase while lead vehicle moves 
faster. In the same way, the increase in absolute deceleration as relative speed declines, 
is consistent with the safety implications reported about the effect of time headway, as 
a driver is expected to decelerate to a higher degree when relative speed gets smaller. 
It should be mentioned that the patterns observed in Model 3 (M1, UK) are closer to 
Model 1 in terms of acceleration and Model 2 in terms of deceleration. The latter finding 
may show the difference in drivers’ sensitivity and safety concerns between real and 
simulated traffic. On the other hand, the higher acceleration values related to Model 2 
(I-80 data) may be related to lower speeds and more frequent stop and go behaviour 
that has taken place owing to congestion. 
 
The different patterns in acceleration (deceleration) that the sensitivity analysis 
revealed, are further investigated through model comparison, in terms of parameter 
equivalence and model transferability. The results of the t-test of individual parameter 
equivalence (Table 3) show that for most of the parameters of Models 1 and 2, the null 
hypothesis of equivalence is rejected (|t-value|>1.96). The t-stat of the difference is non-
significant only for the standard deviation of reaction time distribution and the time 
headway parameter of the deceleration regime. Moreover, the results of TTS regarding 
transferability from driving simulator to real driving context, as reflected in the I-80 
data, show that the null hypothesis of equivalence between the two models is rejected 
at 0.05 level (Ȥ2

critical =18.31), thus, transferability cannot be validated. 
 
The results of the t-test of individual parameter equivalence between Models 1 & 3 
show that apart from the standard deviation, all the other parameters related to the 
acceleration regime are transferable. This can be an indication that models’ results are 
more transferable between driving simulator and field observations, for data collected 
in the same country however, it should be also mentioned that most of the acceleration 
regime parameters of the field M1 data have not been significant. On the other hand, 
all parameters related to the deceleration regime are significantly different. Moreover, 
the results of the TTS regarding transferability from driving simulator to the M1 (UK) 
context, show that the null hypothesis of equivalence between the two models is 
rejected at 0.05 level (Ȥ2

critical =18.31). Thus, transferability from simulated to real traffic 
driving cannot be validated for both the available video trajectory datasets. 
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It may be noted that while testing transferability with simpler models (Papadimitriou & 
Choudhury, 2017), though majority of the parameters have not been found to be 
transferable, the null hypothesis of equivalence has not been rejected. Albeit the space 
headway and subjects’ speed, of the data used in the current study, have a closer match 
with the I-80 data in comparison with the sim data used in the previous study, this may 
indicate that incorporation of reaction time heterogeneity increases the gap between the 
two sets of models in terms of transferability.    
 

 
Figure 4: Sensitivity analysis of the car-following models 

 
The results from the transferability analysis show that a car-following model developed 
by driving simulator data cannot be directly used for real-driving applications (e.g. in 
microsimulation). As later discussed in the Conclusion section, the differences between 
the models may have also occurred also for other reasons, other than the different nature 
of the two datasets. In the next section a series of approaches is investigated in order to 
address this issue and reduce the gap. 
 
5. Model updating and joint estimation 
The analysis described in the previous section highlights the lack of transferability from 
driving simulator models to the field. The current section investigates two different 
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updating approaches that aim to reduce the potential behavioural bias of driving 
simulator data and identify the most suitable of them in order to develop a context for 
its application in a real driving framework. Moreover, the results of the car-following 
models are compared with the results of joint model estimated combining the simulator 
data with each of the video datasets.  
 
5.1.1 Model updating 
The parameters of the driving simulator model have been updated using the Bayesian 
updating (Dey & Fricker, 1994) and Combined Transfer Estimation (Ben-Akiva & 
Bolduc, 1987) approaches. The updated parameters and the results of the TTS after the 
application of model updating are presented in Table 4 referring to the I-80 data and 
Table 5 referring to the M1 data. The TTS value after applying Bayesian updating 
indicates that the null hypothesis of model equivalence is in both cases rejected at the 
0.05 level (Ȥ2

critical =18.31). However, the TTS value of the Combined Transfer 
Estimation shows that after updating, the null hypothesis is not rejected and thus, 
driving simulator data can be considered transferable for both the I-80 and M1 datasets. 
This finding is consistent with existing literature, where Combine Transfer Estimation 
outperforms Bayesian updating. 

Table 4: Parameters and TTS results after model updating – I-80 data 
  Bayesian updating Combined Transfer Estimation 

Variable Parameter estimate Parameter estimate 
Reaction time distribution   

ȝt -0.162 -0.398 
ıt 0.326 0.326 
   

Car-following acceleration   

Constant 0.548 0.838 
time headway (s) 0.667 0.809 

relative speed (m/s) 0.837 0.908 
ıacc 0.598 0.732 

   

Car-following deceleration   

Constant -0.430 -0.517 
time headway (s) 0.243 0.149 

relative speed (m/s) 0.887 0.935 
ıdec 0.794 0.802 

Transferability Test Statistic (TTS) 

Summary statistics Bayesian updating Combined Transfer Estimation 

Degrees of freedom (Dof) 10 10 

δδapplic (ȕtransf) -17884.1 -17245.46 
δδapplic(ȕapplic) -17240.88 -17240.88 

-2[δδapplic(ȕtransf) -
δδapplic(ȕapplic)] 1286.44 9.16 

 
The effects of the updating techniques and the amendments of each, on the parameters 
of Model 1, can be demonstrated more rigorously with the application of the sensitivity 
analysis described in previous section. The results of both approaches are illustrated in 
Figures 6 and 7 for Model 2 and Figures 8 and 9 for Model 3. The parameters after 
applying Bayesian updating on Model 1 with respect to the parameters of Model 2 
(Figure 6), result in the occurrence of lines which are in higher proximity – compared 
to the initial sensitivity analysis as presented in Figure 5 – but still there is a distinct 
difference between the two cases. On the other hand, the new set of parameters, after  
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Figure 5: Sensitivity analysis after Bayesian updating – I-80 data 

 

 
Figure 6: Sensitivity analysis after Combined Transfer Estimation – I-80 data 
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Combined Transfer Estimation (Figure 7), produces very similar outcomes. In 
particular, the acceleration regime of all models is almost identical, while some 
differences can be noticed in the deceleration regime. The results of the sensitivity 
analysis are consistent with the outcomes presented in Table 4 and provide a more 
detailed investigation regarding the effects of each updating technique on each of the 
elements of the car-following model based on driving simulator data. 
 
The impact of the two examined updating techniques is similar, with respect to the M1 
data. In particular, the application of Bayesian updating (Figure 8) results in some non-
significant improvement however, after Combined Transfer Estimation (Figure 9), the 
results from the updated Model 1 and Model 3 are significantly closer. It may be noted 
in Figure 9, the acceleration regime of Model 3 is not approximated entirely accurately, 
even after the application of CTE. This could have been potentially caused by the 
‘noise’ in the ε1 data caused by the increased number of lane-changes occurring in the 
section. The deceleration regime of Model 3 was however approximated more 
accurately, compared to the respective one of Model 2. 

 
Table 5: Parameters and TTS results after model updating – M1 data 

  Bayesian updating Combined Transfer Estimation 

Variable Parameter estimate Parameter estimate 

   
Reaction time distribution   

ȝt 0.658 0.663 
ıt 0.492 0.766 
   

Car-following acceleration   
Constant 0.368 0.299 

time headway (s) 0.113 -0.079 
relative speed (m/s) 0.670 0.781 

ıacc 0.347 0.715 
   

Car-following deceleration   
Constant -0.668 -0.923 

time headway (s) 0.267 0.247 
relative speed (m/s) 0.541 0.514 

ıdec 0.744 0.764 
Transferability Test Statistic (TTS) 

Summary statistics Bayesian updating Combined Transfer Estimation 

Degrees of freedom (Dof) 10 10 

δδapplic (ȕtransf) -4556.65 -3861.82 
δδapplic(ȕapplic) -3857.24 -3857.24 

-β[δδapplic(ȕtransf) -δδapplic(ȕapplic)] 1398.81 9.16 
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Figure 7: Sensitivity analysis after Bayesian updating – M1 data 

 

Figure 8: Sensitivity analysis after Combined Transfer Estimation – M1 data  
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5.1.2 Joint estimation results 
The differences between the driving simulator and field trajectory datasets are further 
investigated in the context of joint model estimation.  In this approach, the car-
following model is estimated combining simultaneously both data sources, using the 
driving simulator data and each of the video datasets separately. Initially, the datasets 
have been considered as the same source and a single set of parameters have been 
estimated. The results of this model are not presented in the context of the present 
analysis, but its final log-likelihood value has been used for comparison purposes in 
Table 6. As a next step, a series of scale parameters is introduced to account for the 
differences between trajectory and simulator data. The scale parameters are applied to 
the sensitivity×stimulus terms, the standard deviation parameters and the reaction time 
parameters with the formulation (įtrajectory+įsimulator×scale), where įtrajectory is a dummy 
variable equal to 1 if the observation belongs to the trajectory dataset and įsimulator is a 
dummy variable equal to 1 if the observation belongs to the driving simulator dataset. 
Six scale parameters are used in total. In essence, given that for every density function 
involved in the model specification (acceleration, deceleration and reaction time) a 
mean and a standard deviation component is estimated, each of the scale parameters is 
used to approximate the difference of the driving simulator data estimates with respect 
to the video trajectory data estimates. After incorporating the aforementioned scale 
specification in Equation 7, the acceleration/deceleration density function is given from 
Equation 26 
 

 f ൫an
cf,gሺtሻ|Ĳn൯=

1
ıİcf,g

ĳ ൭an
cf,gሺtሻ - sൣXn

cf,gሺt - Ĳnሻ൧ × f ሾǻVnሺt - Ĳnሻሿ൫įtraj+șȝįsim൯
ıİcf,g൫įtraj+șıįsim൯ ൱ (26) 

 
where șȝ and șı represent the scale parameters of mean and standard deviation 
respectively. 
 
The parameter estimates of the model are presented in Table 6. Owing to the model 
specification, the t-ratio values of the scale parameters refer to the comparison with 1 
rather than 0. Regarding Model 2 (I-80 data), all scale parameters, apart from reaction 
time standard deviation, are significantly different from 1. This result consists an 
additional indication to the tests applied in the previous section, that for joint estimation, 
the differences between the various data sources should be considered and captured. 
With respect to Model 3, less of the scale parameters are significant. Some of the results 
are consistent with a-priori expectations. For instance, the initial t-test of parameter 
equivalence between Models 1 and 3 (Table 3) showed that parameters related to 
acceleration were transferable while the standard deviation of was not. This has been 
reflected in the scale results with a non-significant and a significant scale parameter 
respectively. Moreover, most of the deceleration parameters of the same models were 
not equivalent while the differences in deceleration variance were not significant. This 
finding is also consistent with the scale parameters. 
 
To further asses each joint model, they have been compared, using the likelihood ratio 
test, with (a) a joint model estimated without any scale parameters and (b) Models 1 & 
2 (I-80 data) and Models 1 & 3 (M1 data) respectively. Regarding case (b), the log-
likelihood of the joint model is compared with the sum of log-likelihood values of the 
relevant pair of models, with degrees of freedom equal to the sum of the parameters of 
the initial individual models minus the estimated parameters of the joint model. The 
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null hypothesis is rejected for both cases (a) and (b) and for both field datasets, 
indicating two different types of outcomes, with respect to the use of scale parameters. 
At first, the joint model without accounting for scale differences, does not perform as 
well as the model including the scale parameters. This result is expected and consistent 
with all findings presented in the current analysis. The differences in driving behaviour 
between simulated and real road traffic driving affect model fit and need to be 
considered. On the other hand, the use of scale parameters, for both video datasets, does 
not manage to improve the model sufficiently, since the results of the likelihood ratio 
test with the individual models show that the joint model does not perform equally to 
the two separate ones. As a brief conclusion, it should be mentioned that the use of scale 
parameters, in the suggested model specification, improves model fit but does not fully 
capture the differences between the different data sources and further approaches 
should be considered. 

Table 6: Parameter estimates of the joint models 

Variable 
Video data I-80 Video data M1 

Parameter 
estimate 

Robust t-
statistic 

Parameter 
estimate 

Robust t-
statistic 

   
  

Reaction time distribution (Video trajectory data) 
  

ȝt -0.3964 -16.45 0.6874 5.46 

ıt 0.3264 65.2 0.7136 5.03 
     

Car-following acceleration     

Constant 0.7209 14.88 0.3902 9.67 
time headway (s) 0.5562 6.73 0.1975 1.62 
relative speed (m/s) 0.7801 15.1 0.6577 10.21 

ıacc 0.7337 77.11 0.6916 9.43 
     
     

Car-following deceleration    

Constant -0.5644 -12.01 -0.8607 -23.87 

time headway (s) 0.2584 2.77 0.2932 9.52 
relative speed (m/s) 0.8539 19 0.5721 21.77 

ıdec 0.8008 74.95 0.7525 42.5 
     

     

Scale parameters     

Car-following acceleration mean 0.5435 -9.67 (1) 0.8558 -1.04 (1) 
Car-following acceleration std. dev 0.461 -27.90 (1) 0.3372 -31.89 (1) 
Car-following deceleration mean 0.3052 -29.92 (1) 0.4869 -9.28 (1) 
Car-following deceleration std. dev 0.8629 -2.61 (1) 0.9201 -1.34 (1) 
Reaction time mean -1.65 -16.72 (1) 0.9672 -0.18 (1) 

Reaction time std. dev 1.0908 0.23 (1) 0.5004 -2.29 (1) 

          

LL -22892.67 -9496.16 

ȡ2: 0.19 0.14 

Adj. ȡ2: 0.19 0.14 
LR (compared to a joint model without scale 
parameters):  

3024.48 (dof = 6) 2617.28 (dof = 6) 

LR (compared to Models 1 and 2 combined):  81.89 (dof = 4) 56.15 (dof = 4) 
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6. Conclusion 
The current paper presents a detailed investigation of the applicability of car-following 
models estimated using driving simulator data to study real road traffic scenarios. This 
relates primarily to the transferability of model parameters estimated on data from 
simulator experiments and their suitability for representing driving behaviour in field 
traffic. While previous studies have conducted such transferability tests with simple 
models (that ignore heterogeneity in reaction time), a more advanced modelling 
approach has been adopted which indicated that the differences become more 
pronounced when the model specifications are more complex.  
 
The analysis is based on the comparison of car-following models estimated using 
driving simulator data collected at the University of Leeds Driving Simulator and field 
traffic data from the widely used I-80 trajectory dataset (NGSIM project) and data 
collected at M1 (a UK weaving section). Transferability between the two contexts has 
been primarily examined with basic approaches such as the t-test of individual 
parameter equivalence and the TTS. The results of the initial transferability tests 
suggest that driving simulator data should be used with caution. For instance, the t-tests 
for individual parameter equivalence show that almost all parameters are not directly 
transferable, with respect to the I-80 data, while significant differences have been also 
found in the deceleration regime of the driving simulator and Ȃ1 models. Moreover, 
the sensitivity analysis shows that in real life, drivers are more sensitive to changes in 
traffic conditions compared to simulated environments – this can have crucial safety 
implications. As an example, the results indicate that drivers apply smaller deceleration 
rates in the simulated environment. Discrepancies like this may misguidedly lead to 
false interpretation of drivers’ behaviour not only in terms of road safety and crash 
investigation but also in microscopic modelling applications. The findings indicate that 
the parameters estimated from driving simulator data are not suitable for direct 
application in such models, which prompted us to investigate methods for improving 
transferability.  
   
We have applied a series of techniques to improve the transferability of the simulator 
data, based on a) parameter updating and b) joint estimation that accounts for 
differences in scale. While Bayesian updating did not validate model transferability, the 
results of Combined Transfer Estimation have indicated that driving simulator data can 
be made transferable to a real driving context, opening up new prospects for further 
research. The joint model estimation consists of several steps where specifications 
without and with parameters that would account for the differences in scale have been 
tested. The results of the joint model estimation reveal that there is a statistically 
significant difference in the scale of both acceleration and deceleration behaviour with 
respect to the I-80 data and the deceleration regarding the Ȃ1 data. Moreover, this 
model specification performs significantly better compared to a model where a single 
vector of parameters is used for both datasets (driving simulator and field), without 
accounting for differences in scales. While the two separate models are always expected 
to outperform the joint model, our results indicate that the gap in performance was so 
large as to suggest that joint estimation did not adequately capture the differences 
between the two cases. 
 
It may be noted that given the secondary nature of the video trajectory data, the traffic 
variables (speed, acceleration, space headway etc.) used for model estimation are 
significantly different between the two data sources. These differences are likely to 
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have arisen not only because of the different nature of the data (field traffic and 
simulator) but a series of other factors could have also contributed to these 
discrepancies. In particular, the road environments differ in terms of the surroundings 
(i.e. landscape) while the motorways have different numbers of lanes, as the I-80 data 
refers to a 5-lane infrastructure with an additional HOV, the M1 data is a weaving 
location of three main plus two auxiliary lanes while the simulated motorway has 3 
lanes. Although the study focuses on car-following behaviour and thus the number of 
lanes should not have a major impact, it is still possible that the aforementioned 
differences can have an effect on the results of the analysis, as drivers’ behaviour might 
have been affected overall. Moreover, The I-80 dataset refers to more congested USA 
traffic while this is not the case for the M1 data, as reflected by the speed distributions 
observed in the data. Moreover, in the simulator environment, traffic has been variable 
with a sense of congestion in one of the segments of the simulator data. Another 
limitation with respect to the data used the current work regards the differences and 
variations in driving behaviour owing to the cultural/regional differences of the drivers 
between the USA and UK for one of our two video datasets. Although these differences 
can have a significant impact on the model parameters, our results show that the same 
transferability issues occur also with the UK M1 data. Thus, although regional 
differences in behaviour may affect the parameter estimates of the models, it may not 
be the most significant reason as the same patterns in all steps of the analysis have been 
observed for both the I-80 and UK M1 data, in terms of transferability. Another issue 
relevant to the previously mentioned, could be related to the direction of traffic (right-
hand vs left-hand drive system) however, given that only car-following behaviour has 
been considered, this effect is not expected to have a major impact. 
 
Some other differences refer to vehicle capabilities in terms of dynamics i.e. the field 
data includes trajectories from multiple vehicles while the data driving simulator data 
contains behavioural data from different drivers using the same vehicle. Although this 
can have a significant impact on the parameters of car-following models, similar studies 
usually omit the impact of vehicle type, which is averaged in the model parameters, or 
the categorise vehicles in cars and heavy vehicles (Durrani et al., 2016). This is the case 
for the majority of driving simulator studies which consider the same vehicle for all the 
participants. Another source of bias on the estimation results could be related to the 
temporal differences in data collections, as the I-80, M1 and the simulator data have 
been collected in 2005, 2013 and 2017 respectively. Since the acceleration and 
deceleration capabilities and other vehicular features have become more advanced over 
the years, there is some possibility that the transferability between the I-80 and the 
simulator data may be affected by the time difference. However, the M1 and the 
simulator data are temporally closer and less likely to be affected by such differences. 
Also, although this is a matter that could affect results, the I-80 data is still being used 
in recent studies related to traffic flow and driving behaviour modelling (I. Ahmed et 
al., 2019; Mercat et al., 2019; M. Zhao et al., 2019), while given the observed 
acceleration/deceleration values in the data, it has not been expected to be a major 
source of bias in transferability. 
 
The analysis in this paper has been undertaken acknowledging all the aforementioned 
limitations. In order to reduce the potential impacts because of all the issues raised in 
the previous paragraphs, the datasets have been processed to reduce some of the 
potential effects. Given that the additional differences between the two data sources 
pose extra challenges in model transferability or joint estimation, our results are 
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potentially on the conservative side and present an upper bound on issues of 
transferability, as these differences may have had a negative impact on the efficiency 
of the tested approaches, since they have been possibly captured along with the 
differences in the nature of the data sources. Similar issues are likely to be the case also 
in future efforts focused on transferability. Field observations cannot be controlled thus  
difficulties in reproducing the variability of observed real-life traffic flow patterns in 
simulator will always be present.  
 
In terms of results, Combined Transfer Estimation is found to be the most efficient 
approach for improving the transferability of a car-following model estimated using 
driving simulator data to a field traffic context as the joint model estimation does not 
significantly capture the differences between the two contexts. Though the superior 
performance of the Combined Transfer Estimation approach, compared to Bayesian 
updating, has been previously demonstrated for other models (e.g. car ownership, mode 
choice), to the best of our knowledge, this is the first comparison of the performance of 
the updating methods in the context of driving behaviour and especially car-following 
models. Based on the current findings, there is scope to extend the current study to other 
forms of car-following models e.g. the latent class GM (Koutsopoulos & Farah, 2012), 
IDM model (Treiber et al., 2000), Optimal Velocity model (Bando et al., 1995), as well 
as other driving behaviour models e.g. lane-change, passing etc. Moreover, although 
the approach of joint estimation still requires further improvements, it allows for 
flexible model specifications that incorporate human factors in driving behaviour 
models. For instance, Paschalidis et al. (2019) presented a car-following model, 
estimated with simulator data, that incorporates the impact of acute stress and 
sociodemographic characteristics. An efficient joint estimation approach would allow 
for the specification of a similar model combining multiple data sources and accounting 
for the differences in scale, that would minimise the negative impact on the behavioural 
realism of the field data. 
 
The transferability of the models estimated using the driving simulator data to the real-
world can be improved by combining it with real-world data. To the best of our 
knowledge, this is the first research that demonstrates this in a systematic approach. 
While this indeed demonstrates the need of real-world data, given that driving simulator 
data has unique advantages (e.g. testing the effects of new layouts/design factors that 
can lead to potentially unsafe conditions, incorporation of socio-demographic attributes 
of  the driver) but also disadvantages (potential behavioural validity issues, smaller 
sample of participants etc.), the datasets are complementary as opposed to stand-alone 
sources. The applicability of the techniques presented in the present paper can 
potentially be extended to any type of driving behaviour modelling. As stated 
previously, driving simulators allow for the implementation and evaluation of 
behaviour during extreme or risky scenarios. Although real-world data on extreme 
scenarios is rare and it may be difficult to empirically test if the exact conclusions will 
hold, theoretically, the methods presented in the present paper could be implemented 
in any scenario where driver behaviour is approximated or investigated via econometric 
modelling approaches and the standard errors of the estimated parameters can be 
determined. Regarding the data requirements for this case, the closer the gap between 
the real-world and the driving simulator scenario, the better the transferability should 
be. To that end, rich naturalistic datasets like SHRP2 (which includes crash and near-
crash driving behaviour data) could be used to test if comparable driving simulator 
scenarios can be created. 
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Based on the aforementioned discussion, in terms of practical use of the model 
updating, although the proposed approach still requires actual road data, the framework 
makes it possible to combine human factors in the driving behaviour models and 
develop models for emerging technologies and/or risky scenarios (Paschalidis et al., 
2019) without compromising the behavioural realism of the real-world data. Thus, 
bridging the gap between simulated and real driving context enables researchers to 
utilise the best of both sources of data. 
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Figure A.1: Histograms of key variables in the video and driving simulator datasets 


