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1. Extended Data 2   3 

Figure # Figure title 
One sentence only 

Filename 
This should be the name 
the file is saved as when it 
is uploaded to our system. 
Please include the file 
extension. i.e.:  
Smith_ED_Fi_1.jpg

Figure Legend 
If you are citing a reference for the first time in these legends, please include 
all new references in the Online Methods References section, and carry on 
the numbering from the main References section of the paper.  

Extended Data Fig. 1 Comparison of Google 
and Apple data 

FigED1.eps Comparison of Google and Apple data. The Apple 
driving change in April plotted against the Google transit 
change for available nations.  Example countries are 
highlighted. The size of the symbol gives a measure of 
the correlation over Feb-June 2020, ranging from 0.39 for 
Sweden to over 0.96 (India). The dashed line indicates 
equality. 

Extended Data Fig. 2 Two-year blip scenario FigED2.eps Two-year blip scenario. Emissions, and best estimates of 
CO2 concentration and effective radiative forcing (ERFs) 
components from the two-year blip scenario. Component 
ERFs are shown with minor ERFs  in panel b) and the 
three largest ERF changes in c). 

Extended Data Fig. 3 Longer term climate 
projections to 2030 

FigED3.eps Longer term climate projections to 2030. Emissions, ERF 
and temperature response from the three scenarios over 
2019-2030 (top). The probabilities are generated by 
varying the emulated CMIP6 model (one of 35) and ERF 
ranges with a 10,000 Monte Carlo sample. Distributions 
are weighted according to their goodness of fit over the 
historical period (see methods section e). 

Extended Data Fig. 4 Longer term climate 
projections to 2050 

FigED4.eps Longer term climate projections to 2050. As Figure ED3 
except for the period extended to 2019-2050. 
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Extended Data Fig. 5 Probability 

distributions of passing 
2050 global warming 
levels 

FigED5.eps Probability distributions of passing 2050 global warming 
levels. Levels are relative to 1850-1900 for the scenarios 
in Table 1, generated by varying the emulated CMIP6 
model (choosing one of 35 model formulations) and ERF 
ranges. Distributions are weighted according to their 
goodness of fit over the historical period (see methods 
section e). 

2. Supplementary Information:  4 

A. Flat Files  5 

Item Present? Filename 
This should be the name the 
file is saved as when it is 
uploaded to our system, and 
should include the file 
extension. The extension must 
be .pdf

A brief, numerical description of file contents.  
i.e.: Supplementary Figures 1-4, Supplementary Discussion, and 

Supplementary Tables 1-4. 

Supplementary Information Yes  Covid_emissions_pape
rV3_clean_supplement
ary.pdf 

Supplementary Figures 1-7 and  Supplementary Tables 1-4

Reporting Summary No  
 6 
 7 

B. Additional Supplementary Files  8 

Type 

Number 
If there are multiple files of the same type 
this should be the numerical indicator. i.e. 
“1” for Video 1, “2” for Video 2, etc.

Filename 
This should be the name the file is saved 
as when it is uploaded to our system, and 
should include the file extension. i.e.: 
Smith_ 

Supplementary_Video_1.mov 
Legend or Descriptive Caption  
Describe the contents of the file

Choose an item.    
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3. Source Data 10 

Parent Figure or Table Filename 
This should be the name the file is saved as when 
it is uploaded to our system, and should include 
the file extension. i.e.: 
Smith_SourceData_Fig1.xls, or Smith_ 

Unmodified_Gels_Fig1.pdf

Data description 
e.g.: Unprocessed Western Blots and/or gels, Statistical Source Data, etc.  

Source Data Fig. 1   
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Abstract 33 

The global response to the COVID-19 pandemic has led to a sudden reduction of both greenhouse gas 34 

emissions and air pollutants. Here using national mobility data we  estimate global emission 35 

reductions for 10 species over February-June 2020. We estimate global NOx emissions declined by as 36 

much as 30% in April, contributing a short-term cooling since the start of the year. This cooling trend 37 

is offset by a ~20% reduction in global SO2 emissions that weakens the aerosol cooling effect, causing 38 

short-term warming. As a result, we estimate the direct effect of the pandemic driven response will be 39 

negligible, with a cooling of around 0.01 ± 0.005 °C by 2030 compared to a baseline scenario which 40 

follows current national policies. In contrast, with an economic recovery tilted towards green stimulus 41 

and reductions in fossil fuel investments, it is possible to avoid a future warming of 0.3°C by 2050. 42 

 43 

By the time the World Health Organization declared COVID-19 (scientifically referred to as the 44 

severe acute respiratory syndrome–coronavirus 2 or SARS-CoV-2) a pandemic on 11 March 2020, 45 

the virus had already spread from China, to other Asian countries, Europe and the US. As of 5 July 46 

2020, cases have been identified in 188 countries or regions1.  This has led to unprecedented enforced 47 

and voluntary restrictions on travel and work. This in turn has led to reductions of both greenhouse 48 

gas emissions and air pollutants2–4. Analysis of Google5 and Apple6 mobility data shows mobility 49 

declined by 10% or more during April 2020 in all but one of the 125 nations tracked. Mobility 50 

declined by 80% in five or more nations (Figure S1). Associated declines in air pollution have been 51 

observed from satellite data and from local ground based observations7,8. The large pollution declines 52 

are expected to be temporary as pollution levels are already returning to near normal levels in parts of 53 

Asia9,10. 54 

Here we build an estimate of emission changes in greenhouse gases and air pollution due to the 55 

COVID-19 global restrictions over February-June 2020 and project these into the future. These 56 

emission changes are then used to make a prediction of the resultant global temperature response. We 57 

examine the temperature response of a direct recovery to pre-COVID-19 national policies and 58 
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emission levels, and also explore responses where the economic recovery to COVID-19 is driven by 59 

either a green stimulus package or an increase in fossil fuel use. 60 

Emission trends 61 

Bottom-up emission trend analyses have traditionally relied on a laborious collection of various 62 

energy industry related indicators and statistics from multiple sources11. The unprecedented recent 63 

access to global mobility data from Google and Apple gives a unique opportunity to compare trends 64 

across many countries with a consistent approach. We use this data to develop a new method of 65 

emission trend analysis. The advantage over previous approaches is the possibility of near real time 66 

analysis, national granularity and a systematic consistent approach across nations and over time. The 67 

disadvantages are the loss of direct a connection between energy and emissions and the need to make 68 

assumptions about these relationships. There are also disadvantages over the short time history of the 69 

mobility data and opacity from the data providers around their detailed methodologies and 70 

uncertainties.  Here we make a simple set of assumptions to deduce emissions change estimates from 71 

this mobility data and test the new emissions change estimates extensively against the approach of Le 72 

Quéré et al.3. 73 

 74 

Google and Apple mobility changes and the Le Quéré et al. data all indicate that over 50% of the 75 

world’s population reduced travel by over 50% during April 2020 (Figure 1a). Google mobility trends 76 

indicate that over 80% of the population in the 114 countries in the dataset (4 billion people) reduced 77 

their travel by more than 50%. Google mobility data and emission reduction estimates based on 78 

confinement level analysis in Le Quéré et al. agree on country level surface transport trends to within 79 

~20% (Figures 1b and S1). When we examine the trends for the countries that we expect have 80 

contributed most to the overall surface transport emission change  (e.g. USA, European nations and 81 

India), good agreement between the datasets is observed, and their trends are well correlated in time 82 

(see Figure 1b and Figure ED1). Workplace, retail and residential movement data from Google also 83 

compare relatively well with corresponding industry, public and residential sector emission changes 84 
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but only if the high estimate of the emission change in the Le Quéré et al. dataset (Figures 1b, 1c and 85 

S3 and S4) is employed.  86 

 87 

Employing mobility data outside of the surface transport sector is likely to overestimate the emission 88 

change and this appears to be the case for CO2 emissions when compared to two previous estimates1,2. 89 

Nevertheless, our national and US state level mobility-derived emission estimates are well correlated 90 

in time with emission changes from the Le Quéré et al. study (see examples in Figures S3 and S4). 91 

For the industry sector, differences may be due to the fact that the emissions from industrial activity 92 

are less correlated with mobility trends, due to automated machinery, inertia in closing operations, or 93 

alternative modes of work or a base-line level of industrial emission from heavy industry in the 94 

absence of production, neither which would be captured by the Google mobility data which only 95 

reports changes in phone locations. For the residential sector, the 20% median increase matches the 96 

UK smart meter analysis by Octopus Energy for the situation when previously empty houses were 97 

occupied during the day after lockdown restrictions began12. However, many households were already 98 

occupied during the day and in these situations when an additional occupant was added, energy use 99 

only increased by 4%. These factors likely mean that our Google-based trends overestimate the 100 

emission change from these sectors, leading to our Google based total emission trend estimate 101 

agreeing better with the high emission estimate from the Le Quéré et al. dataset. Our analysis also 102 

suggests considerably larger trends than found in Liu et al.2 (compare datasets in Figure 1c). There is 103 

also a question about how representative the Apple and Google datasets are of wider national 104 

behaviour and how the use and penetration of these phone operating systems varies across regions13. 105 

For example, the over 80% drop in Apple driving mobility in India (Figure 1a and S1), may only 106 

represent the part of the population that are able to work from home. Therefore, the emissions trends 107 

in our work which are largely derived from Google mobility data should be taken as a high estimate 108 

of the COVID-19 emission driven change (see methods section a). 109 

 110 

In the following we construct 2020 emission changes largely from Google mobility data to estimate 111 

emissions changes from the restriction measures in response to the COVID-19 virus, as illustrated in 112 
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Figure 1c. As Google data is not available everywhere, we employ the Le Quéré et al. analysis to 113 

cover important missing countries, in particular, China, Russia and Iran which are all large emitters 114 

whose citizens have been under significant restrictions related to COVID-19. We also use Le Quéré et 115 

al. data to provide additional trend estimates from aviation and shipping sectors (see methods section 116 

a).  117 

 118 

Figure 1. Comparison of sector emission trends. a)  Population weighted histogram of surface 119 

transport trends from Apple driving data, Google transit mobility data and the high estimate from Le 120 

Quéré et al. for available countries in the different datasets averaged over April 2020. b) Violin plots 121 

showing the distribution, minimum, maximum and median levels of national trends weighted by CO2 122 

emissions for the Google and Le Quéré datasets and the differences between the datasets evaluated 123 

over April 2020. c) Estimates of emission changes for the datasets across four sectors for April 2020 124 

and the sum of the four sectors. The CO2 emission estimates from Liu et al.2 are also shown on this 125 

panel. In Figures 1b and 1c data is shown for 60 countries with overlapping data in the Google and Le 126 

Quéré datasets (representing 60% of global CO2 emissions). In Figure 1c, Apple data are for 57 127 

countries, covering 58% of the global emissions. The Liu et al.2 estimate is for a global emission 128 

change. The high estimate from Le Quéré et al. data is used in Figures 1a and 1b. Figure 1c shows the 129 

Le Quéré et al. low and high estimates as the range of the error bar on the mid-level estimate. For 130 

baselines, see methods section a.  131 

 132 

Our bottom up analysis uses 123 countries covering over 99% of global fossil fuel CO2 emissions, 133 

extending the 69 countries analysed in Le Quéré et al. Daily national emission trends in six sectors are 134 

analysed for January-June 2020 (surface transport, residential, power, industry, public, and aviation). 135 

These are then weighted by the national and sector split of seven emitted species covering the major 136 

greenhouse gases and short-lived pollutants. The estimated changes in these non-CO2 species covers 137 

their total anthropogenic emissions, although agricultural and waste emissions are assumed not to 138 

change (methods section b). National and sector data are taken from the Emissions Database for 139 
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Global Atmospheric Research (EDGAR) version 5.0 database for 201514. These data are combined to 140 

generate national and globally averaged daily emission changes in 2020 by species and sector. 141 

 142 

In order to assess changes due to the COVID-19 pandemic, we establish a baseline scenario. We take 143 

a central estimate of emissions pathways15, in which countries are assumed to meet their stated 144 

Nationally Determined Contributions (NDCs) by 2030. In this baseline, no further strengthening of 145 

climate action after 2030 is assumed to take place. These pathways account for both greenhouse gas 146 

and air pollutant emission changes (see methods section c). To derive changes from this scenario a 147 

three-stage process is followed (see methods section a). First, fractional Google mobility data 148 

employs the 5-week period (Jan 3–Feb 6, 2020) as reference. Absolute emission trends are then 149 

computed by multiplying these fractional changes by either the 2019 CO2 emissions from Le Quéré et 150 

al. or, for other species, the 2015 emissions in the EDGAR database14. Finally these absolute changes 151 

are then applied to a steadily rising emission pathway based on pre-COVID-19 national pledges (see 152 

Table 1). Only the globally average emission changes are used in this paper (see Figure 2a), but 153 

national and spatially gridded data are made available for other interested researchers16.  154 

 155 

Our analysis shows that emission reductions likely peaked in mid-April 2020 and that these 156 

reductions are species dependent. The data suggests that global fossil fuel CO2 emissions and total 157 

NOx emissions could have decreased by as much as 30% in April 2020 driven by a decline in surface 158 

transport emissions (Figures 2a, 2b and S5). Conversely, organic carbon (OC) has increased by <1% 159 

as it is primarily affected by rising residential emissions (Figures 2b and S5). Methane changes are 160 

driven by power sector declines, and SO2 is most strongly affected by declining industrial emissions. 161 

Generally, changes in surface transport are the biggest driver of change for most species analysed 162 

(Figure S5). The analysis in Figure 2b also applies our methods to the Le Quéré et al. data for non-163 

CO2 species and reports both previous estimates of CO2 trend.  Our estimated trends are close to the 164 

high Le Quéré et al. estimate, and almost twice as large as  the CO2 trend estimate of Liu et al.2. 165 

 166 
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Figure 2. Species derived changes from COVID-19 restrictions. a) Percentage globally averaged 167 

emission changes for the considered species as a function of day in the year of 2020. The changes are 168 

for fossil fuel CO2 emissions and total anthropogenic emissions from the other sectors.  b) A 169 

breakdown of the April 2020 average global emission reductions compared to a recent year for the 170 

different species. The breakdown is for major emission-nations, including international aviation. 171 

Global percentage emission changes from the baseline are shown on the x-axis (see details in Figure 172 

S6). Trends are relative to 2019 for CO2, for the other species they are relative to 2015. The low, mid 173 

and high estimates of the total changes based on Le Quéré et al.3 and Liu et al.2 trends are shown for 174 

comparison as the black circles, error bars and red triangle.  175 

 176 

Our data suggests that changes in emissions are not confined to the major emitting countries, and 177 

mobility restrictions have been of worldwide proportions (despite the extent of measures – and 178 

therefore relative emissions changes – varying globally) during April 2020 (Figure 1and S1).  This 179 

manifests itself in many countries contributing to the emission decline. For the short-lived species, 180 

Europe and the United States, in spite of their large fractional national emission change, make up a 181 

small percentage of the global response due their relatively low levels of emissions from pollution 182 

(Figure 2b and S6).  183 

 184 

Observational evidence 185 

Detecting a COVID-19 related signal in CO2 concentrations is challenging due to CO2’s long 186 

atmospheric lifetime which makes any perturbation small. While the airborne fraction of CO2 187 

emissions is approximately 50% on multi-annual timescales11, the airborne fraction of emissions 188 

changes is likely above 90% on sub-annual timescales17. Because CO2 is not well mixed on the 189 

timescale of weeks to months, individual observing stations will not reflect the global CO2 burden – 190 

for example Mauna Loa in the Northern hemisphere Pacific Ocean may see a larger signal than at the 191 

South Pole from the emissions reductions due to COVID-19 restrictions. The magnitude of natural – 192 

terrestrial and marine – fluxes of CO2 compared with anthropogenic emissions make it extremely 193 

difficult to detect changes in emissions at national level from CO2 concentrations themselves. We 194 
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estimate these CO2 concentration changes in the temperature response to restrictions section (see 195 

Figure ED2 and 5b) and find maximum reductions compared to our baseline scenario of around 2 196 

ppm in two years’ time (Figure ED2). 197 

 198 

Even though the CO2 change cannot readily be observed, changes in the concentrations of air 199 

pollutants can be employed to test the veracity of the bottom-up emission reduction estimates. A 200 

decline in NO2 has been observed globally, and in several countries and cities7,8. NO2 is short-lived 201 

(~5 hours), provides a relatively linear response to emission changes (unlike other pollutants such as 202 

O3 and PM2.5), and reductions in its emissions are expected to be well correlated to CO2 emission 203 

reductions (Figure 2a, Le Quéré et al.).  Changes in its concentration thus act as a useful bellwether 204 

for changes in CO2 emissions. A number of studies report COVID-19 induced changes in NO2 205 

concentration from both surface and satellite platforms over China18,19. However, it remains 206 

challenging to get a quantifiable estimate of the emission-driven NO2 change as it is hard to separate 207 

that signal from meteorological variability. To address this we follow previous work20 and develop a 208 

machine learning method to derive meteorology and chemistry-normalized changes in NO2 surface 209 

concentrations at air quality monitoring stations around the globe (see methods section d). We 210 

aggregate these changes for 32 nations and show how these observationally-based national time-series 211 

of NO2 concentration changes compare to our mobility-based estimate of NOx emissions change in 212 

Figure S7. Figure 3 shows the average observationally-derived NO2 change versus the predicted 213 

mobility-based NOx emissions change for each country in 2020. Some differences between the 214 

emission estimates and observed changes would be expected: monitoring stations tend to focus on 215 

sites with high surface transport emission and so may be less sensitive to changes in industrial or 216 

residential activity; much of the surface transport emissions of NOx arises from commercial vehicles 217 

(64% of surface transport emission in the UK21) which may show different responses to the 218 

population aggregated mobility data used here (see methods section a and Figure S2). However, the 219 

comparisons for the individual countries (Figure S7) are generally good and there is a quantitative 220 

relationship between the average predicted change in the emissions and observed reduction in 221 

concentrations (Figure 3). Most countries show a smaller (20% or roughly 2 percentage points) 222 
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decrease in observed NO2 than the predicted reduction in NOx emissions, whereas China and India 223 

show larger observed reductions than predicted (28% and 48% respectively). This could be due to the 224 

Le Quéré et al. analysis being used to estimate trends in China as Google data was not available and 225 

also due a possible lack of representativeness in the phone mobility data for India (see the emission 226 

trends section).  As China is the largest emitter this might that our analyses might be affected by a 227 

possible significant underestimate of Chinese NOx trends and hence global trend in the early part of 228 

the record, although any global underestimate is unlikely to have persisted into April, where the 229 

contribution of China to the global trend is relatively modest (Figure 2b). 230 

 231 

Figure 3. Comparison of predicted NOx emission change with NO2 observations. Country level 232 

comparison of the mean predicted NOx emissions change against the meteorologically-normalized 233 

observed mean fractional reduction in NO2 concentration for the period 1/1/2020 to 11/5/2020. Circle 234 

size indicates the mass of NOx emitted each day for that country from EDGAR emissions. Blue line 235 

shows the line of best fit (orthogonal regression) excluding China and India shown in red, weighted 236 

by the number of observations in those countries, with the shaded area showing the 95% confidence 237 

interval. Not all countries are labelled. Brazil shows an increase in NO2 concentrations and is not 238 

shown but is included in the statistical fit (see Figure S7).   239 

The temperature response to restrictions 240 

The immediate response of the warming comes from a combination of an aerosol induced warming 241 

trend and a cooling trend both from CO2 reductions and the NOx-driven tropospheric ozone cooling 242 

loss (Figure 4). To estimate the surface temperature response beyond April 2020, the emission trends 243 

are projected forward in time under four simple “what-if” assumptions.  The temperature changes 244 

from these pathways were simulated by the FaIRv1.5 climate emulator22 which was set up to 245 

represent the response expected from the latest generation of climate models (see methods section e). 246 

As significant social distancing conditions may be necessary for two years23, we begin by assuming in 247 

all pathways that the emissions decrease will remain at 66% of their June 2020 values until the end of 248 
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2021. In the simplest “two-year blip” pathway emissions return linearly to the baseline pathway by 249 

the end of 2022 (Table 1, Figure 4a).  Under such a pathway, we project a longer-term cooling from 250 

reductions in CO2 of around 0.01 ± 0.005 oC compared to baseline, with a cancellation of the 251 

influence of the removal of short-term pollutants (Figures 4b and ED2). 252 

 253 

As the global temperature response due to COVID-19 restrictions will likely be small, climate 254 

scientists are encouraged to look for regional climate signatures. In particular changes in aerosol 255 

loadings may contribute to increasing regional risks posed by extreme weather such as heat waves or 256 

heavy precipitation24,25. Such near-term changes require particular attention as hazards posed by 257 

extreme weather will compound with the ongoing pandemic situation, as exemplified tragically by 258 

tropical cyclone Amphan hitting Kolkata on 21 May 2020. With considerable overlaps of vulnerable 259 

groups (for example heat waves and the elderly) or challenges related to the implementation of 260 

effective responses (evacuation in case of flooding), as well as potential impacts on crop yields26 and 261 

initial studies suggesting that the spread of COVID-19 may itself be influenced by climatic factors23, 262 

this will put the ability of society and governments to manage compound risks to the test27. 263 

 264 

In our estimates, declines in NOx of as much as 30% contribute a short-term cooling of up to 0.01 oC 265 

over 2020-2025 almost exclusively from reductions in tropospheric ozone. NOx trends also contribute 266 

an insignificant warming effect from the decrease in nitrate aerosol. As the ozone response is 267 

expected to have strong regional variation, we test the ozone response in a more sophisticated 268 

emulator28,29 that takes these variations into account (see methods section f). This estimates an annual 269 

mean radiative forcing of -0.029 Wm-2 for 2020, in very close agreement with the forcing seen in 270 

Figure 4a (-0.030 Wm-2). The emulator also provides an estimate of the regional mean surface ozone 271 

changes (Table S4). In contrast to NOx, reductions in emissions of other short-lived pollutants, 272 

especially SO2, cause a warming from a weakening negative aerosol forcing. These two effects more 273 

or less cancel in our simulations, although on balance we expect a small warming effect over the next 274 

5 years (Figure 4). 275 

 276 
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In spite of the uncertainty, our results indicate that reductions of NOx have a cooling effect which will 277 

likely offset a considerable fraction of the warming that comes from reductions in emissions of other 278 

short-lived pollutants. This suggests that policies directed at limiting pollution from road transport 279 

could offset the short-term warming that might come from policies that reduce pollution from the 280 

power and industry sector. Therefore, we recommend policies are enacted to cut pollution from all 281 

three sectors at the same time. This is a useful way forward for net-zero transition pathways so we can 282 

avoid any short-term warming effects that might come from reductions in aerosol pollution30.  283 

The need for a green recovery  284 

As we have shown, the climate effect of the immediate COVID-19 related restrictions is close to 285 

negligible and lasting effects, if any, will thus only arise from the recovery strategy adopted in the 286 

medium-term. To that end, we assess the effect of different scenarios including a fossil-fuel recovery, 287 

and two different scenarios of green stimulus (all pathway assumptions are summarised in Table 1). 288 

 289 

Figure 4. Effective radiative forcing and temperature response. Results are for the two-year blip 290 

pathway compared to the baseline pathway. The response is broken down by the major forcing 291 

contributors, as emulated by the FaIRv1.5 model. 5%–95% Monte-Carlo sampled uncertainties are 292 

shown and weighted according to their historical fit to the surface temperature record (see methods 293 

section e). 294 

 295 

Table 1, Pathway what-if assumptions 296 

Pathway What happens Notes 

Baseline Follows emissions until 2030 consistent with a successful implementation of the  

current Nationally Determined Contributions (NDC) submitted by individual 

countries under the Paris Agreement, adapted from Rogelj et al (2017)15. 

Emissions continue after 2030 assuming no significant strengthening in climate 

action.  

 

The data is adapted from 

Rogelj et al. (2017)15 and 

represents a central estimate of 

the range of estimates 

presented therein. This 

pathway also falls centrally in 
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 the range identified by the 

2019 UNEP Emissions Gap 

Report31 

Two-year blip Reflecting potential SARS-CoV-2 transmission dynamics23 this case explores 66% 

of the June 2020 lockdown persisting until the end of 2021, then emissions 

linearly recover to baseline by the end of 2022.  

This implies a persistent 

necessity of partial lockdowns 

until the end of 2023, but with 

no lasting effect of SARS-

CoV-2. 

Fossil-fuelled 

recovery 

Follows the two-year blip pathway until end of 2021, then emissions recover in a 

way similar to the recovery after the 2008/9 global recession, rebounding to 4.5% 

above the baseline at the end of 2022. Stimulus packages are designed with strong 

support for fossil-fuel energy supply, resulting in more fossil investment than a 

pre-COVID-19 current policy scenario (+1%) and considerably less in low-carbon 

alternatives (-0.8%). Resulting emissions are 10% higher in 2030 than the baseline 

scenario, a trend which is assumed to continue thereafter32.  

 

2030 data taken from Climate 

Action Tracker32, “rebound to 

fossil fuel scenario” with the 

relative increase in emissions 

compared to baseline 

continued thereafter.  

Moderate 

Green stimulus  

Follows the two-year blip pathway until end of 2021, then emissions recover 

slightly, until the end of 2022, but never reach the baseline projections. 

Governments choose recovery packages to target specifically low-carbon energy 

supply and energy efficiency, and do not support bailouts for fossil firms. The 

resulting investment differential (+0.8% for low-carbon technologies and -0.3% 

for fossil fuels relative to a current-policy scenario) begins to structurally change 

the emissions intensity of economic activity, resulting in about a 35% decrease in 

greenhouse gas emissions by 2030 relative to the baseline scenario, a trend which 

is assumed to continue thereafter 32, consistent with meeting global net-zero CO2 

by 2060.   

 

Short-term benefits come from 

changes to the norms of 

behaviour, then green 

incentives to decarbonize all 

sectors of the economy 

Strong green 

stimulus  

As the moderate green stimulus with investment differentials (+1.2% for low-

carbon technologies and -0.4% for fossil fuels relative to a current policy 

scenario), resulting in a slightly more than 50% decrease of greenhouse gas 

emissions by 2030 relative to the baseline scenario. This trend is continued 

thereafter, consistent with meeting global net-zero CO2 by 2050. 

This has over 50% chance of 

limiting the 2050 temperature 

rise to 1.5 oC above 

preindustrial 

 297 



13 

Due to the different warming and cooling trends from short-lived pollutants, the 2020-2030 climate 298 

response to the different pathways remains uncertain but is likely negligible whatever path the 299 

recovery takes (Figures 4, 5, ED3 and ED4). However, differences manifest themselves after 2030. 300 

Figure 5 shows estimated changes in CO2 emissions and the climatic responses for the four assessed 301 

pathways. We find that both the two-year blip pathway, where the economic recovery maintains 302 

current investment levels, or the fossil fuelled recovery pathway, are likely to exceed a 2oC above 303 

preindustrial limit by 2050 (>80%, Figure ED5). Conversely, choosing a pathway with strong green 304 

stimulus assumptions (~1.2% of global GDP), including climate policy measures, has a good chance 305 

(~55%, Figure ED5) to keep global temperatures change above preindustrial within the 1.5 oC limit 306 

saving around 0.3 oC of future warming by 2050 (0.2°C for the moderate green stimulus pathway). 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

Figure 5. Longer term climate response. a) Emissions of CO2, b) CO2 concentrations, c) the surface 317 

air temperature response for the what-if pathways from Table 1, emulated by the FaIRv1.5 model. 318 

The baseline pathway is also plotted, but largely obscured by the two-year-blip pathway.  5%–95% 319 

Monte-Carlo sampled uncertainties are shown and weighted according to their historical fit to 320 

observations33 shown in panel c (see methods section e). 321 

 322 

Our work shows that the global temperature signal due to the short-term dynamics of the pandemic is 323 

likely to be small. These results highlight that without underlying long-term system-wide 324 

decarbonisation of economies, even massive shifts in behaviour, only lead to modest reductions in the 325 
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rate of warming. However, economic investment choices for the recovery will strongly affect the 326 

warming trajectory by mid-century. Pursuing a green stimulus recovery out of the post-COVID-19 327 

economic crisis can set the world on track for keeping the long-term temperature goal of the Paris 328 

Agreement within sight. 329 

 330 

Lastly, by combining large datasets from surface air quality networks with mobility data, we have 331 

illustrated the science benefits from timely and easy access to big data.  Such data syntheses can help 332 

epidemiology and environmental sciences provide the evidence base for the solutions that are urgently 333 

needed to build a resilient recovery to the devastating pandemic. Google, Apple and other big data 334 

providers are encouraged to continue to provide and expand their data offerings.   335 

 336 

 337 
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 403 

Methods 404 

a) CO2 emission estimates 405 

The Google Mobility analysis. 406 

Google5 and Apple6 mobility data were accessed on 5 July 2020. National average Google data was 407 

used for 114 countries, and the US states. Mobility was provided in 6 categories of which we used 408 

four in our analyses (transit stations, residential, work places, retail and recreation). These data 409 

represent the number of Android phones at assigned locations, representing transit stations, homes, 410 

work-places, retail outlets and parks. Apple mobility data was from phone movement changes 411 
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available for 57 countries providing data on changes in transit use, walking and driving, depending on 412 

country. Google data was referenced to the day of the week average in the 5-week period Jan 3–Feb 6, 413 

2020. Apple employed a baseline of 13 February and did not account for day of week effects. The 414 

Apple data was considerably more variable and was only used as a check on the other datasets. Our 415 

tests found that the Google transit mobility trends agreed well with Apple driving trends in the 56 416 

nations with overlapping data (Figures 1a, S1 and ED1) and this gave us confidence to employ the 417 

Google mobility data as an estimate of general trends in emissions from surface transport. 418 

Correlations of the Apple driving data with Google transit data were stronger than 0.8 (over February-419 

June 2020) for 37 countries and their trends typically agreed to within 20% for April 2020 (Figure 420 

ED1).  For the UK Apple driving data agrees well with government analysis of car journeys (Figure 421 

S2), whereas Google transit data appears to be more of a hybrid measure. Note, as discussed in the 422 

observational evidence section, NOx emissions might be expected to be more closely aligned to 423 

commercial vehicles, and  changes for these vehicles in the UK over the period of COVID-19 424 

restrictions were less than indicated by either Apple or Google data (compare light van and heavy 425 

goods vehicle use to Google and Apple data in Figure S2). Therefore, we expect the Google mobility 426 

data to overestimate emission trends in the other sectors and we compare our new approach for 427 

estimating granular near real time emission changes with the previous approaches of  Liu et al.2 and 428 

Le Quéré  et al.3 and with observations of NO2 to test the assumptions.  429 

 430 

The Le Quéré et al. sector analysis.  431 

Le Quéré et al. analysed fossil fuel CO2 emission changes in eight sectors (power, surface transport, 432 

residential, public and commercial, industry, national shipping, international shipping, national 433 

aviation and international aviation), and 69 countries representing 97% of global emissions. The Le 434 

Quéré et al. estimates are based on a global estimate of sector emission reductions according to a 1-3 435 

level of confinement. The confinement level estimates were obtained from government (where 436 

accessible) and cross-media reports, while the sectoral activity data were from multiple streams of 437 

data for each sector including  industry reports, and were available daily or weekly . Changes in 438 

emissions as a function of the confinement level, for each sector, were estimated by quantifying 439 
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changes in individual and industrial activity, in each sector as a function of the observed level of 440 

confinement for all countries together. The data is then extrapolated for each country and each day 441 

depending on their level of confinement and their mean emission levels in each sector.  The USA and 442 

China were treated at the state and provincial level, respectively. Low, medium, and high estimates of 443 

the emission changes resulting from uncertainty in the activity data among countries for different 444 

confinement levels were tested against our data. It was found that the high estimates agreed best with 445 

the Google transit trends over Jan-Jun 2020 (see Figures 1, S1 and 2b). Projections for 2020 were also 446 

provided.  447 

 448 

Mobility-based emission estimates.  449 

As mobility analysis does not cover all sectors or countries to make a global emission estimate we 450 

combine the mobility analysis with components of the analysis in Le Quéré et al. to estimate global 451 

emission changes for CO2 and other pollutants that were due to the COVID-19 restrictions. 452 

We adopt the sector approach of Le Quéré et al., but substitute their percentage changes in the 453 

emissions from surface transport, residential, public and commercial and industry sectors, with 454 

Google mobility changes in transit, residential, retail and recreation, and workplaces respectively. For 455 

the power sector, we employed a hybrid approach, using a combined weighting of workplace, 456 

residential and retail mobility weighted by the 2019 national split of industrial, residential and 457 

commercial emissions. Then we used this weighted mobility measure to scale the power sector 458 

emissions. Finally applying a scaling to match the global emission change in the power sector of the 459 

Le Quéré et al. high estimate. We also directly employed the Le Quéré et al. emission trends for 460 

international and national aviation and shipping. In the 45 countries with only Google data available, 461 

the average emission changes from the 69 Le Quéré et al. nations were employed in the sectors not 462 

covered by the Google mobility data. Note that for simplicity and following Le Quéré et al., shipping 463 

changes are added to the surface transport trends in the analyses presented in Figure 2, S3 and S4. All 464 

emission changes are compared to a daily emission rate which is the annual averaged 2019 emission 465 

estimated for that country divided by 365 (using the data and approach from Le Quéré et al.). This 466 
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assumption was tested by analysing the Liu et al.2 data which included daily seasonal variation from 467 

2019 and repeating our analysis on Climate Model Intercomparison Project phase 6 (CMIP6) 468 

emission data34 for NOx as a test. We found that adding a seasonal cycle would decrease the Jan - 469 

May 2020 emission change estimate by 3%. However, as the Google analysis also does not account 470 

for a seasonal cycle, it is difficult to gauge the overall error in our estimates. To aid comparison with 471 

Le Quéré et al. and for consistency with the simple climate modelling approach discussed in methods 472 

section e, we choose not to introduce a seasonal cycle in our analyses. The combined dataset gives 473 

daily CO2 emission changes for 2020, across 8 sectors and 123 countries, covering 99% of global 474 

emissions. The Le Quéré et al. high estimate and new mobility-based emission estimates were found 475 

to agree well with each other, both at the individual US state level and at the country level for the 56 476 

countries with overlapping data (Figures S1, S3, S4 and 1b). 477 

Table S1 compares the global average trends and that from some major nations to the  CO2 estimates 478 

in Le Quéré et al. and that of Liu et al.2. Our trends are expected to be higher than the other datasets, 479 

but this doesn’t manifest itself for first quarter trends in all countries. As the Google trends only start 480 

on 15 February, our analysis will underestimate first quarter trend estimates where changes occurred 481 

before this date. More interesting are the differences with the Liu et al.2 dataset for India and Russia, 482 

where their trends are considerably smaller. This could be caused by the differences with the 483 

reference assumptions. The Liu et al.2 approach makes a daily reference comparison with 2019 484 

emissions and both nations show declining emissions in the first quarter of 2019, whereas our 485 

reference is taken as the Google mobility base-period of 3 January to 6 February (see methods section 486 

above). As the Le Quéré et al. emission data are well correlated in time with the Google mobility 487 

estimates and also quantitatively agree (see Figure S3 and S4), we assume that the mobility trends we 488 

see are largely a response to COVID-19. However, more work will be needed to fully understand and 489 

resolve these differences. 490 

b) Non-CO2 emission estimates 491 
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The Emission Database for Global Atmospheric Research (EDGAR) version 5.0 database14 provides 492 

gridded and national level sectoral emissions on methane, nitrous oxide and several short-lived 493 

species. The last year available is 2015. The sectors employed in the EDGAR analyses are mapped 494 

onto the Le Quéré et al. sectors used here, according to the breakdown in Table S2. The national and 495 

sector level emission changes for 2020 are then estimated by equation 1. 496 

(ݐ),௦ܧ∆ = ,௦݁ݏܾܽܧ ,௦݁ݏܾܽܥ (ݐ),௦ܥ∆      (1) 
Where ∆(࢚)࢙,ࡱ is the emission change (in ktday-1) of the species as a function of nation (in) and 497 

sector (is). ࢙,ࢋ࢙ࢇ࢈ࡱ is the annual emission divided by 365 of the species from the sector and nation 498 

for 2015.  ∆(࢚)࢙, and ࢙,ࢋ࢙ࢇ࢈ are the CO2 emission change over 2020, and the average daily 499 

baseline emission respectively in the sector and nation being considered (CO2 is in units of MtCO2 500 

day-1). Similar equations are used for international aviation and shipping, where the global emission 501 

from aviation or shipping is ratioed by the globally averaged CO2 emission change in the 502 

corresponding sum over the national change in sectors from the Le Quéré et al. data. The resulting 503 

changes are shown in Figures 2,3, S4 and S5. Note that only fossil fuel CO2 emissions were accounted 504 

for in Le Quéré et al., so the fractional changes refer to fossil fuel only. Agricultural and waste 505 

emissions are included in non-CO2 analyses but assumed not to change. This leads to a reduced 506 

fraction of global emissions for non-CO2 gases being covered and smaller emission changes for many 507 

species (Figure 3). The assumption that a national sector’s emission change will respond uniformly is 508 

obviously an important one. There is limited data to explore this assumption, although Liu et al.2 and 509 

Le Quéré et al. discuss how well it applies for CO2 in specific sectors in specific countries. Figures 510 

ED1 and S2 and the discussion in methods section a) shows that Google mobility data is unlikely to 511 

be a perfect proxy for NOx trends in the UK but at least would be expected to be strongly correlated 512 

and close to the right magnitude. This is also supported by the NO2 analysis in Figures 3 and S7. Our 513 

approach of assuming  national sectors change in the same way may partly explain why timeseries for 514 

CO2 and non-CO2 species evolve in a similar fashion in Figure 2a. However, Figure S5 shows that 515 

sectors do evolve differently for different species. To examine this, we performed substitution tests 516 



21 

where we crudely made large changes to specific national sector emissions timeseries or set them to 517 

zero. These tests suggested that the similar patterns seen across species in Figure 2a is more a product 518 

of national restrictions evolving more-or-less together than it is of non-varying abatement choices 519 

within a national sector. 520 

c) Emission scenarios 521 

The generated datasets above firstly combine sector specific mobility changes referenced to the 3 522 

January to 6 February 2020 period, with national lockdown measures. The method then uses 523 

published national emission inventories for either 2019 (for CO2) or 2015 (for non-CO2) to derive 524 

absolute emission changes which would also be relative to the early 2020 period. This reference is 525 

then projected out to 2030 to form an emission baseline representing current Nationally Determined 526 

Contributions (NDCs)15. To explore the temperature response to emission changes relative to this 527 

baseline, the bottom-up emission change estimates from the first four months of 2020 have been 528 

extended according to the scenarios illustrated in Table 1. Four scenarios are explored: “two-year 529 

blip”, “fossil-fuelled recovery”, “moderate green stimulus”, and “strong green stimulus”. The “two-530 

year blip” scenario assumes climate action to continue at the same level of ambition as implied by the 531 

current NDCs15 until 2030 – approximated by the implied global carbon price consistent with the 532 

emission reduction resulting from the NDCs. The “fossil-fuelled recovery” follows a path that lies 533 

10% higher than the NDC path. The “moderate green stimulus” assumes about a 35% reduction in 534 

total global greenhouse gas emissions relative to the baseline NDC path and a further decline of 535 

global CO2 emissions towards zero emissions in 2060. The Kyoto emissions totals of these NDC 536 

baskets are broken into components using the Silicone package35 by interpolating between the 537 

MESSAGE-GLOBIOM implementations of the middle-of-the-road Shared Socioeconomic Pathway 538 

(SSP2) scenarios36,37
.
 Where CO2 is defined directly, we interpolate from that instead. The “strong 539 

green stimulus” assumes about a 52% reduction in total global greenhouse gas emissions relative to 540 

the baseline NDC path and a further decline of global CO2 emissions towards zero emissions in 2050. 541 

Non-CO2 emissions are estimated by interpolating between the sustainability Shared Socioeconomic 542 
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Pathway (SSP1) scenarios implemented by the IMAGE model38. Scenarios are given as emissions of 543 

39 species from anthropogenic and natural sources and volcanic and solar radiative forcing (see Smith 544 

et al.22 for details). Only the ten species evaluated in this paper are changed. The original dataset gives 545 

annual emissions from 1750-2100, and these are linearly interpolated to monthly values, to provide 546 

higher time resolution for the subsequent calculations of effective radiative forcing and temperature. 547 

d) Comparison to NO2 observations 548 

Hourly observations of NO2 are taken from the OpenAQ database (https://openaq.org/) between 549 

January 1, 2018 and May 3, 2020, giving 1,747,189 hourly observations from 2,873 sites around the 550 

world. For each observation, a spatially and temporally co-located model value for the 551 

meteorological, chemical and emissions state is acquired from the NASA GEOS Composition 552 

Forecast (GEOS-CF) system. GEOS-CF integrates the GEOS-Chem chemistry model into the GEOS 553 

Earth System Model39 providing global hourly analyses of atmospheric composition at 25x25 km2 554 

spatial resolution in near real-time. Anthropogenic NOx emissions are prescribed using monthly 555 

HTAP bottom-up emissions40, with annual scale factors based on OMI satellite data applied to it to 556 

account for year-over-year changes. GEOS-CF does not account for emission reductions related to 557 

COVID-19, providing a business-as-usual estimate of NO2 that serves as a reference baseline for 558 

surface observations. For each site, a function describing the time dependent model bias (observed 559 

value - modelled value) is developed using the 2018 and 2019 observations based on the XGBoost 560 

algorithm41, with the model meteorological, chemical and emissions state as the dependent variables. 561 

50% of this data is used for training, and 50% used for testing.  For 2020, we predict the concentration 562 

of NO2, by taking the model output time series of NO2 at each station and add the bias predicted by 563 

our trained algorithm. This then provides a counterfactual for the NO2 concentration had COVID-19 564 

restrictions not been put into place. We calculate the ratio between the actual concentration and that 565 

predicted for each site and then take the mean across all sites within a country. These data are 566 

compared to 26 country level emission estimates in Figure S7, and the country-mean reductions 567 

compared to that predicted from the mobility data is shown in Figure 2b. 568 
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e) Surface temperature change estimates 569 

From the emission scenarios in Table 1, global averaged effective radiative forcing (ERF) and near-570 

surface air temperature are computed. First, ERFs are calculated using the FaIR version 1.5 model and 571 

the methodology outlined in Smith et al.22 for 13 different forcing components. Uncertainties are 572 

estimated by 10,000 Monte Carlo samples of relative ERF uncertainties, using ranges based on IPCC 573 

AR542, see Smith et al.22 for details. NOx emissions affect direct forcing from nitrate aerosol and 574 

tropospheric ozone radiative forcing. Additionally, the ERF from aviation contrails and contrail-575 

induced cirrus is assumed to scale with NOx emissions from the aviation sector. 576 

The two layer energy balance model of Geoffroy et al.43,44 including efficacy of deep ocean heat 577 

uptake is used to translate these ERF time series into surface temperature estimates. The five free 578 

parameters in this model are chosen to match individual CMIP6 model behaviour by fitting the 579 

parameters to 4xCO2 abrupt simulations in 35 models; these parameter fits are shown in Table S3. To 580 

estimate uncertainties, parameters corresponding to an individual model are picked randomly 10,000 581 

times and paired to a sampled ERF parameter range for each of the 13 ERF timeseries. The two-layer 582 

model is then run with each of these parameter sets to make a surface temperature projection. The 583 

resulting plume of possible projections is then compared to Cowtan and Way33 observed  surface 584 

temperature record. The Cowtan and Way data has been adjusted to allow for the fact the near-surface 585 

air temperature has warmed more than the sea surface temperature. To make this adjustment, the 586 

CMIP6 ratio of near-surface air temperature to blended near surface air temperature and surface ocean 587 

temperatures is made over the historical period and found to converge towards 8% in recent years45. 588 

This is then used to scale the observations upwards. The root mean square error of the simple model 589 

projections are then compared to these scaled observations over 1850-2019 inclusive. The goodness 590 

of fit is then used to provide projected probability distribution based on a weighted average of the 591 

goodness of fit. This follows the method outlined in Knutti et al.46, with the exception that we do not 592 

downweight ensemble members based on independence. 593 

f) Testing the ozone forcing parameterisation 594 
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The FaIRv1.5 model used above adopts a simple global annual mean emission-forcing relationship for 595 

tropospheric ozone which may not capture the seasonal and regional nuances of the atmospheric 596 

chemical response to the changes in NOx and other emissions. To test this a second ozone 597 

parameterisation was employed based upon source-receptor relationships from models that 598 

participated in the Task Force on Hemispheric Transport of Air Pollutants (TF-HTAP) project47. The 599 

parameterisation28,29 emulates the ozone response in models to applied perturbations in ozone 600 

precursor emissions (NOx, CO and NMVOCs) and global CH4 abundance. For emission perturbations 601 

in CO and NMVOCs a linear scaling factor is used whereas a non-linear factor is used for changes in 602 

NOx and CH4. The 2020 annual mean tropospheric ozone radiative forcing and annual mean 603 

tropospheric ozone burden change deduced from this parameterisation were -0.029 Wm-2 and 7.5 Tg 604 

for the high emission scenario used here. 605 
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Apple LLC mobility data is available from  https://www.apple.com/covid19/mobility  656 
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https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR 658 

Cowtan & Way temperature observations are available from https://www-659 

users.york.ac.uk/~kdc3/papers/coverage2013/had4_krig_annual_v2_0_0.txt 660 

Le Quéré et al. (2020) emissions data are available from https://www.icos-cp.eu/gcp-covid19 661 
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in this study/project have been provided by the Global Modeling and Assimilation Office (GMAO) at 663 

NASA Goddard Space Flight Center and is available from 664 

https://opendap.nccs.nasa.gov/dods/gmao/geos-cf/assim.  665 

 666 

Correspondence and requests for materials should be addressed to Piers Forster 667 

(p.m.forster@leeds.ac.uk) 668 

Acknowledgements 669 

Funding was provided by the European Union’s Horizon 2020 Research and Innovation Programme 670 

under grant agreement nos. 820829 (CONSTRAIN) and UKRI NERC grant NE/N006038/1 671 

(SMURPHS). CDJ was supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate 672 

Programme (GA01101) and CRESCENDO (EU Project 641816). CLQ was supported by the Royal 673 

Society (grant no. RP\R1\191063), and the European Commission H2020 4C grant (no. 821003). MJE 674 

is grateful for computational support from the University of York’s HPC service (Viking). Stella 675 

Forster is thanked for proofreading the paper and for useful ideas. Four reviewers are thanked for 676 

helpful comments. 677 

 678 

 679 

 680 



27 

Figure Legends 681 

 682 

Figure 1. Comparison of sector emission trends. a)  Population weighted histogram of surface 683 

transport trends from Apple driving data, Google transit mobility data and the high estimate from Le 684 

Quéré et al. for available countries in the different datasets averaged over April 2020. b) Violin plots 685 

showing the distribution, minimum, maximum and median levels of national trends weighted by CO2 686 

emissions for the Google and Le Quéré datasets and the differences between the datasets evaluated 687 

over April 2020. c) Estimates of emission changes for the datasets across four sectors for April 2020 688 

and the sum of the four sectors. The CO2 emission estimates from Liu et al.2 are also shown on this 689 

panel. In Figures 1b and 1c data is shown for 60 countries with overlapping data in the Google and Le 690 

Quéré datasets (representing 60% of global CO2 emissions). In Figure 1c, Apple data are for 57 691 

countries, covering 58% of the global emissions. The Liu et al.2 estimate is for a global emission 692 

change. The high estimate from Le Quéré et al. data is used in Figures 1a and 1b. Figure 1c shows the 693 

Le Quéré et al. low and high estimates as the range of the error bar on the mid-level estimate. For 694 

baselines, see methods section a.  695 

 696 

Figure 2. Species derived changes from COVID-19 restrictions. a) Percentage globally averaged 697 

emission changes for the considered species as a function of day in the year of 2020. The changes are 698 

for fossil fuel CO2 emissions and total anthropogenic emissions from the other sectors.  b) A 699 

breakdown of the April 2020 average global emission reductions compared to a recent year for the 700 

different species. The breakdown is for major emission-nations, including international aviation. 701 

Global percentage emission changes from the baseline are shown on the x-axis (see details in Figure 702 

S5). Trends are relative to 2019 for CO2, for the other species they are relative to 2015. The low, mid 703 

and high estimates of the total changes based on Le Quéré et al.3 and Liu et al.2 trends are shown for 704 

comparison as the black circles, error bars and red triangle.  705 

 706 

Figure 3. Comparison with observations. Country level comparison of the mean predicted NOx 707 

emissions change against the meteorologically-normalized observed mean fractional reduction in NO2 708 
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concentration for the period 1/1/2020 to 11/5/2020. Circle size indicates the mass of NOx emitted each 709 

day for that country from EDGAR emissions. Blue line shows the line of best fit (orthogonal 710 

regression) excluding China and India shown in red, weighted by the number of observations in those 711 

countries, with the shaded area showing the 95% confidence interval. Not all countries are labelled. 712 

Brazil shows an increase in NO2 concentrations and is not shown but is included in the statistical fit 713 

(see Figure S7).   714 

 715 

Figure 4. Effective radiative forcing and temperature response. Results are for the two-year blip 716 

pathway compared to the baseline pathway. The response is broken down by the major forcing 717 

contributors, as emulated by the FaIRv1.5 model. 5%–95% Monte-Carlo sampled uncertainties are 718 

shown and weighted according to their historical fit to the surface temperature record (see methods 719 

section e. 720 

 721 

Figure 5. Longer term climate response. a) Emissions of CO2, b) CO2 concentrations, c) the surface 722 

air temperature response for the what-if pathways from Table 1, emulated by the FaIRv1.5 model. 723 

The baseline pathway is also plotted, but largely obscured by the two-year-blip pathway.  5%–95% 724 

Monte-Carlo sampled uncertainties are shown and weighted according to their historical fit to 725 

observations33 shown in panel c (see methods section e). 726 

 727 



b) April 2020 national changes in emissions by sectorsa) April 2020 changes in mobility 



a) Febuary - June 2020 emission change by species b) regional contributions to global emission change

error bars represent low,min and high values

derived from Le Quéré  et al. Red arrow is Liu et al. estimate 
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