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ABSTRACT

We study tidal dissipation in stars with masses in the range 0.1–1.6 M⊙ throughout their evolution, including turbulent effective

viscosity acting on equilibrium tides and inertial waves (IWs) in convection zones, and internal gravity waves in radiation

zones. We consider a range of stellar evolutionary models and incorporate the frequency-dependent effective viscosity acting

on equilibrium tides based on the latest simulations. We compare the tidal flow and dissipation obtained with the conventional

equilibrium tide, which is strictly invalid in convection zones, finding that the latter typically overpredicts the dissipation by a

factor of 2–3. Dissipation of IWs is computed using a frequency-averaged formalism accounting for realistic stellar structure for

the first time, and is the dominant mechanism for binary circularization and synchronization on the main sequence. Dissipation

of gravity waves in the radiation zone assumes these waves to be fully damped (e.g. by wave breaking), and is the dominant

mechanism for planetary orbital decay. We calculate the critical planetary mass required for wave breaking as a function of

stellar mass and age, and show that this mechanism predicts destruction of many hot Jupiters but probably not Earth-mass planets

on the main sequence. We apply our results to compute tidal quality factors following stellar evolution, and tidal evolutionary

time-scales, for the orbital decay of hot Jupiters, and the spin synchronization and circularization of binary stars. We also provide

predictions for shifts in transit arrival times due to tidally driven orbital decay of hot Jupiters that may be detected with NGTS,

TESS, or PLATO.

Key words: planet–star interactions – binaries: close – stars: interiors – stars: rotation – stars: solar-type.

1 IN T RO D U C T I O N

Tidal interactions between planets and their host stars, and between

the stars in close binaries, are important in driving long-term spin

and orbital evolution in these systems (e.g. Mazeh 2008). For solar-

type stars, there is observational evidence for tidally driven orbital

circularization (Zahn & Bouchet 1989; Meibom & Mathieu 2005;

Van Eylen, Winn & Albrecht 2016; Nine et al. 2020) and spin

synchronization (Meibom, Mathieu & Stassun 2006; Lurie et al.

2017). There is also evidence for tidal evolution of the eccentricities

of binaries containing low-mass (Triaud et al. 2017) and evolved

stars (Verbunt & Phinney 1995; Price-Whelan & Goodman 2018;

Beck et al. 2018). Very recently, the first exciting indications of

tidally driven orbital decay of some of the shortest period hot Jupiters

(Maciejewski et al. 2016; Patra et al. 2017; Bouma et al. 2019; Yee

et al. 2020) have been revealed based on transit timing variations

over decadal time-scales (Birkby et al. 2014; Wilkins et al. 2017).

These observations constrain the mechanisms of tidal dissipation in

stars.

The mechanisms of tidal dissipation in low-mass and solar-type

stars with convective envelopes have been studied theoretically for

several decades, but significant uncertainties remain (e.g. Zahn 2008;

Mathis & Remus 2013; Ogilvie 2014). The tidal response in a star

due to small-amplitude tidal forcing is usually decomposed into two

⋆ E-mail: A.J.Barker@leeds.ac.uk

components: an equilibrium and a dynamical tide, following the pio-

neering work of Zahn (1966, 1970, 1975, 1977), and the dissipation

of each component is then studied separately. The equilibrium tide

is a large-scale non-wave-like quasi-hydrostatic deformation of the

star that represents the very low frequency response of the body

to tidal forcing. The associated time-dependent flow is believed

to be dissipated through its interaction with turbulent convection

(Zahn 1966, 1989), or possibly through its own instabilities.1 The

dynamical tide is a wave-like component that exists in any region of

a star that supports waves (e.g. Cowling 1941; Zahn 1975). This is

usually thought to primarily consist of internal gravity waves (IGWs,

restored by buoyancy and modified by rotation) in radiation zones

and inertial waves (IWs, restored by Coriolis forces) in convection

zones. This component of the tide is dissipated by non-adiabatic

effects such as radiative damping (Zahn 1975), non-linear effects

such as wave breaking (Barker & Ogilvie 2010; Barker 2011), or

possibly through its interaction with turbulent convection (Terquem

et al. 1998; Ogilvie & Lin 2007) or magnetic fields (Lin & Ogilvie

2018).

1These include nonlinear tidal effects such as the elliptical instability in

convection zones (Barker & Lithwick 2013; Barker 2016a) and similar

instabilities in radiation zones (Weinberg et al. 2012; Vidal et al. 2018), which

both require large tidal amplitudes to operate, and are potentially important

for the very shortest orbital periods.
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Tides in stars 2271

It is commonly believed that the dominant tidal mechanism in

solar-type stars is the action of convective turbulence in dissipating

equilibrium tidal flows (Zahn 1966, 1977, 1989). The turbulence is

thought to act as an effective viscosity (νE, i.e. much larger than

the microscopic viscosity) in damping this large-scale tidal flow.

However, an important objection is that tides are often much faster

than the convection, that is, the tidal frequency ω often exceeds

the dominant convective turnover frequency ωc, which is thought

to reduce the efficiency of this mechanism in dissipating the tide

(Zahn 1966; Goldreich & Nicholson 1977; Goodman & Oh 1997;

Ivanov & Papaloizou 2004). The magnitude of the high-frequency

reduction which applies when ω/ωc ≫ 1 has however been disputed

for several decades using phenomenological arguments, with Zahn

(1966) suggesting that νE ∝ (ωc/ω), and Goldreich & Nicholson

(1977) suggesting νE ∝ (ωc/ω)2. This mechanism has remained very

difficult to study theoretically however, and it is only recently that

these scaling laws have been tested numerically (e.g. Penev et al.

2007; Penev, Barranco & Sasselov 2009; Ogilvie & Lesur 2012;

Braviner 2015; Duguid, Barker & Jones 2020a; Duguid, Barker

et al. 2020b; Vidal & Barker 2020a,b). Recent work has provided

strong evidence in favour of νE ∝ (ωc/ω)2 for ω/ωc ≫ 1 (Ogilvie &

Lesur 2012; Braviner 2015; Duguid et al. 2020a,b; Vidal & Barker

2020a,b), even if this may not be for the reasons originally proposed

by Goldreich & Nicholson (1977). This means that convective

turbulence is probably much less efficient at dissipating large-scale

tidal flows than is commonly believed (cf. Zahn & Bouchet 1989;

Zahn 2008). In addition, new regimes of frequency dependence have

also been uncovered for intermediate frequencies 10−2 � ω/ωc � 1–

5, which remain to be fully explored (Duguid et al. 2020b; Vidal &

Barker 2020a,b).

Furthermore, the conventional equilibrium tidal flow (Zahn 1966,

1989; Remus, Mathis & Zahn 2012) is only valid in radiation zones,

which are stably stratified, and does not correctly describe the tidal

flow in convection zones, which are usually approximately neutrally

(adiabatically) stratified (Goodman & Dickson 1998; Terquem et al.

1998; Ogilvie 2014). The correct tidal flow in convective regions

can be calculated using the conventional equilibrium tide together

with a non-wave-like contribution to the dynamical tide (Goodman &

Dickson 1998), or somewhat more cleanly, by defining an equilib-

rium tide that is formally valid in convection zones (Terquem et al.

1998; Ogilvie 2013). It is essential to determine how the damping

of the conventional equilibrium tide may differ from that of the

correct equilibrium tide in convection zones because the former has

been applied in many works previously despite being strictly invalid.

Indeed, the consequences of this distinction have not yet been fully

explored. In this paper, we revisit this problem by comparing the

flow and resulting dissipation from the conventional equilibrium tide

(e.g. Zahn 1989) with the correct equilibrium tide (Terquem et al.

1998; Ogilvie 2013). To do so, we consider the action of convective

turbulence in damping these large-scale tidal flows by applying the

latest prescriptions for the effective viscosity (Duguid et al. 2020b).

We will show that the conventional equilibrium tide overpredicts the

dissipation by typically a factor of 2–3, and therefore we advocate

against using it to infer the rates of astrophysical tidal evolution.

In addition, using the frequency reduction of Zahn (1966) together

with the conventional equilibrium tide can (artificially) enhance the

dissipation by several orders of magnitude, therefore potentially

leading to the incorrect interpretation of observations.

The dynamical tide in convection zones consists of tidally excited

IWs, restored by the Coriolis force, if the forcing frequency is less

than twice the spin frequency of the star (e.g. Ogilvie & Lin 2007;

Papaloizou & Ivanov 2010; Rieutord & Valdettaro 2010; Ivanov,

Papaloizou & Chernov 2013; Ogilvie 2013; Favier et al. 2014). This

mechanism can be important for stellar spin synchronization and

circularization (Ogilvie & Lin 2007), as well as for spin–orbit align-

ment (Barker & Ogilvie 2009; Lai 2012; Barker 2016b; Lin & Ogilvie

2017; Damiani & Mathis 2018), since certain tidal frequencies are

then typically smaller than twice the rotation frequency. These waves

are thought to be dissipated through their interaction with turbulent

convection – though it is unclear whether this mechanism should

apply to very short-wavelength waves – or magnetic fields (Lin &

Ogilvie 2018; Wei 2018; Astoul et al. 2019), or by non-linear effects

(Goodman & Lackner 2009; Favier et al. 2014). This mechanism

does not currently operate in the slowly rotating host stars of most

short-period hot Jupiters, and so cannot explain their observationally

inferred orbital decay rates.

In this paper, we compute the dissipation of IWs using a frequency-

averaged formalism (Ogilvie 2013) which accounts for the realistic

structure of the star for the first time. This builds upon prior

work which has adopted a simplified piecewise homogeneous two-

layer stellar model (Mathis 2015; Bolmont & Mathis 2016; Gallet

et al. 2017; Benbakoura et al. 2019), which we compare with the

more realistic model. The frequency-averaged dissipation gives an

indication of the typical magnitude of the tidal dissipation due to

IWs. We note that the actual dissipation may be strongly frequency

dependent (Savonije & Papaloizou 1997; Ogilvie & Lin 2007;

Rieutord & Valdettaro 2010; Ogilvie 2013) and could in principle

differ from the frequency-averaged measure by up to 2–3 orders

of magnitude for certain tidal frequencies (based on prior results).

However, the frequency-averaged measure is indicative of the typical

level of dissipation resulting from these waves, and is much more

straightforward to compute.

In radiation zones, which are stably stratified, IGWs (or ‘g modes’)

are excited by tidal forcing. In stars with radiative cores, these

waves are primarily excited at the radiative/convective interface and

subsequently propagate to the centre of the star. Near the centre, these

waves become geometrically focused and may achieve sufficiently

large amplitudes to break or undergo weaker non-linear interactions

(Goodman & Dickson 1998; Terquem et al. 1998; Ogilvie & Lin

2007; Barker & Ogilvie 2010; Barker 2011; Barker & Ogilvie

2011; Weinberg et al. 2012; Essick & Weinberg 2016; Sun et al.

2018). Wave breaking occurs if the waves locally overturn the

stratification, and when this occurs they are then efficiently absorbed

(Barker & Ogilvie 2010; Barker 2011), resulting in efficient tidal

dissipation. The critical planetary mass required for wave breaking is

approximately 3 MJ (Jupiter masses) in the current Sun, but it strongly

depends on the mass and age of the star. In F-type stars (which have

masses larger than about 1.1 M⊙) possessing convective cores, this

mechanism may be unable to operate as effectively because the waves

cannot reach the centre of the star (Barker & Ogilvie 2009; Barker

2011), and so they may not reach large enough amplitudes to break

(this has been proposed to explain the survival of WASP-18b, Wilkins

et al. 2017). One of the goals of this paper is to determine the critical

planetary mass required for wave breaking as a function of stellar

mass and age, including in F-stars where these waves cannot reach

the centre of the star. We will also study the variation in the resulting

tidal dissipation, if these waves are fully damped, as a function of

stellar mass and age.

Dissipation of gravity waves in radiative cores is probably re-

sponsible for driving orbital decay of hot Jupiters (Barker & Ogilvie

2010; Barker 2011; Chernov, Ivanov & Papaloizou 2017). Indeed,

the resulting tidal dissipation can explain the observationally inferred

orbital decay rate of WASP-12b (Maciejewski et al. 2016; Patra et al.

2017; Maciejewski et al. 2018; Yee et al. 2020; Patra et al. 2020)

MNRAS 498, 2270–2294 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
8
/2

/2
2
7
0
/5

9
0
0
5
3
5
 b

y
 U

n
iv

e
rs

ity
 o

f L
e
e
d
s
 u

s
e
r o

n
 3

0
 N

o
v
e
m

b
e
r 2

0
2
0



2272 A. J. Barker

if the waves are fully damped (Chernov et al. 2017; Weinberg et al.

2017; Bailey & Goodman 2019). Whether or not these waves should

be fully damped likely depends strongly on the structure of the star

(and therefore its mass and age). In particular, wave breaking may

explain why these waves should be fully damped if WASP-12 is a

subgiant with a radiative core (Weinberg et al. 2017), but this may

not be compatible with the observed stellar properties (Bailey &

Goodman 2019). We will revisit this issue later in this paper. We

will also make predictions for shifts in transit arrival times due to

tidally driven planetary orbital decay as a result of this mechanism,

as a function of stellar mass and age. Such predictions can be viewed

as essential preparation for the PLATO mission (e.g. Rauer et al.

2014), and they provide predictions which may be tested with, for

example, NGTS, TESS or PLATO.

Throughout this paper, we will compute (modified) tidal quality

factors Q
′

as a way of representing the dissipation due to each

mechanism, and we will only consider tides with spherical harmonic

degrees and azimuthal wavenumbers l = m = 2. We define this

quantity formally by

Q′ =
3

2k2

2πE0
∮

D dt
, (1)

where E0 is the maximum energy stored in the tide, D is the

dissipation rate, k2 is the second-order potential Love number (k2 =
3/2 for a homogeneous fluid body), and the integral is over one

tidal period. Q
′

is an inverse measure of the dissipation, so that

highly dissipative stars in a given application have relatively small

Q
′
values. The quantity Q

′
is more useful than the tidal quality factor

Q = 2k2Q
′
/3 because the quantity Q/k2 appears together in the tidal

evolutionary equations, and in practice we do not wish to separately

compute k2. An alternative representation is to use the imaginary

parts of tidal love numbers (e.g. Ogilvie 2014), but here we prefer to

present Q
′

due to its wider use in the community (where Im[k2] =
3/(2Q

′
)). It should be remembered that a given star does not possess

a ‘value of Q
′
’, and in fact Q

′
varies significantly depending on

rotation, tidal period, tidal amplitude, as well as the stellar mass and

age. The main aim of this paper is to present the variation in this

quantity as a function of these input parameters to the best of our

current theoretical understanding.

Attempts have been made to constrain the tidal dissipation

occurring in planetary host stars and short-period binaries using

population-wide statistical analysis (Collier Cameron & Jardine

2018; Penev et al. 2018; Hamer & Schlaufman 2019; Hwang &

Zakamska 2020). These could provide important constraints on tidal

dissipation, though we caution that we theoretically expect there to

be significant variation in the rates of tidal dissipation as a function

of stellar mass, age and rotation, in addition to the planetary mass

and orbital period. This suggests that individual systems, rather

than entire populations, would provide a more direct comparison

of tidal theory with observations. However, the results of Hamer &

Schlaufman (2019) are particularly relevant for this paper. They

found that hot Jupiter hosts have smaller Galactic velocity dispersion

than stars without such planets, indicating that hot Jupiter hosts are

on average younger than the field population. This strongly suggests

that tidal interactions cause hot Jupiters to be destroyed while their

host stars are on the main sequence, which requires Q
′
� 107 in hot

Jupiter hosts. In this paper, we will demonstrate that the gravity wave

breaking mechanism predicts such small Q
′
for short orbital periods,

and that the closest hot Jupiters should spiral into their stars as their

stars evolve.

The key question addressed in this work is: how does tidal

dissipation in the convective and radiative regions of low-mass and

solar-type stars vary as a function of stellar mass, age, rotation,

and tidal period? To answer this question, we compute the rates

of tidal dissipation resulting from the equilibrium tide and IWs

in convection zones, and IGWs in radiation zones, following the

evolution of low-mass and solar-type stars. We consider masses in

the range 0.1–1.6 M⊙ and use stellar models computed with the MESA

stellar evolution code (Paxton et al. 2011, 2013, 2015, 2018, 2019).

The structure of this paper is as follows. In Section 2, we describe

how equilibrium tides are computed in convection and radiation

zones, and our implementation of the dissipation of this component

due to its interaction with turbulent convection. We then describe

how we compute the dissipation of the dynamical/wave-like tide in

Section 3, including IWs in convection zones in Section 3.1 and

IGWs in radiation zones in Section 3.2. We present our results for

the dissipation of the correct equilibrium tide, and how it compares

with the conventional equilibrium tide in Section 4. In Fig. 3, we

present the tidal dissipation due to this mechanism as a function of

tidal period, stellar mass, and age. We then present our results for the

dissipation of IWs in convection zones in Section 5, also comparing

our results with the simplified two-layer model. In Section 6, we

present our results for the dissipation of gravity waves in radiation

zones, and the critical planetary masses required for wave breaking

as a function of stellar mass and age. We apply our results to predict

shifts in transit times due to tidally driven orbital decay of hot

Jupiters, and apply our results to interpret existing observations,

and make some new predictions for these systems, in Section 7. We

briefly apply our results to binary stars in Section 8, and we finally

conclude in Section 9.

2 EQU I LI BRI UM (NON-WAVE-LI KE) TI DES

We consider a slowly rotating spherically symmetric star of radius R

in hydrostatic equilibrium, such that

∇p = ρg = −ρ∇�, (2)

where p(r) is the pressure, ρ(r) is the density, g = −g(r)er is the

gravitational acceleration, and �(r) is the gravitational potential

satisfying Poisson’s equation

∇2� = 4πGρ. (3)

We consider the star to rotate at the rate � = 2π /Prot, where Prot is

the rotation period, and define the dynamical frequency

ωdyn =
√

GM

R3
=

2π

Pdyn

, (4)

where Pdyn is the dynamical time-scale, as well as the parameter

ǫ2
� =

�2

ω2
dyn

=
P 2

dyn

P 2
rot

, (5)

Note that ǫ2
� ≪ 1 is implicitly assumed since we ignore centrifugal

deformation of the star. We adopt standard spherical polar coordi-

nates (r, θ , φ) centred on the star (with θ = 0 along the rotation axis)

and we define the buoyancy frequency, or Brunt–Väisälä frequency,

N, by

N2 = g
d

dr
ln

(

p
1

Ŵ1

ρ

)

, (6)

where Ŵ1 = (∂ln p/∂ln ρ)s, and the subscript s refers to constant

specific entropy. We consider stars with masses in the range 0.1–

1.6 M⊙ of spectral types MKGF, which are either fully convective

MNRAS 498, 2270–2294 (2020)
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Tides in stars 2273

or contain a mixture of radiative (N2 > 0) and convective (N2 ≈ 0)

regions (cores and/or envelopes).

We perturb the star with a single tidal potential component

�(r, t) = Re
[

�l(r)Ym
l (θ, φ)e−iωt

]

, (7)

which could be due to either an orbiting planet or another star in

a close binary system, where � l = Arl and A will be specified

in a given application below, and Ym
l (θ, φ) is an orthonormalized

spherical harmonic. Throughout this paper, we will focus on the

l = m = 2 component of the tide, since this is typically the most

important one. The tidal frequency is ω, which will be specified

when discussing specific applications in Sections 7 and 8. We also

define the tidal period Ptide = 2π /ω. The corresponding Eulerian

gravitational potential perturbation is

�′(r, t) = Re
[

�l(r)Ym
l (θ, φ)e−iωt

]

, (8)

and we use a similar form for other variables.

The equilibrium tide is computed by assuming the body remains

in hydrostatic equilibrium, meaning that Eulerian perturbations to

pressure, density, and gravitational potential are determined by

p′ = −ρ(�′ + �), (9)

ρ ′ = − dρ

dp
ρ(�′ + �), (10)

and

∇2�′ = −4πG
dρ

dp
ρ(�′ + �), (11)

inside the star (and ∇2�
′ = 0 outside). The latter can be written

1

r2

d

dr

(

r2 d�′
l

dr

)

−
l(l + 1)

r2
�′

l + 4πG
dρ

dp
ρ(�′

l + �l) = 0, (12)

where �′
l must satisfy the boundary conditions

d ln �′
l

d ln r
= l at r = 0, (13)

d ln �′
l

d ln r
= −(l + 1) at r = R. (14)

The corresponding equilibrium tidal displacement field ξ e =
ξe,r er + ξ e,h (and therefore tidal velocity field ue = ∂ξ e/∂t) can be

computed in radiative regions (in which N2 > 0) by

ξe,r = −
�′ + �

g
, and ∇ · ξ e = 0, (15)

where ξ e,h · er = 0. This is the conventional equilibrium tide (Zahn

1966, 1989; Remus et al. 2012) and we will refer to it using

a subscript e. This equilibrium tide solution does not apply in

convective regions (with N2 ≈ 0) however, and we must instead

compute the displacement in a different manner (Terquem et al.

1998; Goodman & Dickson 1998; Ogilvie 2014).

In a convective region with efficient convection such that it is

adiabatically stratified (N2 = 0), the low-frequency equilibrium tide

is irrotational,2 that is, ∇ × ξ = 0 (Terquem et al. 1998; Goodman &

Dickson 1998). This property is not satisfied by the conventional

equilibrium tide. Instead, the tidal displacement for the correct

2We have implicitly neglected Coriolis forces in computing the equilibrium

tide here, which is reasonable if ω2 ≫ 4�2 (Ogilvie 2014). When ω2 ∼ 4�2,

IWs are also excited, which we will include in Section 3.1.

equilibrium tide is determined by the solution (subject to appropriate

boundary conditions) of

∇ · (ρ∇X) =
dρ

dp
ρ
(

�′ + �
)

, (16)

where ξ nw = ∇X (Terquem et al. 1998; Ogilvie 2013), and we refer

to this component of the equilibrium tide using the subscript nw (for

‘non-wave-like’). After expanding X in terms of spherical harmonics,

this can be written as

1

r2

d

dr

(

r2ρ
dXl

dr

)

−
l(l + 1)

r2
ρXl = ρ

dρ

dp
(�′

l + �l). (17)

If there is a convective core, the boundary condition at the centre is

ξnw,r =
dXl

dr
= 0 at r = 0, (18)

and for all other boundaries of any convection zone,

ξnw,r =
dXl

dr
= ξe,r = −

�′ + �

g
, (19)

which also applies at r = R for a convective envelope. We solve

equations (12) and (17) in a given stellar model using a Chebyshev

collocation method, with a (large) number of points that is chosen to

ensure that the solutions are accurately computed.

We wish to point out that ξ e �= ξ nw in the interior of a convection

zone, in general. One aim of this paper is to explore the consequences

of adopting the correct form of the equilibrium tide (ξ nw) in con-

vection zones, compared with the conventional equilibrium tide (ξ e).

This is important because many papers have adopted ξ e in convection

zones instead of ξ nw, which is strictly incorrect and may lead to

misleading results. Note that we still ignore non-adiabatic effects,

which may be important near the surface in modifying horizontal

displacements there (Bunting, Papaloizou & Terquem 2019).

2.1 Viscous dissipation of the equilibrium tide

The equilibrium tide is thought to be dissipated through its interaction

with turbulent convective motions that act as an effective viscosity. To

compute the viscous damping of this flow in a given stellar model,

we must specify the turbulent effective viscosity νE(r), which is

accomplished by specifying the tidal frequency dependence of νE.

We assume an isotropic viscosity νE in this work, partly for simplicity

and partly because existing simulations do not support a strongly

anisotropic viscosity (Penev et al. 2009). The dynamic shear viscosity

is then μ(r) = ρ(r)νE(r), and we ignore any possible bulk viscosity.

The viscous dissipation of the equilibrium tide is computed by

Dν =
1

2
ω2

∫

r2μ(r)Dl(r) dr, (20)

where the integral is carried out numerically over the entire radial

extent of each convection zone in a given stellar model,

Dl(r) = 3

∣

∣

∣

∣

dξr

dr
−

�l

3

∣

∣

∣

∣

2

+ l(l + 1)

∣

∣

∣

∣

ξr

r
+ r

d

dr

(

ξh

r

)∣

∣

∣

∣

2

+(l − 1)l(l + 1)(l + 2)

∣

∣

∣

∣

ξh

r

∣

∣

∣

∣

2

, (21)

and we have defined

�l =
1

r2

d

dr

(

r2ξr

)

− l(l + 1)
ξh

r
, (22)

for the appropriate choice of ξ e or ξ nw, after each is expanded in

terms of the appropriate Ym
l e−iωt factors. The associated tidal quality
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factor is then (e.g Ogilvie 2014)

1

Q′
eq

=
16πG

3(2l + 1)R2l+1|A|2
Dν

|ω|
. (23)

2.1.1 Turbulent viscosity prescriptions

We adopt various prescriptions for the turbulent effective viscosity

acting on equilibrium tides in convection zones in this work. To apply

these in a given stellar model, we set νE to be equal to one of the

prescriptions that we will define below. We ignore any dissipation of

the equilibrium tide in radiation zones. First, we define

νMLT =
1

3
uclc, (24)

as the frequency-independent prediction from mixing-length theory

(MLT), where uc is the convective velocity and lc is the mixing-

length (both of these quantities are directly output from MESA). We

define ωc = uc/lc to be the convective frequency (absent a factor

of 2π ). Note that the factor of 1/3 is arbitrary but is adopted for

consistency with Zahn (1989) and many other works, which is based

on a naive expectation using the analogy with a microscopic viscosity

from kinetic theory. We also consider the following two conventional

frequency reductions (but smoothed) from Zahn (1989), which apply

for high-frequency tidal forcing

νZ = νMLT

(

1 +
(

ω

πωc

)2
)− 1

2

∼ νMLT

πωc

ω
as

ω

ωc

→ ∞ (25)

as the ‘Zahn’ reduction (Zahn 1966) and

νGN = νMLT

(

1 +
(

ω

ωc

)2
)−1

∼ νMLT

(ωc

ω

)2

as
ω

ωc

→ ∞, (26)

as the ‘Goldreich–Nicholson’ reduction (Goldreich & Nicholson

1977). Note that νMLT ≫ νZ ≫ νGN when ω ≫ ωc.

The latest numerical simulations exploring the interaction between

tidal flows and convection provide strong evidence in favour of the

quadratic (νGN) reduction at high frequencies (Ogilvie & Lesur 2012;

Braviner 2015; Duguid et al. 2020a,b; Vidal & Barker 2020a,b),

albeit with a different constant of proportionality than 1/3, and are

inconsistent with the linear (νZ) reduction for ω/ωc ≫ 1. In addition,

a new intermediate-frequency regime has been uncovered (Duguid

et al. 2020b; Vidal & Barker 2020a,b) for 10−2 � ω/ωc � 1–5. To

account for these latest results, we consider the continuous power-law

fit to the simulations of Duguid et al. (2020b),

νFIT = uclc

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

5 ( |ω|
ωc

< 10−2),

1
2

(

ωc

|ω|

)
1
2

( |ω|
ωc

∈ [10−2, 5]),

25√
20

(

ωc

|ω|

)2

( |ω|
ωc

> 5).

(27)

This is a fit to the upper envelope of simulation results for νE at high

frequencies, which provides the maximum dissipation (for reasons

that will become clear below). This appears to hold for a wide range of

Rayleigh numbers in a local model of convection, but the simulations

also indicate a possible tidal amplitude dependence for ω/ωc � 1,

which we do not explore further here. We caution though that the

intermediate regime may be somewhat model dependent (Vidal &

Barker 2020b).

10
-2

10
0

10
2

10
-3

10
-2

10
-1

10
0

10
1

Figure 1. Effective viscosity prescription νE (normalized by uclc) as a

function of tidal frequency ω normalized by the convective frequency ωc.

These prescriptions are evaluated at each radius in the convection zone of a

given stellar model.

Note that νFIT matches the scaling of νGN at high frequencies, but

with a different proportionality constant that implies more efficient

dissipation. This also predicts much more efficient dissipation at

very low frequencies than any of the previous prescriptions, since

the constant of proportionality is 5 rather than 1/3. However, we will

show that νFIT predicts much less efficient dissipation than νZ at high

frequencies. Note that when ω/ωc ≫ 1, the resulting Q′
eq ∝ |ω|−1

if we adopt νE = νMLT, Q′
eq = const, if we adopt νE = νZ, and

Q′
eq ∝ |ω|, if we adopt either νE = νGN or νE = νFIT.

These frequency-dependent prescriptions for νE are shown as

a function of tidal frequency in Fig. 1. Determining the correct

viscosity prescription (and if such a prescription can indeed by

applied at all) has long been considered as the Achilles’ heel of

tidal theory (Zahn 2008). While significant uncertainties remain in

our understanding of this mechanism, and much further work is

required, the latest numerical simulations have shed some light on

this matter, and we are now in a position to explore the consequences

of these new results.

3 DYNAMI CAL (WAV E-LI KE) TI DES

We consider the tidal excitation and dissipation of dynamical tides

in both convective and radiative regions to quantify their importance

for tidal dissipation.

3.1 Inertial waves in convection zones

We compute the tidal excitation of IWs using a frequency-averaged

formalism (Ogilvie 2013). This builds upon prior work (e.g. Mathis

2015; Bolmont & Mathis 2016; Gallet et al. 2017; Benbakoura et al.

2019) by accounting for the realistic structure of the star. The equilib-

rium tide in convection zones forces the dynamical tide through the

inertial terms in the equation of motion. If we were to solve the linear

tidal problem in the convection zone including rotation, we would

obtain a strongly frequency-dependent response (e.g. Savonije &

Papaloizou 1997; Ogilvie & Lin 2007; Rieutord & Valdettaro 2010).

Here, we instead compute the frequency-averaged dissipation, which

is a simplified way to quantify the typical dissipation resulting

from IWs in convection zones. This is a crude measure which is

nevertheless useful for population studies since it indicates the typical

level of dissipation due to these waves. The actual dissipation in an

MNRAS 498, 2270–2294 (2020)
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individual system at a particular tidal frequency may differ by up to

2–3 orders of magnitude (based on prior results), but is subject to

significant uncertainties, whereas the frequency-averaged measure

is probably robust. The waves are calculated assuming an impulsive

forcing and the specific dissipation mechanism (which may involve

an uncertain combination of non-linear effects, magnetic fields or

the interactions of these waves with turbulent convection) is not

explicitly studied.

The frequency-averaged dissipation due to these waves can be ob-

tained by applying an impulsive forcing. Following Ogilvie (2013),

the resulting pressure perturbation (∝ WlY
m
l ) in an inhomogeneous

body can be shown to satisfy

1

r2

d

dr

(

r2ρ
dWl

dr

)

−
l(l + 1)

r2
ρWl =

2im�

r

dρ

dr
Xl, (28)

which must satisfy boundary conditions of vanishing radial velocity

at the boundaries of each convection zone, i.e.

dWl

dr
=

2im�Xl

r
. (29)

We solve equation (28) in the same way as equations (12) and

(17). The associated tidal quality factor representing the frequency-

averaged dissipation of IWs is then

1

〈Q′
IW〉

=
32π2G

3(2l + 1)R2l+1|A|2
(El + El−1 + El+1), (30)

where

El =
1

4

∫

ρr2
(

|al |2 + l(l + 1)r2|bl |2
)

dr, (31)

El−1 =
1

4

∫

ρr2l(l − 1)r2|cl−1|2dr, (32)

El+1 =
1

4

∫

ρr2(l + 1)(l + 2)r2|cl+1|2dr, (33)

and

al =
2im�

r
Xl −

dWl

dr
, (34)

bl =
2im�

l(l + 1)r2

(

r
dXl

dr
+ Xl

)

−
Wl

r2
, (35)

cl−1 =
2�ql

r2

(

r
dXl

dr
+ (l + 1)Xl

)

, (36)

cl+1 = −
2�ql+1

r2

(

r
dXl

dr
− lXl

)

, (37)

ql =
1

l

(

l2 − m2

4l2 − 1

)

1
2

. (38)

These quantities are straightforward to evaluate numerically in a

given stellar model once we have solved equation (28) (together with

equations 12 and 17). Note that according to equation (30), we find

〈Q′
IW〉 ∝ ǫ−2

� ∝ �−2. This mechanism is therefore more efficient in

(relatively) rapidly rotating stars. This mechanism does not operate

at all if tidal frequencies are such that |ω| �≤ 2�, since IWs cannot

then be excited by tidal forcing. As a result, equation (30) should

only be applied to infer the typical level of tidal dissipation due to

IWs in circumstances when the relevant tidal frequencies satisfy |ω|
≤ 2�.

In this paper, we will also compare the dissipation obtained in

this way with the equivalent result from a simplified piecewise

homogeneous two-layer model (Ogilvie 2013), which has been

adopted in several previous papers (e.g Mathis 2015; Bolmont &

Mathis 2016; Gallet et al. 2017). In this simplified two-layer model,

which is meant to be applied only to stars with convective envelopes

and radiative cores, we can show that

1

ǫ2
�〈Q′

IW〉
=

200π

189

(

α5

1 − α5

)

(1 − γ )2 (1 − α)4

×
(

1 + 2α + 3α2 +
3

2
α3

)2 (

1 +
(

1 − γ

γ

)

α3

)

×
(

1 +
3

2
γ +

5

2γ

(

1 +
1

2
γ −

3

2
γ 2

)

α3 −
9

4
(1 − γ )α5

)−2

.

(39)

We have followed Mathis (2015) in defining α = rc/R, where rc is

the radius of the radiative/convective interface, β = Mc/M, where Mc

is the mass contained in the radiative core, and γ = α3(1 − β)/(β(1

− α3)), which is the ratio of mean densities of these two zones. The

form of equation (39) clearly demonstrates the strong dependence of

〈Q′
IW〉 on interior structure even in the two-layer model.

3.2 Internal gravity waves in radiation zones

We also calculate the tidal dissipation due to IGWs in radiation

zones. To do so, we follow, for example, Goodman & Dickson (1998,

who applied the ideas of Zahn 1975, 1977; Goldreich & Nicholson

1989 to solar-type stars), Ogilvie & Lin (2007) and Barker &

Ogilvie (2010) by assuming that these waves are launched from the

convective/radiative (envelope) interface and are then fully damped

in the radiation zone, before they can reflect from the centre of the

star or another boundary of the radiation zone. This ‘travelling wave’

regime gives the simplest estimate of the dissipation due to these

waves, and it can be viewed as giving the most efficient dissipation

in between resonances. This regime is expected to apply when the

tidal amplitude is sufficiently large that the waves break (Barker &

Ogilvie 2010; Barker 2011), but it is also relevant if the waves are

otherwise efficiently damped (e.g. by radiative diffusion). If tidal

forcing is resonant (or locked in resonance) with a global g mode,

enhanced dissipation over this estimate may occur. However, if the

tidal amplitude in resonance is sufficiently large, wave breaking may

be expected, and the fully damped regime may again be relevant.

To calculate the dissipation we must study the properties of the

wave launching region near the radiative/convective interface in these

stars. In stars with convective cores, we focus on the interface of the

convective envelope rather than the core, since this is found to give the

maximum dissipation in the mass range we consider. In the vicinity

of a radiative/convective interface at r = rc in a stellar model, we fit

the buoyancy frequency profile with the linear fit3

N2(r) =
(

r

rc

− 1

)

dN2

d ln r

∣

∣

∣

∣

r=rc

. (40)

The dynamical tide in the vicinity of r ∼ rc can then be shown

to satisfy Airy’s differential equation (Goodman & Dickson 1998),

and the energy flux in gravity waves can be calculated. We will

omit the details of this calculation, since they have been reported

elsewhere (e.g. Goodman & Dickson 1998; Barker 2011), and just

quote the resulting tidal quality factor due to gravity waves, which is

3For our purposes, we find the energy flux and resulting tidal dissipation to be

similar to fitting the profile with N2 ∝
√

rc − r for r ∼ rc in the convection

zone (Barker 2011), though this can give quantitatively different results in

some cases for short-period tidal forcing (see also Ivanov et al. 2013).
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determined from

1

Q′
IGW

=
2
[

Ŵ
(

1
3

)]2

3
1
3 (2l + 1)(l(l + 1))

4
3

R

GM2
G|ω|

8
3 . (41)

The quantities that depend on the radiative/convective interface

region in a particular stellar model are encapsulated in the quantity

G = σ 2
c ρcr

5
c

∣

∣

∣

∣

dN2

d ln r

∣

∣

∣

∣

− 1
3

r=rc

, (42)

which takes the value G⊙ ≈ 2 × 1047 kg m2 s2/3 for the current Sun

(in which σ c = −1.18). In this expression, ρc = ρ(rc), and the

parameter

σc =
ω2

dyn

A

∂ξd,r

∂r

∣

∣

∣

∣

r=rc

, (43)

where the derivative of the dynamical tide radial displacement ξ d, r

is determined by integrating the linear differential equation given in

equation (3) in Goodman & Dickson (1998). Note that σ c (and Q′
IGW,

for that matter) is defined such that it depends on the properties of

the star but not on A.

A numerical evaluation of equation (41) in a model of the current

Sun gives (Barker & Ogilvie 2010)

Q′
IGW ≈ 1.5 × 105

(

G⊙

G

)(

M

M⊙

)2 (
R⊙

R

)(

Ptide

0.5 d

)
8
3

, (44)

for a tidal period relevant for a hot Jupiter on a 1-d orbit around a

slowly rotating star. This is therefore an efficient mechanism of tidal

dissipation for such short tidal periods. We will later evaluate how

this estimate changes during stellar evolution for stars with radiation

zones in the mass range 0.4–1.6 solar masses. Note that this estimate

apparently agrees very closely with the value required to explain the

inferred orbital decay rate of WASP-12b (Patra et al. 2017, 2020;

Yee et al. 2020). We will comment further on this issue later in the

paper in Section 7.

An important question is whether we would expect the gravity

waves to be fully damped in the radiation zone. In stars with radiative

cores, hydrodynamical simulations suggest that these waves may be

fully damped if they have large enough amplitudes so that they

overturn the stratification and break (Barker & Ogilvie 2010; Barker

2011). This requires the companion mass to exceed a particular

threshold that depends on the structure of the star. For a circularly

orbiting planet of mass Mp orbiting a slowly rotating star with ω =
2(n − �) ≈ 2n = 4π /Porb, where n is the orbital mean motion (orbital

angular frequency), Porb is the orbital period, and the tidal amplitude

in this case is

A =
√

6π

5
ω2

dynǫT . (45)

We have also defined the dimensionless tidal amplitude

ǫT =
Mp

M

(

R

a

)3

, (46)

where a =
(

G(Mp + M)/n2
)

1
3 is the semimajor axis.

The criterion for the wave to overturn the stratification, and

therefore be expected to break, at the centre of a star with a radiative

core is Anl � 1, where

A2
nl =

3
2
3 72

√
6
[

Ŵ
(

1
3

)]2

40π2(l(l + 1))
4
3

G C5

ρ0

|A|2

ω4
dyn

|ω|−
13
3 . (47)

where ρ0 = ρ(r = 0) is the central density and

N = Cr (48)

near the centre of the star. The quantity C is obtained from a linear fit

in a given model, and for the current Sun, C⊙ ≈ 8 × 10−11m−1s−1.

Wave breaking is expected when Anl � 1, but weaker wave–wave

interactions could still be important even when Anl < 1, or even for

Anl as small as 0.1 (Barker & Ogilvie 2011; Weinberg et al. 2012;

Essick & Weinberg 2016). A numerical evaluation of equation (47)

for the current Sun gives (Barker & Ogilvie 2010)

Anl ≈ 0.3

(

G

G⊙

)
1
2
(

C

C⊙

)
5
2
(

Mp

MJ

)(

P

1d

)
1
6

. (49)

This can be rewritten as a criterion on the planetary mass Mp � Mcrit

for wave breaking to occur, where

Mcrit ≈ 3.3MJ

(

G⊙

G

)
1
2
(

C⊙

C

)
5
2
(

P

1d

)− 1
6

. (50)

We will later evaluate equation (47) to determine how the critical

mass Mcrit depends on the stellar mass and age. This is necessary

to indicate when we would expect waves to be fully damped in

the radiation zone such that the efficiency of tidal dissipation is

determined by equation (41).

In stars with convective cores (such as in F-stars), we cannot

use equation (47) to determine whether wave breaking would be

expected because the central regions of the star are no longer stably

stratified and do not support gravity waves. Instead, we use the WKB

expression

|ξd,rkr | � 1, (51)

to determine when wave breaking would be expected,4 where ξ d, r

is the coefficient of Ym
l e−iωt , and kr is the radial wavenumber. To

compute this quantity, we first define the wave energy flux magnitude

F =
3

2
3

8π

[

Ŵ
(

1
3

)]2

(l(l + 1))
4
3

G
|A|2

ω4
dyn

|ω|
11
3 , (52)

which is conserved in the radiation zone after the waves have

been launched from the convective/radiative interface (neglecting

damping processes). To obtain |ξ d, r|2 in the interior of the radiation

zone, we apply WKB theory for short-wavelength waves, which

gives F = r2ρN2cg, r|ξ d, r|2. We employ the IGW dispersion relation

ω2 = N2k2
⊥/k2 for low tidal frequencies (that significantly exceed

the rotation frequency), where k⊥ =
√

l(l + 1)/r is the horizontal

wavenumber and k2 = k2
r + k2

⊥ ≈ k2
r . The magnitude of the radial

group velocity is then cg, r = ∂ω/∂kr ≈ ω/kr. Equation (51) then

gives

|ξd,rkr | =

√

[l(l + 1)]
3
2 NF

ρr5ω4
� 1 (53)

for wave breaking to occur. This formula applies in any radiation

zone irrespective of whether it extends all the way to the centre

of the star, and thus it allows us to predict whether wave breaking

would be expected in F-stars with convective cores, for example.

We will use the maximum value of equation (53) (for which ω2 ≤
N2) in the radiation zone later to estimate whether wave breaking

would be expected whenever equation (47) cannot be applied. In

4This differs by a factor
√

4π from the expression in Goodman & Dickson

(1998) and Sun et al. (2018) to agree more closely with equation (47) when

evaluated numerically.
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stars with radiative cores, this estimate is found to agree quite well

with equation (47) (though there is some variation depending on the

precise radial grid points used for this estimate).

We neglect the effect of rotation on gravity waves, except in so far

as it affects the tidal frequency ω, since its inclusion would require

a more complicated numerical evaluation (Papaloizou & Savonije

1997; Ogilvie & Lin 2007, though also see Ivanov et al. 2013).

Rotation can lead to a significant enhancement in tidal dissipation

due to this mechanism if global r modes are excited in the convection

zone, but it can be ignored in applications where the tidal period is

shorter than half the rotation frequency. Since most planetary hosts

are slow rotators, the effects of rotation are unlikely to be important

when we apply these predictions below.

4 D ISSIPATION O F EQU ILIBRIUM TIDES IN

C O N V E C T I O N ZO N E S

We now present the results of our investigation. We begin by

analysing the equilibrium tide and the resulting dissipation in the

convection zones of a range of stellar models. The parameters that

we use in MESA are given in Appendix B to allow our models to be

reproduced. We have chosen the initial metallicity Zinit = 0.02 except

where otherwise specified, and different quantitative results could be

obtained in stars with different Zinit, though the main results below

are likely to be robust. We compare the dissipation obtained with the

correct equilibrium tide (hereafter referred to as NWL), as defined

by equation (16), with that of the conventional equilibrium tide of

Zahn (1966, hereafter referred to as EQ), as defined by the solutions

of equation (15). In Appendix A, we provide a complementary

analysis by comparing the correct displacement with the conventional

equilibrium tide.

4.1 Dissipation in a range of stellar models

We calculate the dissipation of the equilibrium tide in a range of

stellar models representing low-mass and solar-type stars on the main

sequence, and the results for the tidal quality factors Q′
eq as a function

of tidal period (measured in days) are shown in Fig. 2. The masses

and ages of each star are given in the panel captions and some details

of these models are listed in Table 1. We show results computed using

various prescriptions for the turbulent effective viscosity acting on

this tidal component, as described in Section 2.1.1, and as identified

in the legend. The tidal displacements in the same stellar models are

analysed in Appendix A in Fig. A1 (except for the bottom panel,

which shows an F-star with M = 1.6 M⊙ that is omitted there).

We find that Q′
eq resulting from the dissipation of the equilibrium

tide varies as a function of tidal period, and depends strongly on

the adopted viscosity prescription (for both NWL and EQ). We

also find that NWL and EQ give different predictions for Q′
eq for

each viscosity prescription, though we have only shown EQ for νZ

and νGN in this figure. We have indicated models that we do not

advocate using with dashed lines, which are shown to highlight how

their predictions differ from those that are more compatible with

simulations (identified by solid lines). As a test of our code, we have

checked that we obtain the same results as fig. 5 of Ogilvie (2014)

using a model similar to the current Sun.

We note that if there is no frequency-reduction applied to the

turbulent viscosity (and we adopt νMLT), then convective damping

of equilibrium tides would be expected to be relatively efficient

(Q′
eq ∼ 107 for stars with M � M⊙) for one-day tidal periods.

However, this model is not consistent with any theoretical studies

or simulations probing the interaction between tidal flows and

convection, and is only shown for reference here. When the frequency

reduction is accounted for, we typically find Q′
eq ∼ 1010 − 1011 for

one-day tidal periods due to convective damping of NWL in stars

with M ∼ M⊙ using νFIT (or νGN). Low-mass stars with M ∼
0.2–0.5 M⊙ have weaker dissipation, with Q′

eq ∼ 1011 − 1012. F-

type stars with M ∼ 1.3–1.6 M⊙ with thinner convective envelopes

also have weaker dissipation, with Q′
eq ∼ 1010 − 1012. These results

imply that convective damping of equilibrium tides in low-mass

and solar-type stars on the main sequence is generally an inefficient

mechanism of tidal dissipation because of the strong reduction of νE

for short tidal periods.

Solar-mass stars have (relatively) the most efficient convective

damping of equilibrium tides because lower mass stars typically

have slower convective velocities, meaning smaller values of ωc.

This means that the turbulent viscosity is expected to be smaller (even

before considering any frequency reduction), and secondly, the same

tidal period typically has larger ω/ωc, implying a larger frequency

reduction of the turbulent viscosity. This is why convective damping

of equilibrium tides in low-mass stars is generally weaker than in

solar-mass stars, even though the convection extends to greater depths

(and higher density regions). On the other hand, in F-stars with

masses above 1.2 M⊙, convection is faster than in the Sun, leading

to larger turbulent viscosities and smaller frequency reductions for

the same tidal period. However, the convective envelopes occupy a

decreasing fraction of the stellar mass, and have lower densities,

leading again to reduced dissipation compared with solar-mass

models for one-day tidal periods, albeit for a different reason than

for low-mass stars.

When using the same prescription we find that EQ typically

overpredicts the dissipation relative to NWL by a factor of 2–3

in these stellar models. Here we have chosen to compare them

with νGN, but similar results are obtained with the other viscosity

prescriptions, and in other stellar models. This result is qualitatively

consistent with what we might expect based on our analysis of the

tidal displacements in Appendix A, as illustrated by Fig. A1. As

a result, we advocate the use of the correct equilibrium tide in

convection zones (NWL) rather than the conventional equilibrium

tide (EQ) of Zahn (1966, 1989). One may argue that the remaining

uncertainties in our understanding of the interaction between tidal

flows and convection (i.e. in the correct prescription for νE) is likely

to make this small difference unimportant. This may well be true.

However, we still advocate using the correct equilibrium tide since

this is an error that is straightforward to eliminate.

This issue is compounded when using the linear frequency-

reduction factor of νZ rather than the quadratic reduction factors

at high frequency of νGN and νFIT. The associated Q′
eq using the

conventional equilibrium tide and the linear reduction factor can

be smaller by a large factor between 1–3 orders of magnitude for

tidal periods of order 1 d in these stellar models. Consequently, the

tidal dissipation resulting from convective damping of equilibrium

tides may have been overpredicted in some previous studies by

between 1–3 orders of magnitude. Note that adopting νZ predicts

a tidal period independent (i.e. constant) Q′
eq for short periods,

but this is not consistent with hydrodynamical simulations for such

tidal periods (Ogilvie & Lesur 2012; Duguid et al. 2020a,b, except

perhaps for a narrow intermediate range of frequencies, Vidal &

Barker 2020a).

Even if we adopt the correct equilibrium tide, some uncertainties

remain in the viscosity prescription at high frequency, leading to

uncertainties in Q′
eq for tidal periods of 1 d by up to an order of

magnitude, based on our current understanding (Duguid et al. 2020b;

Vidal & Barker 2020b). Our overall conclusions in this section agree

MNRAS 498, 2270–2294 (2020)
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2278 A. J. Barker

Figure 2. Q′
eq as a function of tidal period (in days) for convective damping of the equilibrium tide. The associated tidal displacements are shown in Fig. A1.

We compute dissipation of the correct equilibrium tide (NWL) using various prescriptions for the turbulent viscosity according to Section 2.1.1. We compare

the dissipation of NWL with that of the conventional equilibrium tide (EQ), where the latter is found to over-predict the dissipation by a factor of 2–3. For later

reference, we have also plotted 〈Q′
IW〉 for the frequency-averaged dissipation due to IWs in convection zones (IW) assuming a spin period of 10 d (which should

only be applied when Ptide > 5 d; see Section 5), and Q′
IGW from the dissipation of gravity waves (IGW) in radiation zones (see Section 6).

with Penev & Sasselov (2011), though our numbers noticeably differ

(they obtain Q′
eq ∼ 108 − 3 × 109 for 0.8–1.4 M⊙). This difference is

partly because they used EQ, and partly because they used a different

viscosity prescription based on their simulations, which spanned a

narrower range of tidal periods.

We have also calculated Q′
eq due to convective damping of

equilibrium tides in the convective cores of F-type stars, which exist

on the main sequence in stars with masses larger than about 1.1 M⊙.

We find that Q′
eq is larger by many orders of magnitude than that due

to dissipation in the envelope, so we omit showing this in any figures.

This confirms prior theoretical expectations (e.g. Zahn 1977).

4.2 Dissipation following stellar evolution

We now turn to explore further the variation in Q′
eq as a function of

both stellar mass and age in Fig. 3. In this figure, we plot contours of

log10 Q′
eq as a function of tidal period (in d) and stellar age (in yr) for

various stellar models with masses M/M⊙ = 0.2, 0.5, 1, 1.2, and 1.5

following their evolution, using the various viscosity prescriptions

indicated. These models span a wide range from fully convective to

solar-type to F-type stellar models. For each stellar mass, this figure

interpolates data from up to 400 snapshots at various times in the

evolution of each star. The first column indicates results from νFIT

and the second instead uses νGN.

MNRAS 498, 2270–2294 (2020)
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Table 1. Table of various stellar models plotted in

Fig. 2 and Fig. A1 and in Sections 7 and 8. The age

quoted includes the PMS phase and does not start

at ZAMS. The model with M = 1 M⊙ is ‘solar-

like’ (albeit its slightly different age). All models

have Zinit = 0.02.

M (M⊙) R (R⊙) r2
g Age (Gyr)

0.2 0.21 0.21 2.93

0.5 0.45 0.18 3.34

0.8 0.73 0.11 2.59

1 1 0.074 4.7

1.2 1.34 0.049 2.86

1.4 1.57 0.039 1.29

1.6 1.86 0.036 1.03

Fig. 3 shows the same major trends already shown in Fig. 2 for

main-sequence ages (of order Gyr). We note here though that the

model with 1.2 M⊙ (not previously shown in Fig. 2) is somewhat

more dissipative than the 1 M⊙ model for this mechanism. The

third column indicates results using the standard equilibrium tide

along with νZ. This overpredicts the dissipation (i.e. leads to smaller

Q′
eq) over NWL and other viscosity prescriptions by 1–3 orders of

magnitude for short tidal periods, depending on stellar mass and age.

As a result, we advocate against using this model for modelling tidal

evolution, based on our current understanding.

This figure shows that the most efficient equilibrium tide dissipa-

tion occurs during the pre-main sequence (PMS) phase when the star

is mostly or fully convective. There is also a blip in the contours

around 107–108 yr corresponding with zero-age main sequence

(ZAMS). The subsequent Q′
eq does not show significant evolution on

the main sequence, but can vary significantly when the star evolves

off the main sequence. Efficient dissipation is also observed in this

figure for the latest ages in the models with 1.2 and 1.5 M⊙. The F-

type stellar model with 1.5 M⊙ has very weak dissipation on the main

sequence, and the values obtained for Q′
eq are quite similar for each

viscosity prescription. This is a combined result of larger convective

velocities (meaning weak differences between the different viscosity

prescriptions, and only a weak frequency reduction), and the very

low densities of the thin envelopes of these stars.

5 D ISSIPATION DUE TO INERTIAL WAV ES I N

C O N V E C T I O N ZO N E S

Here, we present results following the method outlined in Section 3.1

for the frequency-averaged dissipation of IWs in convection zones.

This represents a crude but useful measure of the tidal dissipation

due to these waves. This mechanism only operates if the tidal period

is longer than half the rotation period of the star. If this condition is

not satisfied, then IWs cannot be excited in convection zones, and

this mechanism will not apply.

In Fig. 4, we show the evolution of the tidal quality factor

〈Q′
IW〉 representing the frequency-averaged dissipation multiplied

by ǫ2
� as a function of age. This indicates that 〈Q′

IW〉 ∝ �−2, so

that rapid rotators generally experience more efficient dissipation

due to IWs when these waves are excited. In the top panel, we

show this quantity computed following the evolution of various

stars with masses smaller than, and including, 1 M⊙. This includes

fully convective stars and those with radiative cores and convective

envelopes. Note that in fully convective stars regular inertial modes

exist (Lockitch & Friedman 1999; Wu 2005), which can provide

important contributions to tidal dissipation even in the absence of an

inner radiation zone but only for a discrete set of frequencies (Ogilvie

2013). Nevertheless, the frequency-averaged measure probably still

quantifies the typical level of dissipation in this case. In the bottom

panel, we show masses above, and including, 1 M⊙, showing results

for solar- and F-type stars. When evaluated at the appropriate spin

periods, the results of Fig. 4 compare quite well, though the numbers

are slightly larger than, the typical Q
′

obtained in the direct (i.e. not

frequency-averaged) linear calculations of Ogilvie & Lin (2007) for

a 1 and 0.5 M⊙ star, and those of Barker & Ogilvie (2009) for F-stars

with M = 1.2–1.5 M⊙. This supports the validity of the frequency-

averaged formalism.

We observe that the most efficient IW dissipation before 1 Gyr

occurs during PMS phases for ages less than 107 yr for most stars,

when ǫ2
�〈Q′

IW〉 ≈ 2 × 102. This is found in both top and bottom

panels. The fully convective stars with M < 0.4 M⊙ possess similar

values throughout their subsequent evolution, but other stars evolve

to become less dissipative as they transition on to the main sequence.

Note that ǫ2
�〈Q′

IW〉 generally increases with stellar mass on the main

sequence. We have also overplotted results for an n = 1 and 1.5

polytrope on Fig. 4 for reference. The latter is a good model of the

stars we have studied with M = 0.1–0.3 M⊙, and its prediction for

ǫ2
�〈Q′

IW〉 closely agrees with those models. (The former may be a

better model of even lower mass objects.) We have shown the same

results as a function of stellar effective temperature Teff in Fig. 5.

If the rotation period, mass, and stellar radius of a star are known,

Fig. 4 (or Fig. 5) can be used to give a crude prediction for the re-

sulting tidal quality factor due to IW dissipation in convection zones.

To complement Fig. 4, we also plot 〈Q′
IW〉 evaluated by assuming a

rotation period of 10 d for each star in Fig. 6 (i.e. we evaluate ǫ�

for each model). These predictions can be straightforwardly scaled

to another rotation period Prot by multiplying 〈Q′
IW〉 by (Prot/10d)2.

We wish to briefly return to Fig. 2 before moving on. This indicates

that IW dissipation, assuming a spin period of 10 d, is the most

efficient tidal mechanism for tidal periods longer than about 5 d

(depending on stellar mass) for which these waves can be excited.

We believe this mechanism to be primarily responsible for binary

circularization and synchronization, which we will explain further in

Section 8. However, IGW dissipation is more efficient for short tidal

periods when IWs are not excited, and is likely to be the dominant

mechanism for planetary orbital decay (which we will explain further

in Section 7). We will discuss this mechanism in more detail in the

next section.

We observe that 〈Q′
IW〉 evolves along a common track for all stellar

models during the PMS phases, and all models below 1.1 M⊙ have

〈Q′
IW〉 ≈ 107(Prot/10d)2 on the main sequence. As these stars evolve

off the main sequence, they become very dissipative according to

this measure, with 〈Q′
IW〉 even passing below 1 in some models.

This is because both the depth of the convective envelope and the

stellar radius increase dramatically. It indicates that tides become

very efficient as the star evolves off the main sequence if IWs

are excited. However, IWs may not always be excited in a given

application because evolved stars typically rotate much slower than

those early on the main sequence.

Similar calculations to those in this section have been presented

by Mathis (2015), who adopted a simplified two-layer piecewise

homogeneous model of a star derived by Ogilvie (2013). The benefit

of the two-layer model is that it is simple to apply and efficient to

calculate in a stellar evolution code. However, its validity has not

been assessed by comparing its predictions with the more realistic

model considered in this work. In order to compare with Mathis

(2015), we compute the dissipation using the same two-layer model

as described in equation (39). The results are shown in the top panel

of Fig. 7 (using dashed lines), where they are compared with results

using the realistic structure of the star (using solid lines) for a range

MNRAS 498, 2270–2294 (2020)
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2280 A. J. Barker

Figure 3. Q′
eq resulting from dissipation of the correct equilibrium tide (NWL) in convective envelopes as a function of age and tidal period. First column:

νFIT acting on NWL (Duguid et al. 2020b). Second: same for νGN. Third: EQM tide with νZ for reference. Note that the latter can overpredict the dissipation

by 1–3 orders of magnitude for fast tides and we would not advocate its use in inferring the rates of tidal evolution. Only the first two columns show results

from the correct equilibrium tide in convection zones for two different viscosity prescriptions that are approximately consistent with the range of results from

hydrodynamical simulations in the short tidal period regime.

MNRAS 498, 2270–2294 (2020)
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Figure 4. 〈Q′
IW〉 multiplied by ǫ2

� due to (frequency-averaged) dissipation

of IWs in convective envelopes as a function of their age. Top: masses below

and including 1 M⊙. Bottom: masses above and including 1 M⊙. Results for

an n = 1 and 1.5 polytrope are plotted in the top panel for reference. Tidal

dissipation of IWs is typically most efficient during the brief phases as these

stars evolve off the main sequence, and also in the PMS phases.

of stellar masses from 0.5 to 1.6 solar masses. As a check on our

implementation, we have checked that our two-layer predictions are

consistent with fig. 4 in Mathis (2015). Lower mass stars are not

considered because they are generally fully convective, so a two-

layer model does not properly represent their structure. In addition,

in PMS phases when the star is fully convective, it does not make

sense to apply the two-layer model.

Fig. 7 shows that on the main sequence, for Gyr ages, the

predictions of the two-layer model generally agree reasonably well

with those of the more realistic model for stars with 0.5 ≤ M/M⊙
≤ 1.2. Our results that account for the realistic structure of the star

are generally more dissipative by a factor of less than approximately

2 in these models on the main sequence. However, the two-layer

model performs poorly in F-stars with masses larger than 1.2 M⊙,

generally underpredicting the dissipation in these stars by an order

of magnitude or more.

Since the model studied in this paper is not much more difficult

to compute, even if it requires more computational work than the

simplified two-layer model, we advocate its use over the two-layer

model in future calculations modelling tidal interactions coupled

with stellar evolution.
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Figure 5. Same as Fig. 4 except results are shown as a function of stellar

effective temperature Teff, which is more directly observable.

Finally, we compute the corresponding IW dissipation in the

convective cores of stars with masses greater than 0.9 M⊙ following

their evolution in the bottom panel of Fig. 7. We observe that

dissipation in convective cores is much weaker than in the envelope

in these stars, with the exception of the most massive F-star with

M = 1.6 M⊙, where they are comparable. This (and the results for

the equilibrium tide in the previous section) indicates that in most

applications it is safe to ignore the contribution to tidal dissipation

from convective cores for stars with masses in the range we have

been studying.

6 D I SSI PATI ON D UE TO I NTERNAL GRAV ITY

WAV E S IN R A D I AT I O N Z O N E S

In this section, we present results for the dissipation due to tidally

excited IGWs in radiation zones. We assume that these waves

are launched from the radiative/convective interface and are then

subsequently fully damped, following the procedure described in

Section 3.2.

In the top panel of Fig. 8, we show the predicted variation

in Q′
IGW for a tidal period of 0.5 d due to this mechanism as a

function of age, showing results for various stellar masses spanning

the range of stars that possess interior radiation zones (but they

MNRAS 498, 2270–2294 (2020)
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Figure 6. Same as Fig. 4 except that we have assumed a rotation period

of 10 d in order to calculate ǫ� following the evolution of each star. We

find 〈Q′
IW〉 ≈ 107(Prot/10d)2 on the main sequence for most stars with M <

1.1 M⊙, with larger values in F-stars with thin convective envelopes.

may also have convective cores). A tidal period of 0.5 d is chosen

because this is relevant for computing the orbital decay of a 1 d

hot Jupiter around a slowly rotating star. This mechanism predicts

a robust period dependence, with Q′
IGW

∝P
8
3

tide
, under the assumption

that the launching region buoyancy profile can be modelled as a

linear function of the distance from the interface. Since this period

dependence is known, we can explore the variation in Q′
IGW as a

function of stellar mass and age for a fixed tidal period according

to equation (41). This is equivalent to showing the variation of

RG/GM2 with stellar mass and age. It is then straightforward to

extrapolate the results of Fig. 8 to different tidal periods. In the

bottom panel of this figure, we show the same prediction as a

function of the stellar effective temperature, which is more directly

observable.

Fig. 8 shows that on the main sequence, stars with masses in the

range 0.5–1.1 M⊙ all possess similar values

Q′
IGW ≈ [1, 3] × 105

(

Ptide

0.5d

)
8
3

. (54)

It may seem surprising that such a wide range of stars possess similar

dissipative properties, though this has been noticed before (Barker &

Ogilvie 2010). The model with M = 0.4 M⊙ shows greater variability

but has Q′
IGW ∼ 105 − 106 for this tidal period. Q′

IGW increases with
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Figure 7. Top: ǫ2
�〈Q′

IW〉 due to dissipation of IWs in convective envelopes

based on the frequency-averaged formalism. Top: comparison with a simpli-

fied two-layer piecewise homogeneous model (dashed lines) with the more

realistic model considered in this work (solid lines). For most stars, the

two-layer model works reasonably well on the main sequence, generally

underpredicting the resulting dissipation by a factor of 2. However, it should

not be used for F-stars with masses above 1.2 M⊙, where it can underpredict

the dissipation by an order of magnitude or more. Bottom: dissipation in

convective cores using the full model, which (compared with Fig. 4) is found

to be much weaker than the dissipation in the envelope.

stellar mass for F-type stars on the main sequence, with M = 1.2 M⊙
having Q′

IGW ≈ 106, M = 1.3 M⊙ having Q′
IGW ≈ 107, and M =

1.4 M⊙ having Q′
IGW ≈ 108, and so on, for this tidal period. This

indicates that this mechanism is less efficient in F-stars, so that their

radiation zones are generally less dissipative than those of K and

G-stars. This may partly explain why the most massive short-period

hot Jupiters are preferentially found around F-stars.

All stars are somewhat more dissipative in PMS phases than on

the main sequence, but they attain their maximum dissipation as

they evolve off the main sequence. Very small values of Q′
IGW ∼

100 − 101 for this tidal period can be achieved as the stars evolve off

the main sequence, once again demonstrating that this is the most

efficient period for tidal dissipation in their evolution, for all tidal

mechanisms that we have studied. Such efficient dissipation arises

from a reduction in G by 2–3 orders of magnitude while R increases

by nearly 1 order of magnitude. Such efficient dissipation may be

important to explain the destruction of short-period planets as stars

evolve towards the end of the main sequence. (This enhancement

of the tidal dissipation is qualitatively consistent with the behaviour

reported in fig. 3 of Sun et al. 2018, though a direct comparison is

not straightforward.)
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Figure 8. Top: Q′
IGW as a function of age (in yr) for various stellar

masses (indicated in the legend), resulting from IGW dissipation in ra-

diation zones, under the assumption that these waves are launched from

the radiative/convective interface and are subsequently fully damped. We

have assumed a tidal period Ptide = 0.5 d, corresponding to a circularly

orbiting hot Jupiter on a 1 d orbit. Note that the period dependence is:

Q′
IGW

∝
(

Ptide
0.5d

)
8
3 , so these results can be straightforwardly extrapolated to other

Ptide. Bottom: same but showing the variation as a function of the stellar

effective temperature Teff in K, restricting the range to the masses indicated.

In Fig. 9, we show the predicted critical planetary mass required

for wave breaking Mcrit in Jupiter masses as a function of age for the

same range of stellar masses as Fig. 8. When the stars have radiative

cores we use equation (47) to determine the critical planetary mass,

and when stars have convective cores we instead use equation (53),

assuming a 1 d circular orbit in both cases. The bottom panel shows

a zoomed-in version that is restricted to ages beyond 1 Gyr.

This figure demonstrates clearly that the critical planetary mass

required for wave breaking decreases sharply with the age of the star.

This is because Mcrit ∝ C− 5
2 , so there is a strong dependence on C,

the strength of the stratification at the centre, which increases as the

star evolves. The evolution of C normalized by C⊙ (at the current

age) is shown in Fig. 10, indicating that this is primarily responsible

for the evolution observed in Fig. 9.

We predict from Fig. 9 that Mcrit will fall below 1 MJ in all stars with

masses larger than 0.9 M⊙ before 10 Gyr. This indicates that those

planets with short enough periods are likely to be engulfed during the

main-sequence lifetime (or subgiant phase) of their stars. As these
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Figure 9. Critical planetary mass Mcrit in Jupiter masses as a function of

age (in yr) for a range of stellar masses (indicated in the legend). When Mp

> Mcrit, the IGWs are predicted to break in the radiation zone, assuming a

circularly orbiting planet with a 1 d period (this criterion is weakly sensitive

to orbital period). When Mp > Mcrit, we would then predict the tidal quality

factor to behave according to Fig. 8.
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Figure 10. Strength of stable stratification at the centre of the star, where

N = Cr near r ∼ 0, as a function of age (in yr) for a range of stellar masses

(indicated in the legend). When a line is shown, this indicates that the core

is radiative. Note that C increases with age due to nuclear burning, and this

variation is the primary contribution to the trends observed in Fig. 9.
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2284 A. J. Barker

stars evolve off the main sequence, the minimum mass required for

wave breaking is shown to decrease to 10−3–10−2 MJ. We therefore

predict hot super-Earths and Neptunes to also initiate wave breaking

in the radiation zones of their stars at later stages in their evolution, but

lower mass planets with approximately Earth’s mass may survive.

The long-term survival of planets more massive than a few Earth

masses on short-period orbits may therefore be prevented by this

mechanism before the star leaves the main sequence.

There is a general trend that more massive stars require smaller

planetary masses to initiate wave breaking, except for a jump around

1.1–1.2 M⊙ which is due to the onset of a convective core (which

acts to reduce the geometrical focusing effect at the centre, thereby

reducing the maximum wave amplitude attained).

A strong prediction of Fig. 9 is that wave breaking is expected

for planetary-mass companions at some point during the evolution

of all stars with M � 0.9 M⊙ as they evolve on the main sequence

(or subgiant phase). However, this is not expected until the star

has evolved sufficiently to acquire a strong enough stratification N

in the radiation zone due to nuclear burning. When wave breaking

occurs, we predict the resulting tidal quality factor in Fig. 8. We

will explore the consequences of this mechanism for the survival

and orbital decay time-scales of short-period hot Jupiters in the next

section.

7 IM P L I C AT I O N S F O R TH E O R B I TA L D E C AY

O F H OT J U P I T E R S

We now apply our results to the orbital decay of hot Jupiters, which

is now starting to be detected or constrained from variations in

transit arrival times (e.g. Maciejewski et al. 2016; Wilkins et al.

2017; Patra et al. 2017; Yee et al. 2020). Based on our current

understanding, the most important mechanism for the orbital decay

of hot Jupiters orbiting slowly rotating main-sequence stars is gravity

wave dissipation, which we discussed in Section 6. Since the shortest

period hot Jupiters for which orbital decay could be detected orbit

slowly rotating stars, and in any case, Porb is typically so short that it

is likely to be much smaller than Prot, IWs are not usually excited by

tidal forcing (since Ptide > Prot/2), so the mechanism we discussed in

Section 5 would not apply. We will confirm below that equilibrium

tide dissipation on the main sequence is also negligible, based on the

results of Section 4, though it is likely to be important in evolved

stars (e.g. Mustill & Villaver 2012).

We apply our results from Section 6 by considering a hot Jupiter

on a circular equatorial orbit around a slowly rotating star. For this

problem, the relevant tidal frequency is ω = 2(n − �), and tidal

evolution tends to cause the planet to spiral into the star.5 The orbital

decay rate (assuming n > �) is

d ln a

dt
= −

9

2
n

(

Mp

M

)(

R

a

)5
1

Q′ (55)

= −
9π

Q′

(

Mp

M

)(

M

M + Mp

)
5
3 P

10
3

dyn

P
13
3

orb

. (56)

For the gravity wave mechanism such that Q′ = Q′
IGW, the right hand

side is proportional to a−21/2, which indicates an accelerating orbital

5In principle, a massive planet with large enough orbital angular momentum

can instead spin-up the star to a tidal quasi-equilibrium state (Hut 1980),

though ongoing tidal evolution is still expected because of stellar magnetic

braking (Barker & Ogilvie 2009; Damiani & Lanza 2015)

decay. The resulting orbital decay time is

τa = −
2

21

(

d ln a

dt

)−1

(57)

≈ 2.3 Myr

(

MJ

MP

)(

M⊙

M

)(

Porb

1d

)7

, (58)

for a 1 MJ hot Jupiter orbiting the current Sun, based on applying

equation (44), and using the results of Fig. 8.

We can also predict the associated shift in transit arrival time, that

is, transits should occur earlier by (Birkby et al. 2014; Wilkins et al.

2017)

Tshift =
27

8
n

(

Mp

M

)(

R

a

)5
(

Q′)−1
T 2

dur, (59)

≈ 98.4s

(

Porb

1d

)− 21
3
(

Mp

MJ

)(

Tdur

10 yr

)2

, (60)

where Tdur is the duration of the observations (e.g. decadal time-

scales). In the second line, we have evaluated this for the current

Sun, assuming Q′ = Q′
IGW based on equation (44), for a 1 MJ hot

Jupiter on a 1 d orbit. Note that this quantity is strongly period

dependent, partly because this mechanism predicts Q′
IGW ∝ P

8/3
orb .

For stars with masses in the range 0.5–1.1 M⊙ on the main sequence,

we obtain similar Q′
IGW (see Fig. 8), approximately independently

of stellar mass and age. This means that the above prediction can be

applied to other stars by simply changing M and R.

We show predictions for orbital decay time-scales (left) and shifts

in transit times (right) in Fig. 11 for a 1 MJ planet (circularly)

orbiting three illustrative main-sequence stellar models in our cho-

sen mass range by applying our previous results for Q
′

for each

tidal mechanism. This shows predictions from IGW damping, IW

damping, as well a convective damping of equilibrium tides using

three different viscosity prescriptions, for illustration. Note that IW

damping is shown to indicate the typical level of dissipation due to

this mechanism (assuming Prot = 20 d), but this mechanism does

not operate in slowly rotating stars for these tidal periods. Fig. 11

shows that convective damping of equilibrium tides for the viscosity

prescription that best matches the latest simulations (νFIT) plays a

negligible role in the orbital decay of hot Jupiters. In all cases, IGW

dissipation, assuming the waves to be fully damped, is the dominant

mechanism in stars with interior radiation zones. This mechanism is

less efficient in hot (M = 1.4 M⊙) and very cool (M = 0.5 M⊙) stars

and is most efficient for M ∼ M⊙.

Hamer & Schlaufman (2019, 2020) demonstrated with a

population-wide analysis that hot Jupiters are eventually destroyed

by tides during the main-sequence lifetimes of their host stars, but that

ultra-short period planets with much lower masses (i.e. comparable

with Earth’s mass) may survive. Our results in Section 6 that wave

breaking is predicted to occur for planets with masses larger than

10−2–10−3 MJ at some point on the main sequence, and that this

results in efficient Q′
IGW, may partly explain this result for short

orbital periods. It would be worthwhile to apply our results to explore

the implications of planetary survival in more detail. Schlaufman &

Winn (2013) previously found evidence for tidal destruction of hot

Jupiters around subgiant stars (out to Porb < 200 d), which requires

very efficient dissipation Q
′ ∼ 102–103. Our results in Sections 5

and 6 and Fig. 8 indicate that IWs may be able to provide such

efficient dissipation briefly as the stars evolve off the main sequence,

depending on the rotation rate of the star, so it would be worthwhile

to revisit this mechanism in more detail with a population-wide

study.

In the following, we apply our results to various observed short-

period hot Jupiters. Most of these are systems in which shifts

MNRAS 498, 2270–2294 (2020)
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Tides in stars 2285

Figure 11. Left: predictions for orbital decay time-scales of a 1 MJ hot Jupiter on a circular orbit as a function of orbital period Porb around the stars indicated

in the caption. Right: corresponding predictions for the shift in transit arrival times Tshift for observations over a decade. The most efficient mechanism is

dissipation of IGW in radiation zones under the assumptions outlined in Section 3.2. IW prediction is shown for reference assuming Prot = 20 d; it should not

be applied to predict planetary orbital evolution unless Porb > 10 d so these waves can be excited. Based on our current understanding of convective damping

of equilibrium tides, this mechanism provides a negligible contribution to planetary orbital decay on the main sequence.

in transit arrival times have been either detected or constrained,

following Patra et al. (2020), or those in which future detection

appears favourable. We report our predictions in Table C1, as well

as the parameters and outputs in our representative stellar models

used to fit each star. In some cases our models have slightly different

radii or effective temperatures than the observed values. Further

work is required to fit each star as accurately as possible, accounting

for the necessary tweaking of input parameters and stellar physics

(e.g. mixing processes), which may lead to quantitatively different

predictions to this table (probably more significant for Mcrit than

Q′
IGW). We have made no serious attempt to do this here, and each

system warrants a dedicated study. However, the overall picture we

present below for each system is likely to be robust.

WASP-4b: is a 1.2 MJ orbiting a 0.93 M⊙ star in 1.34 d. The

planet was observed to appear early in the TESS observations of

Bouma et al. (2019, supported by Southworth et al. 2019), indicating

possible orbital decay consistent with Q
′ ∼ 4–8 × 104. However,

Bouma et al. (2020) later found WASP-4 to be accelerating towards

Earth due to interaction with a wide-orbiting massive companion,

and the resulting Doppler effect may instead cause the shift in transit

times. Our best-fitting stellar models do not clearly predict wave

breaking (since Mcrit ≈ 2–7MJ), but there is uncertainty in the age

MNRAS 498, 2270–2294 (2020)
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2286 A. J. Barker

of the star (5–7 Gyr), and if the star is older wave breaking may be

expected. In these models we predict Q′
IGW ∼ 3 − 4 × 105 if gravity

waves are fully damped, so it appears very difficult to explain the

observed Q
′
purely from tidally driven orbital decay for this system,

which indirectly supports the findings of Bouma et al. (2020).

WASP-12b: is a 1.4 MJ planet orbiting a metal-rich F-star with

1.35–1.43 M⊙ in 1.09 d (Hebb et al. 2009). This planet was first

detected to be undergoing possible tidally driven orbital decay by

Maciejewski et al. (2016), and this has since been confirmed by

various subsequent studies (Patra et al. 2017; Maciejewski et al. 2018,

2020b; Yee et al. 2020; Patra et al. 2020), which are consistent with

Q
′ ≈ 2 × 105. Previous theoretical work on this system by Chernov

et al. (2017) and Weinberg et al. (2017) indicated that the observed

decay rate can be explained using gravity wave dissipation depending

on the specific stellar model. We have been unable to find any model

that matches all of the observational constraints for WASP-12, in

agreement with Bailey & Goodman (2019), who performed a more

extensive parameter survey for this system. However, we do find that

wave breaking is not expected in the main-sequence models that we

have considered, and is only expected if the star is a subgiant with a

lower mass M ∼ 1.2 M⊙ (Weinberg et al. 2017; Bailey & Goodman

2019). We have listed three different MESA models for this star in the

table. We confirm that wave breaking is not expected in the two main-

sequence models, so the preferred explanation is for WASP-12 to be

a subgiant with a radiative core, in which wave breaking can operate.

In addition, our main-sequence model with M = 1.43 M⊙, as quoted

by Patra et al. (2020), predicts Q′
IGW > 2 × 106, which is in conflict

with observations. Our lower mass stellar models with M = 1.35 M⊙
(or subgiant with M = 1.22 M⊙) are however able to predict Q′

IGW

that closely match the observations on the main sequence (even if

they have too low Teff). This system is an excellent test of both stellar

evolution and tidal theory. A more detailed comparison of theory

and observations is therefore warranted for this system, and further

observations would be very helpful to constrain the stellar properties.

WASP-18b: is a massive 11.4 MJ planet orbiting an 1.46 M⊙ F-

star in only 0.94 d (Hellier et al. 2009). Previous observations have

indicated that Q
′
> 1.3 × 106 (Wilkins et al. 2017; Maciejewski et al.

2020a; Patra et al. 2020). The stellar mass appears to be uncertain

in this system (both M = 1.24 and 1.46 have been reported), and

our predictions for Mcrit (and to a lesser extent Q
′
) are sensitive to

stellar mass. We find M = 1.46 M⊙ quoted in Patra et al. (2020)

to be too high to produce the observed stellar radius for the quoted

ages, so we instead consider M = 1.24 M⊙ (as in Wilkins et al.

2017). For this model, we predict the planet to be insufficiently

massive to cause wave breaking in the star, which is consistent with,

for example, Barker & Ogilvie (2010) and Wilkins et al. (2017). If

the planetary orbit is really decaying due to this mechanism, then

we predict Q′
IGW ≈ 3 × 106 (with the exact value sensitive to stellar

mass and age), which would not be clearly detected using the existing

observations. We strongly advocate future observations of this system

to determine whether the planetary orbit really is decaying at such

a rate. This would provide a good test of both stellar modelling and

tidal theory.

WASP-19b: is an ultrashort period 1.14 MJ planet orbiting an

0.94 M⊙ star in only 0.79 d (Hebb et al. 2010). The age of the

star has been quoted as 7–9 Gyr, and our predictions for Mcrit are

very sensitive to the exact age. Our best-fitting stellar model has

9.3 Gyr, and predicts Mcrit = 0.8MJ, such that wave breaking is

expected, but wave breaking would not be predicted for the younger

ages. We predict Q′
IGW ∼ 0.6 − 0.8 × 105, which is much smaller

than the observational constraint (Patra et al. 2020, see also Petrucci

et al. 2020). This would be consistent with theory only if the star

is somewhat younger, in which case wave breaking would not

be expected (so that such small Q′
IGW would not apply). Further

observations of this system would be very useful to further constrain

tidal theory.

WASP-43b: is a 2.03MJ planet orbiting a 0.72 M⊙ star in only

0.81 d (Hellier et al. 2011). Based on our best-fitting stellar model,

wave breaking is not expected at 5 Gyr and so we do not predict

orbital decay to be detectable. If the gravity waves are otherwise

fully damped, in agreement with Chernov et al. (2017), we predict

Q′
IGW that is similar to the observational constraint (Patra et al. 2020).

Further observations of this system would be useful to constrain tidal

theory. If the orbit is observed to decay, since wave breaking is not

expected, weakly non-linear mechanisms may instead be responsible

(e.g. Barker & Ogilvie 2011; Essick & Weinberg 2016, or perhaps

other mechanisms that efficiently damp gravity waves).

WASP-72b: is a 1.55 MJ planet orbiting a 1.39 M⊙ star in 2.22 d

(Gillon et al. 2013). While wave breaking is likely to occur in this

star for the inferred ages, the currently predicted Q′
IGW > 1012 would

result in negligible tidal evolution, and so we predict orbital decay

will not be observed in this system. The existing observations do not

yet provide good enough constraints to verify this prediction (Patra

et al. 2020).

WASP-103b: is a 1.51MJ planet orbiting a 1.21 M⊙ star in 0.93 d

(Gillon et al. 2014). The star likely has a convective core, and wave

breaking is not expected in the reported age range, so based on this

we do not expect planetary orbital decay to be detected. If gravity

waves are however fully damped, we predict Q′
IGW that is a bit larger

than the minimum value constrained by observations (Maciejewski

et al. 2018; Patra et al. 2020). Further observations of this system

would be useful to constrain tidal theory.

WASP-114b: is a 1.77MJ planet orbiting a 1.29 M⊙ star in 1.55

d (Barros et al. 2016). This star probably has a convective core and

wave breaking is not expected, so we do not predict orbital decay

to be detected. If the gravity waves are however fully damped, we

predict Q′
IGW ∼ 3 × 106.

WASP-121b: is a 1.18 MJ planet orbiting a 1.35 M⊙ star in 1.27 d

(Delrez et al. 2016). Again, this star probably has a convective core

and wave breaking is not expected. If the gravity waves are however

fully damped, we predict Q′
IGW ∼ 2 × 107, which may be difficult

to test observationally.

WASP-122b: is a 1.28 MJ planet orbiting a 1.24 M⊙ star in 1.71

d (Turner et al. 2016). Again, this star probably has a convective

core and wave breaking is not expected. If the gravity waves are

however fully damped, we predict Q′
IGW ∼ 3.5 × 105, which could

be detected observationally in the future. Further observations of this

system would be useful to constrain tidal theory.

WASP-128b: is a very massive 37MJ object orbiting a 1.16 M⊙
star in 2.21 d (Hodžić et al. 2018). Given the large planetary

mass we predict wave breaking even though the star likely has a

convective core. However, our prediction for the resulting Q′
IGW is

strongly dependent on the stellar rotation period. If the star rotates

slowly, Q′
IGW ∼ 4 × 106 is possible, but if the star is close to being

synchronized with Prot ∼ 3 d we instead predict Q′
IGW ∼ 2 × 108 or

larger. If the star rotates sufficiently rapidly that Prot ∼ 3 d, IWs would

be excited in the star, and we predict a typical 〈Q′
IW〉 ∼ 1.4 × 106

(though the actual Q
′
may differ from this frequency-averaged value).

In this system, it is possible that the planet could spin-up the star to

synchronism and that the planetary orbit would then decay on the

magnetic braking time-scale (e.g. Barker & Ogilvie 2009; Damiani &

Lanza 2015). Further observations to constrain Prot, and to seek

possible evidence of orbital evolution would be useful to constrain

theoretical predictions.
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NGTS-6b: is a 1.33 MJ planet orbiting an old 0.79 M⊙ star in 0.88

d (Vines et al. 2019). Wave breaking is not predicted in this star for its

current age, so we do not clearly predict rapid orbital decay. However,

if gravity waves are fully damped, we predict Q′
IGW ∼ 105, which

could be detectable with future observations. We note that we found

it difficult to reproduce the observed stellar radius in our models.

Further observations of this system would be useful to constrain

tidal theory.

NGTS-7Ab: is a very massive 62 MJ object orbiting a very young

0.48 M⊙ star in only 0.68 d (Jackman et al. 2019). It is likely that the

star rotates rapidly because of its young age, and perhaps because of

tidal synchronization. In this system, we expect IW dissipation to be

dominant. Gravity wave breaking is not expected, but efficient Q′
IGW

is obtained if the gravity waves are fully damped. If the star has been

synchronized, we expect the orbit to evolve on the magnetic braking

time-scale (Barker & Ogilvie 2009; Damiani & Lanza 2015). This

would be another excellent target for future observations to test tidal

theory.

NGTS-10b: is an ultrashort period 2.16 MJ planet orbiting an old

0.7 M⊙ star in only 0.77 d (McCormac et al. 2020). Wave breaking

and rapid orbital decay is not predicted for the current age, but

if gravity waves are fully damped, we predict Q′
IGW ∼ 105. This

would be another excellent target for future observations to test tidal

theory.

HAT-P-23b: is a 2.09 MJ planet orbiting a 1.13 M⊙ star in 1.21

d (Bakos et al. 2011). The star probably has a convective core and

wave breaking is not expected, so we do not predict detectable orbital

decay. This is consistent with current observations. However, if

gravity waves are fully damped we predict Q′
IGW ∼ 3.5 × 105, which

is close to the observational constraint (Maciejewski et al. 2018; Patra

et al. 2020), and would predict large Tshift. Further observations of

this system would be useful to constrain tidal theory.

HATS-18b: is a 1.98 MJ planet orbiting a 1.04 M⊙ star in 0.84 d

(Penev et al. 2016). Wave breaking is expected in this star for the

later ages (our best-fitting model has 4.6 Gyr), and we predict the

planetary orbit to decay with Q′
IGW ∼ 105. This is a very promising

candidate to search for orbital decay, and we strongly advocate

further observations of this system to test tidal theory. Tidal spin-

up of the star has also been suggested, which is hard to reconcile

with gravity wave damping (other tidal mechanisms are probably

negligible) unless the mechanisms of angular momentum transport

within the star are particularly efficient.

KELT-16b: is a 2.75 MJ planet orbiting a 1.21 M⊙ star in 0.97 d

(Oberst et al. 2017). The star likely has a convective core, and wave

breaking is not expected, so we do not clearly predict observable

orbital decay. If the waves are however somehow fully damped we

predict Q′
IGW ∼ 7 × 105, which is an order of magnitude larger than

the current observational constraint (Maciejewski et al. 2018; Patra

et al. 2020). This may be detectable in this system with further

observations, so we strongly advocate these to constrain tidal theory.

TRES-3b: is a 1.91 MJ planet orbiting a 0.92 M⊙ star in 1.31 d

(O’Donovan et al. 2007). Wave breaking is not predicted at the

current age, though it is predicted as the star evolves. If the waves

are however somehow fully damped we predict Q′
IGW ∼ 6.5 × 105,

which is larger than the current observational constraint (Mannaday

et al. 2020). This may be detectable with future observations, which

would be useful to constrain tidal theory.

OGLE-TR-56b: is a 1.39 MJ planet orbiting a 1.29 M⊙ star in

1.21 d (Udalski et al. 2002; Sasselov 2003). The star likely has a

convective core, and wave breaking is not expected, so we do not

predict observable orbital decay. This may explain the survival of the

planet. However, if the waves are fully damped, we predict Q′
IGW ∼

2 × 106, which might be difficult to observe but is compatible with

current observational constraints (Patra et al. 2020).

WTS-2b: is a 1.12 MJ planet orbiting a 0.82 M⊙ star in 1.02 d

(Birkby et al. 2014). Wave breaking is not predicted at the young

inferred age of this star. However, we predict that if the waves

are however somehow fully damped Q′
IGW ∼ 2 × 105. This could

be detectable with future observations, which would be useful to

constrain tidal theory.

Our results suggest that it is not a coincidence that the most

massive hot Jupiters tend to be found around F-stars with convective

cores, and that there are very few systems in which wave breaking is

predicted and a very short-period massive planet is observed (WASP-

19b and HATS-18b are possible exceptions to this rule). Gravity

wave damping is also typically much less efficient in F-stars with

1.2–1.6 M⊙ relative to solar mass stars, which may together explain

why such stars preferentially harbour close-in massive hot Jupiters.

Those around lower mass stars may have been destroyed by wave

breaking on the main sequence. Other mechanisms that operate for

smaller planetary masses may also be important, such as passage

through a resonance (that could initiate wave breaking), or weakly

non-linear interactions (e.g Barker & Ogilvie 2011; Weinberg et al.

2012; Essick & Weinberg 2016), which should motivate further work.

8 IMPLI CATI ONS FOR BI NARY

C I R C U L A R I Z AT I O N A N D S Y N C H RO N I Z AT I O N

In this section, we apply our results to compute time-scales for

circularization and synchronization of close binary stars. Once we

have obtained Q
′
due to each tidal mechanism, we may estimate the

corresponding time-scale for tidal synchronization of the stellar spin

due to interaction with a companion star of mass M2 by

τ� =
2Q′

9πr2
g

(

M + M2

M2

)2
P 4

orb

P 2
dynProt

(61)

≈ 20 Myr

(

Porb

10d

)4 (
Prot

5d

)

, (62)

where r2
g is the dimensionless squared radius of gyration6 and we

have evaluated this using IW dissipation based on the results in

Section 5 which indicate that 〈Q′
IW〉 ≈ 107(Prot/10 d)2 on the main

sequence. We have assumed M = M2 = M⊙ for this estimate.

The corresponding circularization time-scale, assuming small

eccentricities and tidal dissipation in only the star of mass M, is

estimated by

τe =
2

63π
Q′

(

M

M2

)(

M + M2

M

)
5
3 P

13
3

orb

P
10
3

dyn

(64)

≈ 9.38 Gyr

(

Porb

10d

)
19
3

, (65)

where we have evaluated this using IW dissipation based on the

results in Section 5 using M = M2 = M⊙. Similar dissipation is

expected in stars in the range 0.8–1.2 M⊙. Since τ� ≪ τe, we have

assumed spin-orbit synchronization for the purposes of this estimate,

that is, Porb = Prot, but we note that assuming shorter Prot would

6Defined by

r2
g =

8π

GMR2

∫ R

0

ρr4dr, (63)

and this is reported for a selection of models in Table 1.
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2288 A. J. Barker

Figure 12. Predictions for tidal circularization time-scales τ e (left; assuming Porb = Prot) and spin synchronization time-scales τ� (right; assuming Prot = 10

d) in various stellar models indicated, assuming a companion of mass M2 = M⊙. IW dissipation is by far the most efficient mechanism in both problems for

these stars. Convective damping of equilibrium tides is shown to play only a minor role in binary circularization.

give shorter time-scales. By itself, this estimate suggests that orbital

circularization purely on the main sequence due to IWs may not quite

be sufficient to explain the observed circularization periods of binary

stars, in agreement with Ogilvie & Lin (2007).

In Fig. 12, we show the predicted τ� and τ e (assuming synchro-

nization) for all tidal mechanisms studied in this paper in several

stellar models spanning fully convective to F-type stars. In each

case, we assume M2 = M⊙. When IWs are excited, this figure

demonstrates clearly that they are the dominant mechanism for binary

synchronization and circularization for the adopted spin periods.

(Note that because we have used the frequency-averaged measure,

our predictions for IWs do not show the expected behaviour of

vanishing dissipation for spin–orbit synchronization.) Convective

damping of the equilibrium tide can play a role though when these

waves are not excited (e.g. Vidal & Barker 2020a). Gravity wave

damping is typically the second most effective mechanism in stars

with interior radiative zones. However, this mechanism will first spin-

up the radiative cores, and to spin-up the whole star requires efficient

mechanisms of angular momentum transport and coupling between

radiation and convection zones.

We again observe in Fig. 12 that tidal dissipation is generally most

efficient (for the same rotation period) in ‘solar-type’ stars with M

∼ M⊙. This is because they have deep convective envelopes, so IWs

can be efficiently excited in them. Hotter or much cooler stars in the

mass range that we have studied here have longer evolutionary time-

scales (for the same Prot), and so we would predict them to undergo

MNRAS 498, 2270–2294 (2020)
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Tides in stars 2289

less rapid tidal evolution. This may explain why Van Eylen et al.

(2016) found binaries of solar-type (which they referred to as cool-

cool binaries) tended to have smaller eccentricities than hot–cool

or hot–hot binaries. It may also explain why some of the binaries in

Triaud et al. (2017) with lower mass stars may not have undergone as

rapid tidal circularization. However, we note that the mass-dependent

predictions here may differ if stellar rotational evolution is properly

accounted for rather than assuming the same Prot.

Previous work has mostly assumed that the mechanism responsible

for binary synchronization and circularization is convective damping

of the equilibrium tide (e.g. Zahn & Bouchet 1989; Zahn 2008;

Nine et al. 2020). In fact, while significant uncertainties remain,

based on our best current understanding of tidal dissipation, we

have shown that IW dissipation is likely to be much more important

prior to evolved stellar ages. Convective damping of the equilibrium

tide could play a role in binary synchronization in cases when IW

damping does not operate (Vidal & Barker 2020a) but it is likely

to play a negligible role in binary circularization except for evolved

stars (e.g. Verbunt & Phinney 1995).

According to equation (61) and Fig. 12, we would predict spin–

orbit synchronization within 1 Gyr out to 20–30 d for stars with 0.5 <

M/M⊙ < 1.2 due to IWs. We similarly predict binary circularization

on the main sequence out to 7 d within 1 Gyr for M ∼ M⊙ based on

equation (64) and Fig. 12. It would be worthwhile to apply this

mechanism in more detail to see whether accounting for stellar

evolution would enable the observed circularization periods of solar-

type binaries to be explained (e.g. Meibom & Mathieu 2005; Nine

et al. 2020).

We briefly comment that Verbunt & Phinney (1995) found that

damping of the (incorrect) conventional equilibrium tide of Zahn

(1989) in the red giant phase nicely explains the observed circulariza-

tion of evolved binaries containing white dwarfs. In these systems, the

frequency reduction of the effective viscosity νE is usually thought

to be less important because the orbital periods are relatively long

relative to the convective time-scales in the star, and IWs may not

be important because of the slow stellar rotation. The use of the

correct equilibrium tide here would probably reduce the dissipation

by a factor of 2–3 for the same νE. On the other hand, the latest

simulations of Duguid et al. (2020b) find an enhancement in νE

for low-frequency tidal forcing over the classical MLT formulation

that Verbunt & Phinney (1995) adopt, as modelled in our νFIT (see

equation 27 and Fig. 1), by an O(1) factor (between 1.5 and 5 for 0.1

� |ω|/ωc � 1). These two factors probably cancel out so that their

final predictions may be similar to those using our updated models.

This can potentially provide evidence in support of νFIT over previous

prescriptions for νE. It would be worthwhile to revisit this problem.

9 C O N C L U S I O N S

We have studied tidal dissipation in low-mass and solar-type stars

with masses in the range 0.1–1.6 M⊙ following their evolution,

using stellar models computed with MESA. In convection zones, we

compute convective damping of equilibrium tides, accounting for

the frequency dependence of the effective turbulent viscosity (e.g.

Duguid et al. 2020b; Vidal & Barker 2020b). We compute dissipation

of IWs (dynamical tides) in convection zones using a frequency-

averaged formalism (Ogilvie 2013) that accounts for the realistic

structure of the star for the first time. We compute dynamical tide

dissipation in radiation zones by assuming that IGWs are launched

from the convective/radiative interface and are subsequently fully

damped (Goodman & Dickson 1998; Barker & Ogilvie 2010). This

is likely to be justified when wave breaking occurs, and we calculate

the critical planetary (or companion) mass required for wave breaking

as a function of stellar mass and age.

The main contribution of this work is to provide theoretical

predictions for tidal quality factors Q
′

due to each tidal mechanism

throughout the evolution of these stars as a function of stellar

mass, age (or Teff), rotation rate, and tidal period. Our main results

are shown in Figs 3, 4, and 8, respectively. We also provide

predictions for tidal evolutionary time-scales for the orbital decay

of hot Jupiters (in Section 7), and for the orbital circularization and

spin synchronization of main-sequence binary stars (in Section 8).

Furthermore, we have provided predictions for Q
′

due to gravity

wave dissipation, and the resulting transit timing variations due to

tidally driven orbital decay for a number of observed hot Jupiters

which may tested observationally with, for example, NGTS, TESS,

and PLATO.

We find that tidal dissipation in stars, quantified here by the tidal

quality factor Q
′
, varies by orders of magnitude as a function of stellar

mass, age, rotation, tidal frequency, and amplitude. However, based

on our best current understanding of tidal flows, this variation is a

clear prediction of the models which can be tested by observations.

It is inappropriate to consider the tidal quality factor to be the

same for all stars with different masses and ages (in general).

The significant variation in Q
′

is also likely to mean that it will

be challenging to meaningfully infer tidal quality factors from

statistical inferences based on entire populations (e.g. Hansen 2010,

2012; Collier Cameron & Jardine 2018; Penev et al. 2018). We

advocate a system-by-system comparison of theoretical predictions

with observations as the cleanest way to test tidal theory.

Tidal dissipation due to IGWs in radiation zones is the dominant

mechanism for planetary orbital decay around slowly rotating main-

sequence stars. This mechanism is expected to be efficient (as

predicted by Fig. 8) when the planetary mass exceeds a critical

value required for the waves to break. We find that the critical

planetary mass required for tidally excited gravity waves to break

in the radiation zones of their stars is a strong function of stellar

mass and age (as shown in Fig. 9). For the current Sun, the critical

mass for wave breaking is approximately 3 MJ (Ogilvie & Lin 2007;

Barker & Ogilvie 2010). But the critical mass decreases significantly

with age, to attain a minimum value of approximately 10−3–10−2MJ

as the star evolves towards the end of the main sequence, such that

close-in giant planets are predicted to undergo tidally driven orbital

decay at some point in their lifetimes. This result may partly explain

the observational trend of Hamer & Schlaufman (2019), that stars

with hot Jupiters are on average younger than stars without them.

In addition, since wave breaking is not predicted for approximately

Earth mass planets, we predict the survival of many of the observed

ultrashort period (approximately Earth-mass) planets. This is also

consistent with the latest observational results (Hamer & Schlaufman

2020). In addition, gravity wave damping may partly explain why

the statistical analysis of hot Jupiter systems by Penev et al. (2018)

inferred Q
′

to increase towards the star: since planets with lower

Q
′
on the shortest period orbits may have been rapidly destroyed by

gravity wave damping, this process would leave only those systems in

which gravity wave damping is inefficient. Further work is required

to compare theory and observations to explore these possibilities.

Gravity wave damping can also explain the magnitude of the

observed orbital decay rate for WASP-12 b (Maciejewski et al. 2016;

Patra et al. 2017; Yee et al. 2020) if the star is a subgiant (Weinberg

et al. 2017). It remains difficult to reconcile the predicted absence

of wave breaking in this system with the efficient dissipation that is

inferred unless the star is a subgiant (Chernov et al. 2017; Weinberg

et al. 2017; Bailey & Goodman 2019). We predict that this mechanism
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should not operate in WASP-18b (Wilkins et al. 2017; Maciejewski

et al. 2020a), confirming prior theoretical expectations (Barker &

Ogilvie 2010), which may explain the lack of detected transit timing

variations in this system (though if the gravity waves are damped

we predict a Q
′
similar to the observational constraint). Indeed, tidal

dissipation is generally less efficient in F-type stars which have thin

(and low density) convective envelopes and convective cores. Our

results also suggest that it would be difficult for WASP-4b to be due

to tidally driven orbital decay. We provide some new predictions for

other hot Jupiter systems in Section 7 and Table C1.

Tidal dissipation of equilibrium tides is typically strongly reduced

by the frequency-dependent attenuation of the turbulent viscosity for

short tidal periods. As a result, and contrary to popular belief, this

mechanism is unlikely to be important for planetary orbital decay

on the main sequence (e.g. Rasio et al. 1996; Duguid et al. 2020b).

Our models are based on the latest hydrodynamical simulations of

the interaction between tidal flows and convection (Duguid et al.

2020a,b; Vidal & Barker 2020a,b), and our application of these

results indicates that this mechanism is also probably much less

effective for circularization of solar-type binaries than was previously

believed (e.g Zahn 1977, 1989, 2008). Equilibrium tide damping

could however play a role in binary synchronization in cases when

IWs are not excited (e.g Vidal & Barker 2020a), and for planetary

destruction and orbital circularization involving evolved stars (e.g.

Verbunt & Phinney 1995; Mustill & Villaver 2012; Sun et al. 2018).

It has been realized that the conventional equilibrium tide of

Zahn (1966, 1989) only applies in radiation zones, and does not

correctly describe the tidal response in convection zones (Terquem

et al. 1998; Goodman & Dickson 1998; Ogilvie 2014). However,

the conventional equilibrium tide is still commonly adopted to

compute tidal dissipation in convection zones. In this paper, we

have compared in detail the correct equilibrium (non-wave-like) tide

with the conventional equilibrium tidal flow (in Appendix A), as

well as the resulting tidal dissipation due to turbulent convective

viscosity (in Fig. 4), in a range of stellar models. We confirm that

the conventional equilibrium tide can differ non-negligibly from the

correct equilibrium tide in convective regions. It also overpredicts

tidal dissipation by a factor of 2–3. As a result, we advocate that

the corrected version of the equilibrium tide used here should be

employed instead of the conventional equilibrium tide.

Tidal dissipation of IWs in convective envelopes is typically the

most efficient mechanism of tidal dissipation for main-sequence

binary circularization and synchronization. However, it can only

operate in rotating stars in circumstances when twice the tidal period

exceeds the rotation period of the star. This condition is not often

satisfied in hot Jupiter host stars, but it is satisfied in many binary

systems. The resulting tidal quality factors vary over several orders

of magnitude as a function of the stellar mass, age, and rotation

rate, but with a typical value 〈Q′
IW〉 ≈ 107(Prot/10d)2 on the main

sequence. We note that the statistical analysis of Collier Cameron &

Jardine (2018) obtains Q
′ ∼ 2 × 107 in the dynamical tide regime

when IWs are excited, which is consistent with this result. The

most efficient dissipation is obtained briefly as the star undergoes

its evolution off the main sequence, when values of 〈Q′
IW〉 that are

smaller than 1 are possible (depending on the rotation rate of the star).

This mechanism is then much less efficient in subsequent phases. In

earlier stages, the most efficient dissipation is obtained for PMS stars,

where ǫ2
�〈Q′

IW〉 ≈ 102 for all stars that we considered. Since PMS

stars generally rotate more rapidly (i.e. they have larger ǫ2
�) than those

on the main sequence, this result will be strengthened significantly

when our models are coupled with those governing stellar rotational

evolution.

Several of our results on IW dissipation agree with those of

Mathis (2015), who adopted a simplified two-layer model to study

the frequency-averaged tidal dissipation of IWs. We have compared

the predictions of the more realistic model used here with those

of the two-layer model. For solar-type stars on the main sequence,

the two-layer model generally underpredicts the dissipation only by

approximately a factor of 2, and so is a reasonably good model to

adopt in that case, particularly in light of its simplicity. The two-

layer model also correctly predicts PMS stars to be more dissipative

than main sequence stars. However, its predictions can significantly

differ from those of our model for F-stars, and for lower mass stars,

indicating that the realistic structure of the star should be accounted

for when computing tidal dissipation due to IWs when possible.

Further work is required to study the dissipation of tidally excited

gravity waves for planetary masses below the wave breaking thresh-

old, where weaker non-linear wave–wave interactions may instead

be important (e.g. Barker & Ogilvie 2011; Weinberg et al. 2012;

Essick & Weinberg 2016). Wave breaking should also be revisited

with higher resolution simulations to determine whether the waves

are efficiently absorbed by critical layers at high Reynolds numbers

(Alvan, Mathis & Decressin 2013; Su, Lecoanet & Lai 2020). The

possibility of wave breaking caused by passage through a resonance,

and resonant locking (e.g. Witte & Savonije 2002; Savonije & Witte

2002; Fuller 2017), are also worth considering. Finally, it would

be worthwhile to conduct a similar study as this one in models

that account for the stellar rotational evolution, and in models that

couple the orbital evolution with these models of tidal dissipation.

Significant uncertainties remain regarding the mechanisms by which

IWs in convective zones are dissipated in non-linear and magnetized

models (Favier et al. 2014; Lin & Ogilvie 2018; Wei 2018; Astoul

et al. 2019), and by the effect of rotation and density stratification

on the convective turbulent viscosity (e.g. Stevenson 1979; Barker,

Dempsey & Lithwick 2014; Mathis et al. 2016; Currie et al. 2020).

To conclude, while significant theoretical uncertainties remain,

current tidal theory is able to make clear predictions that can be

tested by observations with current and future missions such as TESS,

NGTS, CHEOPS, and PLATO. We are now entering a golden age

where tidal theory can confront observation.
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APPENDI X A : EQU I LI BRI UM TI DE

DISPLACEMENTS

In this appendix, we compare the tidal displacements due to the

correct equilibrium tide (NWL) with the standard equilibrium tide of

Zahn (1966, 1989) (EQ), as defined by the solutions of equation (15),

to complement the results of Section 4. It is important to compare

them because many authors have assumed the latter to apply

throughout the star, even though it is strictly only valid in radiation

zones.

In Fig. A1, we compare the radial (left-hand panels) and horizontal

(right-hand panels) components of the tidal displacements of NWL

Figure A1. Comparison of the radial (left) and horizontal (right) displacements in the correct equilibrium tide (NWL, black solid lines) and the conventional

equilibrium tide (EQ, blue dashed lines) in various representative (slowly rotating) main-sequence stellar models. The conventional equilibrium tide (EQ) is

strictly invalid in convection zones and typically has larger radial gradients than the correct equilibrium tide (NWL). As a result, it is likely to overpredict the

resulting tidal dissipation.
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and EQ as a function of normalized radius in a range of stellar models

representing low-mass and solar-type stars on the main sequence.

The masses and ages of each star are given in the panel captions.

The amplitude of each panel is arbitrary, but we have chosen to

represent that due to a 1MJ planet on a 1-d circular equatorial orbit

around each star, and we have normalized this by the stellar radius

in each case. The tidal amplitudes obtained increase as we move

down the figure because the stellar radius increases for larger stellar

masses.

The first two panels show the equilibrium tidal components in a

fully convective M = 0.2 M⊙ star at an age of 2.93 Gyr. The left-

hand panels show the radial displacement of NWL differs from EQ

throughout most of the star, only agreeing at the centre and surface

(where it must). The right-hand panels show the corresponding hor-

izontal displacements, which disagree most strongly at the surface.

We observe that EQ generally has larger radial gradients than NWL

throughout the star. The tide in this model (and other similar fully

convective models) is found to be similar to the solutions for an n =
1.5 polytrope (not shown).

Similar results are shown for stars with M/M⊙ = 1 and 1.4 in the

remaining rows of this figure. The second row compares these tides

in a model that is very similar to our current Sun (such as model

S, e.g. Christensen-Dalsgaard et al. 1996). We again find that EQ

differs from NWL, having larger gradients throughout the bulk of

the convection zone. The bottom row shows the same comparison in

an F-type stellar model with M = 1.4 M⊙, which has a thin convective

envelope. In this latter model, the radial components of NWL and EQ

look similar but the horizontal components still differ substantially.

Similar results have been found in a range of different stellar models

at various ages on the PMS and main sequence.

In this section, we have demonstrated that the displacements in

the equilibrium tides predicted by NWL and EQ have different

radial profiles, and that the radial gradients of EQ are generally

larger. This suggests that the dissipation of EQ is likely to be larger

than that of NWL, which qualitatively explains our observations in

Section 4.

APPENDI X B: M E S A C O D E PA R A M E T E R S

We use MESA version 12778 (Paxton et al. 2011, 2013, 2015,

2018, 2019). The inlist file that we use is given below. We alter

initial mass and initial z as required to generate a given

stellar model, and the code is stopped manually at a chosen time,

usually when the star has left the main sequence.

&star job

create pre main sequence model = .true.

/ !End of star job namelist

&controls

! starting specifications

initial mass = 1.0

initial z = 0.02d0

MLT option = ’Henyey’

max age = 5.0d10

max years for timestep = 1.0d8

use dedt form of energy eqn = .true.

use gold tolerances = .true.

mesh delta coeff = 0.3

when to stop rtol = 1d-6

when to stop atol = 1d-6

/ ! end of controls namelist

APPENDI X C : TABLE OF OBSERV ED HOT

J U P I T E R S W I T H N E W TH E O R E T I C A L

PREDI CTI ONS

MNRAS 498, 2270–2294 (2020)
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Table C1. Table of short-period hot Jupiters reporting the strongest constraints on Q
′

that are available Q′
obs, along with our theoretical predictions due to IGW dissipation Q′

IGW (assuming these waves are fully

damped) and the critical planetary mass for wave breaking. The rotation period Prot is based on the reported Vsin i (e.g Patra et al. 2020) by simply assuming sin i = 1, and the values for WASP-4 and WASP-19

from Maxted, Serenelli & Southworth (2015). The predictions are based on similar stellar models obtained with MESA by adopting the initial metallicity Zinit and mass are given in the table at the age reported. We

caution that the predictions for Mcrit are strongly age, mass, and also somewhat metallicity dependent, and Q′
IGW also depends but to a lesser extent on these parameters. Data are taken from Patra et al. (2020) and

The Extrasolar Planets Encyclopaedia (http://exoplanet.eu).

Name Mp (MJ) Porb (d) M (M⊙) R (R⊙) Zinit Teff Prot (d)

Age

(Gyr) Q′
obs Q′

IGW τ a (Myr) Tshift (s) Mcrit (MJ) Breaking?

WASP-4b 1.2 1.34 0.93 0.9 0.02 5542 23 5.8 4.5–8.5 × 104 3.3–3.8 × 105 14–17 13–15 2–7 No?

WASP-12b (MS1) 1.47 1.09 1.43 1.68 0.03 6376 38 1.62 2 × 105 4.5 × 106 11 20.5 >5000 No

WASP-12b (MS2) 1.47 1.09 1.32 1.69 0.025 6072 38 3.1 2 × 105 2.2 × 105 0.42 522 330 No

WASP-12b (SG) 1.47 1.09 1.24 1.69 0.023 6126 38 4.1 2 × 105 2.7 × 105 0.58 384 0.3 Yes

WASP-18b 11.4 0.94 1.24 1.29 0.02 6306 6 1.37 >1.3 × 106 2.6 × 106 1.2 200 207 No

WASP-19b 1.14 0.79 0.94 1.01 0.02 5624 13 9.28 3.5–7.5 × 105 0.6–0.8 × 105 0.13–0.3 675–1000 0.8 Yes?

WASP-43b 2.03 0.81 0.72 0.67 0.02 4462 6 5.03 >0.7–3.5 × 105 1.3 × 105 0.98 230 40 No

WASP-72b 1.55 2.22 1.39 2.01 0.01 6876? 17 2.3 >2.1 × 103 >1012 0.01 Yes

WASP-103b 1.51 0.93 1.21 1.43 0.02 6115 7 3.48 >1.1 × 105 4 × 105 0.68 322 550 No

WASP-114b 1.77 1.55 1.29 1.42 0.03 6206 12 2.12 3 × 106 48 4.7 3300 No

WASP-121b 1.18 1.27 1.353 1.49 0.025 6429 5.5 1.42 2.4 × 107 225 1 104 No

WASP-122b 1.284 1.71 1.24 1.50 0.04 5895 23 4.2 3.5 × 105 8.4 27 1000 No

WASP-128b 37.2 2.21 1.16 1.16 0.02 6108 3 1.57 1.7 × 108 1400 0.2 24.8 Yes

NGTS-6b 1.33 0.88 0.787 0.74 0.025 4774 9.01 >0.99 × 105 1.2 182 18 No

NGTS-7Ab 62.0 0.676 0.48? 0.645 0.02 3736 sync? 0.0055 >0.9 × 105 357 No

NGTS-10b 2.16 0.77 0.696 0.68 0.02 4428 8.8 10.06 0.99 × 105 0.5 440 15 No

HAT-P-23b 2.09 1.21 1.13 1.22 0.03 5916 7.5 4.3 >4.5 × 105 3.5 × 105 2.5 91 400 No

HATS-18b 1.98 0.84 1.04 1.03 0.03 5735 8.3 4.26 1.1 × 105 0.33 686 1.75 Yes

KELT-16b 2.75 0.97 1.21 1.38 0.02 6180 9 2.97 >0.7 × 105 7 × 105 0.98 228 450 No

TRES-3b 1.91 1.306 0.924 0.845 0.009 5699 27 1.23 1.1 × 105 6.1 × 105 23.6 9.5 65 No

OGLE-TR-56b 1.39 1.21 1.23 1.38 0.02 6235 23 2.53 >5 × 105 1.8 × 106 14 16.5 1920 No

WTS-2b 1.12 1.018 0.82 0.74 0.02 4761 17 0.43 1.9 × 105 6.4 35 1600 No

This paper has been typeset from a TEX/LATEX file prepared by the author.
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