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Abstract 

The global response to the COVID-19 pandemic has led to a sudden reduction of both greenhouse gas 

emissions and air pollutants 1–3. We use the unprecedented access to national mobility data 4,5 to make 

a bottom-up estimate of global emission reductions for February-May 2020. The resulting NOx trends 

agree well with meteorologically-adjusted surface based NO2 observations. In our upper bound 

estimate, global NOx emissions have declined by over 25%, resulting in a negative radiative forcing 

trend and short-term cooling since the start of the year. This cooling trend is offset by a ~20% 

reduction in global SO2 emissions, that weakens the aerosol cooling effect, causing short-term 

warming. Over the next ten years, the competing warming and cooling effects of these non-CO2 

emission changes more or less cancel, giving a time varying overall cooling compared to a baseline 

scenario that doesn’t include the COVID-19 dip, similar to the CO2 only temperature response. We 

estimate this direct effect of the pandemic driven response will be negligible, with a cooling of around 

0.01 ± 0.005 °C by 2030 compared to a baseline scenario which follows current national policies. In 

contrast, with an economic recovery tilted towards green stimulus and reductions in fossil fuel 

investments, we can avoid a future warming of 0.3°C by 2050 and have a greater than 50% chance of 

limiting the increase in global surface temperature to 1.5°C above pre-industrial levels. 

 

Key findings: 

 

● The direct effect on the global surface temperature over the next 10 years will be small even 

with a sustained 2-year lockdown period, but the long-term effect doesn’t have to be. There is 

potential to limit global warming to 1.5°C, if lessons are learned from COVID-19 and 

changes are made towards more sustainable emissions reductions. 



● Declines in SO2 emissions from the power and industry sectors are calculated to be currently 

causing a short-term warming. These are being offset by the cooling due to the 25% decline 

in NOx emissions from surface transport reductions. This suggests that policies directed at 

limiting pollution from road transport could offset the short-term warming that results from 

policies which reduce pollution from the power sector. 

● Aerosol forcing and tropospheric ozone forcing are not well enough known to determine the 

sign of temperature change from now until 2025. However, we can be more certain that after 

2025, the current emission reductions will mean that future temperature increases will be 

slightly smaller than they would otherwise have been without the COVID-19 lockdown. 

● We use the unprecedented access to Google mobility data to estimate near real-time national 

emission trends for surface transport, residential, industry, commercial and power sectors. We 

find our estimates correlate well with national CO2 emissions estimates from complementary 

approaches but our data gives higher changes for the non-transport sectors. We use this new 

approach to provide high-end emission reduction estimates. 

● We use our new approach to make an upper-bound estimate of changes in CO2 emissions and 

9 further species, covering 123 countries and 99% of global CO2 emissions. We ground-truth 

our estimates in 32 countries with meteorologically-corrected surface NO2 observations.  

● Researchers will need to look for a climate signature of the COVID-19 response in regional 

signals as the global temperature signal will likely be small. 

1. Introduction 

By the time the World Health Organization declared COVID-19 (scientifically referred to as the severe 

acute respiratory syndrome–coronavirus 2 or SARS-CoV-2) a pandemic on 11 March 2020, the virus 

had already spread from China, to other Asian countries, Europe and the US. As of 24 May 2020, cases 

have been identified in 188 countries or regions6.  This has led to unprecedented enforced and voluntary 

restrictions on travel and work. Analysis of Google and Apple mobility data shows mobility declined 

by 10% or more during April 2020 in all but one of the 125 nations tracked. Mobility declined by 80% 

in five or more nations (Figure S1). Associated declines in air pollution have been observed from 

satellite data and from local ground based observations7,8. The large pollution declines are expected to 

be temporary as pollution levels are already returning to near normal levels in parts of Asia9,10. 

 

In this work we build a high-end estimate of emission changes in greenhouse gases and air pollution 

due to the COVID-19 global restrictions over February-May 2020 and project these into the future. We 

then use these emission changes to make a prediction of the resultant global temperature response. We 

examine the temperature response of a direct recovery to pre-COVID-19 national policies and emission 

levels, and also explore responses where the economic recovery to COVID-19 is driven by either a 

green stimulus package or an increase in fossil fuel use. 

2. Emission trends 

Bottom-up emission trend analyses have traditionally relied on a laborious collection of various energy 

industry related indicators and statistics from multiple sources11. The unprecedented recent access to 

global mobility data from Google and Apple gives a unique opportunity to compare trends across many 

countries with a consistent approach. We use their data to develop a new method of emission trend 

analysis. The advantage over previous approaches is the possibility of near real time analysis, national 

granularity and a systematic consistent approach across nations and over time. The disadvantages are 

that we lose the direct connection between energy and emissions and need to make assumptions about 



these relationships. There are also disadvantages over the short time history of the mobility data and 

opacity from the data providers around their detailed methodologies and uncertainties.  In this paper we 

make a simple set of assumptions to deduce emissions change estimates from this mobility data and test 

the new emissions change estimates extensively against the approach of Le Quéré et al.(ref. 2). 

 

Google and Apple mobility changes and the Le Quéré et al. data all indicate that over 50% of the world’s 

population reduced travel by over 50% during April 2020 (Figure 1a). Google mobility trends indicate 

that over 80% of the population in the 114 countries in their dataset (4 billion people) reduced their 

travel by more than 50%. Google mobility data and emission reduction estimates based on confinement 

level analysis in Le Quéré et al. agree on country level surface transport trends to within ~20% (Figures 

1b and S1). When we examine the trends for the countries that we expect have contributed most to the 

overall transport emission change  (e.g. USA, European nations and India), good agreement between 

the datasets is observed, and their trends are well correlated in time (see Figure 1b and Figure S2). 

Workplace, retail and residential movement data from Google also map relatively well with 

corresponding industry, public and residential sector emission changes but only if the high estimate of 

the emission change in the Le Quéré et al. dataset (Figures 1b, 1c and S2) is employed.  

 

Employing mobility data outside of the transport sector is likely to overestimate the emission change 

and this appears to be the case for CO2 emissions when compared to two previous estimates 1,2. 

Nevertheless, our national and US state level mobility-derived emission estimates are well correlated 

in time with emission changes from the Le Quéré et al. study (see examples in Figure S2). For the 

industry sector, differences may be due to the fact that the emissions from industrial activity are less 

correlated with mobility trends, due to automated machinery, inertia in closing operations, or alternative 

modes of work or a base-line level of industrial emission from heavy industry in the absence of 

production, neither which would be captured by the Google mobility data which only reports changes 

in phone locations. For the residential sector, the 20% median increase matches the UK smart meter 

analysis by Octopus Energy for the situation when previously empty houses were occupied during the 

day after lockdown restrictions began12. However, many households were already occupied during the 

day and in these situations when an additional occupant was added, energy use only increased by 4%. 

These factors likely mean that our Google-based trends overestimate the emission change from these 

sectors, leading to our Google based total emission trend estimate agreeing better with the high level 

emission estimate from the Le Quéré et al. dataset (compare datasets in Figure 1c). There is also a 

question about how representative the Apple and Google datasets are of wider national behaviour and 

how the use and penetration of these phone operating systems varies across regions13. For example, the 

over 80% drop in Apple driving mobility in India (Figure 1a and S1), may only represent the part of the 

population that are able to work from home. Therefore, the emissions trends in our work which are 

largely derived from Google mobility data, should be taken as a high estimate of the COVID-19 

emission driven change (see methods). 

 

In the following we construct 2020 emission changes largely from Google mobility data to estimate 

emissions changes from the restriction measures in response to the COVID-19 virus, as illustrated in 

Figure 1c. As Google data is not available everywhere, we employ the Le Quéré et al. analysis to cover 

important missing countries, in particular, China, Russia and Iran which are all large emitters whose 

citizens have been under significant restrictions related to COVID-19. We also use Le Quéré et al. data 

to provide additional trend estimates from aviation and shipping sectors (see methods).  



  
Figure 1. Comparison of sector emission trends. a)  Population weighted histogram of surface 

transport trends from Apple driving data, Google transit data and Le Quéré et al. high confinement 

level data for available countries in the different datasets averaged over April 2020. b) Violin plots 

showing the distribution and maximum and median levels of national trends weighted by CO2 

emissions for the Google and Le Quéré datasets and the differences between the datasets evaluated 

over April 2020. c) Estimates of emission changes for the three datasets across four sectors for April 

2020 and the sum of the four sectors. In Figures 1b and 1c data is shown for 60 countries with 

overlapping data in the Google and Le Quéré datasets (representing 60% of global CO2 emissions). In 

Figure 1c, Apple data are for 57 countries, covering 58% of the global emissions. The high-

confinement Le Quéré et al. data is used throughout, except in Figure 1c, where other confinement 

levels are shown for comparison as the range of the error bar on the mid-confinement level. 

 

Our bottom up analysis uses 123 countries covering over 99% of global CO2 emissions, extending the 

69 countries analysed in Le Quéré et al. Daily national emission trends in six sectors are analysed for 

January-May 2020 (surface transport, residential, power, industry, public, and aviation). These are then 

weighted by the national and sector split of seven emitted species covering the major greenhouse gases 

and short-lived pollutants. National and sector data are taken from the Emissions Database for Global 

Atmospheric Research (EDGAR) version 5.0 database for 201514. These data are combined to generate 

national and globally averaged daily emission changes in 2020 by species and sector. 

 

In order to assess changes due to the COVID-19 pandemic, we establish a baseline scenario. We take a 

central estimate of emissions pathways15, in which countries are assumed to meet their stated Nationally 

Determined Contributions (NDCs) by 2030. In this baseline, no further strengthening of climate action 

after 2030 is assumed to take place. To derive changes from this scenario a three-stage process is 

followed (see methods). First, fractional Google mobility data employs the 5-week period (Jan 3–Feb 

6, 2020) as reference. Absolute emission trends are then computed by multiplying these fractional 

changes by either the 2019 CO2 emissions from  Le Quéré et al.2 or, for other species, the 2015 emissions 

in the EDGAR database14. Finally these absolute changes are then applied to a steadily rising emission 

pathway based on pre-COVID national pledges (see Table 1). Only the globally average emission 

changes are used in this paper (see Figure 2a), but national and spatially gridded data are made available 

at https://github.com/Priestley-Centre/COVID19_emissions for other interested researchers.  

 

Our analysis shows that emission reductions likely peaked in mid-April 2020 and that these reductions 

are species dependent. The data suggests that global CO2 and NOx emissions could have decreased by 



over 25% in April 2020 driven by a decline in transport emissions (Figures 2a, 2b and S3). Whereas, 

organic carbon (OC) has increased by <1% as it is primarily affected by rising residential emissions 

(Figures 2b and S3). Methane changes are driven by power sector declines, SO2 is most strongly 

affected by declining industrial emissions. Generally, changes in surface transport are the biggest driver 

of change for most species analysed (Figure S3). 

 

 
Figure 2. a) Percentage globally averaged emission changes for the considered species as a function 

of day in the year of 2020.  b) A breakdown of the April 2020 average global emission reductions 

compared to a recent year for the different species. The breakdown is for major emission-nations, 

including international aviation. Global percentage emission changes from the baseline are shown on 

the x-axis (see details in Figure S4). Trends are relative to 2019 for CO2, for the other species they are 

relative to 2015. The low, mid and high estimates of the total changes based on Le Quéré et al. trends 

are shown for comparison as the black circles and error bars.  

 

Our data suggests that changes in emissions are not confined to the major emitting countries, the 

mobility restrictions have been of worldwide proportions (despite the extent of measures – and therefore 

relative emissions changes – varying globally) during April 2020 (Figure 1and S1), and this manifests 

itself in many countries contributing to the emission decline. For the short-lived species, Europe and 

the United States, in spite of their large fractional national emission change, make up a small percentage 

of the global response due their relatively low levels of emissions from pollution (Figure 2c and S4).  

 

3. Observational evidence 

Detecting a COVID-19 related signal in CO2 concentrations is challenging due to CO2’s long 

atmospheric lifetime which makes any perturbation small. While the airborne fraction of CO2 emissions 

is approximately 50% on multi-annual timescales11, the airborne fraction of emissions changes is likely 

above 90% on sub-annual timescales16,17. Because CO2 is not well mixed on the timescale of weeks to 

months, individual observing stations will not reflect the global CO2 burden – for example Mauna Loa 

in the Northern hemisphere Pacific Ocean may see a larger signal than at the South Pole from the 

emissions reductions due to COVID-19 restrictions. The magnitude of natural – terrestrial and marine 

– fluxes of CO2 compared with anthropogenic emissions make it extremely difficult to detect changes 

in emissions at national level from CO2 concentrations themselves. We estimate these CO2 

concentration changes in Section 4 (see Figures S6 and 5b) and find maximum reductions compared to 

our baseline scenario of around two ppm in two years’ time (Figure S6). 

 

Even though the CO2 change cannot readily be observed, changes in the concentrations of air pollutants 

can be employed to test the veracity of the bottom-up emission reduction estimates. A decline in NO2 

has been observed globally, and in several countries and cities7,8. NO2 is short-lived (~5 hours), provides 



a relatively linear response to emission changes (unlike other pollutants such as O3 and PM2.5), and 

reductions in its emissions are expected to be well correlated to CO2 emission reductions (Figure 2a, Le 

Quéré et al.).  Changes in its concentration thus act as a useful bellwether for changes in CO2 emissions, 

however, it remains challenging to get a quantifiable estimate of the emission-driven NO2 change as it 

is hard to separate that signal from meteorological variability. To address this we use a machine learning 

method to derive emission-driven fractional trends from surface air quality monitoring stations around 

the globe (see methods and Ivatt and Evans, 201918). We aggregate these changes for 32 nations and 

show how these observationally-based national time-series of NO2 change compares to our mobility-

based estimate of NOx emissions change in Figure S5. Figure 3 shows the average observationally-

derived NO2 change versus the predicted mobility-based NOx emissions change for each country in 

2020. Some differences between the emission estimates and observed changes would be expected: 

monitoring stations tend to focus on sites with high transport emission and so may be less sensitive to 

changes in industrial or residential activity; much of the transport emissions of NOx arises from 

commercial vehicles (64% of transport emission in the UK19) which may show different responses to 

the population aggregated travel data used here. However, the comparisons for the individual countries 

(Figure S5) are generally good and there is a quantitative relationship between the average predicted 

change in the emissions and observed reduction in concentrations (Figure 3). Most countries show a 

smaller (20% or roughly 2 percentage points) decrease in observed NO2 than the predicted reduction in 

NOx emissions, whereas China and India show larger observed reductions than predicted (28% and 

48% respectively). This could be due to the Quéré et al. analysis being used to estimate trends in China 

as Google data was not available and also due a possible lack of representativeness in the phone mobility 

data for India (see Section 2). 

 



 
Figure 3. Country level comparison of the observed mean fractional reduction in NO2 concentration 

with the mean predicted emissions change in NOx emissions for the period 1/1/2020 to 11/5/2020. 

Circle size indicates the mass of NOx emitted each day for that country from EDGAR emissions. Blue 

line shows the line of best fit (orthogonal regression) excluding China and India shown in red, 

weighted by the number of observations in those countries, with the shaded area showing the 95% 

confidence interval. Not all countries are labelled. Brazil shows an increase in NO2 concentrations and 

is not shown but is included in the statistical fit (see Figure S5).   

4. Surface temperature response 

The immediate response of the warming comes from a combination of an aerosol induced warming 

trend and a cooling trend both from CO2 reductions and the NOx-driven tropospheric ozone cooling 

loss (Figure 4). To estimate the surface temperature response beyond April 2020, the emission trends 

are projected forward in time under four simple “what-if” assumptions.  The temperature changes from 

these pathways were simulated by the FaIRv1.5 climate emulator20 which was set up to represent the 

response expected from the latest generation of climate models (see methods). As we are making a high 

end estimate of climate change resulting from the pandemic, and as significant social distancing 

conditions may be necessary for two years21, we begin by assuming in all three pathways that the 

emissions decrease will remain at 66% of their April 2020 values until the end of 2021. In the simplest 



“two-year blip” pathway emissions return linearly to the baseline pathway by the end of 2022 (Table 1, 

Figure 5a). This and the other pathways considered are summarised in Table 1. 

 

 
Figure 4. Effective radiative forcing and temperature response for the two-year blip pathway 

compared to the baseline pathway. The response is broken down by the major forcing contributors, as 

emulated by the FaIRv1.5 model. 5%–95% Monte-Carlo sampled uncertainties are shown and 

weighted according to their historical fit to the surface temperature record (see methods). 

 

Table 1, Pathway what-if assumptions 
Pathway What happens Notes 

Baseline Follows emissions until 2030 consistent with a successful implementation of the  

current Nationally Determined Contributions (NDC) submitted by individual 

countries under the Paris Agreement, adapted from Rogelj et al (2017)15. 

Emissions continue after 2030 assuming no significant strengthening in climate 

action.  

 

 

The data is adapted from 

Rogelj et al. (2017)15 and 

represents a central estimate 

of the range of estimates 

presented therein. This 

pathway also falls centrally in 

the range identified by the 

2019 UNEP Emissions Gap 

Report22 

Two-year blip Reflecting potential SARS-CoV-2 transmission dynamics21 this case explores 

66% of the April 2020 lockdown persisting until the end of 2021, then emissions 

linearly recover to baseline by the end of 2022.  

This implies a persistent 

necessity of partial lockdowns 

until the end of 2023, but with 

no lasting effect of SARS-

CoV-2. 

Fossil-fuelled 

recovery 

Follows the two-year blip pathway until end of 2021, then emissions recover in a 

way similar to the recovery after the 2008/9 global recession, rebounding to 4.5% 

above where the baseline at the end of 2022. Stimulus packages are designed with 

strong support for fossil-fuel energy supply, resulting in more fossil investment 

than a pre-COVID current policy scenario (+1%) and considerably less in low-

carbon alternatives (-0.8%). Resulting emissions are 10% higher in 2030 than the 

baseline scenario, a trend which is assumed to continue thereafter23.  

 

2030 data taken from Climate 

Action tracker, “rebound to 

fossil fuel scenario” with the 

relative increase in emissions 

compared to baseline 

continued thereafter.  

Moderate 

Green stimulus  

Follows the two-year blip pathway until end of 2021, then emissions recover 

slightly, until the end of 2022, but never reach the baseline projections. 

Governments choose recovery packages to target specifically low-carbon energy 

supply and energy efficiency, and do not support bailouts for fossil firms. The 

resulting investment differential (+0.8% for low-carbon technologies and -0.3% 

for fossil fuels relative to a current-policy scenario), begins to structurally change 

the intensity of emissions from economic activity, resulting in about a 35% 

decrease by 2030 relative to the baseline scenario, a trend which is assumed to 

continue thereafter 23.   

 

Short-term benefits come from 

changes to the norms of 

behaviour, then green 

incentives to decarbonize all 

sectors of the economy 

Strong green 

stimulus  

As the moderate green stimulus with investment differentials (+1.2% for low-

carbon technologies and -0.4% for fossil fuels relative to a current policy scenario, 

resulting in a slightly more than 50% decrease by 2030 relative to the baseline 

scenario. Also this trend is assumed to continue thereafter. 

This has over 50% chance of 

limiting the 2050 temperature 

rise to 1.5oC above 

preindustrial 

 

Figures 4 and 5 show the effective radiative forcing and temperature response to the “what-if” pathways 

compared to baseline. Under the two-year blip pathway, due to the cancellation of the influence of 

short-term pollutants, a longer-term cooling from reductions in CO2 of around 0.01 ± 0.005 oC results, 

compared to the baseline (Figures 4b and S7).  Due to the different warming and cooling trends from 



short-lived pollutants, the 2020-2030 climate response to the different pathways remains uncertain but 

is likely negligible whatever path the recovery takes (Figures 4, 5 and S7). However, differences 

manifest themselves after 2030, where the moderate green stimulus saves around 0.2 oC of future 

warming by 2050 and the strong green stimulus saves around 0.3 oC of future warming (Figure 5). 

 

As the global temperature response due to COVID-19 restrictions will likely be small, climate scientists 

are encouraged to look for regional climate signatures. In particular changes in aerosol loadings may 

contribute to increasing regional risks posed by extreme weather such as heat waves or heavy 

precipitation24,25. Such near-term changes require particular attention as hazards posed by extreme 

weather will compound with the ongoing pandemic situation. As exemplified tragically by tropical 

cyclone Amphan hitting Kolkata on 21 May 2020. With considerable overlaps of vulnerable groups 

(for example heat waves and the elderly) or challenges related to the implementation of effective 

responses (evacuation in case of flooding), as well as potential impacts on crop yields26 and initial 

studies suggesting that the spread of COVID-19 may itself be influenced by climatic factors21, this will 

put the ability of society and governments to manage compound risks to the test27. 

 

In our estimates, declines in NOx of greater than 25% that contribute a short-term cooling of up to 0.01 
oC over 2020-2025 almost exclusively from reductions in tropospheric ozone. As the ozone response is 

expected to have strong regional variation, we test the ozone response in a more sophisticated 

emulator28,29 that takes these variations into account (see methods). This estimates an annual mean 

radiative forcing of -0.029 Wm-2 for 2020, in very close agreement with the forcing seen in Figure 4a 

(-0.030 Wm-2). The emulator also provides an estimate of the regional mean surface ozone changes 

(Table S5). In contrast to NOx, reductions in emissions of other short-lived pollutants, especially SO2, 

cause a warming from a weakening negative aerosol forcing. These two effects more or less cancel in 

our simulations, although on balance we expect a small warming effect over the next 5 years (Figure 

4). 

 

In spite of the uncertainty, our results indicate that reductions of NOx have a cooling effect which will 

likely offset a considerable fraction of the warming that comes from reductions in emissions of other 

short-lived pollutants. This suggests that policies directed at limiting pollution from road transport could 

offset the short-term warming that might come from policies that reduce pollution from the power and 

industry sector. Therefore, we recommend policies are enacted to cut pollution from all three sectors at 

the same time. This is a useful way forward for net-zero transition pathways so we can avoid any short-

term warming effects that might come from reductions in aerosol pollution30.  

 

Figure 5 shows estimated changes in CO2 emissions and the climatic responses for the four assessed 

pathways. We find that both the two-year blip pathway, where the economic recovery maintains current 

investment levels, or the fossil fuelled recovery pathway, are likely to exceed a 2oC above preindustrial 

limit by 2050 (>80%, Figure S8). Conversely, choosing a pathway with strong green stimulus 

assumptions (~1.2% of global GDP), including climate policy measures, has a good chance (~55%, 

Figure S8) to keep global temperatures change above preindustrial within the 1.5oC limit.  

 



 
Figure 5. a) Emissions of CO2, b) CO2 concentrations, c) the surface air temperature response for the 

what-if pathways from Table 1, emulated by the FaIRv1.5 model. The baseline pathway is also 

plotted, but largely obscured by the two-year-blip pathway.  5%–95% Monte-Carlo sampled 

uncertainties are shown and weighted according to their historical fit to observations31 shown in panel 

c (see methods). 

 

Our work has shown that the global temperature signal due to the short-term dynamics of the pandemic 

are likely to be small, highlighting that even with massive shifts in behaviour, without underlying 

system-wide decarbonisation of economies any reduction in the rate of warming would be modest. 

However, we can change the expected 2050 warming level, depending economic investment choices 

and there is the potential for keeping the Long-Term Temperature Goal of the Paris Agreement within 

sight. 

 

Lastly, by combining large datasets from surface air quality networks with mobility data, we have 

illustrated the science benefits from timely and easy access to big data.  Such data syntheses can help 

epidemiology and environmental sciences provide the evidence base for the solutions that are urgently 

needed to build a resilient recovery to the devastating pandemic. Google, Apple and other big data 

providers are encouraged to continue to provide and expand their data offerings.   

Methods 

a) CO2 emission estimates 

The Google Mobility analysis. 

Google4 and Apple5 mobility data were accessed on 21 May 2020. National average Google data was 

used for 114 countries, and the US states. Mobility was provided in 6 categories of which we used four 

in our analyses (transit stations, residential, work places, retail and recreation) Apple mobility data was 

from phone movement changes available for 63 countries providing data on changes in transit use, 

walking and driving, depending on country. Google data was based on assigned phone locations and 

was referenced to the day of the week average in the 5-week period Jan 3–Feb 6, 2020. Apple employed 

a baseline of 13 February and did not account for day of week effects. The Apple data was considerably 

more variable and was only used as a check on the other datasets. Our tests found that the Google transit 

trends agreed well with Apple driving trends in the 60 nations with overlapping data (Figures 1a and 

S1) and this gave us confidence to employ the Google transit trends as an estimate of general trends in 

emissions from land-based surface transport. As discussed in the main text, we expect the Google 

mobility data to overestimate emission trends in the other sectors and we compare our new approach 

for estimating granular near real time emission changes with the previous approach of  Le Quéré  et al.2 

and with observations to test the approach.  

 



The Le Quéré et al. sector analysis.  

Le Quéré et al. analysed emission changes in eight sectors (power, surface transport, residential, public 

and commercial, industry, national shipping, international shipping, national aviation and international 

aviation), and 69 countries representing 97% of global emissions. The Le Quéré et al. estimates are 

based on a global estimate of sector emission reductions according to a 1-3 level of confinement. 

Changes in emissions were estimated by quantifying changes in individual and industrial activity, in 

each sector as a function of the level of confinement in respective countries. The data is then 

extrapolated for each country and each day depending on their level of confinement and their mean 

emissions in each sector.  The USA and China were treated at the state and provincial level, respectively. 

Projections for 2020 were also provided. Low, medium, and high estimates of the emission changes 

resulting from different confinement levels were tested against our data. It was found that the high 

estimates agreed best with the Google transit trends over January-May 2020 (see Figures 1, S1 and 2b).  

 

Mobility-based emission estimates.  

As mobility analysis does not cover all sectors or countries to make a global emission estimate we 

combine the mobility analysis with components of the analysis in Le Quéré et al. to estimate global 

emission changes for CO2 and other pollutants that were due to the COVID-19 restrictions. 

We adopt the sector approach of Le Quéré et al., but substitute their percentage changes in the emissions 

from surface transport, residential, public and commercial and industry sectors, with Google mobility 

changes in transit, residential, retail and recreation, and workplaces respectively. For the power sector, 

we employed a hybrid approach, using a combined weighting of workplace, residential and retail 

mobility weighted by the 2019 national split of industrial, residential and commercial emissions. Then 

we used this weighted mobility measure to scale the power sector emissions. Finally applying a scaling 

to match the global emission change in the power sector of the Le Quéré et al. high end estimate. We 

also directly employed the Le Quéré et al. emission trends for international and national aviation and 

shipping. In the 45 countries with only Google data available, the average emission changes from the 

69 Le Quéré et al. nations were employed in the sectors not covered by the Google mobility data. Note 

that for simplicity and following Le Quéré et al., shipping changes are added to the surface transport 

trends in the analyses presented in Figure 2 and Figure S3. All emission changes are compared to a 

daily emission rate which is the annual averaged 2019 emission estimated for that country divided by 

365 (using the data and approach from Le Quéré et al.). The combined dataset gives daily CO2 emission 

changes for 2020, across 8 sectors and 123 countries, covering 99% of global emissions. The Le Quéré 

et al. high-end estimate and new mobility-based emission estimates were found to agree well with each 

other, both at the individual US state level and at the country level for the 56 countries with overlapping 

data (Figures S1, S2 and Figure 1b). 

Table S2 compares the global average trends and that from some major nations to the  CO2 estimates 

in Le Quéré et al. and that of Liu et al.1. Our trends are expected to be higher than the other datasets, 

but this doesn’t manifest itself for first quarter trends in all countries. As the Google trends only start 

on 15 February, our analysis will underestimate first quarter trend estimates where changes occurred 

before this date. Our change estimates agree well with Le Quéré et al. high-end estimate for March and 

April (see Table S3). More interesting are the differences with the Liu et al. dataset for India and Russia, 

where their trends are considerably smaller. This could be caused by the differences with the reference 

assumptions. The Liu et al. approach makes a daily reference comparison with 2019 emissions and both 

nations show declining emissions in the first quarter of 2019, whereas our reference is taken as the 

Google mobility base-period of 3 January to 3 February (see methods). As the Le Quéré et al. 

confinement levels are well correlated in time with the Google mobility estimates and also 



quantitatively agree (see Figure S2), we assume that the mobility trends we see are largely a response 

to COVID 19. However, more work will be needed to fully understand and resolve these differences. 

a) Non-CO2 emission estimates 

The Emission Database for Global Atmospheric Research (EDGAR) version 5.0 database14 provides 

gridded and national level sectorial emissions on methane, nitrous oxide and several short-lived species. 

The last year available is 2015. The sectors employed in the EDGAR analyses are mapped onto the Le 

Quéré et al. sectors used here, according to the breakdown in Table 2. The national and sector level 

emission changes for 2020 are then estimated by equation 1. 

∆𝑬𝒊𝒏,𝒊𝒔(𝒕) = 𝑬𝒃𝒂𝒔𝒆𝒊𝒏,𝒊𝒔 	
∆𝑪𝒊𝒏,𝒊𝒔(𝒕)	

𝑪𝒃𝒂𝒔𝒆𝒊𝒏,𝒊𝒔
				(𝟏) 

Where ∆𝑬𝒊𝒏,𝒊𝒔(𝒕) is the emission change (in ktday-1) of the species as a function of nation (in) and 

sector (is). 𝑬𝒃𝒂𝒔𝒆𝒊𝒏,𝒊𝒔 is the annual emission divided by 365 of the species from the sector and nation 

for 2015, see Table S1.  ∆𝑪𝒊𝒏,𝒊𝒔(𝒕) and 𝑪𝒃𝒂𝒔𝒆𝒊𝒏,𝒊𝒔 are the CO2 emission change over 2020, and the 

average daily baseline emission respectively in the sector and nation being considered (CO2 is in units 

of MtCO2 day-1). Similar equations are used for international aviation and shipping, where the global 

emission from aviation or shipping is ratioed by the globally averaged CO2 emission change in the 

corresponding sum over the national change in sectors from the Le Quéré et al. data. The resulting 

changes are shown in Figures 2,3, S3 and S4. Note that although nearly all global CO2 emissions were 

accounted for in Le Quéré et al., agricultural and waste emissions are excluded in the non-CO2 analyses 

as they are assumed not to change. This leads to a reduced fraction of global emissions for non-CO2 

gases being covered and smaller emission changes for many species (Figure 3).  

Table 2. EDGAR sector matching to Le Quéré et al. sectors. 

Species Le Quéré et al. (2020) sector categories 

 Surface transport Residential Public/Com

mercial 

Industrial Power Shipping Aviation 

SO2, NOx, 

NMVOCs, 

OC, BC, 

CO,NH3 

'Road 

Transportation no 

resuspension', 

'Road 

Transportation 

resuspension', 

‘Rail 

transportation’,‘Ot

her transportation’ 

Other 

Sectors 

None 'Manufacturing Industries 

and Construction', 

'Chemical Industry', 

'Metal Industry', 'Cement 

production', 'Lime 

production', 'Glass 

Production', ' Other 

Process Uses of 

Carbonates' 

'Main Activity 

Electricity and Heat 

Production', 'Solid 

Fuels', 'Petroleum 

Refining - Manufacture 

of Solid Fuels and Other 

Energy Industries', 'Oil 

and Natural Gas' 

'Water-borne 

Navigation', 

 

‘International 

Shipping’ 

'Civil Aviation', 

 

‘International 

Aviation’ 

CH4, N2O 'Road 

Transportation',  

'Railways',  'Other 

Transportation' 

Other 

Sectors 

None 'Manufacturing Industries 

and Construction', 

’Chemical Industry', 

'Metal Industry' 

'Main Activity 

Electricity and Heat 

Production', 'Solid 

Fuels', 'Petroleum 

Refining - Manufacture 

of Solid Fuels and Other 

Energy Industries', 'Oil 

and Natural Gas' 

'Water-borne 

Navigation', 

 

‘International 

Shipping’ 

'Civil Aviation', 

 

‘International 

Aviation’ 

 

b) Emission scenarios 

The generated datasets above firstly combine sector specific mobility changes referenced to the 3 

January to 6 February 2020 period, with national lockdown measures. The method then uses published 

national emission inventories for either 2019 (for CO2) or 2015 (for non-CO2) to derive absolute 

emission changes which would also be relative to the early 2020 period. This reference is then projected 



out to 2030 to form a emission baseline representing current Nationally Determined Contributions 

(NDCs)15. To explore the temperature response to emission changes relative to this baseline, the bottom-

up emission change estimates from the first four months of 2020 have been extended according to the 

scenarios illustrated in Table 1. Four scenarios are explored: “two-year blip”, “fossil-fuelled recovery”, 

“moderate green stimulus”, and “strong green stimulus”. The “two-year blip” scenario assumes climate 

action to continue at the same level of ambition as implied by the current NDCs15 until 2030 – 

approximated by the implied global carbon price consistent with the emission reduction resulting from 

the NDCs. The “fossil-fuelled recovery” follows a path that lies 10% higher than the NDC path. The 

“moderate green stimulus” assumes about a 35% reduction in total global greenhouse gas emissions 

relative to the baseline NDC path and a further decline of global CO2 emissions towards zero emissions 

in 2060. Non-CO2 emissions after 2030 are completed in proportions consistent with the MESSAGE-

GLOBIOM implementation of the middle-of-the-road Shared Socioeconomic Pathway (SSP2)32,33. The 

“strong green stimulus” assumes about a 52% reduction in total global greenhouse gas emissions 

relative to the baseline NDC path and a further decline of global CO2 emissions towards zero emissions 

in 2050. Non-CO2 emissions are completed in proportions consistent with the sustainability Shared 

Socioeconomic Pathway (SSP1) implemented by the IMAGE model34. Scenarios are given as emissions 

of 39 species from anthropogenic and natural sources and volcanic and solar radiative forcing (see 

Smith et al.20 for details). Only the ten species evaluated in this paper are changed. The original dataset 

gives annual emissions from 1750-2100, and these are linearly interpolated to monthly values, to 

provide higher time resolution for the subsequent calculations of effective radiative forcing and 

temperature. 

c) Comparison to NO2 observations 

Hourly observations of NO2 are taken from the OpenAQ database (https://openaq.org/) between January 

1, 2018 and May 3, 2020, giving 1,747,189 hourly observations from 2,873 sites around the world. For 

each observation, a spatially and temporally co-located model value for the meteorological, chemical 

and emissions state is acquired from the NASA GEOS Composition Forecast (GEOS-CF) system. 

GEOS-CF integrates the GEOS-Chem chemistry model into the GEOS Earth System Model35 providing 

global hourly analyses of atmospheric composition at 25x25 km2 spatial resolution in near real-time. 

Anthropogenic NOx emissions are prescribed using monthly HTAP bottom-up emissions36, with annual 

scale factors based on OMI satellite data applied to it to account for year-over-year changes. GEOS-CF 

does not account for emission reductions related to COVID-19, providing a business-as-usual estimate 

of NO2 that serves as a reference baseline for surface observations. For each site, a function describing 

the time dependent model bias (observed value - modelled value) is developed using the 2018 and 2019 

observations based on the XGBoost algorithm37, with the model meteorological, chemical and 

emissions state as the dependent variables. 50% of this data is used for training, and 50% used for 

testing.  For 2020, we predict the concentration of NO2, by taking the model output time series of NO2 

at each station and add the bias predicted by our trained algorithm. This then provides a counterfactual 

for the NO2 concentration had COVID-19 restrictions not been put into place. We calculate the ratio 

between the actual concentration and that predicted for each site and then take the mean across all sites 

within a country. These data are compared to 26 country level emission estimates in Figure S5, and the 

country-mean reductions compared to that predicted from the mobility data is shown in Figure 2b. 

d) Surface temperature change estimates 

From the emission scenarios in Section 3, global averaged effective radiative forcing (ERF) and near-

surface air temperature are computed. First, ERFs are calculated using the FaIR version 1.5 model and 



the methodology outlined in Smith et al. (2018)20 for 13 different forcing components. Uncertainties 

are estimated by 10,000 Monte Carlo samples of relative ERF uncertainties, using ranges based on 

IPCC AR538, see Smith et al. (2018) for details. NOx emissions affect direct forcing from nitrate aerosol 

and tropospheric ozone radiative forcing. Additionally, the ERF from aviation contrails and contrail-

induced cirrus is assumed to scale with NOx emissions from the aviation sector. 

The two layer energy balance model of Geoffroy et al.39,40 including efficacy of deep ocean heat uptake 

is used to translate these ERF time series into surface temperature estimates. The five free parameters 

in this model are chosen to match individual Climate Model Intercomparison Project phase 6 (CMIP6) 

model behaviour by fitting the parameters to 4xCO2 abrupt simulations in 35 models; these parameter 

fits are shown in Table S4. To estimate uncertainties, parameters corresponding to an individual model 

are picked randomly 10,000 times and paired to a sampled ERF parameter range for each of the 13 ERF 

timeseries. The two-layer model is then run with each of these parameter sets to make a surface 

temperature projection. The resulting plume of possible projections is then compared to Cowtan and 

Way31 observed  surface temperature record. The Cowtan and Way data has been adjusted to allow for 

the fact the near-surface air temperature has warmed more than the sea surface temperature. To make 

this adjustment, the CMIP6 ratio of near-surface air temperature to blended near surface air temperature 

and surface ocean temperatures is made over the historical period and found to converge towards 8% 

in recent years41. This is then used to scale the observations upwards. The root mean square error of the 

simple model projections are then compared to these scaled observations over 1850-2019 inclusive. 

The goodness of fit is then used to provide projected probability distribution based on a weighted 

average of the goodness of fit. This follows the method outlined in Knutti et al.42, with the exception 

that we do not downweight ensemble members based on independence. 

e) Testing the ozone forcing parameterisation 

The FaIRv1.5 model used above adopts a simple global annual mean emission-forcing relationship for 

tropospheric ozone which may not capture the seasonal and regional nuances of the atmospheric 

chemical response to the changes in NOx and other emissions. To test this a second ozone 

parameterisation was employed based upon source-receptor relationships from models that participated 

in the Task Force on Hemispheric Transport of Air Pollutants (TF-HTAP) project43. The 

parameterisation28,29 emulates the ozone response in models to applied perturbations in ozone precursor 

emissions (NOx, CO and NMVOCs) and global CH4 abundance. For emission perturbations in CO and 

NMVOCs a linear scaling factor is used whereas a non-linear factor is used for changes in NOx and 

CH4. The 2020 annual mean tropospheric ozone radiative forcing and annual mean tropospheric ozone 

burden change deduced from this parameterisation were -0.029 Wm-2 and 7.5 Tg for the high emission 

scenario used here. 
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Figure S1. Decrease in mobility for April 2020, computed from the average of Google4, Le Quéré et 

al.2 and Apple data5, depending on which of the three datasets are available in the specified country. 

The average is shown as the grey bars. The available Google mobility data trends from transit 

stations, Apple driving data trends and the Le Quéré et al. high-end estimate for surface transport 

emission changes are shown as the coloured symbols, from which the average is derived. 



 
 

Figure S2: National sector specific emission trends for example nations. Data from Google (solid 

lines) and Le Quéré et al. (dotted lines) using the high end of the uncertainty range. Sectors shown 

from Le Quéré et al are transport (blue), residential (green), public and commercial (black) and 

Industry red. Corresponding Google trends are shown in transit mobility (blue), residential (green), 

retail (black) and workplaces (blue). A 7-day running mean is applied to the Google data. 

 

  



 

 

 

 
 

Figure S3. Global average absolute emission change in a given sector for the high scenario by 

pollutant as a fraction of the daily average emission for that gas summed across all sectors. Following 

Le Quéré et al., shipping changes are added to the surface transport trends.     

 



 
 

Figure S4. Global averaged emission change by pollutant in kt per day (Mt per day for CO2).  The 

annually averaged daily emission is shown in the title. Major emitting nations and regions, as well as 

aviation are shown. 

 

 



 
Figure S5. Time series of predicted fractional changes in NOx emission for 2020 from our emission 

estimate, with the median fractional change in observed surface NO2 concentrations compared to a 

non-COVID counterfactual for 32 nations (see methods). Where more than one surface station is 

available the 5% and 95% uncertainty ranges in the observations are shown. The number of national 

surface stations employed for analysis and the correlation coefficient between the two estimates is 

given in each panel. 

 

 

 



 
Figure S6. Emissions, and best estimates of CO2 concentration and effective radiative forcing (ERFs) 

components from the two-year blip scenario. Component ERFs are shown with minor ERFs  in panel 

b) and the three largest ERF changes in c).     

 

 

 

 

 
Figure S7. Emissions, ERF and temperature response from the three scenarios over 2019-2030 (top) 

and 2019 to 2050 (bottom) . The probabilities are generated by varying the emulated CMIP6 model 

(one of 35) and ERF ranges with a 10,000 Monte Carlo sample. Distributions are weighted according 

to their goodness of fit over the historical period (see methods). 

 

 



 
Figure S8. Probability distributions of 2050 global warming levels above 1850-1900 for the scenarios 

in Table 1, generated by varying the emulated CMIP6 model (choosing one of 35 model formulations) 

and ERF ranges. Distributions are weighted according to their goodness of fit over the historical 

period (see methods). 

  



 

 

Table S1 Percentage emission change in emitted species for the first four months of 2020 and an 

estimate of the annual change if lockdown continues at 66% of the April level. 

 
 

 



 

 

 

 

Table S2. Comparison of fossil fuel CO2 emission reduction (in percent) for the first quarter of 2020 

from this study compared with other studies 

 

  

This study 

(%) 

High Le 

Quéré et 

al (%) 

Mid Le 

Quéré et 

al (%) 

Liu et al. 

(2020)1 

(%) 

Global -8.50 -10.47 -6.30 -5.8 

China -15.97 -15.97 -10.00 -10.3 

India -5.07 -10.97 -6.07 -1.6 

USA -4.70 -10.87 -6.10 -4.20 

EU27+UK -4.70 -10.87 -6.10 -4.30 

Russia -7.23 -7.23 -4.00 -3.00 

Japan -2.43 -6.70 -3.40 -4.30 

Brazil -4.83 -6.10 -4.20 -4.10 

 

 

 

 

Table S3. Comparison of monthly and annual CO2 trends with Le Quéré et al (2020) 

 
 

Table S4. Geoffory et al. (2013)39,40 two layer model fits to CMIP6 model 4xCO2 integrations 



 

Model 

Climate feedback 

parameter 

Ocean layer heat 

exchange coefficient 

Efficacy of deep 

ocean heat uptake 

Ocean mixed layer 

heat capacity 

Deep ocean heat 

capacity 

 Wm-2K-1 W m-2 K-1 - W yr m-2 K-1 W yr m-2 K-1 

ACCESS-CM2 -0.70 0.54 1.50 8.71 93.23 

ACCESS-ESM1-5 -0.71 0.62 1.60 8.38 95.36 

AWI-CM-1-1-MR -1.21 0.48 1.45 8.20 56.49 

BCC-CSM2-MR -1.14 0.87 1.30 5.94 64.57 

BCC-ESM1 -0.89 0.53 1.37 8.70 97.66 

CAMS-CSM1-0 -1.92 0.48 1.28 9.75 56.97 

CESM2 -0.66 0.67 1.77 8.41 75.91 

CESM2-FV2 -0.58 0.71 1.77 7.42 92.73 

CESM2-WACCM -0.71 0.70 1.53 8.29 89.67 

CESM2-WACCM-FV2 -0.60 0.70 1.50 8.17 112.10 

CNRM-CM6-1 -0.75 0.51 0.99 7.59 145.23 

CNRM-CM6-1-HR -0.94 0.55 0.75 8.41 96.37 

CNRM-ESM2-1 -0.63 0.60 0.90 7.47 97.02 

CanESM5 -0.65 0.53 1.06 8.23 80.72 

E3SM-1-0 -0.63 0.36 1.46 8.39 43.90 

FGOALS-f3-L -1.50 0.59 1.62 8.99 79.35 

FGOALS-g3 -1.28 0.64 1.37 8.13 98.49 

GFDL-CM4 -0.82 0.58 1.64 7.53 94.14 

GFDL-ESM4 -1.46 0.55 0.86 8.37 148.07 

GISS-E2-1-G -1.50 0.84 1.11 7.54 140.89 

GISS-E2-1-H -1.14 0.62 1.12 8.64 84.25 

GISS-E2-2-G -1.64 0.53 0.65 8.89 411.85 

HadGEM3-GC31-LL -0.62 0.52 1.19 7.96 76.42 

HadGEM3-GC31-MM -0.65 0.59 1.00 8.24 71.42 

IITM-ESM -1.94 0.70 1.15 9.34 174.11 

INM-CM5-0 -1.61 0.48 1.30 8.64 47.65 

IPSL-CM6A-LR -0.69 0.39 1.58 8.00 94.99 

MIROC-ES2L -1.56 0.68 0.95 10.59 177.43 

MIROC6 -1.42 0.62 1.26 9.17 205.68 

MPI-ESM1-2-HR -1.27 0.64 1.40 8.41 92.63 

MRI-ESM2-0 -1.20 0.86 1.48 8.48 98.20 

NorESM2-LM -0.93 0.82 3.07 5.60 145.05 

NorESM2-MM -1.54 0.77 1.69 6.15 121.29 

SAM0-UNICON -1.03 0.81 1.14 6.58 100.49 

UKESM1-0-LL -0.66 0.53 1.13 7.74 76.55 

 

Table S5. Monthly surface ozone concentration (ppb) change estimates using the Turnock et al 

(2018)28 parameterization averaged across different world regions.  

 
Month Central 

Americ

a 

Central 

Asia 

East 

Asia 

Europe Middle 

East 

North 

Africa 

North 

Americ

a 

North 

Pole 

Ocean Pacific, 

Aus, 

NZ 

Russia, 

Belarus

, 

Ukrain

e 

Souther

n 

Africa 

South 

Americ

a 

South 

Asia 

South 

East 

Asia 

South 

Pole 

Global 

Jan -0.05 -0.06 -0.04 -0.06 -0.06 -0.07 -0.08 -0.07 -0.04 -0.01 -0.05 -0.02 -0.01 -0.05 -0.08 0.00 -0.04 

Feb -0.36 -0.45 -0.58 -0.47 -0.54 -0.53 -0.56 -0.45 -0.33 -0.09 -0.34 -0.15 -0.07 -0.37 -0.50 -0.03 -0.33 

Mar -1.05 -1.46 -1.46 -0.94 -1.98 -1.46 -1.20 -0.97 -0.79 -0.28 -0.95 -0.40 -0.38 -2.15 -1.10 -0.15 -0.81 

Apr -2.28 -2.91 -2.82 -2.51 -3.66 -2.74 -2.95 -2.13 -1.55 -0.68 -2.42 -0.74 -0.93 -4.75 -2.20 -0.37 -1.65 

May -1.42 -2.03 -1.75 -1.86 -2.64 -1.71 -2.02 -1.41 -0.96 -0.40 -1.61 -0.44 -0.54 -2.83 -1.40 -0.28 -1.05 

Jun -1.35 -1.81 -1.55 -1.83 -2.93 -1.51 -1.92 -1.00 -0.90 -0.41 -1.37 -0.48 -0.53 -2.43 -1.37 -0.32 -0.97 

Jul -1.28 -1.43 -1.29 -1.84 -2.68 -1.32 -1.94 -0.65 -0.90 -0.45 -1.18 -0.49 -0.55 -2.08 -1.34 -0.36 -0.93 

Aug -1.29 -1.42 -1.29 -1.62 -2.62 -1.24 -1.80 -0.57 -0.89 -0.50 -1.06 -0.47 -0.57 -2.19 -1.35 -0.39 -0.91 

Sep -1.27 -1.38 -1.37 -1.37 -2.65 -1.30 -1.61 -0.74 -0.87 -0.56 -0.97 -0.49 -0.57 -2.71 -1.39 -0.40 -0.91 

Oct -1.41 -1.29 -1.37 -0.92 -2.64 -1.56 -1.26 -0.94 -0.89 -0.54 -0.72 -0.50 -0.60 -3.20 -1.42 -0.36 -0.92 

Nov -1.37 -0.89 -1.20 -0.53 -2.03 -1.46 -0.90 -0.90 -0.93 -0.52 -0.48 -0.57 -0.63 -3.03 -1.58 -0.31 -0.90 

Dec -1.28 -0.75 -1.09 -0.10 -1.45 -1.35 -0.56 -0.72 -0.87 -0.47 -0.19 -0.61 -0.57 -2.57 -1.43 -0.26 -0.81 

Annual 

Mean 

-1.20 -1.32 -1.32 -1.17 -2.16 -1.35 -1.40 -0.88 -0.83 -0.41 -0.95 -0.45 -0.50 -2.36 -1.26 -0.27 -0.85 

 


