
This is a repository copy of Finite element implementation of a multi-scale dynamic 
piezomagnetic continuum model.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164053/

Version: Accepted Version

Article:

Xu, M., Gitman, I.M., Wei, P. et al. (1 more author) (2020) Finite element implementation of
a multi-scale dynamic piezomagnetic continuum model. Computers and Structures, 240. 
106352. ISSN 0045-7949 

https://doi.org/10.1016/j.compstruc.2020.106352

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Finite element implementation of a multi-scale

dynamic piezomagnetic continuum model

Mingxiu Xu1, Inna M. Gitman2, Peijun Wei1 and Harm Askes3∗

1Department of Applied Mechanics, School of Mathematics and Physics,

University of Science and Technology Beijing, China

2Department of Mechanical Engineering,

The University of Sheffield, United Kingdom

3Department of Civil and Structural Engineering,

The University of Sheffield, United Kingdom

Abstract

A gradient-enriched dynamic piezomagnetic model is presented. The gradient enrichment introduces a

number of microstructural terms in the model that allow the description of dispersive wave propagation.

A novel derivation based on homogenisation principles is shown to lead to a multi-scale formulation

in which the micro-scale displacements and magnetic potential are included alongside the macro-scale

displacements and magnetic potential. The multi-scale formulation of the model has the significant ad-

vantage that all higher-order terms are rewritten as second-order spatial derivatives. As a consequence, a

standard C 0-continuous finite element discretisation can be used. Details of the finite element implemen-

tation are given. A series of one and two-dimensional examples shows the effectiveness of the model to

describe dispersive wave propagation and remove singularities in a coupled elasto-magnetic context.

Keywords: piezomagnetism, wave propagation, generalised continuum, length scale, multiscale mod-

elling, wave dispersion

1 Introduction

Exploring and exploiting the coupling between mechanical and magnetic material behaviour has led to

innovation in various areas of technology, ranging from sensors and transducers to vibration dampers and

valves. Many of these applications continue to be developed, often at smaller and smaller specimen sizes. To

understand how the piezomagnetic coupling is affected by size, material models need to take into account

how the microstructure of the material influences the macroscopic behaviour [29, 35, 36].

One approach to modelling is to incorporate the heterogeneity of the material within a multi-scale

piezomagnetic framework. The different phases at the lower level of observation are modelled explicitly

and homogenisation principles may be applied to derive effective properties [1, 2, 18, 27, 28]. This requires

the identification of a suitable Representative Volume Element at the lower scale of observation, after which

Fourier transforms [1, 2] or Eshelby solutions [18, 27, 28] may be used to quantify the relevant effective

properties.

Alternatively, a more phenomenological approach is to enrich the governing piezomagnetic equations

with additional terms that are envisaged to capture the microstructural effects. The theoretical framework

∗corresponding author: h.askes@sheffield.ac.uk
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of elasticity with couple stresses [42] and nonlocal elasticity [23] provides templates to formulate such

generalised continua, whereby the additional terms typically are higher-order spatial derivatives of the stan-

dard terms, accompanied by one or more internal length scale parameters. Thus, piezomagnetic coupling

has been combined with couple stress theory in [6] and the very similar [8], reporting increased apparent

stiffness with increasing values of the internal length scale. On the other hand, Eringen-type nonlocality has

been used in [9] where a decrease in apparent stiffness was reported for increasing values of the internal

length scale, and in [19,37] where the equivalence of Eringen-type nonlocality with higher-order derivatives

of accelerations was shown, thus explaining the apparent decrease in stiffness for increasing values of the

length scale—see also [13] for the equivalence of stress gradients and inertia gradients. Naturally, it is also

possible to have both types of enrichment in the same model [7, 33], in which case there are two internal

length scale parameters with competing effects on the apparent stiffness.

In addition, it is worthwhile to point out that the effects of magnetic field on the mechanical behaviour

can be simulated by adding a magnetic force to the mechanical equations or by including the magnetic

degrees of freedom alongside the mechanical degrees of freedom in an expanded set of equations. In the

former approach, the mechanical response does not affect the magnetic response, whereas the latter ap-

proach is fully coupled. In the context of generalised continua, compare for instance [26] with [24].

However, since generalised continua models are equipped with higher-order spatial derivatives, numer-

ical implementation typically requires continuity of the interpolation functions that is higher than the C 0-

continuity available in standard finite element packages. Achieving higher-order continuity is not straight-

forward but certainly possible, see [10] for an overview of methods and approaches. Aifantis suggested a se-

ries of models whereby the higher-order term is the Laplacian of the corresponding lower-order term [3–5].

With that particular mathematical structure of the equations, one of simplest methods of implementation is

to rewrite the fourth-order differential equations of generalised elasticity into a set of second-order differ-

ential equations [15, 32, 39, 41].

In this paper, we aim to bridge the gap between multi-scale models and generalised continua described

above. We will explore homogenisation techniques that allow us to rewrite the equations of generalised

piezomagnetic continua as a coupled set of multi-scale partial differential equations whereby the micro-

scale mechanical and magnetic fields appear alongside the macro-scale mechanical and magnetic fields.

This paper is the follow-up of earlier work we reported on statics [45] and a previous article where we

explored suitable formats of gradient-enriched piezomagnetics in a one-dimensional dynamics context [44].

Novel aspects of the present paper include (i) a new motivation of the model that relies on homogenisation

rather than postulation of an enriched energy functional, (ii) the extension to multiple spatial dimensions,

(iii) the development of a simple C 0-continuous finite element implementation, and (iv) the derivation of an

optimal ratio of time step to element size. After briefly revisiting some relevant concepts of homogenisation

in Section 2, a dynamic piezomagnetic model is formulated in Section 3—first as a generalised continuum

model and subsequently as its multi-scale equivalent. The variationally consistent boundary conditions are

derived in Section 4 and the finite element equations are given in Section 5. Section 6 presents an analysis

of dispersive waves and compares the continuum with the space-time discretised equations; this enables the

derivation of an optimal time step. The numerical examples of Section 7 demonstrate the convergence of

the numerical model, the dispersive properties of the physical model and its ability to describe structural

and material response without singularities.

2 Micro-macro transitions and gradient enrichment

In homogenisation procedures, the macro-level stresses σ M
i j at a macro-level position x0 are found as the

volume average of the micro-level stresses σ m
i j through

σ M
i j (x

0) =
1

VRVE

∫

VRVE

σ m
i j (∆x)dΩ (1)

where ∆x = x− x0. The integration volume is commonly known as the Representative Volume Element

(RVE). Developing the micro-level stress in a Taylor series around its value at the centre x0 of the RVE
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leads to

σ M
i j (x

0) =
1

VRVE

∫

VRVE

(

σ m
i j (x

0)+∆xkσ m
i j,k(x

0)+
1

2
∆xk∆xlσ

m
i j,kl(x

0)+ . . .

)

dΩ (2)

where an index following a comma denotes a spatial partial derivative and the summation convention is

implied. Noting that quantities evaluated at x0 are constant, the various integrals can be evaluated in terms

of the RVE dimensions. For instance, taking a cubical RVE with lengths LRVE yields

σ M
i j = σ m

i j +
1

24
L2

RVEσ m
i j,kk +O

(

L4
RVE

)

(3)

where the x0-notation has been dropped. Following [38], we transform Eq. (3) by taking its second deriva-

tive, multiplying it with 1
24

L2
RVE and substracting the result from the original Eq. (3). This gives

σ M
i j −

1

24
L2

RVEσ M
i j,kk = σ m

i j +O
(

L4
RVE

)

(4)

Eqns. (3) and (4) are equivalent approximations of Eq. (1) upon truncation after the second-order term.

These expressions demonstrate how micro-macro homogenisation schemes are related to gradient-enriched

continuum models, which will be explored below in the context of piezomagnetic continua.

Remark 1 Note that other assumptions on RVE shape or micro-macro transitions may lead to different

numerical factors preceding the higher-order term in Eq. (4). Thus, a factor 1
8

has been reported for a

circular RVE [40]. Conversely, a factor 1
12

was found for square RVEs with a second-order homogenisation

scheme including higher-order stresses and higher-order strains [30] and square RVEs with a simultaneous

perturbation of stiffness and strain terms [25]. However, in all cases the size of the RVE appears as an

intrinsic length scale.

3 Piezomagnetic field equations

Inspired by earlier work of Aifantis and coworkers in piezoelectric generalised continuum modelling [46], a

static gradient-enriched piezomagnetic continuum model was proposed in [45] based on an energy density

functional W written as

W =
1

2
Ci jkl

(

ui, juk,l + ℓ2
1ui, jmuk,lm

)

+qi jk

(

ui, jφ,k + ℓ2
2ui, jmφ,km

)

− 1

2
µi j

(

φ,iφ, j + ℓ2
3φ,imφ, jm

)

(5)

which leads to the following field equations:

Ci jkl

(

uk, jl − ℓ2
1uk, jlmm

)

+qi jk

(

φ, jk − ℓ2
2φ, jkmm

)

= 0 (6a)

qi jk

(

ui, jk − ℓ2
2ui, jkmm

)

−µi j

(

φ,i j − ℓ2
3φ,i jmm

)

= 0 (6b)

The primary unknowns are the displacements ui and the magnetic potential φ . Since no source term is in-

cluded in Eq. (6b), a scalar magnetic potential φ has been adopted. The standard piezomagnetic material

properties are contained in the elastic stiffness tensor Ci jkl , the piezomagnetic coupling tensor qi jk and the

magnetic permeability tensor µi j. In addition, the model contains three independent length scale parameters

ℓ1, ℓ2 and ℓ3 that incorporate the effects of material heterogeneity. The higher-order gradient terms asso-

ciated with these length scales can be used to eliminate unwanted singularities from the mechanical strain

εi j =
1
2
(ui, j +u j,i) and magnetic field Hi =−φ,i and to simulate the size-dependent piezomagnetic response

of finite size specimens [45]. For ℓ1 = ℓ2 = ℓ3 = 0 a standard piezomagnetic continuum is obtained.
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3.1 Transient piezomagnetic coupling

In [44] we explored one-dimensional dynamic extensions of the model given in Eqns. (6). The transient

extension of Eqns. (6) in multiple spatial dimensions can be written as [12]

Ci jkl

(

uk, jl − ℓ2
1uk, jlmm

)

+qi jk

(

φ, jk − ℓ2
2φ, jkmm

)

= ρ
(

üi − ℓ2
4üi,mm

)

(7a)

qi jk

(

ui, jk − ℓ2
2ui, jkmm

)

−µi j

(

φ,i j − ℓ2
3φ,i jmm

)

= −µ2e
(

φ̈ − ℓ2
5φ̈,mm

)

(7b)

where ρ is the mass density and e is the electric permittivity. Two further length scales ℓ4 and ℓ5 have been

included in order to model dispersive propagation of the piezomagnetic waves.

However, for practical applications it is appropriate to account for the difference between the propa-

gation speed of mechanical signals and that of magnetic signals. These are roughly defined as the speed

of sound and the speed of light, respectively, and they typically differ by many orders of magnitude. In

this context, the magnetic response may be considered instantaneous compared to the mechanical response.

This motivates the suppression of the right-hand-side of Eq. (7b) and, therefore, in this work we consider

the combination of Eq. (7a) with Eq. (6b) to simulate transient piezomagnetic response.

3.2 Multi-scale formulation

Finite element discretisation of Eqns. (7a) and (6b) is complicated by the presence of the fourth-order spatial

derivatives, which requires C 1-continuity of the interpolants. We will use the format of Eq. (4) to rewrite

the field equations such that C 0-continuity of the interpolation suffices.

Inspection of Eqns. (7a) and (6b) shows two different length scales, ℓ1 and ℓ2, associated with the higher-

order displacement derivatives. Similarly, the higher-order derivatives of the magnetic potential appear with

length scales ℓ2 and ℓ3. Thermodynamic consistency dictates that, unless ℓ1 = ℓ2 = ℓ3, the two sets of higher-

order derivatives of the displacements and magnetic potentials are accompanied by different coefficients—

see Eq. (5). However, in the spirit of Section 2, it can be argued that the micro-macro relations should be

based on unique length scale identifications, say

uM
i − ℓ2

1uM
i, j j = um

i (8a)

φ M − ℓ2
3φ M

, j j = φ m (8b)

where ℓ1 and ℓ3 are related to the Representative Volume Element sizes for the mechanical and the magnetic

response, respectively. This requires setting ℓ2 = ℓ1 in Eq. (6b) but, at the same time, ℓ2 = ℓ3 in Eq. (7a).

Although this clearly leads to a thermodynamic inconsistency in case ℓ1 6= ℓ3, it will be shown below that

this anomaly disappears in a multi-scale formulation.

Adopting all of the substitutions discussed above, Eqns. (7a) and (6b) are rewritten as

Ci jklu
m
k, jl +qi jkφ m

, jk = ρ
(

üM
i − ℓ2

4üM
i,mm

)

(9a)

qi jkum
i, jk −µi jφ

m
,i j = 0 (9b)

which are to be solved alongside Eqns. (8). Indeed, substituting Eqns. (8) into Eq. (9a) leads to Eq. (7a)

with ℓ2 = ℓ3, whereas substituting Eqns. (8) into Eq. (9b) yields Eq. (6b) with ℓ2 = ℓ1. Thus, at this stage in

the derivation, the model is still reducible to its fourth-order starting point.

A symmetric set of equations can be obtained following the procedure developed in [11]. The second

time derivative of Eq. (8a) is taken to rewrite the right-hand-side of Eq. (9a) as

ρ
(

üM
i − ℓ2

4üM
i,mm

)

= ρ

(

üM
i − ℓ2

4

ℓ2
1

(

üM
i − üm

i

)

)

= ρ

(

ℓ2
4

ℓ2
1

üm
i − ℓ2

4 − ℓ2
1

ℓ2
1

üM
i

)

(10)

In addition, Eq. (8a) is replaced by its acceleration format multiplied with ρ(ℓ2
4 − ℓ2

1)/ℓ
2
1. Thus, the final

format of the field equations reads

Ci jklu
m
k, jl +qi jkφ m

, jk = ρ

(

ℓ2
4

ℓ2
1

üm
i − ℓ2

4 − ℓ2
1

ℓ2
1

üM
i

)

(11a)

4



0 = ρ
ℓ2

4 − ℓ2
1

ℓ2
1

(

üM
i − üm

i − ℓ2
1üM

i,mm

)

(11b)

qi jkum
i, jk −µi jφ

m
,i j = 0 (11c)

φ M − ℓ2
3φ M

, j j = φ m (11d)

Since Eq. (8a) has been replaced by its acceleration counterpart Eq. (11b), the model equations are now no

longer reducible to their fourth-order starting point. Instead, Eqns. (11) represent a new model whereby the

mechanical gradient effects are incorporated in the transient terms only.

Note that Eqns. (11a–11c) are coupled, whereas Eq. (11d) is decoupled. This implies Eqns. (11a–11c)

can be solved for um
i , uM

i and φ m, after which the micro-scale magnetic potential φ m can be used as a

source term in Eq. (11d) to solve for the macro-scale magnetic potential φ M. Furthermore, it is noted that

Eqns. (11a–11c) are symmetric: the coefficients of uM
i in Eq. (11a) and um

i in Eq. (11b) match, as do the

coefficients of φ m in Eq. (11a) and um
i in Eq. (11c). This facilitates the identification of an associated energy

functional, as will be shown in Section 4. Thus, the thermodynamic inconsistency discussed above is no

longer present, which is the consequence of replacing Eq. (8a) with its second time derivative.

4 Variational formulation and boundary conditions

The Lagrangian density L underlying Eqns. (11a–11c) reads

L =
1

2
ρ

(

(u̇m
i )

2 +
ℓ2

4 − ℓ2
1

ℓ2
1

(

u̇m
i − u̇M

i

)2
+
(

ℓ2
4 − ℓ2

1

)(

u̇M
i, j

)2
)

−1

2
Ci jklu

m
i, ju

m
k,l −qi jkum

i, jφ
m
,k +

1

2
µi jφ

m
,i φ m

, j (12)

so that the Lagrangian L can be written as

L =
∫

V

t1
∫

t0

L dtdΩ+
∫

Sn

t1
∫

t0

(um
i fi +φ mg)dtdΓ (13)

where fi and g are prescribed values of mechanical tractions and magnetic flux, respectively. Furthermore,

Sn and Se are the parts of the boundary S of the domain V where natural and essential boundary conditions

are applied, respectively, such that S = Sn ∪Se and /0 = Sn ∩Se.

Requiring stationarity of L yields

δL =
∫

V

t1
∫

t0

(

δ u̇m
i

∂L

∂ u̇m
i

+δ u̇M
i

∂L

∂ u̇M
i

+δ u̇M
i, j

∂L

∂ u̇M
i, j

+δum
i, j

∂L

∂um
i, j

+δφ m
,i

∂L

∂φ m
,i

)

dtdΩ = 0 (14)

Integration by parts then leads to

−
∫

V

t1
∫

t0

δum
i

(

∂

∂ t

∂L

∂ u̇m
i

+
∂

∂x j

∂L

∂um
i, j

)

dtdΩ+
∫

V

[

δum
i

∂L

∂ u̇m
i

]t1

t0

dΩ+
∫

Sn

t1
∫

t0

δum
i

(

n j

∂L

∂um
i, j

+ fi

)

dtdΓ

−
∫

V

t1
∫

t0

δuM
i

(

∂

∂ t

∂L

∂ u̇M
i

− ∂ 2

∂x j∂ t

∂L

∂ u̇M
i, j

)

dtdΩ+
∫

V

[

δuM
i

∂L

∂ u̇M
i

]t1

t0

dΩ+
∫

V

[

δuM
i, j

∂L

∂ u̇M
i, j

]t1

t0

dΩ

−
∫

Sn

t1
∫

t0

δuM
i n j

∂

∂ t

∂L

∂ u̇M
i, j

dtdΓ−
∫

V

t1
∫

t0

δφ m ∂

∂xi

∂L

∂φ m
,i

dtdΩ+
∫

Sn

t1
∫

t0

δφ m

(

ni

∂L

∂φ m
,i

+g

)

dtdΓ = 0 (15)
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where n j is the outward normal to the boundary S. Assuming the response of the system is known at the

start and end of the analysis, the second, fifth and sixth integral in Eq. (15) cancel. The remaining integrals

have to vanish individually; it can be verified that the first, fourth and eighth lead to the field equations given

earlier in Eqns. (11a–11c). The associated boundary conditions are

either um
i prescribed or n j

(

Ci jklu
m
k,l +qi jkφ m

,k

)

= fi (16a)

either uM
i prescribed or n jρ

(

ℓ2
4 − ℓ2

1

)

üM
i, j = 0 (16b)

either φ m prescribed or nk

(

qi jkum
i, j −µikφ m

,i

)

= g (16c)

Through the natural boundary conditions of Eqns. (16a) and (16c) the standard definitions of stress σi j and

magnetic flux density Bk in a piezomagnetic medium are retrieved:

σ m
i j =Ci jklε

m
kl −qi jkHm

k =Ci jklu
m
k,l +qi jkφ m

,k (17a)

Bm
k = qi jkεm

i j +µikHm
i = qi jkum

i, j −µikφ m
,i (17b)

However, the meaning of the natural boundary condition of Eq. (16b) is less clear. From dimensional anal-

ysis, it follows that this concerns a stress-type quantity, but it is asymmetric and proportional to the macro-

level acceleration field. The occurrence of non-standard boundary conditions is common when dealing with

gradient-enriched continuum models, and as yet there is no firm consensus on a preferred format. In an

earlier one-dimensional study it was suggested to tie the macro-scale and micro-scale displacements on the

boundary [14]. This could be interpreted as volume preservation and in a multi-dimensional context it can

be applied to the normal components of the two displacement fields on the boundary. This will be explored

below.

5 Finite element discretisation

The continuum equations (11a–11d) are decoupled, in that the macro-scale magnetic potential does not ap-

pear in Eqns. (11a–11c). Thus, Eq. (11d) can be solved separately from Eqns. (11a–11c), and the associated

finite element equations are treated separately below. Throughout this Section, we will adopt standard Voigt

notation.

5.1 Transient piezomagnetic equations

The transient piezomagnetic field equations (11a–11c) are written in a weak form as

∫

V

(δum)T ρ

(

ℓ2
4

ℓ2
1

üm − ℓ2
4 − ℓ2

1

ℓ2
1

üM

)

dΩ−
∫

V

(δum)T
LT (CLum +Q∇φφφ m)dΩ = 0 (18a)

∫

V

(

δuM
)T

ρ
ℓ2

4 − ℓ2
1

ℓ2
1

(

−üm + üM − ℓ2
1∇2üM

)

dΩ = 0 (18b)

−
∫

V

δφφφ m ∇T
(

QT Lum −P∇φφφ m
)

dΩ = 0 (18c)

where C, Q and P are the matrix equivalents of Ci jkl , qi jk and µi j, respectively, L is the usual strain-

displacement differential operator, and ∇2 = ∇T ∇. Furthermore, δum, δuM and δφφφ m are test functions

associated with um, uM and φφφ m, respectively. Integration by parts and substitution of the natural boundary

6



conditions defined in Eqns. (16) then yields

∫

V

(δum)T ρ

(

ℓ2
4

ℓ2
1

üm − ℓ2
4 − ℓ2

1

ℓ2
1

üM

)

dΩ +
∫

V

(Lδum)T (CLum +Q∇φφφ m)dΩ =
∫

Sn

(δum)T
f dΓ (19a)

∫

V

(

δuM
)T

ρ
ℓ2

4 − ℓ2
1

ℓ2
1

(

−üm + üM
)

dΩ+
∫

V

(

∇δuM
)T

ρ
(

ℓ2
4 − ℓ2

1

)

∇üMdΩ = 0 (19b)

∫

V

(∇δφφφ m)T
(

QT Lum −P∇φφφ m
)

dΩ =
∫

Sn

δφφφ mg dΓ (19c)

Next, the various continuous fields (displacements, magnetic potentials and the associated test functions)

are discretised with finite element shape functions. For simplicity, we will use the same shape functions for

all fields, that is

um ≈





N1 0 0 N2 0 0 . . .
0 N1 0 0 N2 0 . . .
0 0 N1 0 0 N2 . . .



dm ≡ Nudm (20a)

φφφ m ≈
[

N1 N2 . . .
]

ψψψm ≡ Nφψψψm (20b)

and so forth. This leads to the following set of semi-discretised equations:









Mmm
uu MmM

uu 0

MMm
uu MMM

uu 0

0 0 0

















d̈m

d̈M

ψ̈ψψm









+









Kmm
uu 0 Kmm

uφ

0 0 0

Kmm
φu 0 Kmm

φφ

















dm

dM

ψψψm









=









F

0

G









(21)

where dm, dM and ψψψm contain the nodal values of micro-scale displacements, macro-scale displacements

and micro-scale magnetic potentials, respectively. Furthermore,

Mmm
uu =

∫

V

NT
u ρ

ℓ2
4

ℓ2
1

NudΩ (22a)

MmM
uu =

(

MMm
uu

)T
=−

∫

V

NT
u ρ

ℓ2
4 − ℓ2

1

ℓ2
1

NudΩ (22b)

MMM
uu =

∫

V

NT
u ρ

ℓ2
4 − ℓ2

1

ℓ2
1

NudΩ+
∫

V

∑
ξ=x,y,z

∂NT
u

∂ξ
ρ
(

ℓ2
4 − ℓ2

1

) ∂Nu

∂ξ
dΩ (22c)

Kmm
uu =

∫

V

BT
u CBudΩ (22d)

Kmm
uφ = KT

φu =
∫

V

BT
u QBφ dΩ (22e)

Kmm
φφ =−

∫

V

BT
φ PBφ dΩ (22f)

with Bu = LNu and Bφ = ∇Nφ . The vectors F and G contain the driving mechanical and magnetic nodal

forces, respectively. The structure of Eq. (21) highlights how the multi-scale coupling is separated from the

coupled physics: the former is included in the transient terms, and the latter in the quasi-static terms. This,

7



in turn, allows for straightforward static condensation of the magnetic degrees of freedom. That is, Eq. (21)

can be recast as
[

Mmm
uu MmM

uu

MMm
uu MMM

uu

][

d̈m

d̈M

]

+

[

Kmm
uu −Kmm

uφ

(

Kmm
φφ

)−1

Kmm
φu 0

0 0

][

dm

dM

]

=

[

F−Kmm
uφ

(

Kmm
φφ

)−1

G

0

]

(23)

which improves the condition number of the resulting system matrix. Further condensation is possible by

eliminating the macro-scale displacements using the second row of Eq. (23), but this has not been explored

here.

Remark 2 Separating the gradient enrichment (included in the mass matrix) from the constitutive be-

haviour (included in the stiffness matrix) provides a template for the extension towards nonlinear mate-

rial behaviour. Gradient-enriched plasticity and/or damage can then be incorporated via straightforward

additions to the stiffness matrix to simulate mesh-independent failure zones [17].

5.2 Multi-scale postprocessing of the magnetic potential

The multi-scale coupling of magnetic potential is decoupled from the transient piezomagnetic response.

The weak form of Eq. (11d) reads
∫

V

δφφφ M
(

φφφ M − ℓ2
3∇2φφφ M

)

dΩ =
∫

V

δφφφ Mφφφ mdΩ (24)

where δφφφ M is an appropriate test function. Integration by parts results in
∫

V

δφφφ Mφφφ M dΩ+
∫

V

(

∇δφφφ M
)T

ℓ2
3∇φφφ MdΩ =

∫

V

δφφφ Mφφφ mdΩ+
∮

S

δφφφ M nT ∇φφφ MdΓ (25)

The boundary integral will cancel by assuming essential boundary conditions (via tyings between the mi-

cro and macro-scale displacements) or homogeneous natural boundary conditions (in the absence of said

tyings). Finite element discretisation is applied with the same set of shape functions as above, that is

φφφ M ≈ NφψψψM and δφφφ M ≈ Nφ δψψψM. This leads to the following system of equations:




∫

V

NT
φ Nφ dΩ+

∫

V

∑
ξ=x,y,z

∂NT
φ

∂ξ
ℓ2

3

∂Nφ

∂ξ
dΩ



ψψψM =
∫

V

NT
φ Nφ dΩ ψψψm (26)

which can be solved for ψψψM using values for ψψψm =
(

Kmm
φφ

)−1(

G−Kmm
φu dm

)

as source term. There are no

transient terms present in Eq. (26), thus there is no strict need to solve Eq. (26) at every time instant. In fact,

Eq. (26) serves as a multi-scale postprocessing step that can be invoked as and when required by the user.

6 Dispersion analysis

In a transient time-domain simulation, the temporal and spatial resolutions must be balanced. It makes

little sense to combine a small time step with a coarse finite element mesh, and vice versa. For the one-

dimensional version of the numerical model of Eq. (21) it is possible to find an estimate for an optimal ratio

between time step size and element size by comparing the dispersion relation of the discretised equations

with the dispersion relation of the continuum. This analysis extends earlier work in gradient elasticity with

first-order [16] and second-order [21] micro-inertia to coupled physics in Section 6.2; it also provides a

newly derived closed-form expression for the estimated optimal time step in Section 6.3.
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Figure 1: Dispersion analysis: normalised phase velocity against normalised wave number

6.1 Dispersion relation of the continuum

With only one spatial coordinate, Eq. (11c) can be used to eliminate the micro-scale magnetic potential

from Eq. (11a), so that Eqns. (11a) and (11b) are a coupled set of equations with unknowns um
x and uM

x .

Assuming an infinitely long medium, we substitute the following trial solutions:

um
x =Um exp(ik (x− ct)) (27a)

uM
x =UM exp(ik (x− ct)) (27b)

where k is the wave number, c is the phase velocity, and Um and UM are the amplitudes. This gives

(

E +
q2

µ

)

Um = ρc2

(

ℓ2
4

ℓ2
1

Um − ℓ2
4 − ℓ2

1

ℓ2
1

UM

)

(28a)

0 =UM
(

1+ ℓ2
1k2
)

−Um (28b)

with E the Young’s modulus. Elimination of the two amplitudes leads to

c2

c2
bar

=
1+ ℓ2

1k2

1+ ℓ2
4k2

(29)

where

cbar =

√

E

ρ
+

q2

µρ
(30)

is the longitudinal propagation velocity of a signal in a standard (i.e. without gradient enrichment) medium.

For ℓ1 = ℓ4 = 0, and indeed for ℓ1 = ℓ4 6= 0, the phase velocity c does not depend on the wave number k.

For such cases, the medium is non-dispersive. Conversely, taking ℓ1 6= ℓ4 yields c = c(k) which means that

the different harmonic components of a signal travel with different propagation velocities. In Figure 1 we

have plotted the phase velocity against the wave number for a range of values of ℓ4/ℓ1, which aids to verify

that c/cbar → ℓ1/ℓ4 for k → ∞.

A more in-depth dispersion analysis, including a comparison with the equivalent mono-scale model,

can be found in [44]. The purpose here is to compare the dispersion relation of the continuum with that of

the discretised equations.
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6.2 Dispersion relation of the discretised equations

Assuming a uniform one-dimensional finite element mesh consisting of linear elements of length h, the use

of a consistent mass matrix, and the absence of external loads, the second row of Eq. (21) reads

−ρh
ℓ2

4 − ℓ2
1

ℓ2
1

(

1
6
d̈

m

j,n−1 +
2
3
d̈

m

j,n +
1
6
d̈

m

j,n+1

)

+ρh
ℓ2

4 − ℓ2
1

ℓ2
1

(

1
6
d̈

M

j,n−1 +
2
3
d̈

M

j,n +
1
6
d̈

M

j,n+1

)

+
ρ

h

(

ℓ2
4 − ℓ2

1

)

(

−d̈
M

j,n−1 +2d̈
M

j,n − d̈
M

j,n+1

)

= 0 (31)

where a subscript j indicates the time instant and a subscript n represents the node number. The trial solu-

tions are written as

d̈
m

j,n = Dm exp(ik (xn − ct j)) = Dm exp(ik (nh− c j∆t)) (32a)

d̈
M

j,n = DM exp(ik (xn − ct j)) = DM exp(ik (nh− c j∆t)) (32b)

where Dm and DM are amplitudes, so that d̈ j,n±1 = d̈ j,n exp(±ikh). Substituting these trial solutions into Eq.

(31) leads to

−ρh
ℓ2

4 − ℓ2
1

ℓ2
1

Dm
(

1
6

exp(−ikh)+ 2
3
+ 1

6
exp(ikh)

)

+ρh
ℓ2

4 − ℓ2
1

ℓ2
1

DM
(

1
6

exp(−ikh)+ 2
3
+ 1

6
exp(ikh)

)

+
ρ

h

(

ℓ2
4 − ℓ2

1

)

DM (−exp(−ikh)+2− exp(ikh)) = 0 (33)

so that

Dm

DM
=

2
3
+ 1

3
cos(kh)+

2ℓ2
1

h2
(1− cos(kh))

2
3
+ 1

3
cos(kh)

(34)

which provides a first relation between the two amplitudes.

Deriving a second relation between Dm and DM involves a few additional steps, namely writing the

micro-scale magnetic potentials in terms of the micro-scale displacements and, subsequently, writing the

micro-scale displacements in terms of micro-scale accelerations. Firstly, the third row of Eq. (21) can be

written as
q

h

(

−dm
j,n−1 +2dm

j,n −dm
j,n+1

)

− µ

h

(

−ψm
j,n−1 +2ψm

j,n −ψm
j,n+1

)

= 0 (35)

This can be used to eliminate the nodal magnetic potentials from the first row of Eq. (21), namely

ρh
ℓ2

4

ℓ2
1

(

1
6
d̈

m

j,n−1 +
2
3
d̈

m

j,n +
1
6
d̈

m

j,n+1

)

−ρh
ℓ2

4 − ℓ2
1

ℓ2
1

(

1
6
d̈

M

j,n−1 +
2
3
d̈

M

j,n +
1
6
d̈

M

j,n+1

)

+

(

E

h
+

q2

µh

)

(

−dm
j,n−1 +2dm

j,n −dm
j,n+1

)

= 0 (36)

Next, we will use Eq. (54) derived in Appendix A to rewrite the micro-scale displacements in terms of

micro-scale accelerations. To apply Eq. (54), it is necessary to evaluate Eq. (36) at three successive time

instants t j−1, t j and t j+1. Following the structure of Eq. (54), these three evaluations of Eq. (36) are weighted

10



0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Figure 2: Discrete versus analytical dispersion curves: variation of element size (left) and time step (right)

with factors −1, 2 and −1, respectively, and added together. This results in

ρh
ℓ2

4

ℓ2
1

(

− 1
6
d̈

m

j−1,n−1 − 2
3
d̈

m

j−1,n − 1
6
d̈

m

j−1,n+1 +
1
3
d̈

m

j,n−1 +
4
3
d̈

m

j,n +
1
3
d̈

m

j,n+1

− 1
6
d̈

m

j+1,n−1 − 2
3
d̈

m

j+1,n − 1
6
d̈

m

j+1,n+1

)

−ρh
ℓ2

4 − ℓ2
1

ℓ2
1

(

− 1
6
d̈

M

j−1,n−1 − 2
3
d̈

M

j−1,n − 1
6
d̈

M

j−1,n+1

+ 1
3
d̈

M

j,n−1 +
4
3
d̈

M

j,n +
1
3
d̈

M

j,n+1 − 1
6
d̈

M

j+1,n−1 − 2
3
d̈

M

j+1,n − 1
6
d̈

M

j+1,n+1

)

+
∆t2

4

(

E

h
+

q2

µh

)

(

d̈
m

j−1,n−1 −2d̈
m

j−1,n + d̈
m

j−1,n+1 +2d̈
m

j,n−1 −4d̈
m

j,n +2d̈
m

j,n+1

+d̈
m

j+1,n−1 −2d̈
m

j+1,n + d̈
m

j+1,n+1

)

= 0 (37)

Substituting the trial solutions of Eqns. (32) then leads to

2

3

ℓ2
4

ℓ2
1

Dm (1− cos(kc∆t))(2+ cos(kh))− 2

3

ℓ2
4 − ℓ2

1

ℓ2
1

DM (1− cos(kc∆t))(2+ cos(kh))

−c2
bar∆t2

h2
Dm (1+ cos(kc∆t))(1− cos(kh)) = 0 (38)

Finally, eliminating the two amplitudes Dm and DM from Eqns. (34) and (38) and resolving for the phase

velocity c leads to the dispersion relation of the discrete equations:

cos(kc∆t) =
A1 −A2

A1 +A2
(39)

where

A1 =
2
3
(2+ cos(kh))2 +

4ℓ2
4

h2
(2+ cos(kh))(1− cos(kh)) (40a)

A2 =
c2

bar∆t2

h2
(1− cos(kh))

{

2+ cos(kh)+
6ℓ2

1

h2
(1− cos(kh))

}

(40b)

The results of Eq. (39) are compared to Eq. (29) for a range of values of the element size h (normalised with

respect to ℓ1) and the time step ∆t (normalised with respect to ℓ1/cbar) in Figure 2, whereby ℓ4/ℓ1 = 2. The

cut-off wave number set by the spatial resolution is k = 2π/h. It can be verified that using smaller element

sizes or smaller time steps, but not both, does not necessarily lead to improved accuracy.
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Figure 3: Discrete versus analytical dispersion curves: wave numbers captured with maximum 5% error for

ℓ4/ℓ1 = 1.5 (left) and ℓ4/ℓ1 = 3.0 (right) — dashed lines indicate optimal time step estimates according to

Eq. (47).

To provide a more holistic assessment of the influence of element size and time step on the accuracy,

the discrepancy between the analytical dispersion curve of Eq. (29) and the numerical dispersion curve

of Eq. (39) is evaluated by establishing the maximum wave number for which the difference between the

two curves is no more than 5%. The results are plotted in Figure 3 for two length scale ratios ℓ4/ℓ1, and

they confirm and quantify the findings of Figure 2: refinement of element size and refinement of time step

must be balanced in order to maximise accuracy. For element sizes and time steps approaching zero, there

appears to be an optimal ratio. This ratio is indicated with dashed lines in Figure 3 and will be quantified in

the next Section.

6.3 Optimal ratio between time step and element size

It is possible to derive an analytical expression that verifies the observations made with respect to optimal

ratio between time step and element size based on Figure 3. To do so, Eq. (39) is rewritten slightly as

1− cos(kc∆t) = 1− A1 −A2

A1 +A2
=

2A2

A1 +A2
(41)

Next, the two cosine functions are expanded into Taylor series as follows:

cos(kc∆t)≈ 1− 1
2
(kc∆t)2

(42a)

cos(kh)≈ 1− 1
2
(kh)2 + 1

24
(kh)4

(42b)

That is, the time step function is expanded into a second-order series whereas the element size function is

expanded into a fourth-order series. This difference is deliberate: the fourth-order expansion of the element

size function is required for reasons of accuracy, whereas a fourth-order expansion of the time step func-

tion leads to much more complicated equations that do not improve insight compared to the second-order

expansion.

Substituting the Taylor series expansions into Eqns. (40) and (41) yields

c2

c2
bar

≈
B1

(

B2 +B1ℓ
2
1k2
)

B2

(

B2 +B1ℓ2
4k2
)

+ 1
4
c2

bar∆t2k2B1

(

B2 +B1ℓ
2
1k2
) (43)

where

B1 = 1− 1
12

h2k2 (44a)

B2 = 1− 1
6
h2k2 + 1

72
h4k4 (44b)
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Inspection of Figure 2 shows that the numerical dispersion curve deviates from the analytical dispersion

curve for the higher wave numbers. Inspection of Eq. (29) shows that this behaviour is governed by the

ratio ℓ1/ℓ4. Thus, the numerical dispersion curve can be brought closer to the analytical dispersion curve

by matching the coefficients of the two length scales in the numerator and denominator of Eq. (43). These

coefficients are

numerator of Eq. (43): B2
1ℓ

2
1k2 = ℓ2

1k2
(

1− 1
6
k2h2 + 1

144
k4h4

)

(45a)

denominator of Eq. (43): B1B2ℓ
2
4k2 + 1

4
c2

bar∆t2k2 ·B2
1ℓ

2
1k2 =

ℓ2
4k2
(

1− 1
4
k2h2 + 1

36
k4h4 − 1

864
k6h6

)

+ ℓ2
1k2 · 1

4
c2

bar∆t2k2
(

1− 1
6
k2h2 + 1

144
k4h4

)

(45b)

The terms proportional to k2 are independent of ∆t and match identically the corresponding values in Eq.

(29). For the k4-terms to match the ratio ℓ2
1/ℓ

2
4, we require

− 1
6
ℓ2

1h2

− 1
4
ℓ2

4h2 + 1
4
ℓ2

1c2
bar∆t2

=
ℓ2

1

ℓ2
4

(46)

which can be solved for either ∆t in terms of h, or vice versa. In particular, a time step that is optimal for

accuracy can thus be expressed as

∆t ≈ h

cbar

√
3
· ℓ4

ℓ1
(47)

which is approximate as it ignores contributions of k6 and higher. Despite the inexact nature of this solution,

it can be verified from Figure 3 that it provides a reliable and accurate estimation of the best ratio between

time step and element size.

7 Numerical results

The formulation of Section 5 has been implemented in one and two-dimensional finite element codes.

For the time integration, the standard Newmark scheme with constant average acceleration has been used.

Unless indicated otherwise, we have applied tyings between the (normal components of the) micro and

macro-scale displacements on the boundaries [14]. Furthermore, the micro-scale magnetic potential of an

arbitrary node is set equal to zero—this has no consequences for the evaluation of the usual engineering

quantities of interest, i.e. the magnetic field Hi =−φ,i and magnetic flux density Bk = qi jkεi j +µikHi, but it

precludes rank deficiency of the third row of Eq. (21).

7.1 Convergence study

Eqns. (21) and (22) suggest that standard linear shape functions are sufficient for implementation. To

demonstrate that this is an appropriate choice, a one-dimensional convergence study is carried out. An

unsupported bar of length L = 100 m and unit cross-sectional area is subjected to a tensile load F with unit

magnitude on its left end. The material constants are taken as E = 3 N/m2, q = 1 N/Am, µ = 1 Ns2/C2 and

ρ = 1 kg/m3. From Eq. (30) it follows that cbar = 2 m/s. The length scale parameters are taken as ℓ1 = 2 m

and ℓ4 = 4 m. This convergence study focusses on the solution of Eq. (21) which does not require ℓ3.

Finite element meshes consisting of 10, 20, 40, 80, 160 and 320 finite elements have been used. The

shape functions for all three fields (micro and macro-scale displacements, micro-scale magnetic potential)

have been taken as linear. The solutions have been compared to a reference solution obtained from a mesh

with 1280 linear finite elements. The comparison is based on the relative L2-norm η of the error given by

η =

√

√

√

√

√

√

∫

V

(s− sref)
T (s− sref)dΩ

∫

V

sT
refsref dΩ

(48)
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Figure 4: Relative error versus number of elements: Heaviside loading function (left) and trigonometric

loading function (right)

where the solution s can be the micro-scale displacement, the macro-scale displacement, or the micro-scale

magnetic potential. The time step is taken as ∆t = hℓ4/2cbarℓ1, roughly in line with Eq. (47).

In addition, two loading functions have been used: a Heaviside function F1 and a gradually evolving

load F2 according to

F1(t) =

{

0 for t < 0

1 for t ≥ 0
(49a)

F2(t) =
1

2

(

1− cos
2πt

tend

)

(49b)

with tend = 25 s. It is well-known [22,43] that the solutions of hyperbolic systems show similar convergence

behaviour to those of elliptic systems, provided that the initial data are sufficiently smooth—in that context,

F1 and F2 represent non-smooth and smooth loading functions, respectively. The results, evaluated at time

t = 25 s, are plotted in Figure 4 against the number of elements in the standard double logarithmic scale.

It can be seen that taking the Heaviside loading function F = F1 leads to suboptimal convergence rates:

the relevant slopes in the top left and top right plots of Figure 4 are well below the theoretical rate of 2;

in fact all slopes are virtually identical to 1. On the other hand, taking the trigonometric loading function

F = F2 leads to results for all three fields of primary unknowns that converge with the theoretical rate of

2. This provides evidence and assurance that the suggested finite element implementation is appropriate; it

also suggests that the set of results for F = F1 is dominated by the non-smooth initial conditions [43].

7.2 Wave dispersion

The ability of the model to simulate dispersive wave propagation is tested next. The same one-dimensional

set-up is taken, with the same values for the material properties E, ρ , q and µ . An impact load is used, i.e.

F = F1 as given in Eq. (49a). Unless specified otherwise, the length scale parameters are given by ℓ1 = 2

m, ℓ4/ℓ1 = 1.5 and ℓ3/ℓ1 = 1.5. The number of elements is 160 and the time step is taken as ∆t = h/cbar.

The distributions of micro-scale and macro-scale strain ε = ∂u/∂x and magnetic field H =−∂φ/∂x are

plotted at different time instances in Figure 5. Note that the longitudinal coordinate on the horizontal axes

has been adjusted with the product of bar speed and time, so that a zero horizontal coordinate corresponds

with the position of the wave front in standard (i.e. non-gradient enriched) theory. It can be seen that the

wave fronts of all four fields becomes less and less steep as time progresses. This is an indication that

the harmonic components of higher frequency travel with lower velocity, and confirms that the model is

dispersive—see [44] and Section 6.1 above. The micro-scale fields are more oscillatory than the associated

macro-scale fields, which can be understood from the equivalence with homogenisation as explained in

Section 2. An anomaly in all four fields is that the signal extends ahead of the wave front (infinitely far,
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Figure 5: Dispersive wave propagation: micro-scale (left) and macro-scale (right) values of strain (top) and

magnetic field (bottom) at times t = 10 s (dotted), t = 20 s (dashed), t = 30 s (dot-dashed) and t = 40 s

(solid)

albeit with vanishing magnitude); it was shown by Metrikine that this lack of causality can be remedied by

included higher-order time derivatives in the model [34], but this will not be pursued in the present study.

Next, the effect of the various length scales ℓ1, ℓ3 and ℓ4 on the dispersive properties of the material is

investigated in more detail. In [44] and in Section 6.1, we demonstrated that the ratio ℓ4/ℓ1 is the dominant

parameter in this context, with higher wave numbers travelling slower for increased values of ℓ4/ℓ1. In

Figure 6 we have plotted the results of micro-scale and macro-scale strain for two ratios of ℓ4/ℓ1. It can be

verified that larger values of ℓ4/ℓ1 lead to a more rapid decrease of the slope of the wave front, which is

consistent with higher wave numbers having a lower phase velocity.

However, it was also shown that taking ℓ4/ℓ1 = 1 leads to a non-dispersive model. With this set of

parameters Eqns. (11a–11c) revert back to the classical piezomagnetic equations, whereby the effects of

gradient enrichment are absent from the transient response. To verify this, we have taken ℓ2
4/ℓ

2
1 = 1.001

which avoids rank deficiency of Eq. (21) but is otherwise sufficiently close to unity to demonstrate non-

dispersive wave propagation. This is combined with different values for the third length scale of the model,

i.e. ℓ3. Figure 7 shows the results for the micro-scale and macro-scale magnetic field. It can be observed that

the wave front for both fields maintains its slope for progressive time instants, which confirms the absence

of dispersion. Although the macro-scale magnetic field is a smoothed version of the micro-scale magnetic

field, this smoothing is a post-processing operation and does not feed back into the wave propagation—

cf. the static equation (11d) which is decoupled from the transient system of equations (11a–11c). The

length scale ℓ3, associated with the homogenisation of the magnetic potential, therefore does not affect the

dispersive properties of the model.

7.3 Removal of singularities

Finally, the ability of the model to remove singularities is tested. Indeed, this has been one of the main

motivations in developing gradient theories [5, 10]. It was shown in [45] that the static model of Eqns.

(6) is able to predict singularity-free strains for ℓ1 > 0 and singularity-free magnetic fields for ℓ3 > 0.

However, since Eq. (8a) has been replaced by its acceleration equivalent Eq. (11b), it is pertinent to verify
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Figure 6: Dispersive wave propagation: micro-scale strain (left) and macro-scale strain (right) for ℓ2
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1 =
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2
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t = 40 s (solid)
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the performance of the new model.

To do so, we will study the two two-dimensional geometries given in Figure 8, where thin lines on
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Figure 8: Geometries to study singularity removal: force applied on interior of the domain (a) and on free

boundary (b)

the boundaries indicate that the normal components of the displacement are fixed. Concentrated forces are

applied on the interior of the domain or on a free boundary; in a classical continuum theory such forces

would locally lead to singularities. A plane stress configuration is assumed, and the material properties

are those of a transversely isotropic magnetostrictive Terfenol-D/epoxy composite. In terms of the relevant

material properties of Eqns. (18), we have adopted the values from [20, 31] given by

C =





31.1 15.2 0

15.2 35.6 0

0 0 13.6



 ·103 N/mm2 (50a)

Q =





0 156.8
0 108.3

−60.9 0



 ·10−3 N/Amm (50b)

P =

[

5.4 0

0 5.4

]

·10−6 Ns2/C2 (50c)

while the mass density ρ = 9.2 · 10−9 Ns2/mm4. Furthermore, the internal length parameters are taken as

ℓ2
1 = 4 mm2 and ℓ2

3 = ℓ2
4 = 4.8 mm2—the latter values are not meant to represent grain sizes, but merely

to test the ability of the model to remove singularities. Structured meshes with bilinear quadrilateral finite

elements are used with 16, 32 and 64 square elements in the x-direction. Time integration is carried out until

time t = 1.6 ·10−5 s with time step ∆t = 2.56 ·10−7h s where h is the element size.

First, the geometry of Figure 8 (a) is studied. Since in this configuration the force is applied in the inte-

rior of the domain, any presence or absence of a singularity is caused by the field equations alone, not by

the boundary conditions. In Figure 9 the micro and macro-scale normal strains εyy as well as the micro and

macro-scale magnetic field Hy are plotted at the end of the analysis along the bottom half of the vertical

symmetry axis. It is clear that the macro-scale fields converge to a unique, finite solution and, thus, that

singularities have been removed from the macro-scale fields. On the other hand, both micro-scale fields

exhibit peak values that are an order of magnitude large than the macro-scale ones. Moreover, these mi-

croscale peak values appear to grow unbounded with a decreasing element size. In other words, these fields

do not converge to a finite solution and still contain singularities. Since in this geometry the appearance of

singularities is not affected by the boundary conditions, the conclusion is that the field equations (11) are

capable of removing singularities from the macro-scale fields, but not from the micro-scale fields.
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elements in x-direction.

Next, the geometry of Figure 8 (b) is considered. The position of a potential singularity now coincides

with the boundary, thus it is of interest to establish the role of the boundary conditions in the suppression (or

otherwise) of singularities. In particular, the effect of tyings between the micro and macro-scale displace-

ment will be studied. Tyings have been suggested in a gradient elasticity context using arguments of volume

preservation and avoidance of boundary layers [10, 14], but it was also found that tyings could prohibit the

ability of a model to suppress singularities [10]. Here, we will verify these effects in a gradient-enriched

piezomagnetic framework.

Figures 10 and 11 show the results with and without tyings, respectively, between the normal compo-

nents of the micro and macro-scale displacements. Similar to the simulations with the full geometry, cf.

Figure 9, the micro-scale strain and magnetic field appear to grow unbounded upon mesh refinement, which

is an indication for the presence of singularities—this holds for the case with and without tyings. On the

other hand, the macro-scale magnetic field converges to a unique, finite solution, irrespective of whether

or not tyings are applied. The reason is that Eq. (26) is solved separately from Eq. (23), and is thus not

affected by the imposition or otherwise of tyings between micro and macro-scale displacements. The only

field affected by the tyings is the macro-scale strain. Figure 10 shows this field grows unbounded upon mesh

refinement in case tyings are present. This, again, is an indication that the strain is singular, and this singu-

larity must be attributed to the boundary conditions, since in Figure 9 we have demonstrated that the field

equations are capable of removing singularities. Conversely, removing tyings between the two displacement

fields leads to a macro-scale strain that converges to a unique, finite solution—see Figure 11.

8 Conclusions

In this paper, we have formulated and implemented a gradient-enriched dynamic piezomagnetic model. The

enrichment with higher-order spatial gradients of the displacements and the magnetic potential introduces

microstructural effects into the model that can be used to model dispersive wave propagation and to remove

singularities from the simulated response. Specific observations are as follows.
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• In our model, we have only accounted for transient mechanical terms and ignored transient magnetic

terms, given the very large difference in magnitude between the propagation velocities of mechanical
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and magnetic signals.

• The higher-order terms of the model that appeared due to the gradient enrichment have been rewrit-

ten in multi-scale terms, using principles of homogenisation. The result is a multi-scale model in

which micro-scale displacements and magnetic potentials are included alongside their macro-scale

counterparts.

• Thermodynamic consistency is demonstrated through a parallel derivation of the model from a multi-

scale energy functional, together with the variationally consistent boundary conditions.

• As a consequence of the multi-scale reformulation of the equations, the highest order of (spatial)

derivation in the model reduces from four to two. This greatly facilitates finite element implemen-

tation. We have presented the relevant finite element equations and verified that convergence upon

mesh refinement corresponds to theoretically predicted rates.

• Based on a comparison between the dispersive properties of the continuum equations and the discre-

tised equations, we have derived an optimal ratio between the time step and the element size.

• The model is able to predict dispersive wave propagation. The parameter that controls the dispersive

properties is the ratio of the length scales related to acceleration and strain.

• The model is able to predict macro-scale fields that are free of singularities, provided that appropriate

boundary conditions are selected. Singularities remain in the associated micro-scale fields. Thus,

predictions of structural or material integrity must be based on the macro-scale fields, not the micro-

scale fields.
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A Newmark equations

The Newmark time integration equations relating time step j to time step j+1 for a generic variable s read

ṡ j+1 = ṡ j +(1− γ)∆ts̈ j + γ∆ts̈ j+1 (51a)

s j+1 = s j +∆tṡ j +
(

1
2
−β

)

∆t2s̈ j +β∆t2s̈ j+1 (51b)

whereas the equations relating time step j−1 to time step j are given by

ṡ j = ṡ j−1 +(1− γ)∆ts̈ j−1 + γ∆ts̈ j (52a)

s j = s j−1 +∆tṡ j−1 +
(

1
2
−β

)

∆t2s̈ j−1 +β∆t2s̈ j (52b)

Here, β and γ are user-defined parameters that can be set to control the numerical damping, stability and

accuracy of the method. Subtracting Eq. (52b) from Eq. (51b) gives

s j−1 −2s j + s j+1 = ∆t
(

ṡ j − ṡ j−1

)

−
(

1
2
−β

)

∆t2s̈ j−1 +
(

1
2
−2β

)

∆t2s̈ j +β∆t2s̈ j+1

=
(

1
2
− γ +β

)

∆t2s̈ j−1 +
(

1
2
+ γ −2β

)

∆t2s̈ j +β∆t2s̈ j+1 (53)
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where Eq. (52a) is used to eliminate the velocities. The constant average acceleration method is obtained

by taking γ = 1
2

and β = 1
4
, in which case

s j−1 −2s j + s j+1 =
1
4
∆t2
(

s̈ j−1 +2s̈ j + s̈ j+1

)

(54)

which allows to rewrite displacements in terms of accelerations, or vice versa.
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