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Abstract

Stratiform and stratabound base metal ores typically form in sedimentary basins during the
overall rifting process with mineralising fluids transported along the growing normal faults.
Understanding the detailed structural evolution, i.e. the timing, the growth and the extent of
the faults, and the distribution and thickness of the syn-faulting sedimentary packages, is
critical for focusing exploration efforts. In this paper, we describe how seismic interpretation
and basin analysis techniques can help to do this. We assess the potential for Pb-Zn
mineralisation within the Northumberland Trough, northern England, in the context of the wider
Early Carboniferous basin evolution and the associated base metal ores. Through structural
interpretation of seismic reflection data, we consider the detailed evolution of the fault
geometries and sedimentation in time and space, to show the extent and distribution of the
Early Carboniferous faulting and growth packages at depth in the study area. \We conclude
that basin evolution and structural framework in northern England is very similar to that

associated with the significant Pb-Zn mineralisation in Ireland. We suggest a refined model for
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the Carboniferous evolution of this part of the basin. The study demonstrates how the
techniques of basin analysis can be a used in ore exploration to establish whether the basic
structural and sedimentary framework exists to enable mineralisation. In addition to assessing
the general potential of base metal mineralisation, a more precise identification of potentially
suitable areas for further investigation can be made. The seismic data and basin analysis
approach used in this paper and exemplified through the Northumberland case should be
directly applicable to any basin ore 'play' associated with rifting and/or sedimentation. The
added, significant advantage of this method is the ability to assess the 3D fault geometries,
including fault linkage and growth in space and time, and the associated sedimentation - an
unachievable outcome if relying solely on other geophysical and geological data traditionally

used in regional ore exploration.
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1. Introduction

In hydrocarbons exploration, the concept of a 'play' is routinely used to refer to a group of
prospects in a region that are controlled by the same set of geological circumstances. Detailed
understanding of these circumstances is key for effective exploration. A number of techniques
can be used to analyze plays, but robust understanding of the structural and depositional
evolution of the region in time and space always underpins more detailed prospect targeting.
For sedimentary basins, seismic reflection data interpretation is the most commonly used tool
for to establish the fundamental structural and depositional framework: it is widely used in
hydrocarbons exploration (e.g. Jackson and Beales, 1967; Miklereit et al., 1996; Hu et al.,
2017); but also, increasingly, in basin ore exploration and research (Gibson et al., 2016;
Ashton et al., 2018). Crucially, seismic interpretation and basin analysis allow establish the
timing of fault activity and the extent of syn-kinematic (syn-rift) sedimentation by observing
and interpreting the thickness increase towards the fault in the sedimentary packages (Fig.
1A-C). In this paper, we demonstrate the usage of the technique of basin analysis through
seismic reflection interpretation in the context of basin ores exploration. We establish the
timing and structure of a Carboniferous basin in Northern England, showing that the faulting
event is of similar nature and timing compared to that associated with the significant base
metal mineralisation in Ireland. The method presented here is a powerful tool, especially in
the early phases of exploration outwards from a known deposit where it is necessary to
investigate the extent of the play: i.e. whether the overall timing and the structure of a basin
and the faults and sedimentary packages within it are suitable for mineralisation in the regional
context.

The Early Carboniferous lead-zinc play in Ireland is well known with its >25 economic and
subeconomic deposits and has been extensively studied (e.g. Max et al., 1983; Taylor, 1984;
Hitzman and Large, 1986; Williams et al., 1986; Anderson et al., 1988; Shearley et al., 1992;
Hitzman and Beaty, 1996; Everett et al., 1999; Hitzman, 1999; Lewis and Couples, 1999;
O'Reilly et al.,, 1999; Wilkinson, 2010; Ashton et al., 2015; Wilkinson & Hitzman 2015;
Torremans et al.,, 2018; Kyne et al., 2019). Significant mineralisation exists at Tynagh,

3
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Silvermines, Lisheen, and at Navan, the latter being a world-class Pb-Zn deposit (Fig. 2).
Recently, a 2D seismic survey helped to identify the Tara Deep satellite deposit at Navan
which is now under development (Ashton et al., 2018). The mineralisation is normally
classified as 'lrish type', which is thought to be a hybrid between Mississippi Valley type (MVT)
and SEDEX ores (e.g. Torremans et al., 2018) although some authors consider the Irish type
to be a sub-type of the MVT deposits (e.g. Leach et al., 2001). Whatever the detailed
classification may be, the key observations for the purposes of this paper are that the Irish
mineralisation i) occurs as stratabound replacement ore within the Lower Carboniferous pre-
to syn-rift carbonate sequences present across the Irish Midlands basin; and ii) is closely
associated with major normal faults which acted as main fluid conduits (e.g. Ashton et al, 2015,
2018; Wilkinson & Hitzman 2015; Torremans et al., 2018; Kyne et al., 2019).

Lateral equivalents of the Lower Carboniferous rocks in Ireland are exposed in
northernmost England and southwestern Scotland, particularly in the Northumberland Trough
and on the upfaulted Alston Block (Fig. 2). The potential for Carboniferous lead-zinc
mineralisation in the Northumberland Trough has not been studied in detail although the
possibility has been suggested (e.g. Plant et al., 1988; Jones et al. 1994; Chadwick et al. 1995;
Walsh et al. 2018; Baba et al., 2019). Most of the known mineralisation in the area is related
to the so-called Northern Pennine Orefield (NPO), with historically mined zinc ores (Figs. 2,
3). The known NPO mineralisation is not of the 'lrish type'; it is around 50 Ma younger
(Permian), located structurally higher, and is associated mostly with fractures and fissures
within the bedding rather than being a strictly stratabound replacement ore (Fig. 3; e.g. Kimbell
et al. 2010). In the absence of sufficient drilling, the most tangible evidence for an 'lIrish type'
Early Carboniferous mineralising event comes from the British Geological Survey Mineral
Reconnaissance Programme: stratabound mineralisation in Lower Carboniferous carbonate
rocks has been found at or close to current exposure levels near normal faults around
Langholm and Saughtree (Fig. 2), along with some fracture-style mineralisation in the volcanic
rocks of the same age and in the Silurian basement (drilling reached depths of ~25 m;
Gallagher et al., 1977; Smith et al., 1996). The indications of base metal mineralisation in the
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Lower Carboniferous combined with the regional similarities in the Lower Carboniferous
geological history between Ireland and northern England raise the possibility that previously
unrecognised rifting-related, 'lrish type' Pb-Zn mineralisation could exist at depth in northern
England. For this to be the case, the structural setting including the timing of the major faults
and the deposition of thick syn-rift sediments of suitable carbonitic composition need to be
similar in northern England to those associated with the Irish Pb-Zn deposits. It is very difficult
to decipher fault timings, growth and 3D geometries from surface data alone, but basin
analysis techniques can greatly illuminate the overall structural setting (Fig. 1). We apply such
techniques through interpretation of a grid of 2D seismic lines within the Northumberland
Trough, in order to establish the structural setting and evaluate its similarity to the Irish Pb-Zn
play. Our analysis incorporates the timing of the major faulting, fault geometries and linkage
during growth, and the thickness and distribution of the syn-kinematic sediments in the area -
both crucial for the presence of ores similar to the Irish deposits. We discuss the results in the
context of Pb-Zn mineralisation in Ireland to propose a refined model for how the main
structures within the study area may host mineralisation at depth, therefore potentially
extending the lead-zinc play into northern England and southwestern Scotland; the presence
of suitable host rock lithologies at depth, however, remains to be tested by drilling. The method
used in this paper, exemplified through the Northumberland case, should be directly applicable

to any basin-related ore deposit associated with faulting and/or sedimentation.

2. Geological Context

Any basin analysis must be underpinned by robust understanding of the regional geological
evolution and local stratigraphy. Therefore, we first summarize the geological history of the
British Isles and Ireland during the Carboniferous, focusing on the structural context of the Pb-

Zn mineralisation in Ireland and northern England and on the stratigraphy of the study area.

2.1 Geological History
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The known Pb-Zn mineralisation in the Irish Midlands and in northern England broadly
follows the trend of the lapetus Suture (Fig. 2; Max et al. 1983; Ashton et al. 2015). The suture
is a structurally complex region formed by the closure of the lapetus Ocean and the
subsequent continental collision during the Caledonian Orogeny around 400 Ma (Torsvik et
al. 1996; McKerrow et al. 2000; Stone et al. 2010). The dominantly NE-SW Caledonian
structural grain controlled the overall trend of the Carboniferous syn-rift faults with which the
Irish base metal mineralisation is genetically related (O’Reilly et al. 1999; Ashton et al. 2015;
Torremans et al. 2018; Kyne et al., 2019). The Carboniferous rifting was caused by
approximately north-south orientated tension, probably due to back-arc extension caused by
the northward subduction of the Rheic Ocean beneath the southern margin of the Caledonian
basement (Leeder, 1982; Nance et al. 2012). The major basin produced by this north-south
divergence extends from both northern England to the Irish Midlands and is characterised by
fault-bound blocks separated by deep sub-basins (Leeder 1982; Hitzman 1999). In northern
England, faulting localisation was also controlled by granitic Caledonian plutons in the Lake
District, the North Pennines and the Cheviots (Fig. 2); these acted as rigid bodies during the
extension, forming structural highs or horst blocks (Stone et al., 2010). Subsidence history
analysis in northern England shows the initial rapid fault-controlled subsidence (rift phase)
during the Tournaisian-Visean was followed by gradually declining regional subsidence (sag
phase) from the late-Visean to Westphalian (McKenzie, 1978; Kimbell et al., 1989).

The ENE-WSW trending Northumberland Trough - Solway Basin occupies the generally
low-lying land between the Solway Firth and Northumbrian coast (Fig. 2). To the south, the
basin margin follows the prominent highs of the Lake District and Alston (North Pennine)
Blocks along the Maryport-Stublick-Ninety Fathom fault system. This north-dipping normal
fault system was initiated in the Tournaisian and early Visean, resulting in a thick Lower
Carboniferous syn-rift sequence accumulating in the Northumberland-Solway Basin and partly
outcropping in the northern part of the basin (Chadwick et al., 1995). The northern margin of
the Northumberland-Solway Basin is formed by en-échelon, mostly south-dipping faults,
antithetic to the Maryport-Stublick-Ninety Fathom faults. The throw on the northern basin-
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bounding fault system increases westwards, resulting in the Solway Basin having a roughly
symmetrical shape in cross section, whilst the Northumberland Trough approximates a half-
graben (Chadwick et al. 1995). However, the detailed timings and geometries of individual
faults and sedimentary packages remain largely unknown.

Subsidence ceased by the latest Carboniferous and was replaced with the peripheral
effects of the Variscan Orogeny around 290 Ma (Matte, 1986; Collier, 1989; Stone et al.,
2010). Variscan deformation in northern England is identified by deformation affecting the
Westphalian Coal Measures but not the overlying Permian strata. Variscan structures in
northern England include gentle folding, minor thrusting/inversion, and removal of up to 2 km
of Carboniferous sediment due to uplift and erosion (Chadwick et al., 1995). Some authors
suggest that the inversion structures result from transtensional tectonics rather than Variscan
compression (De Paola et al., 2005). Intrusion of the Permian Whin Sill complex at 297 Ma
and other broadly coeval intrusions (Figs. 3 and 4) post-date the inversion, but pre-date a

Permian extensional or transtensional event (Collier, 1989; Dempsey, 2016).

2.2 Stratigraphy of Northumberland

The metamorphosed Lower Paleozoic basement in northern England is unconformably
overlain by some Devonian, but mostly Carboniferous rocks (Fig. 4). The late Devonian —early
Carboniferous crops out sporadically along the northern margin of the Northumberland
Trough; these semi-arid fluvial beds have been described as pre-rift (Leeder, 1973; 1974) or
earliest syn-rift (Chadwick and Holliday, 1991). The main rift basin succession is of
Carboniferous age, controlled by the evolving normal fault system (Fig. 5; e.g. Dunham, 1990;
Chadwick et al., 1995). The syn-rift packages are exposed in the north but buried in the
southern part of the basin (Fig. 4). The region is characterised by the general absence of syn-
rift sediments from horst tops such as the Alston Block (Fig. 5; Stone et al., 2010). By the end
of the Visean, active rifting ceased, allowing Asbian and younger strata to progressively

accumulate across the area (Bott et al., 1984; Kimbell et al., 1989).
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The syn-rift Courceyan to Chadian age Inverclyde Group rocks are, where observed at
outcrop or in boreholes, mainly siliciclastic fluvial to shallow marine sediments, but fine-grained
carbonates as nodules and thin beds are also common (Stone et al., 2010). Basaltic lavas are
present in this group, at least along the NW margin of the Trough, and are interpreted as
marking the onset of rifting (Leeder, 1974). The Border Group forms the main syn-rift basin fill
of up to 4 km of fluvial to marine siliciclastic and carbonate rocks (Dunham, 1990). Where
exposed (in the north), the dominant rock types especially higher in this group are composed
of the fluvial Fell Sandstones, but grade into deltaic then marine conditions towards the south
and west (Johnson, 1980). The exposed parts of the Lyne Formation (in NE Northumberland
Trough) contain some clastic and nonmarine limestones interpreted as peritidal with
increasingly marine limestone layers higher in the succession (Dean et al., 2011). The rock
types within the Border Group at depth in the deeper parts of the basin remain unknown as
there are few historic drill holes and they mostly reach depths of only a few hundred metres.
Evaporite layers present in the Border Group may be important for mineralisation as a potential
source of saline fluids (Day, 1970) but also as potential top-seal to control lateral fluid migration
(see discussion). Either way, the Inverclyde Group and the Border Group are the
approximately time-equivalent sequences in northern England to the sediments hosting the
Irish Pb-Zn deposits (Fig. 4).

Late Visean and Namurian rocks of northern England mainly belong to the Yoredale Group.
Yoredale facies is characterised by cyclothems of marine limestone overlain by shale,
sandstone, and coal (Hudson, 1924; Stone et al., 2010). The early Asbian Tyne Limestone
Formation of the Yoredale Group displays greater marine influence than the exposed parts of
the underlying Border Group but maintains alternating marine input from the SW and clastic
input from the NE (Leeder et al., 1989). Approximately coevally with the Tyne Limestone
Formation, a thin (~100 m) sequence of non-Yoredale ramp to shelf carbonates belonging to
the Great Scar Limestone Group was deposited on the structurally elevated Alston Block
(Stone et al., 2010). By the end of the Asbian, a marine transgression during the regional sag
phase covered all of the Alston Block and the Yoredale facies Alston and Stainmore

8
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Formations of the Yoredale Group were deposited across the entire area (Fig. 4; Chadwick et
al., 1995). The top of the Alston Formation is marked by the Great Limestone Member, the
thickest outcropping limestone in the area at 20 m thickness; this formation hosts a large

proportion of the known Permian vein mineralisation (Fig. 3; Dunham, 1990).

2.3 Mineralisation: summary of the Irish and NPO lead-zinc ores

We briefly summarize the main characteristics of Irish Pb-Zn mineralisation and the known
Pb-Zn mineralisation in the Northern Pennine Orefield (NPO). For a more detailed description
of mineralisation and stratigraphy in the NPO, the reader is referred to Dunham (1990), Tucker
et al. (2003) and Bott and Smith (2018), and to the BGS Mineral Exploration Programme
reports from northern England and southern Scotland (e.g. Smith et al., 1996). For more
details on the Irish Carboniferous stratigraphy and Irish base metal mineralisation see e.g.
Philcox (1984), Wilkinson and Hitzman (2015), Ashton et al. (2015). Torremans et al. (2018)
and Kyne et al. (2019).

'Irish-type' mineralisation is a sedimentary rock-hosted ore deposit type in which large-scale
normal faults channel mineralising fluids from depth into the host rocks (typically carbonates;
Fig. 6). The mineralisation is predominantly epigenetic with respect to deposition of the host
lithologies, but syn-kinematic with respect to the rifting process that created the faults,
although fluid flow along faults can continue for a time after active faulting has ceased (e.qg.
Walsh et al., 2018). Irish-type mineralisation overlaps with both the so-called Mississippi Valley
type (MVT) mineralisation which usually forms deeper in a (foreland) basin, and with syn-
genetic sedimentary-exhalative (SEDEX) ores deposited directly onto the seafloor. Some
authors consider the 'lrish-type' to be a sub-type of the MVT (e.g. Leach et al., 2001).
Regardless of the debate on the exact deposit 'type', the key observation for the purposes of
this paper is that all of the Irish deposits are a) strongly fault-controlled in terms of the fluid
pathways into the system; and b) form stratabound ore lenses close to the faults and within

the syn-rift stratigraphy.
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In Ireland, the faulting patterns related to ore genesis are complex especially in the world-
class Navan deposit and its newly discovered Tara Deep satellite deposit (Ashton et al., 2018).
Some crucial commonalities can, however, be observed. The main ore-controlling faults are
large normal or slightly normal-oblique faults (>100 m throw, at Navan possibly up to >2km;
Table 2). They mostly trend NE-SW although smaller faults within relay ramps between the
main faults are probably significant: at e.g. Silvermines and Lisheen E-W to NW-SE striking
relay-ramp breaching faults are linked to mineralisation (Torremans et al., 2018). The deposits
are stratabound to stratiform lenses which thin away from their feeder faults over several
hundred metres (e.g. Lewis and Couples, 1999; Torremans et al., 2018; Kyne et al., 2019).
The Lower Carboniferous rocks that host mineralisation in the Irish Midlands are a
transgressive carbonate sequence of mostly Courceyan age (Hitzman and Large, 1986).
Mineralisation is generally found in non-argillaceous carbonates, oolitic limestones, or clean
dolostones, usually in the stratigraphically lowest horizon with any of those lithologies present
(e.g. Hitzman and Beaty, 1996). In the northern and central Irish Midlands, this is the Meath
Formation (informally known as 'Pale Beds') of the Navan Group, deposited as variable
shallow water shelf carbonates. South- and southwest-wards, the Navan Group becomes
increasingly shale-rich and passes into the Lower Limestone Shale, representing a deepening
of the palaeo-basin (Hitzman and Beaty, 1996). Here, mineralisation is found in the
stratigraphically higher late Courceyan-Chadian reef limestones of the Feltrim Formation (the
'Waulsortian Limestone'; Hitzman and Beaty, 1996). The exact timing of mineralisation is
debated but probably occurred <5 Ma after the deposition of the host rocks in most areas,
constrained by both isotope evidence and erosion-mineralisation relationships; late Chadian
or early Arundian age is likely for the majority of the deposits but mineralisation may have
started as early as Courceyan in some areas (Anderson et al., 1998; Ashton et al., 2015).
Mineralisation is, in summary, controlled primarily by suitable host lithologies and structures,
rather than being constrained to a certain stratigraphic horizon.

In the Irish Midlands, deposits occur mostly on the downthrown side of the normal fault
segments but footwall ores also exist (Hitzman, 1999; Ashton et al., 2018). Feeder zones to

10
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the orebodies are spatially associated with points of maximum throw on the faults or with
deformed (breached) relay ramps (Taylor, 1984; Shearley et al., 1992; Hitzman and Beaty,
1996; Torremans et al., 2018; Kyne et al., 2019). At the world-class Navan deposit, most of
the mineralisation of the main ore body is concentrated within a highly fractured relay ramp
between the two major NW-dipping faults (Ashton et al., 2015, 2018). However, a new satellite
deposit, Tara Deep, has been identified deeper in the palaeobasin, SE of a basement horst
delimiting the main ore body where it seems to be associated with the footwall of the major
basin-bounding Navan Fault with km-scale displacement (Table 2; Ashton et al., 2018).

In detail, the genesis of 'lrish-type' ores remains contentious. Most authors agree that
mineralisation occurred during or soon after active faulting and involved mixing of deep
(‘basinal’), high-temperature, acidic, metal-bearing fluids and shallow, low-temperature, high-
sulphur, high-salinity brines derived from seawater/basin sediments (Fig. 6; e.g. Wilkinson,
2010; Wilkinson and Hitzman, 2015). At Navan, the shallow sulphur-rich fluids were produced
by bacterial reduction of Lower Carboniferous seawater, likely in deep half-grabens formed
during the rifting (Anderson et al., 1998). Mixing of the two fluids was facilitated by the faults
which acted as permeable conduits, focusing fluid flow and allowing episodic tapping of the
deep metal-rich fluid reservoir during the faulting cycle (Wilkinson and Hitzman, 2015). The
last stages of syn-sedimentary faulting at Navan are interpreted to be Chadian-Arundian,
suggesting that the mineralisation occurred <5 Ma after deposition of the host rocks (Hitzman
and Beaty, 1996). The exact timing and depth of mineralisation may be variable; there is some
evidence for syn-genetic exhalation of minerals (SEDEX-type mineralisation) into seawater in
the later, topmost parts of the multi-layered deposit (especially within the so-called ‘slide
complex’), but most of the ore seems to have formed through deeper epigenetic processes
(Ashton et al., 2015; Wilkinson and Hitzman, 2015).

In contrast to Irish Midlands, the known (Pb-)Zn mineralisation in northern England is mainly
Permian, although indications of possible Carboniferous mineralisation have also been found.
The Permian mineralisation is dated at 294129 Ma by Os-Os dating (Dempsey 2016) and at
292420 Ma by U-Pb dating (Dunham, 1990). It occurs mainly within a thin Carboniferous
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sequence on the Alston Block, deposited in baryte-fluorite veins with some strata-bound,
mineralised wall rock replacement (alteration) zones (Fig. 3; Table 1; e.g. Bouch et al., 2006).
Significant mineralisation also occurs within the Alston Formation in the southern
Northumberland Trough, north of the Stublick Fault (Fig. 3; e.g. Dunham, 1988; Kimbell et al.,
2010). In terms of Carboniferous mineralisation, BGS surveys near Langholm and Saughtree
(Fig. 2) revealed stratabound sphalerite, occurring as replacement minerals in dolomitic vugs
in the exposed Lower Carboniferous carbonate rocks, and also found a number of Zn and Ba
anomalies during stream sediment heavy concentrate sampling (Gallagher et al., 1977; Smith
et al., 1996). Other, indirect evidence comes from a regional panning programme in the
southern and eastern parts of the Northumberland Trough which revealed significant lead,
zinc, and copper anomalies in stream sediments where Lower Carboniferous sediments are
exposed (Bateson et al., 1983).

Both the Irish Midlands and the NPO are highly prospective areas for Pb-Zn mineralisation.
Although Early Carboniferous Irish-type deposits have not been found in Northern England,
the possibility is apparent from; i) the existence of the major normal fault systems associated
with Carboniferous rifting; ii) the projection of mineral-bounding lineaments in Ireland across
the Irish Sea into northern England; iii) the presence of suitable carbonate-bearing host-rocks
of similar Lower Carboniferous age in both areas (Jones et al., 1994). The discovered
stratabound sulphide mineralisation in Lower Carboniferous rocks in northern England and
southwestern Scotland indeed point towards a functioning base metal deposition system
during Lower Carboniferous (Gallagher et al., 1977; Smith et al., 1996). In order to establish
whether lIrish-style ores may have developed in northern England, we need a better
understanding of the timing, geometry and extent of Early Carboniferous faulting along with
the extent of and thickness variations within the syn-rift sedimentary packages. Basin analysis
techniques utilising seismic reflection data interpretation can be used to test whether this Early

Carboniferous favourable structural framework exists in northern England (Fig. 1).

3. Data and methods
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The principal method was interpretation of seismic reflection data, assisted by borehole data,
following the standard approach described in e.g. Gerhardstein and Brown (1984) and in Fig.
1. The seismic reflection lines were provided in standard SEG-Y format by the UK Onshore
Geophysical Library (UKOGL; see www.ukogl.org.uk for their interactive seismic line viewer).
All seismic lines used are time-migrated 2D land surveys (i.e. the vertical extent is expressed
in seconds Two-Way Travel time, TWT, rather than in metres), shot throughout the 1980’s
using Vibroseis sources. The quality of the dataset is highly variable. Given the range of
vintages, processing parameters, and need for static corrections in land surveying, small mis-
ties between surveys do occur. Despite the quality variations, several lines provide a good
overview of the geometries of the basement and the interpreted basin infill horizons, clearly
picking out the main features and giving a reasonable estimate of the sub-surface structure
and fault configuration as per the procedure outlined in Fig. 1. The available lines were ranked
based on quality, the ranking subsequently informing the geological interpretation in terms of
uncertainty assessment; the poorest quality lines were not interpreted.

Basic information of several boreholes, often with both formation tops and time-depth
charts, are available at the UKOGL library. Two boreholes, Longhorsley-1 and Stonehaugh,
are located within the study area and these were used to assist interpretation of the seismic
data (Fig. 4). The Stonehaugh borehole penetrates down to the Fell Sandstone Formation
(601 m total length), whilst Longhorsley-1 reaches the upper part of the underlying Lyne
Formation at 1829 m in the shallower parts of the basin. This leaves a large thickness (>>1
km) of basin sediment unsampled, especially within the deeper parts of the basin, leaving their
character unknown. British Geological Survey 1:50000 scale digital surface geology mapping
provided an indication of the outcrop pattern of the main formation boundaries and the
locations of the main fault structures. The geological maps give the rock types associated with
each formation at outcrop, but their lateral facies changes at depth towards the south and west
remain unknown. The top of the Early Carboniferous Fell Sandstone Formation of the Border
Group has outcrop control in the far NW of the study area and is the only horizon that can be
tied to both boreholes. The Tyne Limestone and Alston formations of the overlying Yoredale
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Group are present in the Longhorsley-1 well only, although both have extensive outcrop
control to the south and east.

Structural interpretation was performed using IHS Kingdom suite seismic interpretation
software. Borehole formation tops and seismic surveys are referenced to mean sea level
(MSL) datum; this is given in the processing information for some but not all vintage lines. Of
the available UKOGL seismic dataset, only those surveys with sufficient quality to be useful
were used in interpretation; their traces are shown in Figure 4. Fixing minor mis-ties between
surveys (<0.05 s TWT) was considered impractical for the purposes of this study, considering
that the required time shift may vary along each survey due to static corrections in land
surveying. Boreholes helped to constrain the main contacts (Top Lower Groups, Top Tyne
Limestone Fm., and Top Alston Fm.; Fig. 5). An approximate Top Basement was also
interpreted, identified by the deepest recognisable coherent reflectors underlain by featureless
seismic signal (Fig. 8). Seismic interpretation was performed using the loop tying method so
that any inconsistencies and mis-ties could be identified and corrected (see e.g. Gerhardstein
and Brown, 1984 for details). The presence of mis-ties meant that in some lines the estimated
depths to the interpreted horizons had to be adjusted manually during loop-tying (exemplified
by the offset of the Top Basement in Fig. 8). Faults were identified with reference to the surface
geological maps and correlation polygons were used to identify the location of the sedimentary
horizons across faults, although the result was not always without a degree of uncertainty.
Sedimentary horizons were not extrapolated across the basin-bounding faults (the Stublick
Fault and Ninety Fathom Fault) due to difficulty identifying suitable reflectors on their footwall
and the knowledge that syn-rift formations are likely to be largely absent beyond the basin
(Stone et al., 2010; Fig. 5).

3D (2.5D) interpretations in the form of structure maps with fault polygons were produced
for the interpreted horizons (Fig. 9). The maps were produced using the Flex Gridding
algorithm in Kingdom Suite and a grid size of 100 m. Isochron maps for the intervals defined
by the interpreted horizons were also produced from the horizon grids in order to approximate
the TWT thicknesses of the interpreted packages (Fig. 10).
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A degree of epistemic uncertainty is inherent in all seismic interpretation. The purpose of
this study is to interpret the general features such as the sedimentary package architecture in
relation to the main faults. We consider the quality of the used lines to be sufficient as these
main structural features are mostly fairly clearly imaged. The greatest cause for uncertainty in
the interpretation arose from assessing the magnitude of displacement across faults where
there is no nearby well or outcrop control, or where mis-ties between lines occur (e.g. such as
in Fig. 8). Using correlation polygons (reflection pattern mis-matches) mitigates the issue
somewhat, although variable data quality is an issue especially in the west part of the area.
Therefore, misinterpretation of up to ~0.05 s TWT should be considered when analysing the
structure maps and the thickness maps (see next section). The surface geology map and the
two boreholes greatly help to constrain the locations of the horizons across faults so that the
main geometries of the faults and the syn-rift packages, and their relationships, can be

interpreted with reasonable certainty.

4, Results

4.1 Seismic reflection interpretation

The representative seismic lines and their interpretations in Figure 8 show the general features
of the results. Three main sedimentary packages were interpreted within the study area: the
'Lower Groups' (delimited by Top Basement and Top Fell Sandstone), the Tyne Limestone
Formation, and the Alston Formation (Fig. 5).

The Lower Groups package consists of the Border Group and Inverclyde Group with
undefined relative thicknesses. These units are grouped together because, due to the lack of
well control penetrating the deeper units, the Top Fell Sandstone Formation (top of the Border
Group) is the deepest known horizon which can be reliably interpreted in the sub-surface. The
total thickness of the Lower Groups approaches 2 s TWT towards the west (Fig. 8B).
Depending on the seismic velocity of the rocks (typically 2500-4000 m s-! for sedimentary
rocks) this represents at least 2.5 km, but probably well over 3 km, of basin sediment about
which very little is known (see Kimbell et al., 1989 who estimate that the velocities may be up

15



886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

to 4500 m s within the basin). The dataset allows some interpretation of the internal
geometries within the Lower Groups (yellow dashed lines in Fig. 8. There are some distinctly
wedge-shaped geometries present especially in the lower parts of this succession; these are
especially evident on the strike sections as exemplified in Fig. 8B. Indications of significant
acoustic impedance changes that would be expected from a layered sandstone-mudstone-
limestone sequence do occur, such as the prominent high amplitude reflectors found at the
base of the succession and locally towards the middle (e.g. around 0.8 ms TWT in Fig. 8B).
An area of noticeably lower amplitudes with sometimes chaotic reflectors occurs towards the
base of the succession (e.g. around c. 1.4-1.5 s TWT in the west part of Fig. 8B); the cause
for these is unknown but they could be caused by evaporites known to be present elsewhere
within the Inverclyde Group. The transition from coherent reflectors to featureless seismic
signal at depth is interpreted to mark the Top Basement composed of the metamorphosed
Caledonian rocks.

The Top Tyne Limestone Formation and the overlying Top Alston Formation are interpreted
above the Lower Groups (Fig. 8). The Tyne Limestone Formation contains some very high
amplitude reflectors; again, the cause of these is unclear but they possibly represent contacts
of limestone beds developed due to the increasing marine influence on this formation. The
Alston Formation is characterised by lower amplitude, higher frequency reflectors than the
underlying formations. The rocks above the Alston Formation belong to the Namurian
Stainmore Formation, locally overlain by the Westphalian Coal Measures.

From the horizon interpretations, it can be observed that both the Top Basement and the
sedimentary succession reflections dip southwards into the Stublick fault hanging-wall (Fig.
8A). Near the Stublick Fault, especially the sedimentary successions above the Lower Groups
form a broad syncline, with the reflections shallowing out before dipping slightly northwards in
the immediate vicinity of the fault. The Lower Groups thicken significantly southwards towards
the Stublick Fault and are therefore broadly interpreted as the syn-rift package. The Tyne
Limestone Formation appears to thin slightly towards the Stublick Fault, whereas the Alston
Formation maintains approximately constant thickness; these formations can thus be broadly
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classified as post-rift. The wedge-shaped geometry of the interpreted syn-rift Lower Groups
succession is even clearer in the E-W direction (Fig. 8B); a west-dipping Top Basement is
overlain by the syn-rift Lower Groups which display an obvious thickening towards the west,
roughly parallel to the strike to the Stublick Fault. However, this strike-section shows more
clearly that the topmost part of the Lower Groups show approximately even thickness and
may thus be post-rift. The Tyne Limestone Formation thickness seems to remain
approximately constant in the E-W direction.

All identified faults are normal faults, with approximate throws ranging from the lower limit
of vertical seismic resolution (around 20-60 m for these surveys) to possibly up to 2 km. Some
faults show weak positive inversion expressed by features such as the anticline between the
synthetic-antithetic fault pair in Figure 8A and the hanging-wall anticline in Figure 8B. Both of
these anticlines affect the post-rift packages, constraining the maximum age of the folding to
Middle Carboniferous. The seismic sections in Figure 8 are vertically exaggerated, which
steepens the overall apparent fault dip, although the dip for many large faults appears to
shallow out slightly with depth. More faults are identified on north-south sections than east-
west sections, due to the dominantly E-W to ENE-WSW strikes of the faults.

The Stublick Fault dips northwards and is the longest fault and the largest in terms of
displacement. Horizons generally cannot be followed across to its foot-wall, although the Top
Basement is interpreted, with some uncertainty, to be displaced by up to 1 s TWT (2 km using
an average velocity of 4000 m s for the hanging wall rocks). Interpreted major splays of the
Stublick fault are common (Fig. 8A). Overall, the displacement clearly increases towards the
west along this major fault zone as indicated by the wedge-shaped growth geometries of the
Lower Groups.

The Antonstown Fault and Sweethope Fault are examples of other major (>200 m throw)
faults. These are found north of the Stublick Fault and show south- and north-ward dips
respectively. Both faults can be interpreted to penetrate down into the basement and they may

be linked to form a flower structure across the relay zone between these faults (Fig. 8A).
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Further north- and south-dipping faults with throws of around 100 m or less are frequent in the

interpretation.

4.2 Structure maps
TWT horizon maps were constructed from the interpreted horizons to illustrate the interpreted
3D structure (Fig. 9).

The basement consists of highly deformed, metamorphosed Caledonian schists and
gneisses. The Top Basement geometry, equivalent to the base of the sedimentary basin fill,
is dominated by a 10-20 km wide E-W trending asymmetric depression on the downthrown
northern side of the Stublick fault: this is the Northumberland Trough (Fig. 9A). The trace of
the Stublick Fault is not straight and shows a prominent ‘embayment’ just east of the centre.
The TWT to the Top Basement along the fault commonly exceeds 2 s, with major structural
lows on both sides of the embayment and another two minor lows interpreted within the
embayment itself. We interpret that the Stublick Fault formed through linkage of several
smaller faults, probably through relay ramp breaching. At Top Basement level the easternmost
part of the Stublick Fault seems to have initiated as a NE-SE striking, basin boundary-parallel
fault before linking up with the more E-W striking segments of the Stublick Fault.. The
maximum displacements of each of these smaller faults are still recognisable as local TWT
lows along the fault strike.

The Ninety-Fathom Fault can only be reliably interpreted using Top Basement. The
interpreted segment is of a limited extent but it too shows a non-linear geometry with highly
variable strikes. The Top Basement deepens towards the east along this fault, forming a relay
ramp between the Stublick fault and the Ninety-Fathom fault. A basement high belonging to
the Alston Block is interpreted in the SE of the area, in the foot-wall of the Ninety Fathom Fault.

The Top Basement along the northern margin of the trough is characterised by a southerly
dip and the absence of a continuous fault zone. The northern margin is around ~1.5 s TWT to
basement, but rapidly increases towards the trough centre before levelling out somewhat. The
Antonstown Fault and the Sweethope Fault cut through the Top Basement near the steeper
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dips, and sub-seismic resolution faults may be present along the zone of steeper dips (with
associated relay ramps contributing to the basement topography in this region), but overall the
northern margin does not show obvious faulting within the basement at seismic resolution.
The maximum throw on both the Antonstown Fault and the Sweethope Fault at basement
level is around 0.25 s TWT (~300-500 m). Towards the east, the Top Basement becomes
east-dipping.

The Top Fell Sandstone is significantly more faulted than the Top Basement, especially
along the northern margin of the basement trough (Fig. 9B). The dominant strike of the faults
is E-W to ENE-WSW, although ESE-WNW striking faults also occur in the east. North-dipping
faults are more frequent than south-dipping faults. The throw on most faults is too small to
have much impact at the scale of the structure map. The most significant faults are the
Antonstown Fault and the Sweethope Fault, although the maximum throw at this level is
reduced to 0.10 s and 0.20 s TWT respectively. However, the strike lengths of both faults have
significantly increased relative to what can be interpreted from the seismic at Top Basement
level, especially that of the Sweethope Fault. In addition, the distance between the faults and,
consequently, the width of the minor graben between them has also increased. Other
significant faults within this zone include the Causey Park Fault, the Hallington Reservoir Fault,
and both Stobswood Faults. The maximum throw on these faults does not exceed 0.08 s TWT
but they have significant lengths of up to several tens of kilometres. Several relay ramps can
be identified between the various faults.

The elongated depression in the Stublick Fault hanging-wall is significantly narrower than
the depression defined by the Top Basement. The eastward projection of the Stublick Fault
potentially links with the up-dip continuation of the Ninety-Fathom Fault, although this cannot
be determined from the available data. Structural lows along the Stublick Fault are confined
to the eastern part of the study area, whilst towards the west the lows are situated near smaller
(splay?) faults.

The Fell Sandstone Formation reaches outcrop in the western of the area of the interpreted
seismic lines. The eastern part of the structure map is again dominated by a shallow eastward
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dip, reflecting the arcuate outcrop pattern of the Carboniferous sediments as they become
east-dipping (Fig. 4).

The Top Tyne Limestone Formation and the Top Alston Formation cover a smaller area in
the interpretation as erosion has removed them from the NW (Figs. 9C and 9D). The general
structure of both horizons is very similar to the Top Fell Sandstone Formation in terms of dip
trends and faulting. The horizons dip generally southwards towards the Stublick Fault, forming
small trough structures, with a gentle easterly dip becoming dominant towards the east part of
the map. The syncline near the western part of the Stublick Fault is present in the Top Tyne
Limestone Formation map but can no longer be identified in the younger Alston Formation.
Farther north, the Sweethope Fault, the Causey Park Fault, the Stobswood Fault and the
Hallington Reservoir Fault, along with several minor faults, are all interpreted to penetrate up
to the Top Alston Formation. Note, however, that the seismic data are not processed above
~0.2 s TWT, and that here the horizons have been interpreted by extrapolation from deeper
reflectors, introducing uncertainty into the near-surface fault identification, even compared with
outcrop data. Either way, it is clear that the majority of the faults have been active after (and
possibly during) the deposition of these Visean packages although the displacements are

generally small (~200 m at most).

4.3 Thickness maps

3D maps illustrating thickness variations within each interpreted package (i.e. TWT thickness
maps) can be constructed by subtracting the thicknesses of the overlaying packages from the
TWT depth to the base of the package in question (Fig. 1D). The TWT thickness maps for the
interpreted packages are shown in Fig. 10. Figure 10A illustrates the thickening of the Lower
Groups (Top Basement to Top Fell Sandstone) from the minimum value of around 0.63 s TWT
in the NE part of the study area, to a maximum of 2.00 s TWT in the W. This represents a 52%
deviation from the average thickness (min thickness + max thickness / 2) of 1.32 s TWT for
this package. The maximum thickness occurs approximately 5 km north of the Stublick Fault
and increases westwards along the Northumberland Trough; this is probably due to the
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sediment accumulation pattern switching from thickening towards the fault during Courceyan-
Chadian active faulting, to thickening away from the fault after active rifting waned during the
subsequent sag phase. Although the Stublick Fault has the most noticeable effect on the
thickness distribution, the Antonstown-Sweethope Fault zone also seem to have a minor
control the thickening on the northern margin of the trough, indicating that they may have been
active during the earliest Carboniferous.

The Tyne Limestone Formation (Top Fell Sandstone to Top Tyne Limestone) has a
minimum thickness of 0.21 s TWT and a maximum thickness of 0.52 s TWT (Fig. 10B). The
thickest interval is found in the central part with a 42% change from the average sequence
thickness of 0.37 s TWT. The maximum thickness is attained farther east than in the Lower
Groups and around 10-12 km to the north of the Stublick Fault, centred between two smaller,
unnamed faults between the Stublick Fault and the Sweethope Fault. This thickness change
does not seem to be controlled by any earlier (basement) faults. The thickness change is close
to the approximate interpretational error margin of ~0.05 s TWT, but another possible
explanation is that there was some active normal faulting along the two unnamed faults and/or
differential compaction during the sag phase during the Asbian when these sediments were
deposited. Another area with larger than average thicknesses is present westwards along the
trough, with thicknesses commonly at ~0.5 s TWT, changing rapidly from ~0.3-0.4 s TWT and
therefore not within interpretational error margin. Sub-resolution Asbian faulting may control
this thickening; alternatively some local accommodation space for the Asbian sediments may
have remained from the earlier basin subsidence and differential sediment compaction.

The Alston Formation (Top Tyne Limestone to Top Alston) thickness map is of limited use
due to its small extent before this formation reaches outcrop (Fig. 10C). Overall, the Alston
Formation thickens slightly southwards towards the Stublick Fault, from around 0.12 s TWT in
the north to a maximum of 0.24 s TWT 2-3 km north of the fault. This is a 33% change from a
0.18 s TWT average thickness. However, most of the thickness variation seen in this package

is within the interpretational error margin of ~0.05 s TWT. The trend towards greater
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thicknesses towards the SW of the map is very poorly constrained by the seismic data, and

noisy seismic inhibits reliable interpretation of Top Alston Fm. in the SW.

5. Discussion

There is a clear overall reduction in magnitude of thickness variation upwards within the
sedimentary succession, reflecting the transition from syn-rift to late- or post-rift packages.
The older, deeper packages, especially within the middle and lower Lower Groups, display
much greater thickness variations with thickness increases both towards the Stublick Fault
and towards the deeper parts of the basin, both in terms of absolute values and relative to the
average thickness of each package. The higher Lower Groups and the Tyne Limestone
Formation seem to have been affected by the waning fault activity along the original, basin-
bounding faults and by the onset of the thermal sag phase with thickening increasingly towards
the basin centre; this overall subsidence is reflected in the increasingly marine (limestone)
successions of the ~Chadian to Asbian packages. The observations described above, made
from the interpreted 3D maps therefore help us to constrain the fault timings, relative fault
displacement magnitudes, and the distribution and geometries of the syn-rift packages.

To summarize, the Northumberland Trough is controlled by the large east-west trending,
north-dipping Stublick Fault. The kilometre-scale throw affecting the basement is consistent
with the Stublick fault being a part of the basin-bounding fault system that comprises the
Ninety-Fathom Fault, Stublick Fault and the Maryport Fault systems (Fig. 2 inset). The Stublick
Fault system is, except for its south-easternmost part, approximately E-W trending as opposed
to the other two which have generally more NE-SW orientations; this may indicate that Stublick
Fault formed a large breaching fault system within a relay ramp between the Ninety-Fathom
Fault and the Maryport Fault systems. The seismic data does not extend far enough west,
however, to draw definite conclusions about this. In more detail, the discrete structural low
points seen in Fig. 9 in the hanging-wall of the Stublick fault at Top basement level may
represent individual depocentres, hinting at a possible segmentation of the Stublick fault (i.e.
lateral fault linkage during fault growth; Cowie et al., 2000). This interpretation is also

22



1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

supported by the non-linear nature of the fault with the strike changes correlating with the
structural lows. The Ninety Fathom fault in the far SE of the area runs parallel to the NE
segments of the Stublick fault and also displays kilometre-scale throw at the Top Basement
level. It is therefore probably the en-echelon, right-stepping, eastwards continuation of the
basin-bounding fault system in this area. The Stublick and Ninety Fathom faults are interpreted
to be soft-linked at Top Basement level, separated by an east-dipping relay ramp, although
this is poorly constrained and the relay ramp between the two faults may be breached (Figure
10A).

Other significant, early rift-related faults are the Sweethope Fault and the Antonstown Fault.
Based on the interpreted variability of throw and strike of these (and many other) faults, they
too seem to have been highly segmented initially and gained length through relay ramp
breakage.

Although we were unable to interpret horizons older than the Top Fell Sandstone
Formation, an attempt was made to further constrain the initiation of rifting. The Early
Carboniferous, syn-rift Lower Groups thicken into the Stublick Fault hanging-wall (Figs. 8A,
10A). The thickening is especially visible in the middle and lower parts of the Lower Groups,
indicating that Stublick Fault was active when this part of the succession was deposited, i.e.
during the Early Carboniferous (~Courceyan-Chadian). On dip lines (Fig. 8A) the thickening
within the Lower Groups switches approximately in the middle of the succession to thicken
away from the Stublick Fault, possibly indicating the waning of active faulting in this area and
initiation of the thermal subsidence (sag) phase. Both the top and the bottom ~0.3 s of the
group maintain an approximately constant thickness. This suggests that a pre-rift package
may present above the basement, and a syn-rift succession is correspondingly present
towards the top of the package. The reflections just above the basement have previously been
interpreted as basaltic lavas associated with the onset of rifting (Leeder, 1974; Fraser and
Gawthorpe, 2003). We consider that interpreting this interval as pre-rift sediments rather than
basalts is more consistent with the >40km-scale extent, the modest acoustic impedance
contrast, and the regular geometry of this package.
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The growth strata thickening is more obvious on strike lines (Fig. 8B) than on dip lines.
Westwards thickening of the Lower Groups parallel to the Stublick fault is interpreted to be
caused by the general deepening of the basin towards the west in addition to the faulting and
sag phases, controlled in this area mainly by the Stublick Fault system but also the
Antonstown-Sweethope fault system.

Both the Tyne Limestone Formation and the Alston Formation are extensively faulted, with
especially the Tyne Formation showing some possible thickness variation related to the two
unnamed faults in the centre of the thickness map (Fig. 10B). Whilst it is possible that minor
faulting continued into (or initiated during) the Asbian-Brigantian, some of the thickness
variation may be explained by differential compaction during the sag phase. The data does
not allow determining with certainty whether these minor faults nucleated on or reactivated
existing Lower Carboniferous rift-related faults within the Lower Groups, but this seems
unlikely given that the faults do not seem to affect the basement. This makes them unlikely to
be important for any possible Irish-style mineralisation in this area as the Irish-style
mineralisation is linked with major faults penetrating the basement.

The interpretation of the study area is predominantly consistent with the accepted
geological history and existing interpretations of Northumberland Trough (e.g. Collier, 1989;
Chadwick et al., 1995; Stone et al., 2010). Rifting occurred under approximately north-south
orientated extension during the Lower Carboniferous, with the majority of deformation
localising into ~NE-SW trending controlled the older Caledonian basement fabrics; the slightly
oblique ~E-W normal fault systems such as the Stublick Fault possibly formed as relay-ramp
breaching structures between the NE-SW right-stepping faults. The prediction arising from this
is that if the overall extension was NE-SW orientated, the E-W trending faults are probably
dextral-normal faults, whilst the NE-SW trending faults are dominantly dip-slip faults. If this is
the case, the transtensional nature of the E-W faults could be expected to enhance fluid flow
into these fault zones. Either way, the basin analysis approach illustrated here provides closer

insights into the timing and the internal geometries of the faults, the fault linkage histories, and
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the geometries of the coeval depositional packages, understanding of which is key for

exploration of basin ores.

5.1. Comparison with Ireland and assessment of mineralisation potential

From the observations made in the previous sections, and with the corresponding timings
and geometries in the Pb-Zn play of Ireland well known, we can now perform a more robust
comparison between Ireland and Northumberland. The scale and the timing of the Early
Carboniferous faulting corresponds exactly to the scale and activity of the major fault systems
controlling the Irish Pb-Zn mineralisation (e.g. Ashton et al., 2015, 2018). In Ireland, the main
faults that control the formation and location of Pb-Zn deposits are of Courceyan-Arundian
age, although another possible regional rifting event is identified during Asbian-Brigantian (e.g.
Fraser and Gawthorpe, 1990). E-W or ENE-WSW trending syn-sedimentary normal faults with
displacements of hundreds of metres and possibly up to 1.5-2 km within the basement (Table
2; e.g. Hitzman and Beaty, 1996; Ashton et al., 2018). Deposits are normally associated with
fault arrays rather than isolated faults, with fluid feeder points typically occurring at areas of
maximum fault throw and in broken relay ramps (Hitzman, 1999; Torremans et al., 2018). The
crucial role of breached/highly fractured relay ramps at various scales as fluid flow focal points
has been suggested at least at Silvermines and Lisheen (Torremans et al., 2018; Kyne et al.,
2019) but the Navan deposit and its satellite Tara Deep also show complex fault-ore-breached
relay ramp relationships at various scales (see e.g. Fig. 10 in Ashton et al., 2018).

The first-order requirement for faulting extending to the basement, probably Courceyan-
Arundian in age, and with throw of at least ~200 m (Table 2) is satisfied by many major faults
in Northumberland, but excludes most of the other, isolated faults identified within the study
area as they do not affect the basement and have small throws. The major Stublick-Ninety
Fathom fault system, along with the Antonstown- Sweethope Fault zone have a suitable
Courceyan-Arundian age; possibly also the Stobswood Fault, Causey Park Fault and
Hallington Reservoir Fault (Table 2). Significant throws and relay ramp breakage, similar to

the Irish faults, is evident along the Stublick Fault (Fig. 9A). The Stublick Fault zone itself may
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in its eastern parts be a regional-scale relay ramp-breaching fault linking the more NE-SW
trending Maryport Fault and Ninety-Fathom Fault systems (Fig. 2, inset), although the seismic
data coverage is insufficient to determine this with any certainty. If Irish-type mineralisation
exists in the Northumberland Trough, its fluid feeder channels are similarly to Ireland most
likely related to the points of maximum throw or, more likely, to the (breached) relay ramps
identified in along the central and western parts of the Stublick Fault in Flg. 9A. The larger
relay ramp between the Stublick Fault and the Ninety-Fathom Fault (Fig. 9A) is less likely to
control mineralisation because i) the basin shallows significantly to the east and, crucially, the
relay ramp formed within a structural high with non-deposition of Early Carboniferous
carbonates; and ii) it does not seem to be breached at basement level, although the data
quality in the area of this relay ramp may prevent detection of any breaching faults.

The potential for the faults within the Northumberland Trough to act as mineralising fluid
conduits is shown by baryte and lead mineralisation on the Stublick Fault itself (Dunham,
1990). The Lower Carboniferous sequences are not exposed in this area, but exposures are
found 10-20 km north and northwest with some stratabound base metal mineralisation in the
proximity of other, southeast-dipping normal faults (near Langholm and Saughtree; Fig. 2;
Gallagher et al., 1977; Smith et al., 1996). The timing and downward extents of the faults near
Langholm and Saughtree remains unresolved as the seismic data do not extend this far north.

Based on the interpreted structural evolution and the tectonic history of the area, we
propose a refined structural model for the Carboniferous evolution of the Northumberland
Trough and how it may be linked to Irish-style mineralisation at depth (Fig. 11A-C).

Another key requirement for Irish-style mineralization is the presence of carbonate
packages into which the mineralizing fluids can penetrate. The characteristics of the thick syn-
rift Lower Groups within the sub-surface Northumberland Trough remain mostly unknown,
although the outcropping part of this sequence in the eastern part of the study area shows
contrasting fluvial input from the NE and marine input from the SW (Johnson 1980; Leeder et
al. 1989). Later Carboniferous (Asbian to Pendeleian) clastic-carbonate cycles of up to 50 m
thickness, with the marine limestone component within each cycle of up to 30 m thickness,
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have been logged in the broader area of NE England (Gallagher et al., 1977; Smith et al.,
1996; Tucker et al. 2003; Dean et al. 2011). As such, whilst this paper has highlighted the
potential from the structural geology viewpoint for Early Carboniferous mineralisation within
the Northumberland Trough, the presence of suitable host lithologies at depth remains to be
tested through drilling. The presence of outcropping thin marine limestones, the thicknesses
of which seem to increase towards the west and include Lower Carboniferous sulphide-
mineralized horizons (Gallagher et al., 1977; Smith et al., 1996) is however an encouraging
starting point.

The depth to the target horizon for any potential Irish-type mineralisation within the
Northumberland Trough will probably be defined by the lowest carbonate sequences within
the syn-rift Lower Groups, adjacent to suitable feeder faults, although in Ireland the ore is not
always in the lowermost carbonate sequence (e.g. Torremans et al., 2018). Such a horizon
could lie anywhere between the Top Basement and the Top Fell Sandstone reflectors.
However, we consider that it is most likely to be present within the middle or towards the top
of the Lower Groups once the basin had subsided enough to be influenced by significant
marine input: the most prominently wedge-shaped packages with thickening towards the main
faults, marking the most active rifting period, are seen in the lower and middle parts of the
Lower Groups package (Fig. 8). As identified in this study, the most prospective feeder faults
within Northumberland are the Sweethope and Stublick faults. Around the intrabasinal
Sweethope fault, the Top Fell Sandstone is typically located at 0.2-0.6 s TWT (~400-1200 m
with 4000 m s™'), whereas adjacent to the Stublick fault the top Fell Sandstone usually exceeds

0.6 s TWT (>1200 m).

5.2. Possible link to the Permian mineralisation of the North Pennine Orefield

The cause of the Permian mineralising event is debated as, despite some evidence of
regional extension, subsidence and high heat flow at the time, there was no major foreland
basin/rifting which would be typical for most MVT ores (e.g. Collier, 1989). The Weardale
Granite, a concealed Devonian age batholith (Dunham et al., 1961), probably controlled much
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of the mineralizing fluid flow in the Alston Block on account of higher fracture density and
connectivity (Bott & Mason-Smith 1957; Kimbell et al. 2010), but the fluid and metal sources
remain enigmatic. The NPO mineralisation has been suggested to represent a fluoritic sub-
type MVT ore, the fluid sources being mixed but probably mostly originating from the adjacent
basins (e.g. Crowley et al. 1997; Cann and Banks, 2001; Baba et al., 2019; Kraemer et al.
2019). The MVT model for the NPO envisages dewatering of basin facies sediments (those
in the Northumberland and Stainmore Troughs) to generate carrier fluids. Most of the 'MVT-
style' models agree that the basinal fluids migrate laterally into the Weardale granite ‘plumbing
system’, before mixing with other fluids and travelling upwards along fractures in the granite
into the Upper Carboniferous rocks on the Alston Block, where they cool and deposit minerals
(Fig. 7; Jackson and Beales, 1967; Dunham, 1983; Brown et al., 1987; Bott and Smith, 2018).

The metal sources for the known Permian mineralisation of the NPO are unknown and
various sources from underplated mafic magmas to leaching of the Weardale granite have
been suggested. Cann and Banks (2001) use sulphur isotopes to infer the lead probably
originated from basement, but the evidence is inconclusive especially as the sulphates may
be associated with the surface brines (Bouch et al., 2006). Dempsey (2016), on the other
hand, found that at least some of the osmium in NPO pyrites originated from the mantle (i.e.
underplated mafic magma potentially underlying the Alston Block), although there was also a
significant sample group of higher osmium isotope ratios indicating other, unknown source(s).
Kraemer et al. (2019) argue against mafic rocks as a source of fluids and metals, inferring that
the REY patterns within the veins correspond better to leaching of metals from basinal shales
or the Weardale granite.

Based on the published literature, an intrabasinal metal source from an Early Carboniferous
lead-zinc base metal deposit cannot, therefore, be ruled out. There is a significant body of
evidence that most of the fluid originated from the basins adjacent to the Alston Block,
although mixing with both surface and magmatic fluids is possible (e.g. Jackson and Beales,
1967; Dunham, 1983; Cann and Banks, 2001; Bott and Smith, 2018). Whilst the fluids and the
metals do not need to originate from the same source, we hypothesise that the easiest
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explanation for the presence of the Permian mineralization is the remobilisation of older
mineralisation at depth within the basins adjacent to the NPO structural highs (Fig. 11D).
Hydrothermal fluid-assisted remobilisation of lead and zinc from galena and sphalerite is a
globally known phenomenon and has been reported from e.g. the Ramsbeck Pb-Zn deposit
in Germany (Wagner and Boyce, 2001). The basement signature of Cann and Banks (2001)
is not inconsistent with a remobilisation hypothesis as any Irish-type ores at depth are likely to
carry a basement isotope signature which can be inherited in subsequent remobilisation. The
low concentrations of lead (galena) in the sphalerite-dominated Permian NPO deposits are
consistent with the remobilisation hypothesis: e.g. Barrett and Anderson (1988) show that ZnS
is more soluble than PbS by a factor of up to 100 in NaCl brines of up to 300°C.

Our remobilisation hypothesis is also consistent with the 'circulation cell' model proposed
by e.g. Bott & Smith (2018) but refines it by suggesting that not only fluids but also most if not
all of the metals originated from remobilized ores within the Northumberland Trough and/or
other basins adjacent to the NPO. The presence of at least one Carboniferous sealing horizon
such as shale or evaporite within the Northumberland Trough would help to constrain fluid
flow. Evidence for the presence of such horizons is given by e.g. Day (1970) and Johnson
(1980) who report marine shales and evaporite layers within the Border Group in the

northwestern part of the Northumberland Trough.

6. Conclusions

We have used basin analysis through structural interpretation of seismic reflection data to
investigate the potential for syn-rift base metal deposition in the Northumberland Trough. Syn-
sedimentary faulting in the Northumberland Trough associated with active rifting occurred from
the earliest Carboniferous through to at least the late Visean, subsequently giving way to
regional subsidence and, during the Permian, to renewed faulting. ENE trending arrays of
basin-bounding and intrabasinal normal faults are studied in detail in this paper, in terms of
their geometries and timings and their associated sedimentary growth packages. The
interpreted scales and the Early Carboniferous timing of the faulting and the sedimentation in
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the study area is comparable with the fault and sedimentation system that controls lead-zinc
mineralisation in the Irish Midlands: this opens up the possibility that the Irish Pb-Zn play
extends into northern England. We suggest a refined model for the evolution of the
Northumberland Trough, similar to the Irish stratabound Pb-Zn deposits. We suggest that the
faults grew through hard linkage by breaching of relay ramps, possibly associated with flow of
mineralising fluids from the basement, and identify potential locations for such mineralisation.
The presence of suitable host Early Carboniferous host lithologies and stratabound base metal
mineralisation at depth remains to be tested by drilling. If present, it could offer the simplest
explanation for the presence of the known Permian mineralised veins in the North Pennines
Orefield (NPO): through (partial) remobilisation of Early Carboniferous base metal ores within
the adjacent basin(s).

Our study demonstrates that basin analysis using seismic reflection interpretation is a
powerful tool in basin ore exploration. It allows a much more detailed insight into the timing,
geometry and extent of faulting along with the extent of and thickness variations within the
syn-rift sedimentary packages than is possible through surface observations and sampling
alone. Crucially, it also allows identification of zones of structural complexity such as
(breached) relay ramps which commonly function as channels for mineralising basement
fluids. Establishing the relationships of these fundamental mineralisation-controlling features
is a crucial step in a basin ore play analysis. As shown in this paper, a detailed consideration
of the timing, geometry and linkage of the faulting with respect to the sedimentation allows
both assessing the general potential of base metal mineralisation and a more precise

identification of potentially suitable areas for further investigation.
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Figure captions

Fig. 1. Schemaitic illustrations of the relationships between sediment deposition and faulting,

and of the seismic interpretation method and main outputs. Critically, if the age of the syn-
rift sediments is known, the timing of the faulting can be established. A) Configuration of
the basement and overlying sediments before faulting; B) During active faulting, the
sediments will be preferentially deposit into the wedge-shaped accommodation space in
the hanging-wall created by the faulting. This wedge geometry with thickening of the
sedimentary package towards the active fault is very typical and diagnostic of syn-rift
sediments; C) After the fault activity ceases, post-fault sediment deposition will blanket the
area with relatively little thickness variation, although some thickening can occur in areas
where the basin was not completely filled during active faulting; D) Typical 2D seismic
interpretation approach to basin analysis. A grid of seismic reflection profiles is interpreted
for structures (e.g. faults) and depths of formation boundaries. Any borehole (well) data or
exposure at outcrop will greatly help in constraining the boundaries at depth. The
interpretations in the 2D grid are then interpolated to '3D' (2.5D) interpretations, i.e.
structural (depth/isochron) and thickness maps which can be used for further interpretation
of the basin evolution. A thickness map for an interval of interest is constructed by
subtracting the thicknesses of the overlying packages (X) from the thickness of the entire
succession (X+Y) along the entire length of the interpreted lines; e.g. (X+Y)-X in the location
shown along Line 1 in this figure.

Fig. 2. Generalized regional map showing the main Caledonian to Carboniferous tectonic

elements of Ireland and Northern England-Southern Scotland, along with three mined Irish-
type deposits in Ireland. Carboniferous normal faults: SF, Stublick fault; NFF, Ninety-
Fathom Fault; SCF, South Craven Fault; MCF, Mid-Craven Fault; PF, Pendle Fault; NF,
Navan Fault; SMF, Silvermines Fault. Irish-type Pb-Zn deposits: N, Navan deposit; T,
Tynagh deposit; S, Silvermines and Lisheen deposits. Modified from Jones et al. (1994)
and Treagus (1992). Inset: Map of the main sub-surface Carboniferous tectonic elements
in the Northern Pennines Orefield and Solway-Northumberland Basin areas as interpreted
by Chadwick et al. (1995). The area of our study shown in Fig. 3. is indicated with a

rectangle.

Fig. 3. Generalized map of the surface geology of the Alston block and southern

Northumberland Trough, including known occurrences of Permian vein-style Pb-Zn
mineralisation. Modified from Stone et al. (2010) and Kimbell et al. (2010).
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Fig. 4. Generalized geological map of the study area with the seismic reflection profiles. The
type sections in Figures 7A and 7B are indicated with the stippled red lines.

Fig. 5. Generalized stratigraphic column for the Northumberland Trough and Alston Block.

Fig 6. Schematic illustration for the formation of Irish-type Pb-Zn deposits. They form in
shallow marine carbonate shelves by stratabound replacement into calcareous host rocks.
Mixing of sulphur-rich seawater/brines and metal-bearing hot basement fluids is typically
postulated (e.g. Ashton et al. 2015).

Fig 7. Schematic model for the fluid system within the NPO (modified from Bott and Smith,
2018). According to the model, the highly fractured and permeable Weardale granite hosted
a convection cell which drew in saline fluids from adjacent deep Carboniferous troughs.
The model postulates that the heat to drive the convection cells may have originated from
underplated magmas, although others have suggested that the high heat flow and fractured
nature of the granite will be enough to drive the cell (e.g. Brown et al., 1987). The pictured
Bott and Smith (2018) model suggests that the metals were derived from the mafic
magmas; other models for metal source suggest leaching from basin sediments and/or the
Weardale granite itself (e.g. Crowley et al. 1997). See section 5.2 for full discussion.

Fig 8. Interpreted seismic type sections, showing the general sequence architecture and main
faults using higher quality lines. The line locations are highlighted in Fig. 4. Formation
boundaries are shown by coloured solid lines; dashed red lines within the Lower Groups
are delineating possible pre- and post-rift packages; also additional, arbitrary horizons are
shown to demonstrate the within-sequence wedge geometry of this package, typical for
syn-faulting growth packages (i.e. thinning towards the north and the east, especially in the
middle and lower parts of the Lower Groups). (a) Seismic line TOC86-V102 which runs
approximately north-south. (b) Seismic line TOC87-V112 which runs roughly west-east.
This figure also shows an example of how mis-ties were mitigated: the basement in (a)
appears higher than in (b) so that the horizons in (a) had to be manually adjusted
downwards; note that manually lowering the horizon in (a) matched the outcropping

formation boundaries.

Fig 9. 3D isochron maps of the interpreted formation boundaries (i.e. seismic surface structure
maps), interpolated from the 2D seismic line interpretations (in TWT: 1 s equals
approximately 1.5-2 km depending on the lithology). Major normal faults (tick-marks on
hanging-wall) are numbered with corresponding names at the base of the figures. Grey
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lines show locations of the interpreted seismic profiles with the type sections in Fig. 8
highlighted in red. (a) Top Basement; note especially the areas of maximum TWT depth
along the Stublick Fault (dark blue) indicating the areas of maximum throw of each original
fault segment, now linked by breached relay ramps (red circles); (b) Top Fell Sandstone
Formation (i.e. Top Lower Groups); (¢) Top Tyne Limestone Formation; (d) Top Alston
Formation. Some areas have not been included in the maps because of the poor quality of

the seismic, especially in the western part of the study area.

Fig 10. Thickness maps of the interpreted formation intervals, interpolated from the 2D seismic
line interpretations (in TWT: 1 s equals approximately 1.5-2 km depending on the lithology).
Fault polygons show the fault loss areas for each package. (a) Lower Groups; (b) Tyne
Limestone Formation; (c¢) Alston Formation. Note especially the thickening of the Lower

Groups in (a) towards the west and south.

Fig 11. Schematic evolution model of the Northumberland Trough, including the timing and
the most likely location of the possible Early Carboniferous fault-related mineralisation at
depth; also shown is the suggestion of how the Permian vein-style mineralisation in the area
may be explained by (partial) remobilisation of this earlier mineralisation phase. The majority
of the interpreted faults are omitted for clarity. SF, Stublick Fault; NFF, Ninety-Fathom Fault;
ShF, Sweethope Fault; AF, Antonstown Fault. (a) Rifting initiates during the Courceyan, with
the structural high of the Alston Block forming in the south. (b) The main rifting continues into
the Chadian, with the syn-rift deposition of up to =2 km thick package of carbonate and
siliciclastic sediments. Stratabound base metal mineralisation within calcareous horizons may
form during this stage, similar to Irish Midlands, once sufficient strata have been deposited
(note that the possible mineralisation is not presented to real scale for illustration purposes).
Any lrish-type Pb-Zn mineralisation is likely to be confined to the vicinity of the Stublick Fault
in the southwestern part of the trough which represents deeper parts of the basin and may
contain more (shallow) marine sediments as most sub-aerial, siliciclastic material was sourced
from the north and the east. (¢) Fault activity wanes from mid-Visean onwards (thermal
subsidence), with the deposition of post-rift sediments of the Yordale Group and younger. (d)
During the Permian, renewed minor extensional/transtensional faulting and increased heat
flow trigger circulation of high-salinity, hot hydrothermal fluids within the trough. These may
partially leach and re-mobilize the Carboniferous Pb-Zn mineralisation at depth. A
Carboniferous seal (e.g. shale, evaporites) directs the bulk of the fluids towards and into the
Stublick Fault and the highly fractured Weardale Granite. Upwards percolation of these fluids
leads to near-surface deposition of veins within the Alston Block and southern Northumberland
Trough.
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A) BEFORE FAULTING

Pre-rift sediments deposited onto basement - no significant thickness changes

Basement

B) DURING FAULTING

Syn-rift sediments deposited onto the hanging-wall - thickness of the package Thinner syn-rift or non-deposition onto

increases towards the fault \ footwall

Basement

Basement

C) AFTER FAULTING
Post-rift sediments deposited across the area - minor thickness changes may exist if rift basin not completely filled during rifting

Post-rift

Basement

Basement

D) METHOD

A grid of 2D seismic lines is interpreted for faults and pre-, syn-, and post-rict packages (only basement and
syn-rift shown below). Any borehole (well) information will constrain the depths of formation boundaries.

Line 1 Line 2 Ling 3
- Borehole 2
Line 4 orehole 1
I ~
A X

S % d
Fault displacement decreases
/ towards this seismic line

MAP VIEW: interpreted 3D thickness map for the syn-rift package

The 2D interpretations can then be
interpolated to '3D' (2.5D) interpretations of
e.g. the sedimentary package thicknesses e
(right) or basement/formation Line 4
top topography/structures, in order to further
investigate the spatial distribution of the
structures and the syn-faulting sedimentary
packages.

Line 2 Line 3

Thickness
0

Borehole 2.

loss area
Fault Gt

Fault displacement ingreases to the left -->
thicker syn-rift packages
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A

B) COURCEYAN-CHADIAN

Late-Devonian - Early Courceyan

Non-depositiQn

COURCEYAN
-early rifting

C)

pre-rift deposits —
(Lower Inverclyde Group) P
70,
\ to./vomw

Non-deposition
-main rifting

Syn-rift thins to east and north

Possible Irish-type mineralisation

in deeper syn-rift carbonates; fluid entry points
probably in areas of breached relay ramps
(fluid mixing; both basement and seawater)

MID-VISEAN TO END-CARBONIFEROUS
-regional waning subsidence with some faulting

Variscan
inversion

Border Group

EARLY PERMIAN
-renewed regional subsidence and

" Deposition of remobilised
increased heat flow - —— 7ot

Zn(-Pb) into veins below seal
~‘- sto ~ =

Input of high-T magmatic
fluids from Early Permian
mafic intrusions at depth?

Partial remobilisation of
Zn(-Pb) by saline basinal
fluids

Carboniferous sea

direct fluid flow
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Table 1. Comparison of the known Pb-Zn mineralization in the Irish Midlands and the NPO

Irish Midlands

NPO

Host lithologies

Host rock age

Mineralisation
style

Mineralisation
age

Tectonic setting

Geodynamic
setting

Shallow water limestones and reef
formations

Mainly Courceyan

Sphalerite and galena; replacement
of carbonate host rocks at or near
palaeo-seafloor (?)

Courceyan-Arundian

Within or on margins of basin, along
major syndepositional faults

Early stages of basin formation

Limestone, sandstone, dolerite (Whin
Sill)

Dinantian and Namurian

Sphalerite and galena; veining in
fractured host rocks, localised
replacement of carbonates adjacent
to veins

Early Permian (?)

Along fractures with small
displacement on structurally elevated
block

Associated with Variscan tectonics (?)
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Table 2. Comparison of mineralising feeder faults in Ireland and potential feeder faults in

Northumberland

Northumberland Strike Max throw at Top Fell Age

Faults Sst (TWT)*

Stublickt E-W 0.8s (1800 m) Lower Carboniferous

Sweethope ENE-WSW 0.2s (450 m) Lower Carboniferous

Causey Park ENE-WSW 0.05s (112.5m) Unclear

Hallington Reservoir E-W 0.06s (135 m) Unclear

Stobswood (N-dip) NE-SW 0.05s (112.5m) Unclear

Irish Deposits § Strike Max throw on feeder  Age

faults

Navan ENE within regional 500+ m** Chadian - Arundian
NE-SW trend

Lisheen E - ENE within NE-SW 200 m Late Courceyan - early
regional trend Chadian

Silvermines E-W within NE-SW 335m Late Courceyan
regional trend

Tynagh E within NE-SW 600 m Late Courceyan - early

regional trend

Chadian

*Converted to meters using Vp = 4500 m s from Kimbell et al. (1989)

**Navan Fault with the newly discovered Tara Deep satellite deposit in its footwall up to 1 s

TWT throw, i.e. >1.5-2km (Ashton et al., 2018)

tMax throw given at the Top Basement reflector; throw at the Top Fell Sandstone reflector is

likely significantly lower

T Data compiled from Taylor (1984), Shearley et al. (1995), Hitzman (1999), Ashton et al.

(2015)



