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Abstract

We extend various recent results regarding the derivation of effective cosmo-

logical Friedmann equations from the dynamics of group ield theory (GFT).

Restricting ourselves to a single GFT ield mode (or ixed values of Peter–Weyl

representation labels), we irst consider dynamics given by a quadratic Hamilto-

nian, which takes the form of a squeezing operator, and then add a quartic inter-

action that can be seen as a toymodel for interactions in full GFT.Our derivation

of effective Friedmann equations does not require a mean-ield approximation;

we mostly follow a general approach in which these equations in fact hold for

any state. The resulting cosmological equations exhibit corrections to classical

Friedmann dynamics similar to those of loop quantum cosmology, leading to

generic singularity resolution, but also involve further state-dependent terms.

We then specify these equations to various types of coherent states, such as

Fock coherent states or Perelomov–Gilmore states based on the su(1, 1) struc-
ture of harmonic quantum cosmology. We compute relative uncertainties of

volume and energy in these states, clarifying whether they can be interpreted

as semiclassical. In the interacting case, both analytical and numerical approxi-

mations are used to obtain modiied cosmological dynamics. Our results clarify

how effective cosmological equations derived from GFT can provide reliable

approximations to the full dynamics.
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1. Introduction

Spacetime singularities are among the most spectacular predictions of classical general rela-

tivity. In the context of cosmology, the presence of an initial singularity signals a fundamental

incompleteness in our understanding of the Universe, whose origin and beginning can not be

explained within a classical or semiclassical treatment. The singularity theorems of general

relativity require energy conditions which may be violated in the early Universe if inlation

was present, but one can nevertheless show that inlationary spacetimes are past incomplete

[1].4 It is widely expected that a quantum theory of gravity is required to resolve the classical

Big Bang singularity and give a fundamental basis to theoretical cosmology; a full quantum

treatment of spacetime may indeed be needed to justify the assumption that the early Universe

can be studied in terms of quantum ields on a classical background [3, 4].

On the other hand, the spacetime geometry of the early Universe was presumably very

simple, describable in terms of a homogeneous isotropic background with only small pertur-

bations. This simplicity must ultimately be explainedmore fundamentally, but it also results in

signiicant practical simpliications: at least as a irst step, one can study simple homogeneous,

isotropic spacetimes in quantum gravity to learn about singularity resolution. One could hope

that, as in the classical theory, this does not require understanding the nonlinear and presum-

ably complicated dynamics of full quantum gravity. This philosophy, systematically applied

to loop quantum gravity (LQG) as a candidate theory of quantum gravity, gave birth to the

ield of loop quantum cosmology (LQC) where, for models of quantum gravity coupled to a

massless scalar ield, the classical Big Bang singularity is indeed resolved and replaced by

a ‘big bounce’ [5, 6]. More recently LQC has made direct contact with inlation, providing a

quantum-gravitational extension of the usual semiclassical framework [7]. The precise relation

between LQG and LQC has been the focus of much work in recent years [8–10].

The origin of singularity resolution in LQC is the fundamental discreteness of the theory,

manifest in discrete spectra for areas and volumes with a gap away from zero [11, 12]. This

key feature of the LQG kinematics is shared by its reformulation in terms of group ield theory

(GFT) [13]. GFT interprets the quanta of spacetime seen in LQG as excitations of a quan-

tum ield (also then a quantum ield of , not on spacetime), while the dynamics of a GFT are

generally deined such that its perturbative expansion corresponds to a sum over spin foams,
or discrete spacetime histories of LQG states [14]. The continuum limit of this sum, needed

to obtain continuum quantum geometry, is to be taken in a way similar to matrix and tensor

models [15]. Given the very close relation of GFT to LQG, it is natural to ask whether cos-

mological models of GFT dynamics can resolve the classical Big Bang singularity in a way

similar to what is seen in LQC.

The key idea that led to the derivation of cosmologicalmodels in the GFT approachwas that

a spatially homogeneous quantum geometry could be understood as a type of Bose–Einstein

condensate in GFT [16–19]. As in other quantum ield theories, such a condensate can be

understood as a nonperturbative vacuum of the theory, characterised by a common quan-

tum state for a very large number of quanta with respect to the original Fock vacuum. The

idea that spacetime could be a kind of Bose–Einstein condensate of geometric quanta had

been formulated in other approaches before [20, 21], but the quantum ield theory frame-

work of GFT allows studying such a condensate with relatively conventionalmethods, adapted

to a background-independent quantum gravity context. In the simplest (mean-ield) approx-

imation, the equation of motion of the condensate mean ield is the analogue of the usual

4 See e.g. [2] for an analysis of conditions under which continuous or differentiable extensions of the spacetime metric

beyond the past incomplete region may exist for such inlationary spacetimes.
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Gross–Pitaevskii equation in condensed matter physics. From a solution to this equation of

motion, one can compute geometric observables such as the total volume of the condensate.

Dynamics are introduced, just as in LQC and many other models of quantum cosmology [22],

by coupling a relational matter clock, given by a free massless scalar ield. Concretely, one

extracts equations for the relational volume observable V(φ), the three-dimensional volume of

a condensate given a particular value of the relational clock ield, and its derivatives. These are

then interpreted as effective Friedmann equations derived from the GFT condensate dynamics.

These steps were irst fully implemented in [23, 24] where it was shown how such effective

Friedmann equations, for a wide class of GFT models and under various simplifying assump-

tions, are consistent with the classical Friedmann equations at large volume while showing a

bouncing behaviour at high densities very similar to the one in LQC. In particular, these effec-

tive Friedmann equations can reproduce the preferred ‘improved dynamics’ form of LQC [25]

whose derivation from Hamiltonian formulations of LQG is a largely outstanding challenge

[10].

These very promising results for effective cosmological dynamics from GFT relied on

assuming the emergence of a condensate regime in which themean-ield approximation is valid

and GFT interactions are subdominant with respect to the quadratic (kinetic) term. Including

interactions leads to interesting modiications to effective cosmological equations, which can

serve as a starting point for GFT phenomenology [26, 27]. To better understand the depen-

dence of GFT cosmology on a mean-ield approximation, a simple toy model was then studied

in [28]. In this model, only a single mode of a GFT ield is excited and a squeezingHamiltonian

generates evolution in relational matter time φ, so that a squeezed state emerges dynamically

even from the Fock vacuum without assuming a mean-ield regime. The general features of

a bounce at high densities and agreement with classical cosmology at large volume could be

reproduced in this simpler setting. The choice of Hamiltonian was rather ad-hoc, motivated by

agreement with classical cosmology and the properties of squeezed states. It was then shown in

[29] that a Legendre transformation of the free GFT action, taking again the matter clock φ to

deine time, leads essentially to a squeezing Hamiltonian, the latter representing the dynamics

of an ‘upside-down’ harmonic oscillator with negative quadratic potential. The results of [29]

hence explained the agreement between the effective cosmological dynamics of a squeezing

Hamiltonian and those of previous results for GFT condensates. A different argument explain-

ing the close connection of GFT cosmology to LQC was given in [30] where it was argued that

the canonical LQC framework and the ield-theoretic (bosonic) GFT cosmology can be seen

as different realisations of the same su(1, 1) algebra.
The aim of this paper is to extend many of these recent results to further clarify the connec-

tion between fundamental GFT dynamics and effective cosmological equations. Rather than

using mean-ield approximations, we derive general dynamical equations for operators and

therefore expectation values of these operators; we work similarly to the ‘toy model’ analysis

of [28] but consider a more general form of the GFT dynamics. In particular, we will go beyond

quadratic Hamiltonians and add simple interactions, allowing us to connect to results such as

those of [26] for GFT interactions which were obtained in a mean-ield approximation.We will

also extend the algebraic viewpoint of [30] to the case of an interacting Hamiltonian. An issue

in the derivation of effective dynamical equations that we will encounter is that, in the gen-

eral case, these equations involve additional expectation values or higher moments that are not

directly identiiable with the variables of a classical Friedmann–Lemaître–Robertson–Walker

(FLRW) cosmology (which is fully characterised by the scale factor or volume and the energy

density in the massless scalar ield). In other words, dynamical equations for quantum expecta-

tion values require knowledge of additional initial conditions compared to a classical cosmol-

ogy. This is of course the usual situation for effective equations for quantum systems. (See e.g.

3
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[31] for a systematic discussion.) Choosing a speciic class of initial conditions, for instance

by focussing on a class of coherent states, then simpliies these equations. We will illustrate

this trade-off between obtaining effective equations that are as general as possible but include

a dependence on additional variables, and more speciic equations in which a particular choice

of state (or family of states) allows deriving equations with more direct (semiclassical) phys-

ical interpretation. As concrete examples, we will discuss Fock coherent states which have

been studied in most of the existing literature on GFT cosmology, but also coherent states

based on the su(1, 1) algebra satisied by basic GFT operators (in particular the well-known

Perelomov–Gilmore (PG) coherent states).

We show a key property of simple Fock coherent states, which is that relative uncertainties

of quantities like volume and energy can be made arbitrarily small at late times, so that these

states are as semiclassical as desired. This gives further justiication to their interpretation as

semiclassical macroscopic geometries [16]. Perelomov–Gilmore states that can be thought of

as elements of a GFT-like Fock space do not admit such a semiclassical interpretation and are

therefore disfavoured for GFT cosmology.

2. Group field theory cosmology

In this section we summarise previous work on the derivation of effective cosmological

equations from group ield theory, in particular the previous papers we are building on in this

work. For more details and background we point to [16–19].

2.1. The group field theory approach to quantum gravity

Group ield theories (GFTs) are a nonperturbative approach to quantum gravity, aiming to

extend the successes of matrix and tensor models to a theory of quantum geometry in higher

(in particular four) dimensions by incorporating the kinematical and dynamical structure of

loop quantum gravity and spin foams [13, 15, 32–34].

Concretely, rather than being based on a matrix or tensor with a number of discrete indices

of inite range, a GFT is deined in terms of a ield ϕ depending on a number of continu-

ous variables taking values in a Lie group. In this sense, the purely combinatorial structure

of matrix models is enriched by additional group-valued degrees of freedom, interpreted as

parallel transports akin to the fundamental variables in lattice gauge theory. Nevertheless, the

main ideas are similar; a GFT perturbative expansion should generate a sum over quantum

geometries and admit a consistent continuum limit.

The prototype for GFT as an approach to quantum gravity is the Boulatov model in three

dimensions [35]. One deines a real ield

ϕ :G3 → R, ϕ(g1, g2, g3) = ϕ(g2, g3, g1) = ϕ(g3, g1, g2) (2.1)

with an action

S[ϕ] =
1

2

∫

d3gϕ(g1, g2, g3)ϕ(g1, g2, g3)

− λ

4!

∫

d6gϕ(g1, g2, g3)ϕ(g1, g4, g5)ϕ(g2, g5, g6)ϕ(g3, g6, g4), (2.2)

where G is a Lie group and dg is the Haar measure on G. Notice the ‘nonlocal’ combinatorial

pairing of ield arguments in the interaction term which is the generalisation of trace invariants

such as trMn in the case of a matrix model. One can then show that, for G = SU(2), the GFT
partition function admits a perturbative expansion of the form

4
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∫

Dϕ e−S[ϕ] =
∑

C

λNT (C)
∑

{ jl}∈Irrep

∏

l∈C
(2 jl + 1)

∑

T∈C

{

jT1 jT2 jT3
jT4 jT5 jT6

}

(2.3)

where the irst sum is over all oriented three-dimensional simplicial complexes C, NT(C) is
the number of tetrahedra in C, jl is an irreducible representation of SU(2) assigned to each

link l ∈ C, and {·} is the Wigner 6j-symbol associated to a tetrahedron T ∈ C (involving its

six links). Up to the factor λNT (C), each complex C appearing in (2.3) is weighted by its Pon-
zano–Regge state sum [36], a possible deinition of discrete three-dimensional quantumgravity

(see e.g. [37]). In this sense, the perturbative expansion of the Boulatov model generates all

possible triangulations (including all topologies) each weighted by a partition function for

quantum gravity on this triangulation. This expansion is highly divergent without further reg-

ularisation [37]. The GFT programme aims to extend (2.3) to more complicated models, in

particular candidates for quantum gravity in four dimensions, where the Ponzano–Regge state

sum is replaced by a general spin foam amplitude [11]: the amplitudes of the Barrett–Crane

model [38] can be obtained as Feynman amplitudes of a GFT deined on the three-sphere

S3 = SO(4)/SO(3) [39] and this extends to a one-to-one correspondence between general spin
foam amplitudes and their realisations as the perturbative expansion of a GFT [14]. This cor-

respondence extends from spin foam models for Euclidean quantum gravity to models with

Lorentzian signature such as [40] which can be deined through a GFT on a noncompact group

such as SO(3, 1) (see e.g. [41]). In this sense one could say that a GFT deines a completion

of the spin foam programme in that it not only generates spin foam amplitudes for quantum

gravity on a given discretisation, but also the weights in a sum over discretisations.

2.2. Cosmology from group field theory

For general GFT models for quantum gravity, it is dificult to make sense of a perturbative

expansion of the form (2.3). The number of terms quickly grows out of control as the num-

ber of building blocks is increased and there is no obvious physical meaning to truncating

such an expansion to the irst few terms, i.e. to discretisations with very few building blocks.

Equation (2.3) is really an expansion around a ‘no-space’ vacuum in which no geometry is

present at all.

However, there is more to quantum ield theory than a perturbative expansion around van-

ishing ield value: interacting ield theories often exhibit phase transitions to a condensate
characterised by a nonvanishing ield expectation value. With respect to the original Fock

vacuum in which the ield vanishes, a condensate has a very large number of quanta all charac-

terised by a single quantum state (the ‘condensate wavefunction’). This is a quantum state of

high symmetry and quantum coherence. The key idea of GFT condensates is that such a con-
iguration in GFT is a candidate for a macroscopic, nearly homogeneous Universe, and hence

a starting point for effective cosmology. We refer the reader to [16] for details and arguments

for this geometric interpretation.

We generally deine a GFT ield for a four-dimensional quantum gravity model coupled to

scalar matter by

ϕ :G4 × R→K, ϕ(g1, . . . , g4,φ) = ϕ(g1h, . . . , g4h,φ) ∀h ∈ G. (2.4)

where G is the gauge group of gravity (often assumed to be SU(2)) and K is either the real or

complex numbers. The action takes the general form

S =

∫

d4g dφ ϕ̄(gI,φ)Kϕ(gI ,φ)+ V[ϕ] (2.5)

where for a real ield ϕ̄ = ϕ (and, to obtain the usual normalisation of a kinetic term, one has to

also rescale the ield),K is a kinetic operator which in general contains derivativeswith respect

5
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to all arguments, and all terms that are higher order than quadratic are part of V[ϕ]. In general,
V[ϕ] is also nonlocal in a way similar to the Boulatov GFT deined above. In its Feynman

expansion, such a ield theory will generate graphs whose edges are labelled by gI (interpreted
as parallel transports of a G-connection) and whose vertices are labelled by φ interpreted as

the values of a matter scalar ield.

If we denote the expectation value of the ield operator by

〈ϕ̂(gI,φ)〉 = σ(gI,φ), (2.6)

a condensate phase is then characterised by a nonvanishing σ(gI,φ).
The mean-ield approximation which is used in most work on GFT cosmology so far

requires that the mean ield σ(gI,φ), for a GFT with complex ield, satisies the classical GFT

equation of motion

Kσ(gI ,φ)+
δV[σ]

δσ̄(gI,φ)
= 0, (2.7)

the analogue of the Gross–Pitaevskii equation for the condensate wavefunction in condensed

matter physics. From a solution σ(gI,φ) to the equation of motion, one can then extract an

observable corresponding to the total condensate volume as a function of the matter ield

‘clock’,

〈

V̂(φ)
〉

≡
∫

d4g d4g′ V(gI , g
′
I)σ̄(gI,φ)σ(g

′
I ,φ), (2.8)

where V(gI, g′I) are matrix elements of the GFT volume operator between ‘single-particle’

states |gI〉 and
∣

∣g′I
〉

; such an operator can be deined from the action of a volume operator in

LQG on open spin networks with a single vertex and four links. Dynamical equations satisied

by
〈

V̂(φ)
〉

and its derivatives with respect to φ are then interpreted as effective cosmological

(Friedmann) equations for the three-volume of (a patch of) the Universe, derived directly from

a prescription for the microscopic dynamics of a GFT.

Themost concrete derivation of this type, formodels of quantumgravity coupled tomassless

scalar matter, was given in [23]. First the nonlinear, nonlocal equation of motion (2.7) was

simpliied by making an ‘isotropic’ ansatz

σ(gI ,φ) =
∑

j∈Irrep
σ j(φ)D

j(gI), (2.9)

where the GFT gauge group is taken to be SU(2) and D
j(gI) is a ixed convolution of four

WignerD-matrices for the irreducible representation j, encoding the ‘shape’ of the GFT build-

ing blocks. (Dj(gI) requires a choice of intertwiner j⊗ j⊗ j⊗ j→ 0; in [23] this is taken to be

the intertwiner with maximum eigenvalue for the volume, see (2.11).)

Assuming a quintic potential as is done for many spin foam models related to LQG, this

reduces (2.7) to a decoupled form

A j∂
2
φσ j(φ)− B jσ j(φ)+ w jσ̄ j(φ)

4
= 0, (2.10)

where Aj, Bj and wj are determined by the couplings in the GFT action. Since the volume

operator is diagonalwhenwritten in terms of SU(2) representations, the volume of a condensate

in such a state is given by

〈

V̂(φ)
〉

=
∑

j∈Irrep
V j |σ j(φ)|2 (2.11)

6
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where Vj is the volume eigenvalue assigned to the spin j (which in general depends on the

intertwiner used to deine D
j(gI)). In a regime in which interactions can be neglected, and

assuming that the ratios Bj/Aj take a positive maximum for some j = j0, it is easy to see that

for almost any solution to (2.10)5 the volume V(φ) ≡
〈

V̂(φ)
〉

satisies

V(φ)
φ→−∞∼ c1 exp

(

−2

√

B j0

A j0

φ

)

, V(φ)
φ→+∞∼ c2 exp

(

2

√

B j0

A j0

φ

)

(2.12)

for some constants c1 and c2 [42]. Moreover, V(φ) can only ever reach zero for very special

initial conditions (although this case becomes generic if the GFT ield is taken to be real-valued

[27]). With the identiication
B j0
A j0

= :3πG, this corresponds to a bounce solution interpolating

between the expanding and contracting solutions to the classical Friedmann equations for a

lat FLRW Universe illed with a massless scalar ield, V(φ) = V0 exp(±
√
12πGφ). Similar

conclusions apply if one considers condensates only formed by a single j component, again

denoted by j0. In the latter case, one can show that the volume satisies an effective Friedmann

equation [23]

(

V ′(φ)

V(φ)

)2

= 12πG

(

1− ρ(φ)

ρc

)

+
4V j0E

V(φ)
(2.13)

where ρ = π2
φ/(2V

2), withπφ the conservedmomentumconjugate toφ, is the energy density of
themassless scalar ield, and ρc is amaximal (critical) energy density similar to the one found in

LQC [5, 6] (and we have again set
B j0
A j0

=: 3πG). The last term, involving a conserved quantity

E (‘GFT energy’), represents a slight modiication with respect to the usual LQC effective

dynamics. Again, clearly at large volumes or late times such effective dynamics reduce to the

classical Friedmann equation (V′/V)2 = 12πG.
In this article, we strengthen the foundations of these past results. We aim to obtain effective

cosmological dynamics from GFT without several assumptions that were necessary to obtain

(2.13), namely: the validity of a mean-ield regime in which one solves equations for the mean

ield; restriction of the effective equations to simple expectation values such as
〈

V̂(φ)
〉

without

taking into account luctuations around these expectation values; neglecting GFT interactions

by effectively setting wj = 0.6 Indirectly, the results outlined so far also assumed a given Fock

space structure used to deine a GFT volume operator, which has not been derived from the

canonical analysis of a GFT action.

2.3. Toy model for group field cosmology, and a Hamiltonian for GFT

A irst step towards deriving effective cosmological dynamics from GFT outside of a mean-

ield regime was taken in [28]. One motivation for this work was to develop a toy model in

which some of the successes of GFT cosmology could be obtained in a simpler setting, but

there was also a new technical assumption: the massless scalar ield φ was proposed as a (rela-

tional) time variable, with a Hamiltonian generating evolution with respect to this clock. That

is, the idea was to deine a deparametrised setting in which some degrees of freedom serve as

5The only cases for which V(φ) does not have the given asymptotics are solutions for which one only uses the

exponentially growing or the exponentially decaying solution to (2.10) for j = j0.
6The work of [26] included GFT interactions into the analysis, leading to additional terms on the right-hand side of

(2.13), while working in a mean-ield regime.

7
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coordinates parametrising the remaining ones, a strategy widely employed in canonical quan-

tum gravity [43, 44].7 This approach was different from previous work on GFT cosmology in

which the fundamental GFT formalism treated all arguments of the ield on the same footing.

The Hamiltonian itself was chosen so as to reproduce the correct cosmological dynamics at

large volume.

Classical FLRW cosmology can be deined by a volume variable V(φ) and conjugate

momentum pV(φ) subject to a Hamiltonian

H =
√
12πGVpV , (2.14)

generating a dilatation as its time evolution, i.e. the exponential solutions inφmentioned above.

In [28] it was then observed that, for a Fock space generated by annihilation operators Â
i
and

creation operators Â†
j (here i, j run from 1 to 5) with algebra

[

Âi, Â†
j

]

= δij, (2.15)

a discrete analogue of the dilatation operator is given by a squeezing Hamiltonian

Ĥ =
i

2
λ
(

Â†
i Â

†
jǫ
i j − ÂiÂ jǫi j

)

, (2.16)

where ǫij is an appropriate symmetric tensor. Indeed, for a volume operator taken to be the

multiple of the number operator

V̂ = v0N̂ := v0Â
†
i Â

i (2.17)

one can show that, for suitable states characterised by the eigenvalues of V̂ , Ĥ acts as

(ĤΨ)(V)
v0→0→ − iλ

(

V
∂

∂V
+

∂

∂V
V

)

Ψ(V). (2.18)

Thus, with the identiication λ :=
√
3πG the continuum limit of squeezing (2.16) is compatible

with the classical dilatation Hamiltonian (2.14). The picture of a Fock space of ‘quanta of

geometry’ in which each quantum carries a given volume mimics the Fock space structure of

GFT, with the simpliication that here each quantum comeswith a ixed v0 rather than a general
state-dependent volume as in (2.8).

Given that the Hamiltonian is quadratic, expressions for the time evolution of observables

of interest can be computed analytically. One inds that

〈

N̂(φ)
〉

= −5

2
+

(

N0 +
5

2

)

cosh(2λφ)+ Q sinh(2λφ) (2.19)

with

N0 :=
〈

N̂
〉∣

∣

φ=0
, Q :=

1

2

(

ǫi j
〈

Â†
i Â

†
j

〉

+ ǫi j

〈

ÂiÂ j
〉)∣

∣

∣

φ=0
(2.20)

(computed equivalently in the Schrödinger or Heisenberg picture). At late or early times φ→
±∞ (and with λ :=

√
3πG), the expectation value V(φ) ≡

〈

V̂(φ)
〉

then again reproduces the

7This strategy can be extended to a GFT coupled to four massless scalar ields serving as relational coordinates for

both time and space [45].
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classical solutionV(φ) = V0 exp(±
√
12πGφ).Moreover, one can show that only special initial

conditions (such as choosing the Fock vacuum as initial state) lead to a solution that ever

encounters a singularity where V(φ0) = 0 for some φ0. Generic solutions avoid the classical

singularity and describe a bounce connecting the classical expanding and contracting branches.

The quantity Q cannot be directly interpreted in terms of the volume or energy density

of the corresponding classical cosmology; its presence leads to an asymmetry in the solution

(2.19). For simplicity, the further analysis of [28] only considered the case Q = 0, for which

one obtains the effective Friedmann equation

(

V ′(φ)

V(φ)

)2

= 4λ2

(

1+
5v0
V(φ)

− N0(N0 + 5)v20
V(φ)2

)

. (2.21)

The similarity to the effective Friedmann equation (2.13) of GFT in the mean-ield setting

is apparent. In this sense, the toy model based on a squeezing Hamiltonian (2.16) already

reproduced several previous results in GFT cosmology.

One reason for this close connection was uncovered in [29, 46] where, taking again a

deparametrised viewpoint, a Hamiltonian formalism was derived from a Legendre transfor-

mation of the full (free) GFT action in which the ‘matter’ argument φ of the GFT ield is taken

as a time coordinate. The starting point is an action for real GFT ields of the form

S =
1

2

∫

dφ
∑

�j,�m,ι

ϕ�j,ι
−�m(φ)

[

K(0)
�j,�m,ι +K(2)

�j,�m,ι∂
2
φ

]

ϕ�j,ι
�m (φ)+ V[ϕ], (2.22)

where the ield ϕ(gI,φ) has been decomposed into Peter–Weyl modes according to

ϕ(gI ,φ) =
∑

jI∈Irrep

jI
∑

mI ,nI=− jI

∑

ι

ϕ�j,ι
�m (φ)I�j,ι

�n

4
∏

I=1

√

2 jI + 1D jI
mInI

(gI) (2.23)

and ι labels a basis of intertwiners I for the representation labels {jI} (and the sum over (�j, �m, ι)
in (2.22) is a shorthand for the sums appearing in this decomposition). For a real ield, these

Peter–Weyl coeficients satisfy the reality condition

ϕ
−→j ,ι
−→m (φ) = (−1)

∑

I
( jI−mI )

ϕ�j,ι
−�m(φ). (2.24)

The Hamiltonian can then be written as

H = −1

2

∑

�j,�m,ι

[

π�j,ι
�m π�j,ι

−�m

K(2)
�j,�m,ι

+K(0)
�j,�m,ιϕ

�j,ι
�m ϕ�j,ι

−�m

]

− V[ϕ] (2.25)

whose free part corresponds to either a harmonic oscillator or an ‘upside down’ harmonic

oscillator for eachmode, depending on the signs of the couplingsK(0)
�j,�m,ι andK

(2)
�j,�m,ι. Annihilation

and creation operators can then be deined by

â�j,�m,ι =
1

√

2

∣

∣

∣K(2)
�j,�m,ι

∣

∣

∣ω
�j,ι
�m

(

∣

∣

∣K(2)
�j,�m,ι

∣

∣

∣ω
�j,ι
�m ϕ̂�j,ι

�m + i(−1)

∑

I
( jI−mI )

π̂�j,ι
−�m

)

(2.26)

â†�j,�m,ι =
1

√

2
∣

∣

∣
K(2)
�j,�m,ι

∣

∣

∣
ω�j,ι
�m

(

(−1)

∑

I
( jI−mI ) ∣

∣

∣K(2)
�j,�m,ι

∣

∣

∣ω
�j,ι
�m ϕ̂�j,ι

−�m − iπ̂�j,ι
�m

)

, (2.27)

9
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where ω�j,ι
�m =

√

∣

∣

∣K(0)
�j,�m,ι/K

(2)
�j,�m,ι

∣

∣

∣. The free Hamiltonian is then Ĥ =
∑

�j,�m,ιĤ�j,�m,ι written as a sum

of single-mode Hamiltonians Ĥ�j,�m,ι. For a mode for whichK(0)
�j,�m,ι andK

(2)
�j,�m,ι have different signs

the single-mode Hamiltonian is given by

Ĥ�j,�m,ι = −1

2
sgn(K(0)

�j,�m,ι)ω
�j,ι
�m

(

â†�j,�m,ιâ
†
�j,−�m,ι + â�j,�m,ιâ�j,−�m,ι

)

(2.28)

which is analogous to the squeezing operator (2.16) (after redeinition by a phase Â
i → eiπ/4Â

i

and Â†
j → e−iπ/4Â†

j, (2.16) becomes Ĥ = 1
2
λ(Â†

i Â
†
jǫ
i j + ÂiÂ jǫi j)). In this sense, at least for

modeswith magnetic indicesmi = 0 for which there is no coupling betweenmodes, the Hamil-

tonian dynamics coming from the quadratic part of the full GFT action is exactly of squeezing

type.

3. A toy model revisited

In this section, we study the dynamics of GFT for a single ield mode, in the approximation

whereGFT interactions are neglected. The observation that a squeezing operator as used in [28]

is already the (free) GFT Hamiltonian for a mode in which all the magnetic indices are zero

motivates us to revisit the model studied in [28]. The restriction of this model to a single ield

mode can be partially motivated by results in [42] that suggest GFT dynamics are generically

dominated by a single value for the spin j. In the next section, we will add interactions and go
beyond the assumption of free dynamics.

We make use of the observation of [30] that the fundamental operators appearing in this

model (representing the Hamiltonian and volume operators) generate an su(1, 1) algebra. We

will extend some results both of the toy model analysis [28] and of the algebraic discussion in

[30]:wewill discuss general algebraic expressions representing effectiveFriedmann equations,

and then specify by choosing different classes of coherent states. Importantly, we will com-

pute relative uncertainties for the main physical quantities and use them as a criterion for the

selection of good semiclassical states.

The Hamiltonian we consider is the one-mode squeezing Hamiltonian

Ĥ = −ω

2
(â2 + â†2). (3.1)

As in previous work the main observable of interest is the volume operator

V̂ = v0N̂ := v0â
†â, (3.2)

where v0 would be the eigenvalue for the GFT volume operator for the representation (and

intertwiner) chosen for the model, i.e., the volume associated to a single quantum in this mode.

We are working in a deparametrised framework in which the Hamiltonian generates time evo-

lution with respect to scalar ield time φ. The energy expectation value
〈

Ĥ
〉

thus physically

represents the conjugate momentum πφ of φ. We can then deine an effective energy density

of the matter scalar ield φ, at the level of expectation values, by

ρφ(φ) =

〈

Ĥ
〉2

2
〈

V̂(φ)
〉2 , (3.3)

10
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given the classical expression ρφ = π2
φ/(2V

2). This deinition extends the one used in the

mean-ield setting (see (2.13)) which also only included expectation values of elementary oper-

ators Ĥ and V̂ . Other deinitions using composite operators would be possible and would differ

from (3.3) by higher moments such as
〈

Ĥ
〉2 −

〈

Ĥ
〉2
. Notice that inverse operators such as

V̂(φ)−2 are not obviously well-deined in the GFT formalism.

3.1. su(1, 1) structure of the system

As was irst pointed out for GFT cosmology in [30], the operators V̂ and Ĥ generate the Lie

algebra su(1, 1), which appears frequently in the context of quantum cosmology for a lat

FLRWUniverse illed with a free scalar ield, see e.g. [47–49]. The three independent quadratic

products of creation and annihilation operators form a realisation of the su(1, 1) algebra. In
particular the identiications

K̂0 =
1

4

(

â†â+ ââ†
)

=
1

2
N̂ +

1

4
Î, K̂+ =

1

2
â†2, K̂− =

1

2
â2 (3.4)

(where Î denotes the identity) give the su(1, 1) relations with the usual normalisation

[

K̂0, K̂±
]

= ±K̂±,
[

K̂−, K̂+

]

= 2K̂0. (3.5)

The Casimir of su(1, 1) is given by

Ĉ = (K̂0)
2 − 1

2
(K̂+K̂− + K̂−K̂+). (3.6)

In terms of the su(1, 1) generators the Hamiltonian (3.1) reads

Ĥ = −ω(K̂+ + K̂−). (3.7)

As one can see from (3.4) the dynamics of the operator K̂0 are intimately related to the dynamics

of the volume operator V̂ = v0N̂. We consider here only the su(1, 1) representations of the dis-
crete ascending series in which the operator K̂0, and hence the volume, is bounded frombelow8.

(A more general discussion would also include other types of representations, for which there

is no such lower bound. See also the comments in [30, section 4].)

These representations are labelled by a real positive number k, the so-called Bargmann

index, and satisfy

K̂− |k, 0〉 = 0, (3.8)

K̂0 |k,m〉 = (k + m) |k,m〉 , (3.9)

Ĉ |k,m〉 = k(k − 1) |k,m〉 , (3.10)

where the states |k,m〉 are the normalised states proportional to (K̂+)
m |k, 0〉. See appendix A

for more details.

When one inserts the realisation of the su(1, 1) operators in terms of bosonic creation and

annihilation operators (3.4) into the Casimir (3.6), one inds that the Casimir is Ĉ = −3/16Î

8 In general, for such representations one can only say that
〈

N̂
〉

> − 1
2
. Below wemostly focus on Fock representations,

for which N̂ is always nonnegative.

11
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which implies a Bargmann index of either k = 1/4 or k = 3/4. These two cases respectively

correspond to representations spanned by the eigenstates of the number operator with even

or odd eigenvalues. The choice k = 1/4 appears more interesting physically since it contains

the Fock vacuum (or cosmological ‘singularity’) in which no quanta are present. Since we are

interested in studying the Fock space representations of the GFT ield, we will mostly restrict

the Bargmann index to these cases.

3.2. Classes of coherent states and relative uncertainties

The time evolution of a system can be quite sensitive to its initial state. In this sectionwe discuss

classes of coherent states and comment on their usefulness in the context of GFT cosmology.

The coherent states we consider are the following:

• Fock coherent states,

• Perelomov–Gilmore (PG) coherent states of su(1, 1),

• Barut–Girardello (BG) coherent states of su(1, 1).

The Fock coherent states correspond to the well-known coherent states of the harmonic

oscillator, labelled by a complex number σ. One possible way to deine the Fock coherent

states is by acting with the displacement operator on the Fock vacuum,

|σ〉 = exp
(

σâ† − σâ
)

|0〉 . (3.11)

The PG coherent states are obtained by acting on the su(1, 1) ground state |k, 0〉 with a

squeezing operator

Ŝ(ξ) = exp
(

ξK̂+ − ξK̂−
)

. (3.12)

We will denote the PG coherent states by |ζ, k〉 and they are obtained by the following choice
of squeezing parameter

|ζ, k〉 = Ŝ

(

ζ

|ζ|artanh |ζ|
)

|k, 0〉 , |ζ| < 1. (3.13)

The BG coherent states will be denoted by |χ, k〉 and are deined to be the eigenstates of the
lowering operator K̂−,

K̂− |χ, k〉 = χ |χ, k〉 . (3.14)

We now turn to the question of which class of coherent states should be considered in

the context of GFT cosmology. In the context of quantum cosmology a commonly studied

quantity is the relative uncertainty of the volume operator. It is argued that the magnitude

of the relative uncertainty corresponds to a measure of ‘quantumness’ of the system at some

given time and it is therefore important that the theory allows for initial states which give

a (comparatively) small value for the relative uncertainty at late times since then the sys-

tem has become (semi-)classical. For previous works commenting on this in the context of

LQC see, e.g. [50], and in the context of GFT see, e.g. [27]. In addition one would also

require the relative uncertainty of the energy (which is a constant of motion) to be very

small.
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We deine the relative uncertainty of an operator Ô for a given state |ψ〉 as

r(Ô, |ψ〉) = 〈ψ|Ô2 |ψ〉 − 〈ψ|Ô|ψ〉2

〈ψ|Ô|ψ〉2
. (3.15)

In the followingwe state the relative uncertainty of the Hamiltonian and the asymptotic relative

uncertainty of the volume operator at large volumes (i.e., for φ→±∞), for the three classes

of coherent states that we are interested in.

For the Fock coherent states one obtains for the relative uncertainty of the Hamiltonian and

the asymptotic relative uncertainty of the volume operator

r(Ĥ, |σ〉) = 2(1+ 2|σ|2)
(σ2 + σ2)2

, (3.16)

r(V̂(±∞), |σ〉) = 2
(

1∓ 2i(σ ± iσ)2
)

(

1∓ i(σ ± iσ)2
)2 . (3.17)

In principle the value of the parameter σ is arbitrary and therefore for suitable choices of

σ the asymptotic relative uncertainty in both energy and volume becomes arbitrarily small.

These states can hence be interpreted as becoming semiclassical, consistent with arguments

from GFT that suggest that such ‘condensates’ are good candidates for effective semiclassical

macroscopic geometries [16–19].

For the PG coherent states the relative uncertainties of interest are

r(Ĥ, |ζ, k〉) = 1

2k

(1+ ζ2)(1+ ζ2)

(ζ + ζ)2
, (3.18)

r(V̂(±∞), |ζ, k〉) = 1

2k
. (3.19)

The asymptotic relative uncertainty of the volume operator is independent of the parameter

labelling the different PG coherent states. This suggests that for PG coherent states the classical

limit is reached for k→∞. However, we saw before that if we want to consider coherent states

living in a bosonic Fock representation (rather than a more general su(1, 1) representation), this
restricts the values of the Bargmann index to either k = 1/4 or k = 3/4. Thus we conclude

that in the context of GFT cosmology the class of PG coherent states do not ‘classicalise’ at

late times and hence, even though these states are naturally suggested by the su(1, 1) struc-
ture, they do not appear to be good candidate states for effective macroscopic cosmologies

in GFT.

For completeness we also state the relative uncertainties for the BG coherent states

r(Ĥ, |χ, k〉) = 2

(χ+ χ)2

[

k+ |χ| I2k(2 |χ|)
I2k−1(2 |χ|)

]

, (3.20)

r(V̂(±∞), |χ, k〉) = 2
[

−2|χ|2I2k(2 |χ|)2 + (3− 4k) |χ| I2k(2 |χ|)I2k−1(2 |χ|)

+ (k∓ i(χ− χ)+ 2|χ|2)I2k−1(2 |χ|)2
]

×
[

2 |χ| I2k(2 |χ|)+ (2k∓ i(χ− χ))I2k−1(2 |χ|)
]−2

,

(3.21)

13



Class. Quantum Grav. 37 (2020) 165004 S Gielen and A Polaczek

Figure 1. The relative uncertainty of the volume operator as a function of ωφ for
k = 1/4. The complex parameter x given in the igure is related to the parameters of
the coherent states in the following manner. PG: |ζ , k〉 ≡ |(x/ |x|) tanh(|x|), 1/4〉 BG:
|χ, k〉 ≡ |x, 1/4〉, Fock: |σ〉 ≡ |x〉. For the bottom-left plot, |x| ≪ 1 and these states have
very small volume around φ = 0, which leads to the large relative uncertainties.

where Iα(x) is the modiied Bessel function of the irst kind. We can use an asymptotic expan-

sion of the modiied Bessel functions to get the relative uncertainties for large values of |χ|,

r(Ĥ, |χ, k〉)|χ|→∞∼ 2 |χ|
(χ+ χ)2

, (3.22)

r(V̂(±∞), |χ, k〉)|χ|→∞∼ 2

2 |χ| ∓ i(χ− χ)
, (3.23)

which shows that the asymptotic relative uncertainties for the BG coherent states are also arbi-

trarily small for large values of |χ|. Hence these states would also be suitable states for GFT

cosmology.However, the ubiquitous appearance of the modiied Bessel functionsmakes calcu-

lations with the BG states quite cumbersome. Below we mostly focus on Fock coherent states

which are easier to calculate with.

In igure 1 we provide an overview of the time dependence of the relative uncertainty of

the various states discussed here. One notable aspect is that the uncertainties are asymmetric

with respect to time. While the uncertainty can be asymptotically small in the future, it might

have been asymptotically large in the past. In particular, one could in general not conclude

from the emergence of a semiclassical regime at late times, in which the relative uncertainties

remain small, that the same was true at early times in the collapsing pre-bounce phase. In order
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Figure 2. The asymptotic asymmetry parameter (3.24) as a function of the argument
of the complex coherent state parameters for k = 1/4. The argument θ is related to the
parameters of the coherent states in the following way. BG: |χ, k〉 ≡ |100 exp(iθ), 1/4〉,
Fock: |σ〉 ≡ |100 exp(iθ)〉.

to quantify this asymmetry of the asymptotic relative uncertainty, we deine an ‘asymptotic

asymmetry parameter’

η(|ψ〉) = 1−min

{

r(V̂(+∞), |ψ〉)
r(V̂(−∞), |ψ〉)

,
r(V̂(−∞), |ψ〉)
r(V̂(+∞), |ψ〉)

}

. (3.24)

The values this parameter can take lie between zero and one, where small values signify that the

relative uncertainty is the same in the asymptotic past and future whereas values close to one

correspond to a large past-future asymmetry. In igure 2 the asymptotic asymmetry parameter is

shown for Fock and BG coherent states as a function of the argument θ of the complex parame-

ters characterising the state, i.e. χ = |χ| exp(iθ) and σ = |σ| exp(iθ). Note that even though the
plot is done for some speciic value of the absolute value of the coherent state parameters, the

situation is generic. Only for very small absolute values (|σ| ≪ 1, |χ| ≪ 1) is the asymmetry

parameter close to one for all values of the argument θ. From this it becomes apparent that the

past-future asymmetry is rather generic. Similar questions have been discussed previously in

the context of LQC [51–53]; our analysis here extends them from the mean-ield calculations

in [27] to broader classes of states of interest for GFT cosmology.

3.3. Effective Friedmann equations

In order to derive the cosmological implications of the model, we derive in this section an

effective Friedmann equation

(

V ′(φ)

V(φ)

)2

= f [V(φ)], (3.25)

where we introduced the compact notation V(φ) ≡
〈

V̂(φ)
〉

and f[V(φ)] is some functional to

be speciied later. The method we will be employing to solve this problem is an algebraic

approach introduced in [30] which we extend to noncommuting variables and connect to the

Fock representation underlying the kinematics of GFT.

We work in the Heisenberg picture and assume that the Schrödinger and Heisenberg pic-

ture coincide at φ = 0. Operators without argument denote the Schrödinger picture operators.

The equations of motion for K̂0 and K̂+ − K̂− are given by (K̂+ + K̂− is proportional to the

Hamiltonian and therefore constant under time evolution)

K̂′
0(φ) = iω(K̂+ − K̂−)(φ), (3.26)
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(K̂+ − K̂−)
′(φ) = −4iωK̂0 (3.27)

which are solved by

K̂0(φ) = K̂0 cosh(2ωφ)+
i

2
(K̂+ − K̂−) sinh(2ωφ), (3.28)

(K̂+ − K̂−)(φ) = (K̂+ − K̂−) cosh(2ωφ)− 2iK̂0 sinh(2ωφ). (3.29)

From this one gets for the time dependence of the number operator

N̂(φ) = −1

2
+

(

N̂ +
1

2
Î

)

cosh(2ωφ)+ i(K̂+ − K̂−) sinh(2ωφ). (3.30)

The expectation value of this is nonnegative for all Fock states and grows exponentially at

early or late times (|ωφ| ≫ 1). A nonvanishing expectation value
〈

i(K̂+ − K̂−)
〉

implies a time

asymmetry in the resulting effective cosmological history, i.e., different pre- and post-bounce

phases. For generic states
〈

N̂(φ)
〉

is positive for all φ; the only cases for which it becomes zero

at some point during the evolution is for states which satisfy
∣

∣

〈

K̂+ − K̂−
〉∣

∣

2
�
〈

N̂
〉

(
〈

N̂
〉

+ 1).

For Fock coherent states this is only the case for the Fock vacuum for which both sides are

zero. For both PG and BG coherent states it depends on the value of the Bargmann index

k. For k > 1/4 this inequality never holds, for k < 1/4, however, there are states for which

the inequality is satisied and for k = 1/4 it is only the ground state (analogue to the Fock

vacuum) for which the inequality holds. Equation (3.30) reproduces the result obtained in the

‘toy model’ context of [28] (cf (2.19) and below), the only difference being that a factor 5 is

replaced by 1 since we consider a single ield mode, not ive modes as in the toy model.

One can derive an effective Friedmann equation directly by taking the expectation value of

the explicit expression (3.30). One then inds

(

V ′(φ)

V(φ)

)2

= 4ω2

(

1+
v0
V(φ)

− v20
V(φ)2

[

〈

N̂
〉2

+
〈

N̂
〉

−
〈

i(K̂+ − K̂−)
〉2
]

)

,

(3.31)

where V(φ) ≡ v0
〈

N̂(φ)
〉

(cf (3.2)).

One can, however, also obtain this effective Friedmann equation without knowing the time

dependence of the number operator explicitly by using the algebraic structure of the system.

This was shown in [30] for the corresponding classical system, where the variables commute.

Here we extend this algebraic approach to the noncommutative case.

Starting from (3.26) and the deinition of the Casimir (3.6) one arrives at

K̂′
0(φ)

2
= 4ω2

[

K̂0(φ)
2 −

(

Ĥ2

4ω2
+ Ĉ

)]

(3.32)

or written in terms of the number operator

N̂′(φ)2 = 4ω2

[

N̂(φ)2 + N̂(φ)−
(

Ĥ2

ω2
+ 4Ĉ − 1

4
Î

)]

. (3.33)

In order to get the effective Friedmann equation one has to take the expectation value of

(3.33). However, it is crucial to note that in (3.25) the expectation value of the volume oper-

ator enters, rather than the expectation value of the volume operator squared. The difference
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between the two is related to the variance of the volume, which is in general state-dependent.

Indeed, rearranging the expectation value of (3.33) gives

N′(φ)2 = 4ω2
[

N(φ)2 + N(φ)+ X
]

(3.34)

with N(φ) ≡
〈

N̂(φ)
〉

and X being given by

X = G(N̂(φ), N̂(φ))− 1

4ω2
G(N̂′(φ), N̂′(φ))−

〈

Ĥ2
〉

ω2
− 4

〈

Ĉ
〉

+
1

4
, (3.35)

where the covariance G(Â, B̂) is deined as

G(Â, B̂) =
1

2

〈

ÂB̂+ B̂Â
〉

−
〈

Â
〉

〈

B̂
〉

(3.36)

(and for the case Â = B̂ this would be called the variance of Â).
We will now show that the quantity X is indeed time-independent as suggested by the

notation. Noting that the variance of N̂ ′(φ) can be written as

G(N̂′(φ), N̂′(φ)) = −4G(Ĥ, Ĥ)+ 16ω2G(K̂+(φ), K̂−(φ)), (3.37)

one can write X as

X = G(N̂(φ), N̂(φ))− 4G(K̂+(φ), K̂−(φ))−
〈

Ĥ
〉2

ω2
− 4

〈

Ĉ
〉

+
1

4
. (3.38)

A quick calculation shows that

d

dφ
G(K̂+(φ), K̂−(φ)) =

1

2
G(N̂′(φ), N̂(φ)) (3.39)

which shows that X is time-independent, since both Ĥ and Ĉ are constants of motion. It follows

that X can be written as

X = G(N̂, N̂)− 4G(K̂+, K̂−)−
〈

Ĥ
〉2

ω2
− 4

〈

Ĉ
〉

+
1

4
. (3.40)

Using the deinition of the Casimir (3.6) one can show thatX can be written in the alternative

form

X = −
〈

N̂
〉2 −

〈

N̂
〉

+ 4
〈

K̂+

〉 〈

K̂−
〉

−
〈

Ĥ
〉2

ω2
. (3.41)

Yet another form can be obtained by inserting the Hamiltonian (3.7) to get

X = −
〈

N̂ +
1

2
Î

〉2

+
〈

i(K̂+ − K̂−)
〉2

+
1

4
. (3.42)

The operators appearing in this last expression for X are exactly those appearing in the formula

for the operator K̂0(φ) in the Heisenberg picture (3.30) and one recovers the form of the effec-

tive Friedmann equation given in (3.31). From the exact solution (3.30), one can see that X � 0

in all Fock states, since X > 0 would be equivalent to the number operator N(φ) taking a neg-
ative expectation value somewhere. There are Fock states with X = 0; these states encounter

a singularity in their geometric interpretation, in the sense that the expectation value of the
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volume reaches zero somewhere and hence the effective energy density deined according to

(3.3) diverges, even though the quantum evolution is completely regular even for these states.

Recalling that the volume operator is the rescaled number operator, i.e. V̂ = v0N̂, one arrives
at the effective Friedmann equation

(

V ′(φ)

V(φ)

)2

= 4ω2

(

1+
v0
V(φ)

− v20
〈

N̂
〉

(
〈

N̂
〉

+ 1)

V(φ)2
+

4v20
〈

K̂+

〉 〈

K̂−
〉

V(φ)2
− v20

〈

Ĥ
〉2

ω2V(φ)2

)

(3.43)

Taking the late time limit (corresponding to large volumes) suggests that one should iden-

tify 12πG := 4ω2 in order for the leading term to be compatible with the classical Friedmann

dynamics. This identiication of fundamental couplings with an ‘emergent’ Newton’s constant

is common in GFT cosmology [23, 28]. Furthermore, identifying an energy density as in (3.3)

and deining a critical energy density

ρc =
ω2

2v20
=

3πG

2v20
=

3π

2
ρP

(

vP
v0

)2

, (3.44)

where ρP is the Planck mass density and vP is the Planck volume, the last term inside the

parentheses in (3.43) takes the form −ρ/ρc familiar from LQC. The value for ρc appearing
here agrees with the critical density found in [23, 24]. In close analogy to the results obtained

in LQC we then write for the effective Friedmann equation (see also (2.13))

(

V ′(φ)

V(φ)

)2

= 4ω2

(

1− ρeff(φ)

ρc

)

+ 4ω2 v0
V(φ)

, (3.45)

where the effective energy density ρeff(φ) is deined as

ρeff(φ) = ρφ(φ)+
ω2
〈

N̂
〉

(
〈

N̂
〉

+ 1)

2V(φ)2
− 2ω2

〈

K̂+

〉 〈

K̂−
〉

V(φ)2
. (3.46)

The irst contribution to this effective energy density is given by the energy density ρφ(φ) =
〈

Ĥ
〉2
/(2V(φ)2) associated to a massless scalar ield (as deined in (3.3)), but there are two

additional contributions depending on the expectation values
〈

N̂
〉

,
〈

K̂+

〉

and
〈

K̂−
〉

in the ini-

tial state. As these additional contributions to ρeff also scale as V(φ)−2, their effect is equivalent

to a shift in the scalar ield momentum compared to its classical value
〈

Ĥ
〉

. The last term in

(3.45), scaling as 1/V(φ), is similar to a correction found in mean-ield calculations and takes

the form of an effective matter contribution for matter with equation of state p = 2ρ (cf [26]).

Depending on the initial state, the quantity X (or, alternatively, the additional contributions

to the effective energy density) can take different forms. For the PG coherent states one inds

the following form

XPG = −4k2
(1+ ζ2)(1+ ζ2)

(1− |ζ|2)2
+

1

4
= −4k2 −

〈

Ĥ
〉

2
PG

ω2
+

1

4
. (3.47)

We note that for k = 1/4 this reduces to XPG = −
〈

Ĥ
〉

2
PG/ω

2, and the effective energy den-

sity and classical energy density exactly coincide. The effective Friedmann equation for PG
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coherent states therefore reads (for general k)

(

V ′(φ)

V(φ)

)2

= 4ω2

(

1+
v0
V(φ)

− v20
〈

Ĥ
〉

2
PG

ω2V(φ)2
− v20

(

16k2 − 1
)

4V(φ)2

)

. (3.48)

For Fock coherent states one gets for X

XF = −1

4
(σ2

+ σ2)2 − |σ|2 = −
〈

N̂
〉

F −
〈

Ĥ
〉

2
F

ω2
. (3.49)

Therefore the Friedmann equation for Fock coherent states is given by

(

V ′(φ)

V(φ)

)2

= 4ω2

(

1+
v0
V(φ)

− v20
〈

N̂
〉

F

V(φ)2
− v20

〈

Ĥ
〉

2
F

ω2V(φ)2

)

. (3.50)

For completeness we also state the value of X one gets for BG coherent states,

XBG = −(χ− χ)2 − 4

(

k + |χ| I2k(2 |χ|)
I2k−1(2 |χ|)

)2

+
1

4
. (3.51)

The Friedmann equations derived here are compatible with previous results in GFT cosmol-

ogy [23, 24, 28, 29] where either a mean-ield approach was used or a simplifying assumption

was imposed on the initial conditions. We emphasise that no approximations were used which

resulted in the appearance of extra terms. In particular, we were able to identify one of those

extra terms with the energy density of the real scalar ield acting as a relational clock variable.

Corrections to the classical Friedmann dynamics of the LQC-like form −ρ/ρc, which lead to

effective repulsive behaviour and a bounce at high energies, were found for all coherent states

considered.We also found that in general the ‘effective’ energy density appearing in the Fried-

mann equation (3.45) is not equal to the classical energy density ρφ = π2
φ/(2V

2) of a massless

scalar ield, but contains additional terms depending on the initial conditions chosen.

4. Interacting toy model

In this section we extend the toy model discussed in section 3 by adding an interaction term to

the Hamiltonian. The resulting interacting model still represents a simpliication of the dynam-

ics of full GFT, since we continue to assume that only one mode is relevant. While the general

expectation is that the dynamics should depend on the coupling of different modes, studying

this simpler model can provide insights on how GFT interactions can change the interpretation

of the dynamics in terms of effective cosmology. A similar model, which included polynomial

interactions for a single GFT ield mode, was previously studied in [26] in a mean-ield approx-

imation (see also [27]), leading to corrections to the effective Friedmann equations coming

from these interactions. These corrections become more signiicant at late times as the impact

of GFT interactions grows with the number of quanta. Here we will be able to contrast these

mean-ield results with effective modiied Friedmann equations obtained in a more general

setting.

We now consider a Hamiltonian given in terms of the su(1, 1) variables by

Ĥ = −ω(K̂+ + K̂−) + λω(K̂+ + K̂− + 2K̂0)
2. (4.1)

In terms of the bosonic realisation of the su(1, 1) algebra (3.4) the Hamiltonian reads

Ĥ = −ω

2
(â2 + â†2)+

λω

4
(â+ â†)4. (4.2)
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Recalling the deinitions of the creation and annihilation operators in terms of the GFT ield

and its conjugate momentum (2.26), (2.27) one can rewrite the Hamiltonian as

Ĥ =
1

2 |K(2)| π̂
2 − 1

2

∣

∣K(0)
∣

∣ ϕ̂2
+ λ
∣

∣K(0)
∣

∣

3/2∣
∣K(2)

∣

∣

1/2
ϕ̂4, (4.3)

where we suppressed the Peter–Weyl representation labels and we also assume the mode to be

of the type discussed at the end of section 2 with magnetic indicesmi = 0. From this expression

one sees that the interaction term would correspond to a ϕ4 interaction term in an appropriately

deined GFT action.

The dynamics of this system crucially depend on the sign of λ. Indeed, for positive λ this

Hamiltonian will be bounded from below, whereas for the case that λ is negative the Hamil-

tonian is unbounded as it is in the free case. Interpreting (4.3) as a mechanical system with

kinetic and potential terms, one sees that for positive λ one gets a ‘Mexican hat’ type potential,

whereas in the case of negative λ the potential is an ‘upside-down’ anharmonic oscillator. In

the cosmological context one expects from this that for negative λ the Universe will undergo

an enhanced exponential expansion and for positive λ the Universe will recollapse after some

time leading to a cyclic cosmology. Such a cyclic cosmology was indeed found in [26], where

λ > 0 was assumed. In section 4.1 we argue that this expectation is correct if (4.1) is seen as

the Hamiltonian of a classical system.

When one tries to use the algebraic approach detailed in section 3 to derive an effective

Friedmann equation for the interacting model (4.1) one faces several challenges. Firstly, the

noncommutativity does not allow the reduction to a small set of ‘basis operators’. Secondly,

the expressions involved feature products of three operators and it is technically challenging to

relate them to the expectation values of ‘simple’ operators such as the Hamiltonian and number

operator.

To begin with, we restrict ourselves to the classical case, where the variables commute and

one can employ the algebraic approach to derive an effective Friedmann equation. We ind an

exact Friedmann equation whose limits at early and late times are given. After that we turn

to the general (quantum) case, where the operators do not commute. In that case we resort to

a perturbative treatment which is valid at early times. Furthermore, we perform a numerical

analysis for Fock coherent states. We ind that a linear (perturbative) correction to the effective

Friedmann equation can capture the effect of the interaction term for a short time, after which

the dynamics become nonperturbative.

4.1. Algebraic approach for classical analogue system

In this section we study a classical dynamical system with time evolution generated by the

Hamiltonian (4.1). In this approach the su(1, 1) variables K0, K+ and K− are not viewed as

quantum operators but as coordinates on a Poisson manifold, subject to an su(1, 1) Poisson
algebra which then deines the Hamiltonian dynamics. In contrast to the full quantum case,

these variables commute and we interpret the variables themselves as the observables of inter-

est, i.e. one does not have to take expectation values. In this sense, this approximation neglects

all quantum corrections coming from operator orderings and uncertainties in a quantum state.

We will identify the variable K0 with the particle number N such that N ≡ 2K0. As above,

we assume the total volume to be proportional to the particle number, V = v0N, and switch

between N and V freely.

The equation of motion of the variable N is given by

N′(φ) = 2iω(K+(φ)− K−(φ))(1− 2λ(K+(φ)+ K−(φ)+ N(φ))). (4.4)
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After squaring this equation one can use the Casimir (3.6) to replace the combination (K+ −
K−). One is then left with an expression where only the combination (K+ + K−) appears,

N′(φ)2 =4ω2
(

N(φ)2 − 4C − (K+(φ)+ K−(φ))
2
)

×
(

1− 2λ(K+(φ)+ K−(φ)+ N(φ))
)2
. (4.5)

From the Hamiltonian one can derive an explicit formula for (K+ + K−)

K+(φ)+ K−(φ) =
1

2λ

(

1− 2λN(φ)−
√

1+ 4λ

(

H

ω
− N(φ)

)

)

, (4.6)

where we chose the solution connected to the free theory. Inserting this into (4.5) one gets the

nonperturbative effective Friedmann equation

N′(φ)2 =− 2ω2

λ2

(

1+ 4λ

(

H

ω
− N(φ)

))

× [1− 4λN(φ)

− (1− 2λN(φ))

√

1+ 4λ

(

H

ω
− N(φ)

)

+ 2λ

(

4λC +
H

ω

)

]

.

(4.7)

We already see that λ > 0 implies an upper bound on the value of N and hence the volume,

since the right-hand side of (4.7) has to be real and positive. Indeed, at exactly that upper limit

the right-hand side of (4.7) becomes zero leading to a recollapse. In the case λ < 0, for the

right-hand side of (4.7) to be real and positive N has to be greater than some minimal value

(which can be zero). The right-hand side remains real and positive for all values of N greater

than that minimal value, implying that the Universe expands indeinitely. For clarity, we recall

that H here and throughout the paper denotes the Hamiltonian or energy (interpreted as the

canonical momentum conjugate to the scalar ield φ), not a Hubble rate in cosmology.

We would like to interpret (4.7) in terms of a cosmological model given by one or several

matter components which contribute to the matter energy density on the right-hand side. For

a general such model in usual classical cosmology, with n matter components labelled by an

index i viewed as perfect luids with each having an equation of state pi = wiρi, the Friedmann

equation for the volume as a function of relational time φ would be of the form

(

V ′(φ)

V(φ)

)2

=

n
∑

i=1

AiV(φ)
1−wi (4.8)

where Ai are constants of motion. While (4.7) is valid at all times, its interpretation in terms

of cosmological models of the form (4.8) is not clear due to the appearance of a square root

on the right-hand side. Moreover, additional matter components as in (4.8) would come with

new conserved quantities Ai, whose values can be varied independently (or, in other words,

are determined by the initial conditions). In our model, the presence of GFT interactions does

not introduce new parameters set by initial conditions, only a new coupling constant λ; these
interactions therefore modify the dynamics of gravity rather than matter. Here we follow the

convention in which quantum gravity corrections are written as modifying the right-hand side
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rather than the left-hand side of Friedmann equations (as is usually done in LQC) in order to

give intuition for the effective dynamics9.

One might be interested in the Friedmann equation valid at relatively small volumes where

interactions have become relevant but not dominant, so that one can employ perturbation

theory. Expanding (4.7) as a series around λ = 0 one gets

N′(φ)2 = 4ω2

{

N(φ)2 − H2

ω2
− 4C

(

1− 4λ

(

N(φ)− H

ω

))

−
∞
∑

n=1

[

12λn
(2n− 2)!

(n− 1)!(n+ 2)!

(

(2n− 1)
H

ω
+ (3− n)N(φ)

)

×
(

N(φ)− H

ω

)n+1
]}

. (4.9)

From this form one can see that it is the product λN(φ) that must be small for the perturbative

expansion to make sense. Comparing with (4.8), one could interpret the leading (linear) cor-

rection coming from the interaction term as an effective matter component with an equation of

state parameterw = 0, i.e., a dust component. This result would then agree with the results of a

mean-ield calculation in [26] where adding a ϕ4 interaction to the GFT Lagrangian led to such

a dust-like contribution in the effective cosmology. However, the full expansion given in (4.9)

shows that such an interpretation would only be valid in an intermediate regime in which the

product λN(φ) is no longer negligible, but also not yet large enough for higher orders to con-

tribute. Indeed, as the volume grows further, λN(φ) would soon be O (1) and the perturbative

expansion receives contributions from all orders. In particular, there is never a regime in which

the effective Friedmann equation is dominated by the ‘dust-like’ component, as it would be in

the mean-ield form obtained in [26]. One possible interpretation of this discrepancy is that

mean-ield methods are strictly only valid in the free theory, since they assume the absence of

correlations between quanta. Hence one would expect them to become inaccurate as the con-

tribution to the effective dynamics coming from GFT interactions becomes strong. Care has to

be taken when interpreting (4.9) up to some order. For instance, if one only considers terms up

to order λ2 in (4.9), one would conclude that there is always a recollapse (even for negative λ),
which is not true for the full solution.

To understand the late-time behaviour of the system, recall that N(φ) grows without bound
while the other dynamical quantities on the right-hand side of (4.7), C and H, are constants of
motion. In the limit of large N(φ) (corresponding to late times) the leading order contribution

of (4.7) is given by

(

N′(φ)

N(φ)

)2

= 32ω2
√

−λN(φ)+ O (1) . (4.10)

Interpreting the right-hand side of (4.10) as an energy density of matter, one inds from (4.8)

that it corresponds to matter with an equation of state parameterw = 1/2. The solutions to this
asymptotic form of the effective Friedmann equation behave as N(φ) ∼ |φ− φ0|−4, diverging

at some φ = φ0. We would hence expect the evolution of our system to terminate at some inite

9An alternative possible interpretation of effective Friedmann equations obtained from quantum gravity models is to

view them as equivalent to Friedmann equations of a modiied theory of gravity. A general reconstruction method of

this type for mimetic gravity theories was developed in [54].
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Figure 3. The relative relational expansion rate squared (4.7) and the ‘effective equation
of state parameter’ (4.11) as functions of N. The solid lines correspond to a truncation
at zeroth order in λ. The dashed lines correspond to a truncation at irst order in λ.
The dotted lines correspond to a truncation at second order in λ. The dash-dotted lines
correspond to the full nonperturbative case. The parameters are: ω = 1, λ = −10−7,
H = −10 040, C = −3/16. (The choice of H corresponds to 〈σ|Ĥ |σ〉 for σ = 100.)

value of φ, depending on initial conditions. Notice that in this interpretation the energy density
of this new ‘matter’ is ixed by the GFT coupling λ and hence, as we mentioned before, the

effect of adding GFT interactions should rather be seen as modifying the dynamics of gravity

on large scales. The scale at which such a modiication would become relevant depends on the

chosen value of λ.
To characterise the dynamics of the effective cosmology at arbitrary times, from (4.8) we

deine an ‘effective equation of state parameter’

weff(φ) = 1− d log
(

N′(φ)/N(φ)
)2

d log N(φ)
(4.11)

which is plotted in igure 3 as a function of N(φ) for various truncations of (4.9). In the plot

one sees that for |λN(φ)| � 10−2 the interactions become relevant and that for |λN(φ)| � 1 the

difference between the exact result and the irst order truncation becomes large as expected.

Another observation is that while for small values of |λN(φ)| the second order truncation

is in better agreement with the nonperturbative results, this truncation quickly diverges for

|λN(φ)|�1.

4.2. Quantum calculation

We are not able to derive an exact solution for N̂(φ) in the interacting quantum mechanical

case, where operators do not commute and higher moments and simple expectation values

are independent. To give approximate solutions, we irst give a perturbative analytical method

which we then contrast with numerical results. We expand the number operator as a series with

expansion parameter λ, i.e.
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N̂(φ) =
∞
∑

n=0

λnN̂n(φ). (4.12)

Splitting the Hamiltonian Ĥ into a λ-independent part, Ĥ0, and a λ-dependent part, Ĥ1, one

can split the time evolution operator in a way similar to what is done in the interaction picture

as Û(φ) = Û0(φ)ÛI(φ), where Û0(φ) = exp(−iĤ0φ) is the time evolution operator of the free

system and the interaction time evolution operator is deined by the time-ordered exponential

ÛI(φ) = T exp

(

−i

∫ φ

0

dφ′ Û−1
0 (φ′)Ĥ1Û0(φ

′)

)

. (4.13)

Note that the inverse interaction time evolution operator requires anti-time-ordering. Expand-

ing the interaction time evolution operator as a series in λ,

ÛI(φ) =

∞
∑

n=0

λn(ÛI)n(φ), (4.14)

and inserting into (4.12) gives for the N̂n(φ)

N̂n(φ) =

n
∑

m=0

(Û−1
I )m(φ)Û

−1
0 (φ)N̂Û0(φ)(ÛI)n−m(φ). (4.15)

The strategy would be to ind the exact form of these N̂n(φ) up to some order and then derive

an effective Friedmann equation from these. We will only do this to irst order.

The leading term N̂0(φ) is of course the same as in the free theory (3.30). The irst order

term N̂1(φ) is given by

N̂1(φ) =
λ

2

{

(K̂+)
2 [3− 2(2+ 3iωφ) cosh(2ωφ)+ cosh(4ωφ)]+ h.c.

+ K̂+(2N̂ + 3) [(i− 3ωφ) sinh(2ωφ)− i sinh(4ωφ)]+ h.c.

− 1

2
sinh2(2ωφ)[3+ 4N̂2

+ 8N̂ + 8K̂+K̂−]

}

. (4.16)

As outlined above, what one would like to do is take the expectation values of the pertur-

bative expansion (4.12) and derive an effective Friedmann equation for arbitrary states, valid

up to some order in λ. However, already the irst order expression for N̂(φ) is quite compli-

cated and we were not able to derive a corresponding effective Friedmann equation for general

states. To ameliorate this we resort to taking the expectation values for some speciic classes

of coherent states.

Firstly, we turn to the Fock coherent states. Writing for the parameter of the Fock coherent

states (3.11) σ = σ1 + iσ2, one inds for the case σ2 = 0, i.e. for real σ,

N′(φ)2 = 4ω2
(

N(φ)2 + N(φ)− σ2
1(1+ σ2

1)

+
λ

(1+ 2σ2
1)

2

[

−4N(φ)3(3+ 12σ2
1 + 4σ4

1)

− 6N(φ)2(3+ 15σ2
1 + 12σ4

1 + 4σ6
1)

+ 6N(φ)(−1− 5σ2
1 + 4σ6

1)+ 2σ2
1(3+ 24σ2

1 + 51σ4
1 + 48σ6

1 + 20σ8
1)
]

+ O
(

λ2
))

.

(4.17)
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Figure 4. The relative relational expansion rate squared and the ‘effective equation of
state parameter’ (4.11) as functions of N for Fock coherent states with real parameter
σ. The solid lines correspond to a truncation at zeroth order in λ. The dashed lines cor-
respond to a truncation at irst order in λ. The dotted lines correspond to a truncation
at second order in λ. The dash-dotted lines correspond to the full nonperturbative case.
The parameters are: ω = 1, λ = −10−3, σ = 10

For the case σ1 = 0, i.e. imaginary σ, one inds the similar expression

N′(φ)2 = 4ω2
(

N(φ)2 + N(φ)− σ2
2 (1+ σ2

2)

+
λ

(1+ 2σ2
2)

2

[

−4N(φ)3(3+ 12σ2
2 + 4σ4

2)

− 6N(φ)2(3+ 9σ2
2 − 4σ4

2 − 4σ6
2)

+ 6N(φ)(−1+ σ2
2 + 16σ4

2 + 12σ6
2)

+ 2σ2
2(3+ 6σ2

2 − 15σ4
2 − 24σ6

2 − 4σ8
2)
]

+ O
(

λ2
))

. (4.18)

The expression for the general case, where σ can be any complex number, is quite involved

and we do not state it here.

Secondly, we turn to the PG coherent states. For the these states one inds the following

general expression

N′(φ)2 = 4ω2

{

(

N(φ)+
1

2

)2

− 4k2 −
〈

Ĥ
〉

2
PG

ω2

+ λ
2k + 1

4k

[

−8N(φ)3 + 12N(φ)2
(

〈

Ĥ
〉

PG

ω
− 1

)

+ 2N(φ)

(

6

〈

Ĥ
〉

PG

ω
+ 16k2 − 3

)

−
(

〈

Ĥ
〉

PG

ω
− 1

)(

2

〈

Ĥ
〉

2
PG

ω2
+

〈

Ĥ
〉

PG

ω
+ 16k2 − 1

)]

+ O
(

λ2
)

}

. (4.19)

25



Class. Quantum Grav. 37 (2020) 165004 S Gielen and A Polaczek

Figure 5. The relative uncertainty of the volume operator as a function of ωφ for Fock
coherent states. The solid line corresponds to the free case, λ = 0. The dashed line
corresponds to the interacting case with λ = −10−3.

It is remarkable that it is possible to write the right-hand side only in terms of N(φ) and 〈H〉PG.
As before, we would expect all higher order corrections to become relevant as soon as a regime

is reached in which |λN(φ)| � 1.

In igure 4 the relative relational expansion rate squared and the effective equation of state

parameter (4.11) are plotted as a function of N for different truncations of the perturbative

expansion and for the result of a numerical calculation.10 The zeroth order truncation corre-

sponds to the free case and corresponds to (3.50) and the irst order truncation is given in (4.17).

Note that we do not state the second order truncation explicitly, since the expression is rather

convoluted. The state considered in this plot is a Fock coherent state with real parameterσ. The
numerical results are in good agreement with the second order truncation. However, the sec-

ond order truncation diverges quickly for values |λN(φ)|�1, whereas the irst order truncation

does not. Note that the parameters chosen do not accommodate a regime inwhich |λN(φ)| ≪ 1,

explaining the mismatch with the linearised theory. Due to numerical limitations we were not

able to enter the asymptotic regime and determine the corresponding effective equation of state

parameter for late times.

We conclude the present discussion of the quantum behaviour of the interacting toy model

by revisiting the relative uncertainties of the volume as a function of relational time pre-

sented in section 3.2 and illustrated in igure 1. Here we restrict ourselves to the class of Fock

10The numerical results were obtained by solving the time-dependent Schrödinger equation of the Hamiltonian (4.2)

in the position representation.
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coherent states. The results of numerical calculations comparing the free and interacting cases

for a range of parameters are given in igure 5. An immediate effect of the interactions is that

the expectation values diverge at inite relational time, resulting in different ranges of the rela-

tional time coordinate. These divergences can already be anticipated from the discussion below

(4.10). The key observation is that when interactions are present the relative uncertainties are

not asymptotically constant but start growing as soon as the interactions become dominant. The

general statement that Fock coherent states become semiclassical at late times can therefore

not be extended to this interacting case in an obvious way. Again, this is also consistent with

the expectation that mean-ield methods break down in the interacting case when interactions

begin to dominate over the quadratic Hamiltonian.

5. Conclusions

Our aim was to present a general perspective on the derivation of reliable effective Friedmann

equations from given quantum dynamics of a GFT model, building on various recent devel-

opments in the derivation of effective cosmological dynamics from GFT. Within this general

perspective, the most important assumption was to restrict the GFT dynamics to those of a sin-

gle ield mode, i.e., ixed values of the representation labels in the Peter–Weyl decomposition.

This simpliication of the full dynamics in which all modes would be present can be seen as the

most important limitation of our work. While there are arguments suggesting the dynamical

emergence of a regime dominated by a single ield mode in GFT, showing such an emergence

in models of interest for four-dimensional quantum gravity remains an outstanding challenge.

On the other hand, we were able to derive effective cosmological dynamics without relying on

a mean-ield approximation, and in general no assumptions needed to be made on the initial

state.

We irst focussed on the case of dynamics deined by a free (quadratic) Hamiltonian. Such

a Hamiltonian can be of harmonic form or of ‘upside-down’ harmonic form; the latter case in

which the Hamiltonian is unbounded from below is most relevant to GFT cosmology, since it

admits solutions expanding to ininity [29, 46]. For this case, we recovered and extended results

of [28, 30] for the resulting effectiveFriedmann equations.Generic solutions exhibit singularity

resolution in the sense of a minimal non-zero value for the volume, and interpolate between

a collapsing and an expanding branch which both at large volumes approach classical FLRW

solutions. These solutions depend on a parameter determined by the initial conditions (with

no obvious classical analogue) which generates an asymmetry between the solution before

and after the minimum for the volume. The main new result in this part was a discussion of

relative uncertainties in the two main physical observables—volume and energy—in three

different classes of coherent states: Fock coherent states which have been used previously in

GFT cosmology, and Perelomov–Gilmore (PG) and Barut–Girardello (BG) coherent states of

su(1, 1). We found that Fock coherent states approach a semiclassical regime at large volume,

where relative uncertainties can be arbitrarily small, while PG states of interest here never reach

such a regime. The difference in our treatment compared with works such as [48] was that we

assumed the Fock space structure of GFT and only considered PG states that live in bosonic

Fock representations. In GFT, Fock coherent states are a good choice for initial conditions that

become semiclassical at low curvature. This part of our analysis could be broadened by going

to more general types of coherent states for which only a Casimir condition and the saturation

of uncertainty relations are assumed, as was done for su(1, 1) in [55].

We then added a quartic interaction term to the Hamiltonian to extend the derivation of

effective Friedmann equations for GFT models with polynomial interactions given in [26] to

situationswhere nomean-ield approximation is assumed.As for the free case, one has a choice
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between a quartic term for which the Hamiltonian is bounded from below, which leads to a

recollapse and cyclic cosmology [26], or an interaction that admits solutions escaping to inin-

ity, corresponding to a Universe expanding forever. We focussed on the second case, the more

common one in usual cosmology. To understand the dynamics for this system, we irst used

a classical approximation in which one considers the basic dynamical variables as commut-

ing phase space functions, with commutators replaced by Poisson brackets. In this case we

could derive an exact nonperturbative Friedmann equation; its unusual feature is the appear-

ance of a square root involving the volume and energy on the right-hand side, preventing its

straightforward interpretation in terms of effective perfect luids. Linearising this equation in

the interaction constant leads to a Friedmann equationwith an effective dust term, which would

reproduce the mean-ield result of [26]. This linear correction only describes an intermediate

regime in the expansion history, after which all orders become relevant. We interpret this as

signifying a failure of mean-ield methods as soon as interactions become strong. The asymp-

totic form of the effective Friedmann equation at late times would correspond to a matter

component with equation of state p= 1
2
ρ (instead of dust with p = 0), or a modiication of

gravity on large scales in this model. We then turned to the full quantum case in which one

has to resort to a perturbative or numerical treatment. For Fock coherent states, we ind quali-

tatively similar results to the classical case: we derived a linearised correction to the effective

Friedmann equation, and the full numerical solution quickly deviates from this regime as inter-

actions become stronger.We found numerical evidence that relative uncertainties in the volume

start growing for Fock coherent states when the interactions become relevant, spoiling the

property of these states to become semiclassical at late times that we observed for a quadratic

Hamiltonian.

A main direction for future work will be lifting the assumption that only a single ield

mode contributes to the GFT dynamics. Since the quadratic part of the full GFT Hamilto-

nian only couples pairs of modes, in the free case it would not be dificult to include additional

modes into the analysis. For this case one question would be whether some modes would

always dominate asymptotically, as in the mean-ield analysis of [42]. When adding inter-

action terms however, we would expect the interaction of different modes to lead to a sub-

stantial modiication of the effective cosmological dynamics away from the effectively free

regime described by an LQC-like bounce. In particular this could apply to the recent pro-

posal of [56] for the generation of cosmological perturbations through quantum luctuations

in GFT cosmology. In the long term, we would then also aim to bring the interacting GFT

‘toy’ models studied in cosmological applications closer to candidate theories for full quantum

gravity.

An entirely different but conceptually important direction would be to contrast the

deparametrised framework used here, in which the scalar ield φ is used as a clock from the

beginning, with a covariant setting in which one is free to choose different clocks, following

e.g. the ideas of [57, 58].We plan to investigate this in modelswhich includemultiple candidate

matter clocks.
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Appendix A. Aspects of representation theory of su(1, 1)

In this appendix we give a brief overview of the representation theory for su(1, 1).
The Lie algebra su(1, 1) is deined by the following nonvanishing Lie brackets

[

K̂0, K̂±
]

= ±K̂±, (A.1)

[

K̂−, K̂+

]

= 2K̂0. (A.2)

The Casimir of this algebra is given by

Ĉ = K̂iK̂ jg
i j
= (K̂0)

2 − 1

2
(K̂+K̂− + K̂−K̂+), (A.3)

where

(gi j) =

⎛

⎝

1 0 0

0 0 −1/2
0 −1/2 0

⎞

⎠ (A.4)

is the Killing form which is used to raise indices. Since su(1, 1) is noncompact its representa-

tions are ininite-dimensional.

We will start our discussion by considering representations in which the operator K̂0 is

diagonal and satisies

K̂0 |μ〉 = μ |μ〉 . (A.5)

The operators K̂± raise or lower the value of μ as can be seen from considering

K̂0K̂± |μ〉 = (μ± 1)K̂± |μ〉 . (A.6)

In particular this means that

K̂± |μ〉 = c±(μ) |μ± 1〉 . (A.7)

By a straightforward computation one inds that

|c±(μ)|2 = μ(μ± 1)− c, (A.8)

where c is the eigenvalue of the Casimir operator (A.3), i.e.

Ĉ |μ〉 = c |μ〉 . (A.9)

The representations can be characterised by studying if the coeficients c±(μ) vanish for some

value of μ. Since we are mostly interested in interpreting the operator K̂0 as a (shifted and

rescaled) number operator, we will restrict ourselves to the case where the action of K̂− anni-

hilates the ‘initial’ state after some iterations. In particular, if one assumes that c−(k) = 0 one

immediately gets

c = k(k− 1). (A.10)

The representations thus available are characterised by a positive real number k. We will

denote the state that is annihilated by K̂− as |k, 0〉 and the rest of the representation can be

generated by acting iteratively with the operator K̂+. We deine the states to be normalised as

|k,m〉 =
√

Γ(2k)

Γ(2k+ m)m!
(K̂+)

m |k, 0〉 . (A.11)
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These states satisfy

Ĉ |k,m〉 = k(k − 1) |k,m〉 , (A.12)

K̂0 |k,m〉 = (k + m) |k,m〉 . (A.13)

To understand the normalising coeficient appearing in (A.11) it is helpful to write the action

of the operators K̂± similarly as before,

K̂± |k,m〉 = c±(k,m) |k,m± 1〉 . (A.14)

From this one readily gets

|c+(k,m)|2 = (2k+ m)(m+ 1), (A.15)

|c−(k,m)|2 = (2k+ m− 1)m. (A.16)

A.1. Realisation as bosonic operators

The Lie algebra su(1, 1) can be realised by bosonic operators â, â† satisfying the standard

commutation relations
[

â, â†
]

= Î. A suitable identiication is as follows

K̂0 =
1

4
(ââ† + â† â), K̂+ =

1

2
â†2, K̂− =

1

2
â2. (A.17)

The Casimir then turns out to be identically

Ĉ = − 3

16
Î. (A.18)

Recalling that for the discrete series Ĉ = k(k− 1)I, one inds that either k = 1/4 or k = 3/4.
By considering

K̂0 |k,m〉 = (k + m) |k,m〉 (A.19)

one can see that the states |k,m〉 correspond to the standard bosonic states |n〉 = (n!)−1/2â†n |0〉
in the following way

|1/4, 2n〉 ≡ |2n〉 , |3/4, 2n+ 1〉 ≡ |2n+ 1〉 . (A.20)

A.2. Coherent states

For the Lie algebra su(1, 1) there are several distinct notions of coherent states. These arise

naturally when trying to generalise the different ways one can construct coherent states in

the well-known case of the harmonic oscillator. There, for instance one might view coherent

states as the eigenvectors of the annihilation operator or to be generated by the action of a

speciic operator acting on ground state. In the case of the harmonic oscillator these notions

coincide. However, in the more general setting these notions lead to different coherent states.

We will discuss two notions of coherent states. Firstly, we will discuss coherent states gener-

ated by acting on the ground state by some speciic operator which are commonly referred to

as Perelomov–Gilmore (PG) coherent states since they were discussed in detail in [59–61].

Secondly, coherent states can be characterised as being eigenstates of the lowering operator.

For su(1, 1) these states are referred to as Barut–Girardello (BG) states [62].

A general discussion of coherent states can be found in the textbooks [59, 63].
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A.3. Perelomov–Gilmore coherent states

The operator which generates the coherent states from the coherent states is given by

Ŝ(ξ) = exp(ξK̂+ − ξK̂−). (A.21)

This operator can be written in the ‘normal-ordered’ form [59]

T̂(ζ) = eζK̂+eηK̂0e−ζK̂− , (A.22)

where ζ is deined as

ζ =
ξ

|ξ| tanh |ξ| , η = ln(1− tanh2 |ξ|) = ln(1− |ζ|2), (A.23)

These relations can also be expressed in the condensed form

T̂(ζ) = Ŝ

(

ζ

|ζ|artanh |ζ|
)

. (A.24)

The product of two such T̂ operators can be explicitly given as

T̂(ζ1)T̂(ζ2) = exp

(

ln

(

1+ ζ1ζ2

1+ ζ1ζ2

)

K̂0

)

T̂(ζ3), ζ3 =
ζ1 + ζ2

1+ ζ1ζ2
(A.25)

or with the opposite ordering

T̂(ζ1)T̂(ζ2) = T̂(ζ3) exp

(

ln

(

1+ ζ1ζ2

1+ ζ1ζ2

)

K̂0

)

, ζ3 =
ζ1 + ζ2

1+ ζ1ζ2
. (A.26)

Using the ‘normal-ordered’ form (A.22) of the displacement operator one inds acting on

the ‘ground state’

|ζ, k〉 = T̂(ζ) |k, 0〉 = (1− |ζ|2)k
∞
∑

m=0

√

Γ(2k+ m)

Γ(2k)m!
ζm |k,m〉 . (A.27)

Expectation values of ‘anti-normal-ordered’ operators can be given in a closed form [64]

〈ζ, k|(K̂−)
p(K̂0)

q(K̂+)
r |ζ, k〉 (A.28)

=
(1− |ζ|2)2k

Γ(2k)
ζ p−r (A.29)

×
∞
∑

m=0

|ζ|2m
m!

Γ(2k+ m+ p)Γ(m+ p+ 1)

Γ(m+ p− r + 1)
(k+ m+ p)q. (A.30)

The PG coherent states are eigenstates of the operator viK̂i, where [65]

(v0, v+, v−) =
1

1− |ζ|2
(1+ |ζ|2, 2ζ, 2ζ) (A.31)

with eigenvalues k, i.e.

viK̂i |ζ, k〉 = gi jviK̂ j |ζ, k〉 = k |ζ, k〉 . (A.32)
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As an aside we remark that it was pointed out in [48] that the PG coherent states saturate

the uncertainty relations

G(Â, Â)G(B̂, B̂) � G(Â, B̂)2 +

〈

1

2i

[

Â, B̂
]

〉2

, (A.33)

where we recall that the covariance G(Â, B̂) is deined as

G(Â, B̂) =

〈

1

2
(ÂB̂+ B̂Â)

〉

−
〈

Â
〉

〈

B̂
〉

. (A.34)

A.4. Barut–Girardello coherent states

As discussed above, an alternative notion of coherent state can be that the coherent state is an

eigenstate of the lowering operator. This is the deinition used in [62].

The coherent states satisfy

K̂− |χ, k〉 = χ |χ, k〉 . (A.35)

They are given by

|χ, k〉 = N(χ, k)
∞
∑

m=0

χm√
m!Γ(2k+ m)

|k,m〉 , (A.36)

N(χ, k) =

√

|χ|2k−1

I2k−1(2 |χ|)
, (A.37)

where Iα(x) is the modiied Bessel function of the irst kind.

For ‘normal-ordered’ products of su(1, 1) elements the expectation value for BG coherent

states is given by

〈χ, k|(K̂+)
p(K̂0)

q(K̂−)
r |χ, k〉 = |χ|2k

I2k−1(2 |χ|)
χpχr

∞
∑

m=0

|χ|2m
m!Γ(2k+ m)

(k+ m)q.

(A.38)

A.5. Fock coherent states

As explained in appendix A.1 su(1, 1) can be realised in terms of bosonic creation and anni-

hilation operators. For this Fock space representation there are the well-known coherent states

of the harmonic oscillator which can be characterised as being eigenstates of the annihila-

tion operator, i.e. â |σ〉 = σ |σ〉. For ‘normal-ordered’ operators the expectation value for Fock

coherent states is given by

〈σ|(K̂+)
p(K̂0)

q(K̂−)
r |σ〉 = 1

2p+q+r
σpσr

q
∑

m=0

( q

m

) 1

2q−m
〈σ|N̂m |σ〉 , (A.39)

〈σ|N̂m |σ〉 =
m
∑

n=0

S(m, n)|σ|2n, (A.40)

where S(m, n) are the Stirling numbers of the second kind.
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A.6. Central extension attempt

Due to the fact that the operator K̂0 can be interpreted as a shifted and rescaled version of the

bosonic number operator, one might be tempted to centrally extend su(1, 1) by deining the

following relation
[

K̂−, K̂+

]

= 2K̂0 + cÎ, (A.41)

where Î is a central element.We denote the centrally extended algebra by su(1, 1)c. The Casimir

of this algebra is given by11

Ĉ = (K̂0)
2
+ cK̂0 −

1

2

(

K̂+K̂− + K̂−K̂+

)

. (A.42)

Performing the same steps as above one arrives at the discrete rising series

K̂0 |k,m〉 = (k + m) |k,m〉 , (A.43)

Ĉ |k,m〉 = k(k + c− 1) |k,m〉 , (A.44)

|k,m〉 =
√

Γ(2k+ c)

m!Γ(2k+ m+ c)
(K̂+)

m |k, 0〉 , (A.45)

where k > −c/2 and m is a nonnegative integer. From these formulas it becomes evident

that these representations can be obtained from the case without central extension by the

replacements k→ k+ c/2, K̂0 → K̂0 − c
2
Î and Ĉ→ Ĉ − c

2
( c
2
− 1)̂I.
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