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Abstract

Objective

To report a neuroradiologic phenotype associated with reduced generation of multiple motile
cilia (RGMC) and mutations in the multicilin gene. We hypothesize that the observed phe-
notype may reflect the emerging role that ependymal cilia play in regulating CSF production.

Method
Clinical and radiologic records were retrospectively reviewed for 7 consecutive patients di-
agnosed by the Leicester UK national primary ciliary dyskinesia (PCD) diagnostic laboratory.

Results

On MRI scanning, all patients demonstrated hydrocephalus, choroid plexus hyperplasia
(CPH), and arachnoid cysts. No patient had any sign of neurologic deficit. All patients had
significant lung disease.

Conclusions

We conclude that there is a high incidence of hydrocephalus, arachnoid cysts, and CPH in
MCIDAS-associated RGMC. In all cases, the observed hydrocephalus seems arrested in
childhood without progression or adverse neurologic sequelae. Our new observation of CPH,
which is associated with CSF overproduction, is the first macroscopic evidence that ependymal
cilia may be involved in the regulation of CSF production and flow. We suggest that brain
imaging should be performed in all cases of RGMC and that a diagnosis of PCD or RGMC be
strongly considered in patients with unexplained hydrocephalus and a lifelong “wet”-sounding

cough.
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Glossary

CCNO = Cyclin O; CPH = choroid plexus hyperplasia; MCIDAS = multiciliate differentiation and DNA synthesis associated
cell cycle protein; PCD = primary ciliary dyskinesia; RGMC = reduced generation of multiple motile cilia.

Primary ciliary dyskinesia (PCD) is a rare heterogenous group
of disorders causing abnormal motile ciliary function, with
defective mucociliary clearance leading to lung and sinonasal
disease. Hydrocephalus is common in small animals with
PCD and is believed to be due to defective ependymal cilia,
which in health, beat at approximately 40 Hz moving CSE."
Hydrocephalus is, however, rarely seen in human PCD.>’

Reduced generation of multiple motile cilia (RGMC) is recog-
nized as a severe PCD phenotype which is associated with almost
complete loss of motile cilia.* Mutations in 3 genes have been
identified as disease causing. Recessively, inherited RGMC-
causing mutations are reported in MCIDAS encoding multicillin,
an upstream regulator of human multiciliated cell differentia-
tion,* and in CCNO encoding cyclin O, which acts downstream
on mother centriole generation and migration.” More recently,
dominantly inherited RGMC-causing mutations were reported
in FOX]J1 encoding the FOXJ1 transcription factor that also
regulates multiciliogenesis but in a distinct pathway that is
downstream of multiciliate differentiation and DNA synthesis
associated cell cycle protein (MCIDAS) and works in parallel to
Cyclin O (CCNO)." Although hydrocephalus associated with
RGMC has been reported, details of intracranial imaging are
limited.>® Here, we report hydrocephalus and the novel finding
of diffuse choroid plexus hyperplasia (CPH).

Methods

Retrospective cohort study for 7 consecutive patients diagnosed
with MCIDAS by the Leicester UK national PCD diagnostic
laboratory. Sanger DNA sequencing for individuals A and B was
previously reported” and next-generation targeted gene panel
sequencing for C-E was performed as described previously.*®

Standard protocol approvals, registrations,
and patient consents

Written informed consent was gained for data publication,
along with Research Ethics Committee approval (REC ref:
18/L0/2085) for retrospective data collection for patients
referred to the PCD national diagnostics service to allow
evaluation and understanding of ciliary defects.

Data availability
Anonymized data and detailed methodology not published
within this article may be shared by request to the senior author.

Cases

Patients A and B are term monozygotic twins, with South
Asian first cousin parents. On day 7 of life, Twin B developed
seizures that settled. Cranial ultrasound scan was reported to
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be within normal limits, although mild dilatation of posterior
horns of both lateral ventricles were noted.

Twin A required bilateral lung transplantation aged 16 years. An
MRI scan investigating transient encephalopathy after transplant
demonstrated hydrocephalus and CPH. Subsequent MRI of Twin
B showed hydrocephalus and CPH (figure 1 and table). Neither
sibling had neurologic symptoms or developmental delay.

Genetic testing revealed a biallelic homozygous nonsense mu-
tation in MCIDAS (c441C > A; p.Cys147%), as previously
reported.* Both siblings carried the same homozygous mutation,
and segregation analysis showed parents to be carriers (see figure
2 for Sanger sequencing).

Patients C, D, and E are siblings born to Asian first cousin
parents. Genetic testing revealed each child had a novel
biallelic homozygous nonsense mutation in MCIDAS,
c.1093C > T, p.GIn365* (figure 2). MRI scans showed that
all 3 siblings had hydrocephalus and CPH (figure 1 and
table). None of the siblings had neurologic signs or de-
velopmental delay.

Siblings F and G were born at term to first cousin parents who
are paternal and maternal first cousins of siblings C, D, and E.

Sibling F was diagnosed antenatally with communicating hy-
drocephalus, whereas sibling G had increasing head circum-
ference noted in infancy. Sibling G’s first cranial ultrasound
scan showed CPH with bitemporal arachnoid cysts. Follow-up
ultrasound showed persistent CPH and increased CSF spaces,
with increased lateral and 3" ventricle dilation. Head circum-
ference growth normalized. Subsequent MRI head scans of
both siblings demonstrated hydrocephalus and CPH (figure 1
and table). Neither sibling had neurologic signs or de-
velopmental delay.

Genetic testing showed that both had MCIDAS biallelic ho-
mozygous nonsense mutation, ¢.1093C > T, p.Glu365%,
identical to their first cousins, siblings C, D, and E (figure 2).

Discussion

Our series of MCIDAS mutations confirms a strong association
with hydrocephalus®® and describes an additional finding of
CPH. This differs from RGMC because of biallelic CCNO
mutations, where only 10% demonstrated hydrocephalus. All
children had accelerated lung disease and normal situs arrange-
ment, indicating no functional role for MCIDAS in left-right
determination consistent with the previous reports.4
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Figure 1 Selection of images from the full study cohort

Images A, C, and E correspond with patient D; D and F, with patient G; and B, with patient F. Note (A) [axial FLAIR] and (B) [axial T1-WI] on different patients
showing choroid plexus hyperplasia (arrows). High-resolution sagittal T2-WI (D, E) confirming CSF flow through the aqueduct of Sylvius (arrowheads) and large
retro cerebellar arachnoid cyst in both cases (stars). Further arachnoid cysts were noted in other locations as shown in C (axial T2-WI) and F (axial FLAIR) within

the anterior and middle cranial fossae respectively (stars).

The mechanisms causing hydrocephalus in RGMC remain un-
clear. It is suggested that CSF flow generated by rapidly beating
ependymal cilia helps maintain patency of narrow sites of CSF
passage in early postnatal development.” This is supported by
the observation of stenosis of the cerebral aqueduct and other
ventricular foramina in patients carrying mutations in FOXJI,
a transcription factor important for ciliogenesis."’

Although primary aqueduct stenosis can cause hydrocephalus, in
some cases, it is believed to occur as a secondary phenomenon,
resulting from hydrocephalus of different etiologies. Similarly,
PCD mice with largely static ependymal cilia (Cedc1S1 knock-
out) developed hydrocephalus with patent aqueducts visible by
micro-CT."""> None of our patients with MCIDAS had CSF
pathway stenosis. This phenotype of hydrocephalus with open
cerebral aqueduct suggests a different cause of hydrocephalus in
RGMC, where ventricles are presumed to lack cilia compared
with that of classic PCD where the cilia are present but dysmotile.

Ependymal cilia are believed to play important roles in CSF
homeostasis, both through paracrine modulation® and in host
defense, clearing debris and cells from ependymal surfaces.'* The

CSF microenvironment has been shown to affect choroid plexus

Neurology.org/NG

CSF production, for example, in a rat model of intraventricular
hemorrhage. Karimy et al."> demonstrated a 3-fold increase in
CSF production secondary to toll-like receptor 4 (TLR4) acti-
vation within the choroid plexus epithelium. As such, changes in
the CSF microenvironment secondary to loss of motile cilia may
promote increased choroid plexus production of CSF.

An alternative explanation for the observed phenotype is that the
absence of cilia affects ion transport across the choroid plexus
epithelium.'® This theory is supported by mouse models with
ependymal ciliogenesis defects, for example, IFT88-deficient
Tg737mpk mice defective for ependymal cilia assembly have CSF
that shows an abnormal accumulation of intracellular cyclic aden-
osine monophosphat and aberrant regulation of intracellular pH
and ion transport, a finding associated with upregulated CSF
chloride transport and increased CSF production sufficient to
cause hydrocephalus."® Accumulation of cyclic adenosine mono-
phosphat and increased transcytosis was also observed in a study
using chloral hydrate to deciliate swine choroid plexus.'”™® In other
mouse models affecting ependymal ciliogenesis, for example, Kif3a
mutants deficient for a kinesin motor protein required for ciliary
protein transport, hydrocephalus was observed in the neonatal
period before the development of mature motile cilia."" Based on
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Table Summary of disease characteristics

Sibling set

1 2 3

A B C D E F G
Age at diagnosis (y) 3 3 1 im 3m 6 5
nNO (ppb) — 36 57 30 10 12 9
Number of ciliary brushing samples 4 2 2 4 3 2 2
No cilia seen on high-speed video microscopy Yes Yes Yes Yes Yes Yes Yes
No cilia seen on multiple airway biopsies or culture Yes Yes Yes Yes Yes Yes Yes
Neonatal symptoms present Yes Yes Yes Yes Yes Yes Yes
Accelerated respiratory disease Yes Yes Yes Yes Yes Yes Yes
Situs status Solitus Solitus Solitus Solitus Solitus Solitus Solitus
Hydrocephalus confirmed Yes Yes Yes Yes Yes Yes Yes
Diffuse choroid plexus hyperplasia Yes Yes Yes Yes Yes Yes Yes
Arachnoid cysts Yes Yes Yes Yes Yes Yes Yes
Aquaduct patency Patent Patent Patent Patent Patent Patent Patent
Age at MRI (y) 16 16 10 9 4 5m 5

this observation, it was suggested that hydrocephalus in these
ependymal cilia mutant mice was secondary to choroid plexus CSF

. 1619
overproduction.™”

In our study, the observation of diffuse CPH in patients
with MCIDAS mutation is, to our knowledge, the first
structural, macroscopic evidence that supports the theory

that hydrocephalus in certain types of PCD is secondary to
CSF overproduction. CPH is rare and is characterized by an
enlarged morphologically normal choroid plexus, which is
known to cause CSF overproduction and hydrocephalus.
The mechanism by which MCIDAS and other proteins in-
volved in ependymal ciliogenesis potentially cause CPH is
possibly related to growing evidence that choroid plexus cilia

Figure 2 Familial segregation of MCIDAS mutations detected in reduced generation of multiple motile cilia families
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may regulate CSF production via effects on choroid plexus
ependymal cells.

Our second observation of arachnoid cysts in patients with MCI-
DAS mutation has not been previously reported. Cysts are possibly
secondary to tears in the arachnoid from abnormal CSF flow or
alternatively from adhesions after impaired clearance of CSF debris
because of absent motile cilia. Despite abnormalities on neuro-
imaging, none of the MCIDAS-deficient patients had neurologic
findings or developmental delay. This is likely related to relatively
early development of hydrocephalus, when the brain is structurally
compliant and able to compensate to high CSF pressures.

Conclusion

The observation of CPH in RGMC secondary to MCIDAS
mutations provides further evidence that ependymal cilia are
potentially involved in regulation of CSF production in addition
to CSF flow. Our results suggest the process is not progressive
but rather represents an arrested/stable state. This is clinically
important because benefits of ventriculoperitoneal shunting in
this patient group need to be carefully considered. We recom-
mend that if unexplained hydrocephalus is found in patients with
lifelong wet-sounding cough, referral for diagnostic testing for
PCD and RGMC should be strongly considered. Similarly,
cranial imaging is indicated in RGMC.
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