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ABSTRACT

Significant work has been presented over the last decade looking at

the application of Mixed Criticality Scheduling. The premise being

that if a failure occurs the scheduler performs a mode change from

normal mode to high-criticality mode. In high-criticality mode,

some low criticality tasks are given a reduced service (e.g. not

executed or executed at a different period). Recently work has

been performed to bound the number of low criticality jobs that

might be skipped while the scheduler operates in high-criticality

mode. However a significant gap in the analysis is to understand

for how long the service to low criticality tasks may be reduced, i.e.

how often the system switches to a high-criticality mode and how

long the high-criticality mode is sustained. This is essential as part

of supporting software certification. In this paper we consider a

process, agnostic to the underlying scheduling strategy, designed to

allow a system integrator to address this gap by assessing the level

of service provided to low criticality tasks. The result is a safety

argument with supporting evidence based on a real life case study,

taken from a DAL-A certified aircraft engine control system.1

CCS CONCEPTS

·Computer systems organization→Real-time systemarchi-

tecture.

KEYWORDS

Mixed-Criticality, Robust scheduling, QoS, Real-time systems

ACM Reference Format:

Stephen Law, Iain Bate, and Benjamin Lesage. 2020. Justifying the Service

Provided to Low Criticality Tasks in a Mixed Criticality System. In RTNS

’20: International Conference on Real-Time Networks and Systems. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.1122456

1This paper is based on a paper accepted for Ada Europe 2019, however it was never
published.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTNS’20, June, 2020, Paris, France

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Real time embedded software tasks developed for safety critical

systems, such as civil avionics engine control systems, are typically

developed according to a specific Development Assurance Level

(DAL) [21]. The DAL indicates a criticality level for a component

and is assigned based on the consequence to the system’s safety

that a failure of this component could cause. This paper considers

the model presented in DO-178C [20], that defines DAL-A as the

highest criticality level and DAL-E the lowest.

It is typically assumed that the amount of effort assigned to

producing enough evidence to prove the correct operation of a

software component is directly proportional to its DAL [22]. In

practice though, it is still desirable that low DAL software operates

as expected; a low DAL component may also be essential to achieve

the desired customer capability. Put simply a task’s criticality is

not necessarily related to its ‘importance’. Furthermore, a low DAL

task may still be bound by strict temporal requirements; a task’s

criticality is independent from its temporal properties.

In the literature a Mixed Criticality System (MCS) is a system

which combines software of multiple DALs on the same processor.

The dominating model that has emerged in the field of Mixed Crit-

icality Scheduling is that of the double computation time model

first introduced by Vestal [22]. The model uses two measures of

Worst Case Execution Time (WCET) for each task: one measure

for the low DAL mode (CLO ), and a higher figure for the high criti-

cality mode (CHI ). In practise CHI may be derived from a sound

WCET analysis whereas CLO could be derived from a best effort

approach. This model essentially allows a system integrator to cap-

italise on the (strong) assumption that a high criticality task’s CHI

is pessimistic, while its CLO may be reliable, but optimistic. This

is facilitated by allowing low DAL tasks to execute as long as all

tasks within the system execute within their CLO bounds. If any

tasks execute beyond these bounds, service to low DAL tasks may

be reduced or stopped.

Regardless of the scheduling methodology employed, the general

assumption in the literature is that low DAL components can be

denied service at times of heightened system utilisation. In practise,

in a well-designed system this should only occur in extreme cases,

if ever. Unfortunately, this potential denial of service cannot be

quantified through the schedulability analysis and the performance

of the integrated system in operation needs to be considered to

understand how long and how often loss of services may occur.

This is because it is not known howmany tasks, if any, may execute

beyond their timing bound within a certain time window without

executing the system in a representative environment. This means
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it is difficult to obtain concrete proof that a low DAL component

will receive a good enough level of service to fulfil its mission

requirements.

One strategy to combat this in a MCS may be to increase CLO

timing budgets across the system in order to ensure that low DAL

components are ‘never’ denied service. However, the more a task’s

CLO increases towards itsCHI ; the less the system is able to benefit

from utilising the CHI pessimism. Furthermore, (unless CLO
==

CHI ) then even this approach cannot be guaranteed to provide the

necessary service in all cases. In essence, it is difficult to understand

the performance afforded to low DAL tasks in a MCS without

performing a dynamic assessment in a representative environment.

This paper considers how a system integrator may develop a low

DAL task and express its requirements, with a use case taken from a

real aircraft engine control system. The aim is to describe a process

that could be employed to assess the online level of service given

to a low DAL component in order to allow an informed decision

on system performance to be made, and by providing evidence

supporting timing requirements with a sufficient confidence level

to support certification arguments.

The key contributions of this paper are as follows:

• To provide a process for assessing the service afforded to a

low DAL task, agnostic of scheduling methodology.

• To assess how realistic claims can be expressed as part of a

certification case or argument

• To demonstrate the proposed process in the context of a real

aircraft engine control system application

1.1 Related Work

Vestal [22] was one of the first publications to consider the schedula-

bility of a MCS. The work draws the comparison that the reliability

of the WCET figure used for each task is proportional to its criti-

cality. This is based on the observation that low DAL tasks are not

developed, or verified, to the same extent that high DAL tasks are,

and therefore the output WCET figures cannot be expected to be

as reliable.

Building off Vestal’s work, Baruah et al. [2] introduced Adaptive

Mixed Criticality (AMC). The AMC protocol de-schedules all low

DAL tasks if any high DAL task executes for longer than its CLO .

The original AMC algorithm was extended to delay the system’s

switch to the high criticality mode. The bailout protocol uses a

‘Bailout Fund’; a measure of how much slack time is currently

in the system [3]. Should the Bailout Fund fall below zero, then

the system reverts to a high DAL only mode until such time as

the system reaches idle, or the Bailout Fund increases above zero.

This protocol essentially delays, potentially suspending completely,

entry into the high criticality mode using the assumption that it is

unlikely that several tasks will overrun their CLO at the same time.

While low DAL tasks may have less stringent timing or verifica-

tion requirements, they are still important for the correct operation

of the system. Several papers have thus explored approaches to im-

prove load DAL task support and offer more realistic models where

low DAL tasks are not abandoned [6]. In particular, the temporal

properties of a low DAL tasks can be altered, reducing its service, or

execution time, without affecting its overall requirements. Jan et al.

[13] looked at applying the elastic task model, originally proposed

by Buttazzo et al. [8], to a MCS. Rather than de-scheduling all tasks,

this model instead extends the period of low DAL tasks to reduce

the utilisation on the system. In contrast, the so-called imprecise

mixed criticality model [18] reduces low DAL execution budgets in

order to improve wider system performance. Finally, another ap-

proach reduces the priority of low DAL tasks as required, effectively

executing low DAL tasks during periods of high system utilisation

in system slack time only [5]. However, this is wholly dependent

on the expressed requirements of the low DAL task being flexible

enough the support the proposed models.

Less stringent requirements were introduced to allow for a defi-

nition of the Quality of Service (QoS) offered to a task in the form

of (m −k)-firm deadlines [11], where a dynamic failure occurs only

if fewer thanm out of k consecutive jobs of a task fail to meet their

deadlines. The weakly hard real-time system model proposed by

Bernat et al. [4] generalises this model by allowing non-consecutive

deadline misses over a k jobs window. Typical Worst-Case Analy-

sis [12] provides for an evaluation of the QoS offered to a task by

bounding the number of deadline misses it can suffer in a weakly

hard real-time system.

The AMC analysis was extended in [9] to support weakly hard

real-time systems such that service is provided to low DAL tasks in

high criticality mode by allowing them to run a reduced number of

jobs in a given cycle. The analysis effectively determines whether

or not all low DAL tasks will at least meet a (m − k)-firm deadline

requirements. Medina et al [19] also considered a (m − k)-firm

model but to delay the need to switch to a high criticality mode.

No service is provided to low DAL tasks once the switch occurs,

and tasks may be skipped if their predecessor exceeds its budget.

They rely on a probabilistic process for assessing the availability of

low criticality tasks, assuming timing error rates are known. While

these approaches can provide some guarantee on the minimum

service offered to a task, neither can provide for an evaluation of

how often, and how long the system sustains a high criticality mode

under different strategies.

The resilient model [7] utilises graceful degradation to improve

low DAL task performance, by delaying the switch to the high crit-

icality mode and the loss of service. Similarly to the weakly hard

systems, robustness is supported at the task level where certain ‘ro-

bust’ tasks2 are capable of skipping individual jobs when requested.

In addition, the approach employs resilience at the system towards

supporting a certain number of timing failures. Service guarantees

are provided under each scheduler mode, based on the number of

supported timing failures, up to the point where low DAL tasks

have to be dropped.

In summary, MCS previous research has focused first on high

DAL task requirements, with the static analysis showing that in

the worst case low DAL tasks will receive no service. Methods

such as elastic scheduling or weak hard real-time aimed to improve

low DAL tasks overall service, with graceful degradation aimed

to provide some control on the occurrence of service loss for low

DAL tasks, or the reduction in service. Even though the move to

the high criticality mode may be delayed, it still may occur at some

point resulting in no or degraded service for all low DAL tasks

in the system. The methods offer many ways to help improve or

2A task’s robustness is independent from its criticality
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guarantee low DAL task performance under adverse circumstances,

but have not addressed how to assess this performance and service

in a meaningful way especially to support certification, i.e. when a

mode change may occur, or what impact (by way of duration and

frequency of loss of service) this may have on the low DAL, and/or

robust, tasks, when all tasks are not continuously assumed to be

running to their allocated budgets.

The low DAL task service assessment conducted in this paper is

designed to be agnostic to the underlying scheduler methodology.

Without loss of generality, this paper focuses on the Robust Mixed

Criticality Model3. The reason for focusing on this model is that the

concept of being able to carefully manage a graceful degradation to

the system, including the introduction of tasks that can be disabled

for specific periods of time (encompassing the weakly-hard model),

is well suited to the case study investigated here.Whereas the classic

MCS models, such as the AMC, offer no graceful degradation and

instead subject low DAL tasks to an immediate drop in service, if

required.

1.2 Robust Mixed Criticality Systems

The Robust Mixed Criticality Model as presented by Burns et al. [7]

introduced the following definitions for a robust mixed criticality

system:

Definition 1. A robust task is one that can safely drop one non-

started job in any extended time interval.

Definition 2. The robustness of a complete system is measured

by its F count (how many job overruns can it tolerate without jobs

being dropped or deadlines missed) and its M count (the number

of job overruns the system can tolerate once each robust task has

dropped one job).

Definition 3. A resilient system is one that employs forms of

graceful degradation that adequately cope with more than M over-

runs.

A fault is measured when one task overruns its CLO , where as

an error is the manifestation of a one or many faults and represents

the point where a task fails to adhere to its timing requirements. A

resilient system is designed to cope with one or many faults, while

avoiding errors.

The resilient system model introduced in [7] is capable of coping

with F faults (F -mode or fail robust), before reverting to a mode

where robust tasks skip their jobs (M-mode or fail resilient). At

this point the system is capable of coping with further faults up

to a total ofM faults, where F < M . This provides a set bound on

the size of a robust task skip burst. Once the fault count increases

aboveM , the system reverts to the high criticality mode where no

service is provided to low criticality tasks. Once the system reaches

the idle state, the failure count is reset and, if required, the system

reverts to the normal mode.

The schedulability analysis presented in [7] provides a proof that

high criticality, robust tasks, meet their schedulability requirements.

The analysis also provides a bound on the number of jobs a robust

task may skip between idle points. However, the analysis provides

no guarantees on the service given to low criticality tasks, or indeed

the time between individual robust task skip bursts.

3Additional results on the application of the service assessment method on the Robust
and AMC+ MCS models are available in [15].

The aim of the process presented in the remainder of this paper

is to assess the performance, and critically, the failure rate afforded

to a robust or low DAL task in a representative system. As no

service is provided to low DAL tasks in the high criticality mode, it

is important to understand how often and for how long the system

may sustain the high criticality mode. The statistical analysis is

designed to then provide a system integrator with the information,

and confidence, required to make an informed decision on whether

a robust or low DAL task will meet its temporal requirements.

2 CASE STUDY

The case study investigated as part of this paper is taken directly

from a Rolls-Royce Aircraft Engine Control System. In order to

provide a secure record of engine performance, the control system

regularly writes system parameters to flash memory. While non-

volatile and secure, the time taken to write to this flash memory is

considerable, with the task’s execution time being directly propor-

tional to the amount of data being written. Therefore, the amount

of data written to the data store is minimised as far as possible. In

order to support future design and maintenance goals, it is desirable

to reduce this limitation.

The control system contains a periodic task responsible for writ-

ing data to flash memory. This task reads from a memory buffer,

written to by other tasks, before copying the buffer to flash. At

present the task is certified as a high DAL component and treated

as a hard real time task, however the task could more easily be

designed to execute for longer, with an assumption that it may

periodically drop jobs. This assumes necessary protections are put

in place to protect the wider system.

The existing system consists of a set of several hundred tasks in

the order of tens of thousand lines of code. All tasks in the system

are high criticality. In order to support this study the code base

has been ported to a scheduler designed to implement a robust

system [7], with the flash memory task being treated as a robust

low DAL task. The ported system consists of 17 tasks with support

mechanisms provided by a commercial-off-the-shelf RTOS.

The newly configured robust low DAL flash memory task was

integrated into the schedulability analysis of the control system, at

the same time the execution time budget of the task was increased,

while the period was decreased. Overall this increased the permis-

sible utilisation of the task by a factor of 60. The system was shown

to be schedulable in the low DAL, fail robust (F-mode), fail resilient

(M-mode) and high DAL modes as defined by the robust model [7].

This increase in utilisation was only permitted thanks to the use

of a mixed-criticality system exploiting the difference between the

analysed (sound, safe and pessimistic) WCET used for the CHI and

the (test measured, robust but potentially optimistic) system high

water mark time used for each task’s CLO .

The newly configured flash memory task is designed to con-

tinuously write data when called to do so. If a job of the task is

skipped, then it will simply resume writing to memory from the

next entry in the memory buffer. The principal requirement is that

the memory buffer does not overflow, and so the task is designed

to write more data than necessary on each invocation. So following

a period of reduced service the task is able to recover and return to

normal operation provided it has sufficient time.



RTNS’20, June, 2020, Paris, France Law, Bate, and Lesage

For this analysis, the following assumptions surrounding the

robust task have been defined:

• Due to the task’s increased execution budget, if given full

service the task is capable of writing data to flash memory

at a faster rate than the reporting tasks can write data to the

shared memory buffer

• The shared memory buffer is sufficiently large to allow the

flash memory task to skip up to four jobs

• Once the flash memory task skips a burst of up to four jobs,

the task must execute the following four jobs in order to

allow the task to avoid data loss.

Therefore the overriding requirement for analysis is that each

time the robust flash memory task suffers a job skip burst, it should

have a clear period of at least four successful executions before it

can skip a job again. If the task skips a job in less time, the task is said

to have suffered an error. The task period itself is 12.5ms, therefore

the basic requirement for the task can be defined as follows:

Definition 4. A flash memory task error is recorded when a job

skip bursts lasts more than 50ms or two separate job skip bursts

occur with a less than 50ms interval.

The following assumptions have been made about the wider

system:

• The occurrence of an individual task overrun is very rare.

Rationale: The defined CLO for each task, representing the

computation time beyond which a task would register a failure,

has been generated from an extensive testing regime and car-

ries with it a high level of confidence. However, being derived

from a simple measurement technique it is still assumed to be

optimistic.

• Individual task overruns are independent and are not reliant

on the current operation of the control system. Rationale: an

overrun is an event unique to each task, and not a systematic

event caused by an error or operation at the system level.

• Task overruns can be assumed to be independent of hardware

operation. Rationale: The system is designed to be resilient to

external hardware failures, secondly the target processor design

is compliant with DO-254 as a high criticality device.

The requirements on the robust task can be expressed as a (4−8)-

firm deadline [9]. By scheduling the robust task in the high critical-

ity mode at a reduced rate, the schedulability analysis would then

verify it is allocated sufficient service. However the contribution

of the robust task to the utilisation of the high criticality mode

renders the system unschedulable. Instead, we propose a process

to assess the service received by the robust task and validate its

requirements, by considering how often the system switches to

high-criticality mode and how long the high-criticality mode is

sustained.

3 CERTIFICATION REQUIREMENTS

This paper focuses on an aerospace application, and so the guidance

provided byDO-178C [20] is used as the focus of this work. However

the guidelines are considered similar to those detailed in other

software domains such as ISO26262 and IEC61508 [10]. The focus

of this work is predominately on understanding the performance of

a robust and/or low DAL component, the certification requirements

surrounding software partitioning and mixed criticality have been

assessed in a parallel work and are not discussed further in this

paper. There this paper will only consider temporal performance.

DO-178C requires that the certification documentation is able

to justify the accuracy, correctness and robustness of the system.

This requires an understanding of the temporal performance of the

system (with respect to task WCETs and system schedulability),

and confirmation that the system’s temporal requirements have

been met.

When reviewing low DAL and/or robust tasks, this requires the

system integrator understand the potential error rate of each task’s

temporal requirements, and furthermore show that this rate is

acceptable given the system wide effect of a temporal requirement

error.

The prior work in the field of MCS has presented static analysis

models for proving the service afforded to high criticality tasks.

However the previous work has not yet offered solutions for system

integrators to generate the evidence required to meet the low DAL

task certification requirements discussed in this section.

4 ANALYSIS OF ROBUST TASK
PERFORMANCE

Regardless of the method chosen to control low DAL or robust

tasks, the performance of said tasks is wholly dependant on the

actual performance of the system. Therefore the process conducted

here is based on a statistical assessment of a set of execution results

extracted from either a test rig execution during a system-level

test campaign, or from a scheduler simulation of the system in

question. This paper predominately follows the results obtained

from simulation. The use of which allows a significantly larger data

set to be compiled, de-risking the system design early in its life

cycle. Ultimately these results are supplemented and improved as

testing of the system progresses by test data obtained from a full

end to end test campaign.

The simulator is initialised using execution profiles extracted

from the system during task-level testing designed to mimic system

behaviour while in operation [16]. This ensures that the execution

profiles provide a realistic representation of the task’s actual per-

formance when in operation. These execution profiles, including

RTOS overhead measurements, are input into a bespoke scheduler

simulator which is executed on a high performance server over a

thousand times in order to build up a comprehensive set of results.

The simulator has been validated against the real system, and is

designed to be reviewed and improved as additional real system

performance data is generated.

The execution time of each task is output by the scheduler, as

is information on whether a task executes, or is blocked. The data

output by the simulator is analysed to measure the time between

each data-set skip. A single execution simulates thirty minutes of

scheduler time.

The results are then input into the statistical assessment intro-

duced in this section, that aims to provide a confidence in adherence

to the low DAL component requirements, as well as providing an

understanding of the probability of the component’s requirement

being broken. Together these results should allow a system integra-

tor to make a guided decision on whether the lowDAL component’s
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Figure 1: Goal Structured Notation Argument for the Overall low DAL Requirement

performance is acceptable or not. This forms the principal contri-

bution presented in this paper.

The following sections introduce a Goal Structured Notation

(GSN) argument for the approach, as well as providing results from

applying the analysis to the Rolls-Royce case study introduced in

Section 2.

4.1 Goal Structured Notation

Within this and the following sections, we use the Goal Structuring

Notation (GSN) [14]. GSN is a widely used approach within the

industry [1]. The principal purpose of a goal structure is to show

how goals (claims about the system) are successively broken down

into sub-goals until a point is reached where claims can be sup-

ported by direct reference to available evidence (solutions). As part

of this decomposition, using the GSN it is also possible to make

clear the argument strategies adopted (e.g. adopting a quantitative

or qualitative approach), the rationale for the approach (assump-

tions, justifications) and the context in which goals are stated (e.g.

the system scope or the assumed operational role). The GSN argu-

ments in paper use Goals (G), Assumptions (A), Statements (St) and

Solutions (S). For further details on GSN see [14].

Figure 1 shows a GSN argument that expands how Definition 4

is assessed. The principal claim (G0) that two job skip bursts will

not occur within 50ms, is analysed using a statistical analysis of

results obtained by a simulation of the system.

This is in the context that the simulation is a representative

example of the real system, and that the overall estimated error

rate is acceptable. This error rate can then be taken forward and

included as part of a system wide certification case for the low DAL

or robust software.

The strategy for the analysis is broken down into four key sub

claims, as follows:

• G1 - Confidence - The simulation achieves appropriate cov-

erage

• G2 - Likelihood - The simulation output provides an under-

standing of the likelihood of an error

• G3 - Correctness - The simulation is a valid representation

of a real system

• G4 - Acceptability - The minimum time between data-set

skips is acceptable.

The following sections describe each of these goals in more

detail.

4.2 G1 - Confidence

In order to properly understand the performance of the system it is

vital that the statistical analysis is performed across a significantly

large sample that represents the real performance of the system.

Claim G1 aims to confirm this is the case and aims to understand

whether enough testing has taken place.

Figure 2 shows the extension to claim G1. This claim is fulfilled

by ensuring the simulation executes for long enough to indicate

that most execution time variations have been observed (G5) and

that further exploration of the search space does not reveal new

results (G6).

4.2.1 G5. Claim G5 is concerned with understanding whether a

single simulation executes for long enough, and is supported by an

assessment that reviews whether continued simulation reveals any

additional differences or significant differences in the distribution

(S10). This is important to understand as it helps build the argument

that the statistical analysis is performed across a fully representative

set of execution profiles. This is tested by reviewing the minimum

time between job skips, as well as the confidence interval and the

mean. In all cases the aim of the assessment is to review whether,

as the simulation continues, the results have converged.

Figure 3 shows the results from one execution of the simulator

and illustrates the variation in the confidence interval, mean and

minimum as the simulation progresses. The results show that de-

spite a significant amount of variability initially, the confidence

interval (the range within which there is 95% confidence that the

mean resides within) converges around approximately 10ms, and
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Figure 2: Goal Structured Notation Argument Exploring the Confidence of the Analysis

Figure 3: Changes in Confidence Interval (left), Mean (right top) and Minimum (right bottom) of the Time Between Job Skips

Over Simulation Time
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the mean and minimum converge around 350ms and 60ms respec-

tively. The key to analysing these plots is to identify whether the

simulation results are changing as the simulation continues, or in

essence do the results indicate that further exploration does not

reveal any new or different results.

4.2.2 G6. Claim G6 is concerned with understanding whether a

large scale evaluation over a large number of simulations produces

a similar result to that of a single simulation, this aims to provide

further confidence that the search space has been explored suffi-

ciently. The claim confirms firstly whether the analysis is repeatable

when a large scale simulation is performed, and the results from

multiple short simulations create a combined result equivalent to

one long simulation.

Claim G6 is supported by an assessment of the job skip dis-

tributions over 1000 iterations of the simulator using both a χ2

distribution equivalence test (G8) and an Earth Movers Distribution

(EMD) (G9). In both cases the simulation from the first test is used

for comparison against the other 999. Secondly G10 claims that

when two short simulations are appended together they provide

equivalent results to one long simulation.

Figure 4: Comparison of EMD over 1000 Simulations

Figure 4 shows the EMD result from executing 1000 simulations.

In each case each simulation’s distribution was randomly sampled

using different sample sizes of the set (1%, 5%, 10%, 20%, 40%, 60%,

80%, 100%) of the length of the distribution. This randomly sampled

set was then compared, using an EMD test, to a randomly selected

distribution of the same length taken from the first simulation. As

can be seen from Figure 4 the larger the chosen sample, the closer

the two randomly selected distributions, secondly the results are

shown to converge as more data is appended to the sample.

Secondly the distribution of the first simulation was fitted to an

exponential distribution in order to produce an expected distribu-

tion to test against (fitted with χ2(12,n = 5080) = 387,p < 0.01)4.

4 χ 2 results throughout this paper are denoted using the following terminology -

χ 2([degrees of freedom], n = [number of samples)] = [result]), [statistical significance].
If the statistical significance (or p value) is less than 0.01, then the two compared
distributions can be said to from the same population, that is the are not independent.

Each of the other 999 distributions produced by each of the sim-

ulations were then compared to this fitted distribution using a

χ2 distribution equivalence test, which showed each simulation

was produced from the same population (mean result - χ2(12,n =

5080) = 171,p < 0.01).

4.3 G2 - Likelihood

Once a robust and reliable data set has been generated, the next step

in the process is to analyse the results to understand the probability

of breaking the requirement. This provides a real measure that can

be used to make a decision of whether the service given to the low

DAL task is acceptable or not.

Figure 5 shows the process for understanding the probability of

the flash memory component suffering a timing requirement error.

Claim G2 is split into two parts, the first is an assessment based on

the observed performance of the system (G16, G17), and the second

is a statistical inference to understand the exceedance probability

of the sample (G18).

4.3.1 G16, G17. The principal objective of viewing the range of

simulated results is to gain confidence that the minimum, and any

results that are close to the minimum requirement, occur with a

low probability. That is, denials of service to the low DAL tasks are

infrequent.

Figure 6 shows the range of results obtained during one simula-

tion. The main aim of reviewing the figure is to assess how far from

the minimum requirement the majority of the inter-quartile range

lies. In particular to provide confidence; the majority of results

should lie well above the requirement.

To further understand the extreme values in the simulation a

percentile test was applied to the full set of 1000 simulation results

obtained in Section 2, the results showed that 62.5ms represented

the 0.1% percentile. The analysis is expanded in Table 1 which

shows the percentage results observed close to the requirement of

50ms.

These results should be used to provide some confidence that

the vast majority of results are observed well above the minimum

requirement providing confidence that a breach of the requirement

is a one-off, rarely seen, event.

4.3.2 G18. Understanding the probability of breaking the require-

ment is assessed in one of two ways. If the requirement has been

broken during testing, then the probability of this exceedance is

estimated using an Empirical Cumulative Distribution Function

(ECDF). However, if the requirement has not been broken then the

exceedance probability is estimated using an extreme value theory

on a fitted distribution.

The results of one simulation which did not break the require-

ment were analysed. The simulation was fitted to an exponential

distribution in order to produce a continuous distribution for analy-

sis (χ2(12,n = 5667) = 383,p < 0.01). The probability of obtaining

a job skip interval of less than the requirement with this distribution

was found to be 4.8%.

Secondly the results from 1000 simulations were combined, as

justified by claim G18. In this case this extended distribution did
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Figure 5: Goal Structured Notation Argument Exploring the Probability Assessment of the Requirement

Figure 6: Box Plot Diagrams Showing the Range of Job Skip Interval Times, With a Zoomed-Plot on the Right Around the

Minimum Requirement
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Time Between Skips % Results More Frequent Than Time Between Skips

50ms 99.9948%

60ms 99.9947%

70ms 99.76%

80ms 98.73%

90ms 96.76%

100ms 75.43%

Table 1: Percentage Results Observed Close to the Minimum Requirement After 1000 Tests

Figure 7: Goal Structured Notation Argument Exploring the Correctness of the Analysis

include instances where the requirement had been broken. Using

an ECDF function, the probability of error was found to be 0.005%.

4.4 G3 - Correctness

The results obtained so far have focused on a simulation of the

system. This is advantageous as the simulation can provide a much

larger data set to analyse than is possible from execution on a real

system test rig, secondly the results can be generated much faster

than possible on real hardware. However, it is important to review

the statistical results obtained to verify that they provide a valid

representation of the real system.

Figure 7 extends the GSN argument and examines how the analy-

sis provides representative results of the actual system performance.

Firstly the claim assumes the simulation has been executed for a

sufficiently long amount of time, as verified by claim G1 in Figure

2. Secondly the claim is verified using real results obtained from

test rig operation (G21 and G22).

4.4.1 G21. Claim G21 concerns the input timing profiles used to

generate the simulator results. As noted in the introduction to this

section, the simulation is setup using a set of task timing profiles

generated through task-level execution in a representative envi-

ronment, as detailed further in [17]. These timing profiles provide

a representative set of results for the scheduler simulation to ran-

domly iterate over.

Secondly once a full system test rig campaign has been com-

pleted, the results from the real system should be used to both

improve the simulator, and to compliment the simulation produced

results in order to improve accuracy. This full system test campaign

is expected to provide a significantly large set of results to boost

confidence in the statistical analysis, arguably approaching a point

where the simulation may not be required. However, these results

would be expected to take significantly longer to generate, and

would be provided at a time in the software design life-cycle too

late to allow cost effective improvement.

One risk with this approach is that the test rig campaign may

indicate the simulation does not deliver representative results, this

is a significant risk with any approach utilising a simulator and is

in this case unavoidable. The risks are mitigated by the fact that, as

is frequently the case, the software project contains a number of

legacy components, for whom timing data should exist, but is also

mitigated by an assumption that the simulation can be refined as

soon as software testing begins, rather than waiting for its comple-

tion. The key is that the simulation provides an easy environment

for fast and efficient whole system analysis.

4.4.2 G22. The second step to understanding if the results repre-

sent the real system is to compare a set of the produced simulation

results against results obtained from the real system to ensure that

the results are both sufficiently similar. To do this, a subset of test rig

results should be used to repeat the distribution analysis conducted

to confirm claim G6 in Figure 2 in order to verify that the sub-set

of test rig results produce a similar distribution to the super-set of

simulation results. Comparison to a real system test campaign is,

at this point, left to future work.

4.5 G4 - Acceptability

The analysis process has so far shown how results can be produced

that explore the behaviour of a representative system. This has

been executed until sufficient coverage of the system has been

produced, resulting in an assessment of likelihood, which has finally

been verified against real system behaviour. However the only

way to assess whether the results indicate a low DAL task will

receive enough service is down to an engineering judgement. This
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assessment must take into account the resilience, accuracy and

correctness of the wider system in the face of low DAL task errors,

as well as the individual temporal requirements of the low DAL

task

It is important to remember that the system must be resilient to

robust task errors anyway, otherwise the task could not be treated

as a robust task. However, should the results prove unacceptable, the

next step would be to assess which tasks indicate overruns, altering

their CLO figures accordingly. The use of a scheduler simulator

facilitates an easy design-analyse-rework cycle that simply could

not be achieved with a full test campaign.

5 CONCLUSION

This paper has presented an approach to verifying the service af-

forded to low DAL tasks in a MCS. The approach presented is

agnostic to the choice of scheduling methodology and instead fo-

cuses on a dynamic statistical process based on analysis of task

performance within a representative environment. The approach

was applied to a real aircraft engine control system. This allowed a

formerly high DAL task to be re-designated as a robust low DAL

task with its permissible utilisation being increased by a factor of

60. The analysis aimed to provide a confidence and understanding

in the service afforded to the low DAL task, which was found to

indicate a job completion rate of 99.995% based on the execution of

1000 tests. This metric, as well as the wider results, provide a system

performance understanding which should allow a system integrator

to understand compliance to the low DAL task requirements.

Even though the certification strategy, argument and evidence,

has been considered in the context of DO-178C by the authors and

internal safety experts, as part of our future work the approach

is to be discussed with appropriate certification authorities which

may lead to changes in the approach.
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