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First described in 1955 by John McCarthy as “the sci-
ence and engineering of making intelligent machines”1, 
artificial intelligence (AI) is a field of computer science 
research devoted to designing software capable of per-
forming computations with a sophistication similar to 
that of human intelligence. AI encompasses a wide range 
of computational systems and tools that mimic actions 
that the human brain performs on a daily basis: prob-
lem solving, reasoning, pattern spotting and knowledge 
acquisition2. Machine learning and natural language 
processing are the forms of AI most commonly used in 
health- care settings as they enable a robust interrogation 
of datasets in order to identify previously undiscovered 
patterns and relationships between different features in 
the data3. These two forms of AI are distinct, but share 
common features, as natural language processing largely 
uses machine learning to derive meaning from language. 
The functions of machine learning could aid diagnosis, 
development of novel therapies, and help improve our 
understanding of the disease course.
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The application of machine learning algorithms to 
medicine and scientific research has been widely dis-
cussed in recent years4–9. In the last decade, new tech-
nologies have enabled rapid accumulation of patient 
data such as ultrasonography and MRI readouts; omics 
profiles of biological samples; electronically captured 
clinical, behavioural and activity data; and social media-  
derived information10–13. These big health datasets are 
high- dimensional, meaning the number of features 
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(or variables) recorded per observation can sometimes 
exceed the total number of observations. For exam-
ple, gene expression datasets can contain the expres-
sion levels of ~20,000 genes, whereas obtaining data 
from 20,000 individuals with a given disease would be 
extremely challenging. These high- dimensional datasets 
are often sparse, noisy, cross- sectional and lack statisti-
cal power, making it extremely difficult to gain biological 
insights from these data using traditional data analytical 
approaches, which look for changes in single variables or 
perform simple correlations14. These problems with data 
analysis are further compounded by the integration of 
diverse data types (for example, imaging, genomics and 
clinical data) that is necessary to gain an understanding 
of disease mechanisms. In response to these challenges, 
advanced machine learning models are increasingly 
applied to biomedical and health- care data. Traditional 
computer science derives results from input data through 
the application of predefined rules, whereas machine 
learning learns rules and insights from input data 
directly, thus allowing the application of those rules to 
make predictions from data in new situations. Machine 
learning approaches can help overcome the challenge of 
high- dimensional data by reducing the number of fea-
tures analysed in favour of the least variable15. Different 
machine learning algorithms can also be used to integrate 
data from different sources to increase statistical power.

By the year 2050, an estimated 22% of the global pop-
ulation will be over 60 years of age16. As age is the main 
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risk factor for most neurodegenerative disorders, includ-
ing Alzheimer disease (AD), Parkinson disease (PD) 
and motor neuron disease (MND), countries across the 
world are facing an unprecedented economic challenge17. 
In 2016 the global cost of caring for individuals with AD 
reached an estimated US$946 billion, which was triple 
the estimated expenditure in the year 2000 (ref.16). These 
costs are expected to rise, as the number of individuals 
with AD is likely to reach 115 million worldwide by 2050 
(ref.16). These estimates call for changes in the way that 
individuals are diagnosed and treated, and highlight the 
urgent need for effective therapeutic interventions. In 
this context, machine learning could enable data to be 
used more efficiently to provide insights into disease 
mechanisms, and to help with earlier diagnosis, prog-
nosis, patient stratification and development of new 
therapies. With these goals in mind, many researchers 
have gathered rich, high- dimensional datasets from 
healthy individuals and individuals with neurodegen-
erative diseases; for example, the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI), the Allen Brain Atlas 
and the UK Biobank. In this Review, we highlight the 
latest developments in the use of machine learning to 
interrogate neurodegenerative disease- related data-
sets, including the applications of machine learning to  
diagnosis, prognosis and development of new therapies.

Machine learning models

Machine learning methods are broadly categorized into 
supervised, unsupervised and reinforcement learn-
ing approaches18 (fig. 1). Supervised machine learning 
algorithms are currently the methods most commonly 
applied to neurodegenerative disease- related data and 
require a labelled dataset from which to learn. Often, 
these labels require manual curation or expert assess-
ment; for example, a radiologist is needed to label a set 
of MRI scan images and a neuropathologist

.
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 is required 
to categorize a set of images obtained from post- mortem 
patient samples. Once this ‘benchmark’ dataset has 
been labelled, the machine learning algorithm builds 
a model of the relationship between the input features 
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(for example, the size of a brain region on an MRI scan) 
and the label (for example, a diagnostic category). The 
algorithm can then apply this model to new, unlabelled 
datasets to predict the label on the basis of the new 
input features. Gathering sufficiently large volumes of 
accurate labels for supervised machine learning can be 
a challenge19.

Supervised machine learning is divided into clas-
sification and regression algorithms18. Classification 
algorithms, such as the example

.
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 above, predict the cate-
gorical output (diagnostic category) for each data sam-
ple (patient). In contrast, regression algorithms predict 
a real- valued variable (for example, degree of functional 
impairment measured on a continuous scale) for each 
data sample. When applied to health- care data, both 
classification and regression algorithms can define 
patient endotypes by identifying patterns within the data 
and clustering areas of similarity together. A practical 
example of regression approaches would be the subtyp-
ing of patients into progression endotypes on the basis 
of algorithms that model motor function decline, disease 
duration, or slope of progression to form nuanced rep-
resentations of the progression time series. This regres-
sion approach contrasts with endotyping on the basis of 
categories, which might include specific genetic muta-
tions or the site of disease onset. Most machine learning 
algorithms have variants to support both classification 
and regression.

In contrast to supervised machine learning, unsu-
pervised machine learning algorithms do not require 
labelled data and are useful for tasks such as clustering 
data samples into groups, or reducing the dimension-
ality of datasets by generating a simpler representation 
of highly complex data20,21. For example, unsupervised 
clustering algorithms can be used to analyse gene 
expression datasets and identify clusters of patients with 
shared molecular signatures22. Furthermore, unsupervised 
clustering approaches, such as latent variable mod-
els, can help identify co- expression modules of genes, 
which are sets of genes that are likely to be co- regulated 
or correspond to common biological mechanisms or 
pathways. In addition to analysing existing data, unsu-
pervised clustering algorithms can also be used to make 
predictions; for example, a model can be trained on a set 
of historical clinical data to then predict survival from 
the cluster that a patient is placed in.

Supervised and unsupervised learning approaches 
can be combined, for example, to form semi- supervised 
learning methods23. Semi- supervised methods enrich 
a small set of labelled data with additional unlabelled 
data, which allows clustering (unsupervised) methods to 
improve the performance of classification (supervised) 
methods, as well as regularising the predictive model with 
additional data. Similarly, transductive learning methods 
use the test data as unlabelled data to improve a standard 
supervised classification approach24,25; these methods do 
not result in data leakage as the labels are not shared, 
and can increase performance in problems where low 
volumes of data are available.

Finally, in reinforcement learning approaches26 a 
reward or punishment is given to achieve a desired out-
put. For example, an algorithm might be used to explore 
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Key points

•	Machine	learning	and	natural	language	processing	are	forms	of	artificial	intelligence	
that	enable	robust	interrogation	of	multiple	datasets	to	identify	previously	
undiscovered	patterns	and	relationships	in	the	data.

•	Machine	learning	approaches	have	been	applied	to	the	study	of	neurodegenerative	
diseases	and	show	promise	in	the	areas	of	early	diagnosis,	prognosis	and	development	
of	new	therapies.

•	A	substantial	number	of	machine	learning	algorithms	exist,	and	choosing	the	correct	
algorithm	to	apply	to	different	types	of	data	is	crucial	to	obtain	reliable	results.

•	Neuroimaging	was	the	first	area	of	neurology	to	benefit	from	the	application	of	
machine	learning	approaches	to	improve	diagnosis;	more	recently,	application	of	
machine	learning	methods	to	motor	function	and	language	feature	analysis	has	
shown	promise	in	decreasing	the	time	taken	to	perform	clinical	assessments.

•	The	application	of	machine	learning	to	longitudinal	patient	data	collection	and	
electronic	health	records	has	the	potential	to	inform	prognosis	prediction	and	patient	
stratification.

•	Large	collections	of	curated	datasets	and	robust	assessment	of	machine	learning	
methods	will	be	needed	to	achieve	full	integration	of	machine	learning	into	
diagnostic	and	prognostic	neurology	practice	and	the	design	of	future	therapeutics.
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a new medication regimen for a patient based on the 
patient’s medical history. During training, in the event 
of a negative reaction to a new drug or adverse drug–
drug interactions, a punishment would be given to the 
algorithm, whereas a reward would be given for a drug 
improving the disease course, which is the desired out-
put. These approaches are being rapidly explored27,28, but 
are not yet as widely used as supervised and unsupervised  
learning in the field of neurodegenerative diseases

Model selection

A substantial number of machine learning algorithms 
exist and choosing the correct algorithm to apply to a 
particular type of data is important. With a particular 
focus on supervised learning, two factors are particu-
larly relevant for selecting the right algorithm: modality 
(the form that the data is in) and volume (the number 
of data samples). In terms of volume, for datasets with 
a low sample- to- feature ratio29 (SFR <10:1), an algorithm 
will struggle to learn a useful ‘featurization’ in addition 
to classification (fig. 2). Data featurization requires the 

algorithm to identify and extract characteristics or ‘fea-
tures’ in the data that enable the subsequent separation of 
data points into classes. The higher the SFR, the easier it 
will be for the algorithm to identify features that separate 
the data points. For example, given the limited availabil-
ity of post- mortem tissue samples for certain neurode-
generative conditions, a model that needs a high SFR to 
make meaningful predictions about the data, such as a 
deep neural network, is unlikely to be able to learn from 
tens of samples and identify features that can accurately 
classify patients into different pathological subtypes. For 
such limited datasets, highly constrained or ‘regularized’ 
models, such as hierarchical Bayesian models, simplify 
the task and guide the algorithm by learning only a few 
parameters for that data.

For larger datasets, support vector machines (SVM)30 
or random forests31,32 (TAble 1) are typically used. These 
approaches are more flexible than hierarchical Bayesian 
models, but require a greater volume of data and are 
more complex. SVMs map datasets into a space such 
that two categories (for example, healthy and diseased) 

Supervised learning unsupervised learning reinforcement learning

• A labelled dataset is provided 
• Learning is task-driven
• Immediate outcome prediction 

• No labelled dataset is provided and output is 
unknown

• Learning based on pattern identification and 
recognition 

• Based on trial and error with reward or 
punishment before repetition

• Algorithm learns to acquire skills and make 
decisions

Training dataset 
in which known 
pathological 
features are 
labelled

extract features predictive 
of diagnosis

Unsupervised 
clustering on basis of 

molecular features

Choose and 
apply action

Measure outcome, apply 
reward or punishment

Train model

Apply model to test data

Test data

Output

Diagnostic
class 1

Diagnostic
class 2

Heterogeneous 
patient population

Multimodal 
patient data

Patient subtypes 
with shared 
molecular features

Patients and 
their medical 
history

Side effects, 
adverse 
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of treatment 
response, 
drug–drug 
interaction, 
disease 
progressionDone?

No

Yes

Fig. 1 | Categories of machine learning. Machine learning methods can be divided into three main categories: 

supervised learning, unsupervised learning, and reinforcement learning. supervised learning relies on a set of data 

labelled by a professional to train an algorithm to extract specific disease features. Once trained, the model identifies 

features of interest in unlabelled datasets to aid diagnosis. Unsupervised learning learns to determine patterns and classes 

within the dataset without labels, and can be particularly useful in identifying molecular signatures that categorize 

heterogeneous patient disease groups into molecular subtypes. Reinforcement learning models the process of decision 

making and the output is a result of knowledge gained from previous experiences. The algorithm is trained on a trial and 

error basis, with a reward or punishment driving the learning process and skills acquisition. such an approach is ideal for 

automation and robotics, though use in medicine is increasing. Brain scan image credit: M. Andritoiu/Alamy stock Photos.
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are separated as widely as possible. In the 1990s, pioneer 
work demonstrated that the mathematical theory behind 
SVM, initially used for two- group classification prob-
lems, could be applied to more complex and multiclass 
datasets33. Random forests use a different approach to 
SVM. A random forest algorithm constructs numerous 
different, independent decision trees, which each require 
a series of binary choices to be made about the data. In 
this way, each decision tree provides a classification for 
the input data, and the algorithm then selects the most 
common output prediction from the different trees. This 
approach corrects for the overfitting that can occur when 
using a single decision tree. SVM and random forests 
were dominant until the more recent development of 
neural networks.

Artificial neural networks, which include the popular 
deep neural networks, are widely used to analyse many 
modalities of data, but particularly image, video and 
sound data19,34 (TAble 1). These networks are designed 
to simulate the highly connected neural system found 
in the brain, and are based on the pioneering work of 
McCulloch and Pitts35 who developed a mathematical 
model to help bridge the gap between statistics and 
neuropsychiatry. Similar to a neuron receiving electri-
cal stimuli from other neurons, a node in an artificial 
neural network receives inputs from other nodes. Just 

as a neuron needs to reach a certain threshold to fire an 
action potential, the nodes of an artificial neural network 
sum up the inputs from other nodes and calculate the 
likelihood that a potential output is true. Artificial neural 
networks are typically arranged into one or more lay-
ers of parallel ‘neurons’ that transform their inputs into 
outputs; networks that contain two or more layers are 
known as deep neural networks. In each successive layer, 
the neural network is able to manipulate more abstract 
representations of the data. Artificial neural networks 
require even fewer manual data manipulation steps 
during preprocessing than SVM or random forests and 
in some cases subsume the choice of classifier into the 
architecture of the network19. These networks are mostly 
supervised, but can also be unsupervised.

The use of a particular type of deep neural network, 
known as a convolutional neural network (CNN)36–38 
(TAble 1), has led to significant improvements in machine 
learning performance for medical image interpretation. 
CNN, which draws inspiration from the human visual 
system, extracts features at higher and higher levels of 
abstraction, initially combining local information and 
eventually integrating large- scale information across the 
image. This approach enables complex processing, such 
as distinguishing cats from dogs or the identification 
of cancerous cells39. Many of the problems involved in 

Manual features

Classifier

Data

Manual features

Classifier

Learned
representation

Manual features

Classifier

Learned
representation

Data Data

Classifier type:

Data volume (number of data points)

Increasing
data
Volume 

a

c

b

Hierarchical
Bayesian 
models

Random
forest; svMs

Neural network 
with softmax 
regression

101 102 103 104 105

specialized natural language processing tools,
for example, BERT153, spaCy155, CoreNLP154 
and SyntaxNet156

Example usage in neurodegenerative disordersSuggested machine learning modelsData category

2D and 3D convolutional neural networks19, 70 Alzheimer disease diagnosis72

Natural language Diagnosis of Alzheimer disease from language data132;
prediction of linguistic decline caused by dementia158

3D and 4D convolutional neural networks122 Parkinson disease diagnosis from wearable device
that measures gait119; activity recognition126

Imaging and 
volumetric data

Graph convolutional neural networks178 Prediction of drug adverse effects176; molecular
fingerprint prediction177

Time-series data

Hierarchical Bayesian models83; support vector
machines76; random forests32; variational
autoencoders73

Dementia classification76; ALs progression prediction32General data and
multimodal data

Graph data

Fig. 2 | Determining the best machine learning model for a given problem. Two factors are particularly relevant to the 

choice of machine learning model: the data modality (for example, time series or imaging) and the data volume (number of 

data points). a,b | At small data volumes, manual features and well- regularized classifiers are needed. As data volume 

increases, a learned representation that discovers features from data automatically can be used, and eventually a 

separate, custom classifier on the learned representation is no longer needed. c | Choosing the right model to match the 

data type enables machine learning to extract a meaningful representation from the data, which can be paired with a 

variety of classifiers. ALs, amyotrophic lateral sclerosis; BeRT, Bidirectional encoder Representations from Transformers; 

svMs, support vector machines.
.

m

Q6

Overfitting
When an algorithm learns the 

patterns within the training 

dataset as opposed to the 

rules representative of the 

whole class of problems.

Classifier
A type of model used to 

identify the correct category 

for a data point.

www.nature.com/nrneurol

R e v i e w s



image classification can be solved by these kinds of algo-
rithms. Another type of deep neural network, known as 
a recurrent neural network (RNN)40 (TAble 1), can extract 
information from sequences of data and is particularly 
useful for analysing clinical records. RNN models such 
as long short- term memory (LSTM)41 and gated recur-
rent units42 form building blocks used in most sequence 
tasks. These models contain a memory cell that allows 
the algorithms to learn long- term dependencies and 
gates that control the exposure of the memory content 
and the extent of the changes made to the memory  
content depending on the input.

Some of the key technical risks to mitigate when 
choosing a machine learning model include insufficient 
data volume, improper data representations, overfitting, 
incorrect hyperparameter selection and missing data43,44. 
Although subject matter expertise can help address 
issues regarding data volume and data representation, 
overfitting is a fundamental issue. For example, when a 
model is trained on a dataset with low bias and high var-
iance, and the model selected has the best performance 
on the training data, the model is likely to try to ‘mem-
orize’ the training data. This memorization results in 
overfitting of the model on the training data, leading to 
poor predictive performance on test data as the model is 
no longer able to make generalizations to the additional 
datasets. Overfitting could, for example, lead to some 
pathological features in neuroimages not being identi-
fied. Methods such as cross- validation and regularization 
can help minimize this problem45. All machine learning 
methods and data sources have caveats; therefore, a com-
bination of multiple data sources and methods followed 
by confirmatory post- processing steps that use a variety 
of metadata is the best approach.

Diagnosis and prognosis

In many neurodegenerative diseases, including AD, PD 
and MND, symptoms do not manifest until a substantial 
loss of neurons has already occurred46–48, which makes 
early diagnosis very challenging. Therefore, research 
into the application of machine learning models to early 
diagnosis is growing (TAble 2). The aim of this research 
is to use machine learning to detect prognostic signals in 
data that can be collected relatively easily (for example, 
electronic health records (EHRs) or MRI data), thus ena-
bling the prospective screening of ageing populations. 
The machine learning- driven automated diagnosis could 
then flag individuals for further clinical investigation. 
Such an approach would require machine learning 
models that are sensitive enough to detect early disease 
signals and specific enough not to over- burden health 
systems with unnecessary follow- up tests. Currently, test 
results need to be analysed and interpreted by trained 
staff, which can lead to delays in diagnosis. These 
delays could be reduced by applying machine learning 
approaches to the data as they are gathered in the clinic. 
These same data could be used to predict patient prog-
nosis by comparing disease progression at any given 
time with historical data from patients sharing the same 
endotype or phenotype. Historical health records pro-
vide a helpful training dataset for prognosis algorithms, 
as they can cover the entire disease span.

Neuroimaging. Neuroimaging techniques such as CT 
and MRI are often used in the diagnosis of neurode-
generative diseases, and radiology was one of the first 
fields to benefit from the computerization of medicine 
and the introduction of ‘intelligent machines’49 (fig. 3). 
The early 1990s saw the introduction of supervised 

Table 1 | Descriptions of key machine learning methods and examples of their application

Method Supervised or 
unsupervised?

Classification, 
regression or 
clustering?

Definition examples of application

Deep neural 
networks

supervised and 
unsupervised

Classification, 
regression, and 
clustering

A category of algorithms that are 
composed of multiple layers of 
transformation, and use artificial 
neural networks as each layer of 
processing

Disease diagnosis from 
neuroimages, speech 
recognition, natural language 
processing and pattern 
recognition19,71

Convolutional 
neural network

supervised and 
unsupervised

Classification, 
regression and 
clustering

Form of a deep neural network 
designed to mimic neuronal 
connections and reduce 
dimensionality of the data

Image analysis and 
classification, video analysis, 
natural language processing 
and acoustic input65,92,93,158

Recurrent 
neural 
networks

supervised and 
unsupervised

Classification, 
regression and 
clustering

A type of artificial neural network 
capable of forming internal 
memory, which makes it optimal 
for analyses of sequential data

speech classification, 
handwriting classification 
and disease progression 
classification92,140

Network 
diffusion 
algorithm

Unsupervised NA A class of methods that model the 
spread of information through 
networks

Gene regulator analysis and 
network inference for gene 
prioritization149

Random forest Primarily 
supervised

Primarily 
classification 
and regression

An algorithm that averages a 
large number of weak classifiers 
(trees) to form a strong classifier 
using random subsets of data

Disease progress prediction32

support vector 
machines

Primarily 
supervised

Classification, 
regression and 
clustering

A method of separating distinct 
classes within a dataset by 
applying an optimal hyperplane

Disease classification54,58–60,82,210

NA, not applicable.

Hyperparameter
A parameter the value of which 

is set before training; for 

example, the attributes of the 

model architecture.

Cross- validation
A training and evaluation 

procedure that consist of 

splitting the data into subsets 

and alternately holding out one 

subset for evaluation until all 

subsets have been evaluated.

Metadata
Data about other data; for 

example, information about an 

experimental protocol or the 

time and date of sample 

collection.
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knowledge- based expert systems50–55, which were capa-
ble of recognizing pathological events in the brain on 
the basis of a large amount of data and knowledge col-
lected by the neuroradiological community56. Initial 
studies used clinically relevant diagnostic features, such 
as cortical thickness or morphology of particular brain 
regions, to classify patients and help radiologists make 
a diagnosis57–63. This approach is known as computer- 
aided diagnosis, and continued to be developed and 
improved throughout the early 2000s64–68. Because 
machine learning is purely evidence- based and can 
analyse problems in an unbiased manner, the approach 
is helpful for making objective diagnoses from med-
ical images and often surpasses the performance of 
trained professionals in terms of speed, precision and 
accuracy30,69.

Computer- aided diagnosis systems can be sup-
plemented with and powered by supervised learning 
techniques to further improve the interpretation of 
neuroimaging data and help identify subtle abnormal-
ities in the images that are not detected by radiologists. 
For example, CNNs can categorize images by identify-
ing and mapping a high number of features70 (TAble 1). 
Some studies have used CNNs to predict a diagnosis of 
AD71,72 and to study cognitive ageing73 from MRI and 
PET images, sometimes alongside other clinical readouts 
(for example, biomarker information and assessments of 
motor or cognitive performance), to increase specificity.

SVMs have been used to analyse MRI data, some-
times combining structural and functional MRI, and 
cognitive assessment data to improve disease diagnosis74 
(TAble 1). For example, one study used an SVM to dif-
ferentiate between structural MR scans from individuals 
with different severities of AD and cognitively normal 
elderly individuals, as well as to differentiate between 
individuals with AD and individuals with frontotempo-
ral lobar dementia (FTLD)75. In another study of struc-
tural MRI data, an SVM was able to predict conversion 
from mild cognitive impairment (MCI) to AD, as well 
as separate healthy controls, individuals with MCI and 
individuals with AD better than a combination of sta-
tistical approaches and expert knowledge76. In the same 
year, a study used a combination of linear dynamic 
system and SVM algorithms to integrate MRI data and 
cognitive test data to distinguish individuals with AD 
from healthy controls77. This st

.

m

udy is particularly inter-
esting because of the use of two approaches to integrate 
data. SVMs have also been applied to whole- brain ana-
tomical MRI images to identify new regions of interest 
that can differentiate between individuals with AD and 
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healthy controls78, and to images of the hippocampus to 
classify its shape features79. The latter method has been 
described as more accurate than traditional hippocam-
pal volumetry80,81. An SVM was also used to compare 
the utility of different combinations of neuroimaging 
data (functional MRI or structural MRI) and cognitive 
performance data for identifying individuals with MCI82. 
Analysis of MRI data with SVM has also been used in 
studies of cognitive function83, stroke84, multiple sclero-
sis (MS)85 and parkinsonism86.

MRI produces images of higher resolution than 
CT; however, the diagnostic performance of CT can be 
improved with the use of machine learning algorithms. 
For example, in one study, a random forest algorithm for 
automated white matter lesion detection was applied to a 
set of CT images from individuals with acute ischaemic 
stroke and performed similarly to the labelling of MR 
images by radiologists87. The algorithm had a failure rate 
of 4% and an average processing time of less than 2 min-
utes, thus offering a possibility of similar approaches 
being extended to diagnosis of neurodegenerative dis-
eases. Machine learning can assess images quickly, so 
it could be used to flag findings from CT images that 
need urgent review by a radiologist in life- threatening 
scenarios88–90. Quick image analysis could also be 
extended to MRI, which could prove particularly use-
ful for individuals with MCI91–93, as early prediction of 
possible conversion of MCI to AD could enable a swifter 
start of treatment.

In a global effort to improve our understanding of 
neurodegenerative diseases and their progression, data-
bases of neuroimaging data from patients are being 
assembled with the aim of creating a comprehensive 
picture of the disease course from diagnosis onwards. 
Resources such as the Parkinson’s Progression Markers 
Initiative, ADNI, The Finnish Geriatric Intervention 
Study to Prevent Cognitive Impairment and Disability 
(FINGER)94 or European Alzheimer’s Disease 
Consortium Impact of Cholinergic Treatment Use 
(EADC- ICTUS) give researchers working with machine 
learning algorithms access to verified material to be used 
for algorithm training and validation. Although the 
training data are becoming widely available, applying 
algorithms to it can be challenging. Some pieces of soft-
ware are not, or were not for a long time, capable of read-
ing and processing the DICOM file format that is used 
for medical imaging. However, open source software and 
libraries with a strong user community, such as Google 
TensorFlow have now addressed this issue by extending 
support to additional file formats, including DICOM95.

Table 2 | Key neurodegenerative disease- related data types used by machine learning algorithms

Neurodegenerative 
disease

Key data types used

For diagnosis For monitoring disease progression

Dementias, including 
AD and MCI

Neuroimaging30,55,72,75–77 ,79,82; cognitive 
performance tests131,132,135,136; eeG data104; 
transcriptomic data97,140; biomarker data143,144,146

Neuroimaging77,83,211; cognitive 
performance tests131,132,158; IADL 
records125,126

PD Motor performance tests114,115,119; neuroimaging86 electronic health records165

Ms Metabolomic data145; neuroimaging85 Genomic data142

AD, Alzheimer disease; eeG, electroencephalogram; IADL, instrumental activities of daily living; MCI, mild cognitive impairment; 
Ms, multiple sclerosis; PD, Parkinson disease.
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Efforts to investigate the interaction between genetics 
and brain structure have led to the rise of a new field 
called neuroimaging genomics96. The very first attempts 
to draw a correlation between genetics and brain func-
tion were initiated in the early 2000s and focused on 
single gene variants97,98. These pioneer studies made sev-
eral novel observations, including the association of the 
epsilon 4 allele of the apolipoprotein E gene (APOE ε4)  
with abnormalities in brain activation assessed with 

functional MRI during memory- activation tasks99. 
Since these initial studies, the field has generated break-
throughs owing to large multicentre collaborations such 
as the Enhancing Neuro Imaging Genetics Through 
Meta- Analysis (ENIGMA) Consortium, which has 
analysed genome- wide association study (GWAS) and 
MRI data from 30,717 individuals across 50 cohorts100. 
The ENIGMA Consortium has now identified com-
mon genetic variants that influence the volume of sev-
eral brain structures, thus shedding light on potential 
complex genetic drivers of development and disease. 
As ENIGMA expands, specialized working groups ded-
icated to the study of several disorders, including PD, 
ataxia and FTLD, have been formed to help elucidate the 
pathogenesis of these diseases using imaging genomics.

Neuroimaging is one way of investigating brain 
activity. Other methods of monitoring brain activity, 
such as electroencephalography (EEG), can also benefit 
from machine learning- driven data analyses. EEG data 
have been used to distinguish individuals with AD from 
healthy controls101 or patients affected by other forms of 
dementia102, as well as to detect functional changes in 
dopaminergic neurons to diagnose PD103. In order to do 
this, changes in electrical activity frequency over time 
in different areas of the brain are analysed. Algorithms 
based on artificial neural networks have been generated 
to differentiate between individuals with AD and indi-
viduals with MCI using only unprocessed EEG data, 
with the aim of speeding up diagnosis and simplifying 
the monitoring of dementia progression104.

Motor function. Many neurodegenerative disorders, 
such as MND, Huntington disease (HD) and PD, are 
characterized by motor dysfunction, often culminating 
in loss of movement105,106. An understanding of the pro-
gression and chronology of motor degeneration is essen-
tial for supporting patients appropriately at each stage 
of the disease. Motor performance is measured during 
routine clinical assessments, which often assess both fine 
and gross muscle functions (for example, muscle tone 
when picking up small objects and gait when walking), 
although the precise battery of tests varies depending on 
the disorder107–109.

Machine learning can be used to assess the perfor-
mance of individuals in complex tasks, such as drawing, 
in a time- efficient manner110. Simple drawing tasks and 
handwriting analysis are being increasingly used in the 
early diagnosis of PD111,112, as handwriting is no longer an 
automated function in individuals with the disease and is 
performed in a more segmented and sequential manner, 
with numerous pauses113. Introduction of machine learn-
ing techniques into writing task analysis can help classify 
individuals with PD and serve as a diagnostic tool. In 
one study, classifier- based supervised machine learning 
algorithms were applied to data from a horizontal line 
drawing task in order to differentiate between normal 
and abnormal hand movements and identify irregulari-
ties characteristic of PD114. A set of metrics related to the 
velocity and spatiotemporal trace of the pen combined 
with naive Bayes classification helped to accurately dis-
tinguish between individuals with PD and healthy con-
trols. Similarly, in another study, a supervised model was 
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The first computerized 3D brain 
atlas for the analysis of MRI and 
PET data was developed51

A machine learning algorithm was 
used to build an automated system 
that used MRI data and data on 
cognitive function to understand 
neuroanatomical sex differences68

supervised and unsupervised 
neural network algorithms for the 
reconstitution of sparsely sampled 
fMRI data were introduced68

An automated analysis system 
based on a digital brain atlas 
was applied to fMRI data64

SVM applied to MRI data was 
used to distinguish between 
individuals with Parkinson 
disease and individuals with 
Parkinson plus syndromes86

A random forest algorithm was 
applied to a multimodal 
dataset to distinguish between 
individuals with AD and MCI71

A combination of linear dynamic 
system and SVM algorithms was 
applied to MRI data and cognitive 
test data to find features that can 
distinguish individuals with AD 
from healthy controls77

First use of an 
artificial neural 
network 
algorithm to 
automate the 
diagnosis of 
dementia from 
SPECT data55

First 
hierarchical 
brain mapping 
algorithm was 
generated53

Computational pattern 
recognition applied to PET images 
identified subgroups of individuals 
with AD on the basis of cerebral 
glucose metabolism54

An automated cross-modality 
image registration method for 
MRI and PET was developed52

A new pattern matching approach 
used a digital brain atlas and MRI 
data to measure hippocampal57 
and corpus callosum volumes58

Developments in computational 
techniques helped correlate 
behavioural data with changes in 
volume of specific brain structures 
in individuals with AD60

SVM applied to MRI data 
distinguished between healthy 
ageing and different types of 
dementia75 and separated healthy 
controls from individuals with MCI91

SVM was used to distinguish 
individuals with stroke from 
healthy controls on the basis of 
resting state fMRI and diffusion 
tensor imaging data84

Automated methods helped 
measure cerebral cortex 
thickness61 and grey matter 
density62 from MRI images

early application of SVM to MRI 
data helps differentiate between 
males and females65, as well as 
between healthy controls and 
individuals with schizophrenia210

Fig. 3 | Key developments and novel applications of computational and machine 

learning techniques to neuroimaging since the 1990s. Interest in machine learning 

and its use for medical purposes towards the end of the 20th century led to the 

automation of previously time- consuming manual analysis and measurement of 

neuroimaging data. The low variance and high reproducibility of these AI- driven 

methods made them an attractive tool for use in clinical settings. Moreover, three- 

dimensional, high- resolution overview of deep brain structures, previously considered to 

be beyond analysis without surgical interventions, became within reach. AD, Alzheimer 

disease; fMRI, functional MRI; MCI, mild cognitive impairment; sPeCT, single- photon 

emission computerized tomography; svM, support vector machine.
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used to automatically analyse Archimedean spiral trac-
ing performed by individuals with PD115. Drawings were 
independently assessed and scored by trained experts, 
and the algorithm- scored drawings showed comparable 
results. The drawing tests were performed on patients’ 
personal computers and the software support for such 
tests can be extended to commercially available smart-
phone or tablet set- ups, making it an easily obtainable 
and cost- effective approach to motor function analysis.

Machine learning- based hardware such as the 
Parkinson’s KinetiGraph116 and the Kinesia system117 
are designed to score motor function, dyskinesia and 
bradykinesia in individuals with PD, and are widely 
available. The Parkinson’s KinetiGraph can be worn on 
a wrist and measures wrist acceleration. The Kinesia 
system is worn on either a finger or a wrist and detects 
motion with an in- built accelerometer and gyroscope. 
Both systems provide automatic scoring of an individ-
ual’s motor symptoms, but the output data can also be 
analysed further using machine learning algorithms, 
such as SVM. For example, a recent study classified PD 
tremor severity using the Kinesia system’s recordings118. 
Gait analysis algorithms also show a lot of promise in 
early diagnosis of motor disorders. For example, an 
RNN and LSTM were used to classify a database of gait 
analysis recordings, such as measures of stride- to- stride 
footfall times, and distinguished healthy controls from 
individuals with PD, HD or MND with an accuracy of 
95–100%119. Moreover, the two algorithms in combina-
tion performed better than an SVM alone120, suggesting 
that existing algorithms could be further improved to 
optimize performance.

Data on movement can also be useful in the study 
of AD. Film footage of patients performing instrumen-
tal activities of daily living (IADL) (for example, bath-
ing, dressing and eating) can be watched and manually 
scored by clinicians121. However, this approach can be 
time- consuming and automating this process would 
be of major benefit to neurologists investigating IADL. 
Deep learning and CNN- based machine learning algo-
rithms are capable of recognizing action from video 
footage122 and this technology has been applied to action 
recognition in IADL recordings123. However, the use of 
cameras to monitor IADL has implications for patient 
privacy124. New technologies such as the random forest 
algorithm- powered SmartFABER solve privacy issues by 
collecting data from motion and contact sensors placed 
around the home, feeding this data back to software 
installed on the individual’s local personal computer, 
and analysing user movement and interactions with 
objects125. Data from wearable sensors has also been 
used for machine learning- based activity recognition. 
For example, one study found that LSTM algorithms 
performed better than standard CNN approaches in 
activity identification and classification from this kind of 
data126. In contrast to the Kinesia system or Parkinson’s 
KinetiGraph, the sensors used to generate the data used 
in this analysis were worn on multiple parts of the body, 
which enabled the study of complex movements, such 
as using a toggle switch, cleaning a table, opening and 
closing doors and drawers. Although individuals with 
PD currently stand to benefit the most from wearable 

technology, smartwatch- based wearable sensors that use 
SVM for recognition of agitated behaviour in individuals 
with dementia show promise127.

Language features. Language features are important 
indicators of cognitive state, as communication skills and 
interpersonal behaviour deteriorate in many neurode-
generative diseases128–130. Machine learning approaches 
have been used to extract language features from audio 
recording transcripts in order to distinguish between 
individuals with AD and healthy individuals. For exam-
ple, the authors of one study analysed the way patients 
compose verbal utterances and used the resulting lex-
ical features to differentiate between individuals with 
AD, MCI or vascular dementia and healthy controls131. 
Several different algorithms were tested, out of which 
the SVM performed most consistently. In another 
study, an n- gram language model was used to analyse 
the vocabulary of participants and the frequencies with 
which they used specific words together in a sequence132. 
The algorithm assigned a perplexity score to the utter-
ances, meaning that the higher the perplexity score, the 
more unforeseen and convoluted the utterance, and the 
more likely the individual was to have an AD diagno-
sis. In individuals with AD, the perplexity scores were 
found to correlate with mini- mental state examination 
scores, thus showing the potential of this approach as a  
diagnostic tool.

In addition to the machine learning- based analysis 
of transcripts, AI- driven interactive avatars have been 
used to capture more complex language data. Inspired 
by early interactive computers133, avatars are animated 
humans that ask the patient pre- programmed questions 
and record the resulting conversation134. Avatars most 
often take the form of software installed on the patient’s 
personal computer or tablet and no time limit is applied 
to patients’ responses, which is a scenario that is difficult 
re- create in face- to- face clinical visits. In one example 
of the use of an avatar135, a set of questions based on 
clinical examination tools (mini- mental state examina-
tion, objective structural mental examination and the 
Wechsler memory scale- revise test) was used to assess 
participants for symptoms of dementia. In this study, 
SVM and logistic regression were used to assign a diag-
nostic category to patients on the basis of speech features 
and audiovisual cues extracted from the video record-
ings (for example, smiling, eye contact and consistent 
delays in answering the questions). This approach was 
able to distinguish between healthy individuals and indi-
viduals with dementia with an accuracy of 93%135. This 
study highlights a key benefit of using avatars over the 
traditional analysis of transcripts, as allowing patients 
to speak freely and naturally enables the recognition of 
new speech features, such as pitch and tone changes or 
breathiness. Transcripts of conversation would not take 
such features into account and are limited by patient–
doctor contact time constraints. A similar AI system 
was used as a conversation analysis aid in a memory 
clinic and identified four out of six participants with 
neurodegenerative dementia and six out of seven par-
ticipants with functional memory disorders136, which 
are important in the differential diagnosis of prodromal 
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dementia137. As the number of individuals with sus-
pected dementia is rising17, installation of avatar soft-
ware on an individual’s personal computer could enable 
the evaluation of speech features at home, which would 
help speed up diagnosis, save medical personnel time, 
and reduce the fatigue and potential distress caused by 
the need to travel to a memory clinic136. Speech data are 
complex and contain a large number of different fea-
tures. Therefore, deep neural networks19 (TAble 1) are 
frequently used to perform pattern recognition in this 
kind of multilayered data.

Molecular and genetic data. Improving our understand-
ing of the molecular foundations of neurodegenerative 
disorders is key for the development of new therapies and 
for diagnosis and prognosis. Next- generation sequencing 
techniques have increased the speed of DNA sequenc-
ing, enabling large volumes of data to be acquired rela-
tively quickly. The volume of genomic data produced, 
especially in GWAS and other large cohort studies, 
requires a well- refined analysis approach and machine 
learning techniques are proving useful in this area. 
Multiple AD- associated genes have been identified138, 
but the idiopathic nature of the disease, along with its 
high heritability, suggests that further genetic risk factors 
or complex genetic interactions might play important 
roles in disease onset or progression139. GWAS aim to 
unravel some of these complex relationships. For exam-
ple, in one study a supervised SVM- based algorithm 
was used to interrogate brain- specific gene expression 
data with the aim of identifying novel AD- associated 
genes140. The authors used a training dataset of 335 AD- 
associated genes identified through previous GWAS 
and other genetic studies and 335 non- AD- associated 
genes, and integrated brain- specific gene expression 
data to train the classifier to identify AD- associated 
pathways. The authors then used the trained algorithm 
to identify genes that interacted closely with the known 
AD- associated genes in the brain- specific network and 
ranked these new candidate genes by AD association 
probability. The top candidates corresponded to genes 
previously identified as AD- associated by GWAS, but 
the authors also identified a number of genes involved 
in cellular processes, such as enzyme binding, that had 
not been identified before.

A different approach was taken in another study, 
in which gene expression profiles were predicted from 
ADNI GWAS data and a range of different machine 
learning algorithms used to identify associations 
between AD diagnosis and gene expression profiles 
across different tissues141. In this study, the RNN was 
the most accurate algorithm for distinguishing individ-
uals with AD from healthy individuals. The authors also 
tested the performance of the algorithm in predicting 
disease phenotype, but the results were inconclusive, 
probably owing to the complexity of the interaction 
between genetics and environment. Using machine 
learning to cluster patients based on their genomic sim-
ilarity is also helping to develop stratification tools for 
MS142, the hope is that this stratification will help tri-
age patients after diagnosis and predict their individual  
disease trajectory.

Applying machine learning to study protein signa-
tures in samples from patients can aid biomarker discov-
ery, which in turn is likely to improve disease diagnosis. 
In a study by Ray et al.143, published in 2007, a classifi-
cation algorithm called predictive analysis of microar-
rays was used to identify plasma proteins that could 
discriminate between individuals with AD and healthy 
individuals when given a cohort of blinded samples. 
Starting from a pool of 120 proteins assessed using an 
enzyme- linked immunosorbent assay, the authors iden-
tified 18 signalling proteins, the blood expression level 
of which was used to distinguish between samples from 
individuals with AD and healthy controls with close 
to 90% accuracy. These 18 proteins were also used to 
identify patients who had MCI that progressed to AD 
within 2–6 years of sample collection. Several years later, 
in a study by Agarwal et al.144, an unsupervised artificial 
neural network algorithm for both feature selection and 
classification was applied to the same dataset as used by 
Ray et al.143. The artificial neural network identified a 
smaller set of nine proteins, as opposed to 18, that distin-
guished individuals with AD from healthy controls with 
accuracy similar to that found by Ray et al., resulting 
in significant economic savings. Of these nine proteins, 
seven were common between the two studies, whereas 
two were new findings. In addition, Agarwal et al.144 
identified a cluster of 29 proteins that identified indi-
viduals with MCI that would progress to AD, individuals 
with MCI that would progress towards other demen-
tias, and individuals with AD. This prediction accuracy 
could not be achieved with either the nine- protein or 
the 18- protein clusters identified in the two studies. 
Comparative studies of this kind highlight how advances 
in machine learning approaches can refine and improve 
disease classification and prediction accuracy to benefit 
patient health, as well as reduce economic costs.

Similarly, in recent studies machine learning has been 
applied to metabolomics data from individuals with MS145 
or AD146 to identify new biomarkers for these diseases. In 
the first study145, 400 plasma metabolites were assessed 
in a small cohort of 12 individuals with MS and 13 
healthy controls. Supervised random forests, with 5,000 
trees and 100 randomly selected metabolites to deter-
mine classification at each node in a tree, were applied 
to identify six metabolites, an increase in the expression 
of which predicted a diagnosis of MS with a probabil-
ity of 80%. In another study146, a similar random forests 
approach was used to analyse the prediction power of a 
combination of clinical and biochemical data, including 
data on metabolomic, genetic, functional health, life-
style, cognitive and bio- demographic risk markers. The 
analysis showed that different combinations of the six 
risk markers resulted in statistically significant discrim-
ination between individuals with AD, individuals with 
MCI and healthy controls.

Clinical records. In addition to the applications dis-
cussed above, machine learning can be used to mine rou-
tinely collected health- care data for new insights. EHRs 
are compiled by health- care providers and contain the 
medical history of individuals under their care, which 
can include information on immunizations, prescribed 
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medications, test results and vital signs. EHRs are being 
increasingly implemented worldwide147,148 and the col-
lection of data in this way requires no additional input 
from patients149. However, EHR data were intended to 
be read by humans and often consist of unstructured 
notes written by health professionals. Therefore, EHRs 
need to be converted into computer- readable formats 
before being analysed with machine learning techniques. 
Machine learning- enabled natural language processing 
techniques focus on methods to process and interpret 
human language150–156 (TAble 1), and can be used to access 
the information contained within EHRs157,158. The cur-
rent state- of- the- art approach153 for natural language 
processing uses deep neural networks pre- trained on 
billions of words to perform tasks such as predicting 
missing words in sentences or identifying whether two 
sentences follow each other. After training, these deep 
neural networks can be fine- tuned for a variety of tasks, 
including question answering or inference, in an exam-
ple of transfer learning. One example of the application 
of natural language processing to health- care data is the 
Comprehend Medical initiative by Amazon, which is a 
service that helps extract meaningful information, such 
as the presence of a gene mutation, date of symptom 
onset or identification of pathologies, from unstructured 
data such as EHRs.

Machine learning can be used to perform time series 
analyses on longitudinal EHR data. In these analyses, 
an algorithm learns prognostic signatures from histor-
ical data and looks for these signatures in new datasets 
to create personalized health forecasts for patients. For 
example, in one study, data from cognitive tests per-
formed regularly at a memory clinic were used to plot 
the pattern of change associated with cognitive decline. 
This information, in combination with other clinical 
information, was applied to data from individuals who 
were in the early stages of the disease to identify early 
signs of worsening of dementia159. Such an approach 
might prove particularly useful in diseases character-
ized by aggressive decline and poor survival such as 
MND, for which the average survival after diagnosis 
is 3–5 years160. Existing statistical models of MND use 
data from routine clinical assessments to predict patient 
prognosis for up to one year161, and recent improvements 
to this approach can make personalized predictions for 
up to 120 months depending on the disease severity162. 
These models, however, do not take into consideration 
an individual’s previous medical history, which could be 
informative, and missing data can result in biases.

In a study of PD progression, a Bayesian multivari-
ate predictive inference platform was applied to clinical 
information, including analysis of motor progression 
assessments as well as complete genetic and molecular 
data, collected over a 2 year period from a cohort of 117 
healthy controls and 312 individuals with PD163. A total 
of 17,499 features were included in the model with the 
aim of identifying novel predictors of motor progres-
sion in the early stages of PD. The progression modelling 
confirmed some known factors for faster motor decline, 
such as higher baseline motor score, male sex and older 
age, but it also identified new predictors, such as genetic 
variation and cerebrospinal fluid biomarkers.

Deep learning methods rely on the input of large 
quantities of data and are suited to the analysis of EHRs, 
which, in some cases, contain information on the major-
ity of a national population. RNN models have been 
effectively applied to EHRs to predict clinical events 
and improve diagnosis. For example, one study applied 
LSTM RNNs to data provided by the US National 
Alzheimer’s Coordinating Center, which includes 12 
years of heterogeneous medical information on 5,432 
individuals with probable AD. The study aimed to 
predict the AD progression stage of the next hospital 
visit by a patient only on the basis of the information 
of the patient’s historical visits. By integrating clinical 
data, including global staging Clinical Dementia Rating 
scores and the Functional Activities Questionnaire 
results, the algorithm could predict a patient’s AD pro-
gression on the next visit with over 99% accuracy, sig-
nificantly outperforming classic time series forecasting 
methods164. Similarly, an RNN- based method was used 
to compare longitudinal health records from different 
individuals with PD and group these records according 
to similarity165. This kind of approach could be used to 
identify disease subtypes within a patient population. In 
another study LSTM was applied to EHR data to pre-
dict the length of time that patients affected by differ-
ent pathologies would stay in hospital166. The algorithm 
performed better than traditional clinical predictive 
methods across different hospital wards, including neu-
rological units, which is indicative of the versatility of 
machine learning approaches and shows promise for the 
application of this method to neurodegeneration.

Ensuring that the private data of individual patients 
is protected while allowing access to health records for 
research purposes is an ongoing challenge. In an attempt 
to address this challenge, machine learning was used to 
anonymize EHRs from a mental health- care provider 
and was able to mask 98.8–100% of patient identifiers 
that appeared in the text — the only errors resulted from 
misspelling of words in the original record167.

Therapy development

Effective treatments for many neurodegenerative dis-
eases are lacking, but the high failure rate of clinical trials 
for these diseases has led to the withdrawal of investment 
by large pharmaceutical companies168–171. For example, 
over 400 clinical trials of potential treatments for AD 
were performed between 2002 and 2012, but only one 
drug, memantine, was approved172. Similarly, in the last 
20 years, 50 clinical trials of drugs for MND have failed 
to show positive results. Riluzole and edaravone are 
the only drugs approved to treat MND and both have 
demonstrated only a modest improvement in patient 
survival and functional ability173. These unfortunate 
failures highlight the complexity of developing therapies 
for brain conditions and create opportunities for new 
approaches to drug development.

Target identification. Neurodegenerative disorders 
involve a vast array of mechanisms that all contribute 
to disease pathology. For example, in MND, multiple 
processes, such as RNA metabolism, axonal transport, 
mitochondrial function and autophagy, are implicated 
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in the degeneration and death of motor neurons174. The 
ability to explore the data related to these pathways in a 
thorough, holistic and efficient manner is key to under-
standing disease, but can be challenging for individual 
scientists. Machine learning can help make sense of this 
complexity and even predict drug targets.

One machine learning approach to drug target iden-
tification is relational inference on a knowledge graph, 
which links entities such as genes, diseases and drugs. 
Knowledge graphs are typically built from the integra-
tion of multiple data types; for example, data extracted 
from full text articles on PubMed, and from databases 
such as KEGG, OmniPath, Ensembl and ChEMBL175–178. 
Knowledge graph approaches can learn non- obvious 
links between diseases and biological drug targets (for 
example, identifying a new therapeutic protein target 
on the basis of its interaction with a protein known to 
be mutated in a particular disease), and are attractive 
because a single algorithm can be used to make predic-
tions for multiple diseases. One downside of using these 
approaches on their own is that they can lack granularity 
in their biological relationships (for example, context of 
different brain regions), which can lead to predictions 
with low specificity. This can be a particular problem 
in neuroscience, where differences in gene interaction 
networks between different brain regions might be 
important to understanding the disease pathophysiology 
and treatment potential179. Several relational inference 
methods have been published that performed well on a 
benchmark dataset for a wide range of disorders, includ-
ing neurodegenerative diseases180. However, to date new 
hypotheses generated using these approaches have not 
been scientifically validated.

Machine learning can also be used to perform 
large- scale text mining to suggest proteins that might 
be related to a disease of interest. In contrast to knowl-
edge graphs, which only take into account relationships 
between entities, this approach uses the entire text as 
substrate, thus enabling a more detailed specification of 
biological context. In one study, an automatic method 
was used to extract text features from the published lit-
erature and create a model of the RNA- binding proteins 
(RBPs) previously associated with MND181. This model 
was then applied to a candidate list of other RBPs and 
used a network diffusion algorithm to identify those 
most similar to the known MND- associated RBPs. Of 
the ten best candidate RBPs identified by the machine 
learning analysis, five showed significantly altered levels 
in individuals with MND when compared with controls, 
indicating that the model’s predictions were accurate.

Machine learning- based analysis of biological sam-
ples (for example, post- mortem CNS tissue) might also 
provide useful information for target identification. 
Gene expression data from individuals with disease 
and healthy controls can be used to build molecular 
networks that visualize the biological processes that are 
altered in the disease state. For example, a combination 
of co- regulation, clustering and bayesian inference was 
used to analyse transcriptomic data from brain tissue 
samples from individuals with late- onset AD and con-
trols, and identified groups of genes that were altered in 
the diseased tissue182. A group of immune- related and 

microglial- specific genes were more highly expressed in 
individuals with late- onset AD than in control individ-
uals, and the microglial protein TYROBP was identified 
as a key regulator of this group. Deficiency of this pro-
tein was subsequently found to be neuroprotective in a 
mouse model of AD183,184, suggesting TYROBP as a new 
therapeutic target.

Patient stratification. Heterogeneity in clinical manifes-
tation, disease progression and genetic predisposition 
often exists within groups of individuals diagnosed with 
the same neurodegenerative disease185. This heterogene-
ity makes it difficult to understand disease mechanisms 
from studying the diagnostic group as a whole, as dif-
ferent mechanisms could be responsible for the disease 
in different individuals and makes identifying effective 
therapies more challenging. Therefore, stratifying study 
participants according to more detailed criteria than a 
diagnostic class is becoming more common. The use of 
machine learning techniques for this purpose is becom-
ing increasingly popular, as the entirety of an individual’s 
clinical history and additional data, including, transcrip-
tomic, neuroimaging or biomarker expression data, can 
be fed into the algorithm186. One approach to patient 
stratification using deep data might be to use unsu-
pervised machine learning methods to reduce dimen-
sionality in high- dimensional labelled data and derive 
classifiers of patient outcomes. This approach can iden-
tify patients with different subtypes or endotypes of the 
disease, which would otherwise not have been obvious187, 
for further study of disease mechanisms or development 
of endotype- specific therapeutic strategies (fig. 4).

Heterogeneity in patient populations is also a prob-
lem for clinical trial design. Natural heterogeneity in the 
outcome variable is an unhelpful source of noise that can 
mask the effects of a therapeutic intervention. A lack of 
biomarkers means that clinicians often rely on subjec-
tive self- reported clinical measurements for diagnosis 
and detecting a response to therapeutic intervention188. 
Therefore, using machine learning models to stratify 
patients and identify biomarkers of treatment response 
from clinical and molecular data could improve the effi-
cacy of clinical trials. Indeed, patient stratification and 
biomarker identification are major objectives of large 
publicly funded databases such as the ADNI. For exam-
ple, an approach was developed to combine multiple 
machine learning models that used clinical, cognitive and 
genetic data collected in an international, multicentre 
effort, to predict survival in patients with MND162. The 
aim of this model was to provide information that could 
be used to stratify patients for clinical trials. Another 
study used a random forest algorithm to predict disease 
progression in individuals with MND on the basis of 
3 months of clinical examination data32. Although this 
model has not yet been used to stratify patients in a 
clinical trial, seeing patient data- driven models that are  
predictive of disease outcomes is encouraging.

Conclusions and future challenges

Machine learning algorithms can recognize patterns and 
make novel inferences from large amounts of multidi-
mensional data in a way that humans cannot. However, 

Bayesian inference
A method of statistical 

inference that uses bayes’ 

theorem to calculate the 

probability of a hypothesis 

being true on the basis of 

observed data and prior 

information.
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the use of machine learning to aid diagnosis, prognosis 
and therapeutic development is still in its infancy. In the 
future, machine learning technologies might enable more 
precise, earlier diagnosis of neurodegenerative diseases 
on the basis of medical history, molecular profiles and 

imaging information, and through the identification 
of more specific diagnostic biomarkers. More precise 
diagnosis could be followed by a personalized treatment 
regimen that will take into consideration the patient’s 
endotype. Machine learning could also reduce the time 

electronic health records
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Then

Drug repurposing

+ Chemical and
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Clinical
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Fig. 4 | Application of machine learning approaches to development and implementation of treatments for 

neurodegeneration. Patient stratification, a process through which a heterogeneous patient population is separated into 

specific endotypes, helps identify different aetiologies of disease and targets or hallmarks that characterize them. 

Unsupervised machine learning algorithms can be fed all existing patient information at the point of diagnosis, as well as 

new information that is gathered as the disease progresses, in order to better understand the underlying disease 

aetiology. During the course of therapy, any significant event such as adverse reactions, lack of response or cross- reactivity 

with other medication, can be fed into machine learning algorithms to help build a better understanding of both the 

disease and the drug, as well as the best therapeutic course of action in each patient. As machine learning algorithms 

continue to harness the knowledge contained within relevant literature and databases (including chemical and genetic 

databases), they can help build a comprehensive picture of molecular changes happening in the disease, which can 

consequently aid identification of new disease targets. This in turn can initiate a new drug discovery cascade, if the target 

is not yet druggable. Outside the realm of pharmacological treatments, machine learning algorithms could provide 

therapeutic avatars, for individuals with dementias or could be an indirect point of contact for patients with decreased 

mobility. Moreover, the field of neurochemical artificial intelligence is focusing on development of novel drugs as well as 

modifying and/or repurposing existing ones. AD, Alzheimer disease; MCI, mild cognitive impairment. Brain scan image 

credit: M. Andritoiu/Alamy stock Photos.
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and cost involved in performing clinical trials, and 
increase the likelihood of success, by enabling efficient 
patient stratification and identifying accurate biomarkers 
of treatment response. Recent advances in machine learn-
ing technology have been made possible by the increased 
availability of large, multidimensional datasets that are 
curated by multicentre initiatives, the democratization 
of machine learning algorithms through open- source 
code and libraries, and the increased affordability of 
high- performance computing infrastructures.

Despite the potential of machine learning, creating 
and applying machine learning algorithms to neurode-
generative disease data remains difficult. One challenge 
relates to the data itself — machine learning models 
are only as powerful as the data they rely on. The lack 
of large datasets, especially multidimensional patient 
data, for many diseases is a barrier to the application of 
machine learning. Patient datasets typically consist of 
only tens or hundreds of patients and tend to be noisy 
because of measurement inconsistency, error or partici-
pant drop- out; these factors all make statistical analyses 
more prone to errors. Metadata analyses are often neces-
sary because the overlap between results from different 
datasets can be small. Conducting metadata analyses 
helps detect, analyse and understand inconsistencies 
across datasets and increases the statistical power of 
the data, as the combined dataset now includes more 
individual cases189. Additionally, data are often biased 
towards certain demographic populations, which limits 
the generalization of the learning and results in disparity 
in health care190.

Data limitations mean that, in practice, most mach-
ine learning pipelines start with careful curation of the 
data, which requires time and expert input. However, 
new machine learning approaches are being developed 
to address the problem of small datasets. For example, 
active learning strategies enable quality inferences from 
fewer samples than other machine learning methods 
and remove the need to label large datasets, which 
can be costly191. Active learning methods evaluate and 
provide feedback on the data as the model is being 
built, simultaneously making predictions for current 
datasets and identifying shortcomings in the model 
by suggesting additional data points to be included. 
Although active learning has been used in drug design 
and optimization192, and could be applied to medical 
image classification or even patient response profiling, 
the approach remains largely unexplored with regard to 
neurodegenerative disease research. In addition

.

m

, trans-
fer learning is a new method that uses data from one 
learning task to help in learning another task193. For 
example, a transfer learning algorithm trained to diag-
nose AD from MRI images, was applied to T2- weighted 
FLAIR MRI images without a drop in performance194. 
Transfer learning relies on the analysis of a selected sub-
set of data features to reduce data dimensionality, thus 
avoiding overfitting and making the approach suitable 
for use on small datasets. Transfer learning has also 
been used to transfer information on biomarker expres-
sion across different neurodegenerative diseases195, as 
well as for biomarker discovery from genomic data196 
and diagnosis and classification of individuals with AD 
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from neuroimaging data197–199. Special types of generative 
models, called general adversarial neural networks200, 
have been used to generate more training data for learn-
ing on biomedical images, for example, by generating 
MRI images of the brain from images obtained via dif-
ferent imaging platforms such as PET73. General adver-
sarial neural networks enable such image manipulation 
and creation by learning the useful features of the train-
ing dataset and generating a new dataset based on the 
learnt features201,202.

Robust assessment of machine learning model per-
formance needs to be carried out to select the best model 
for the task, and to ensure that clinicians can have con-
fidence in the model’s output. For well- defined tasks, 
supervised models can be trained on labelled benchmark 
data (that is, sources of truth), and the performance of 
these models can be evaluated by comparing the model 
output with the benchmark data. However, many other 
tasks in neurology, such as patient stratification, require 
unsupervised models that involve no benchmark data, 
which means that assessing the performance of the 
model presents a significant challenge. Therefore, eval-
uation of the performance of unsupervised models uses 
feedback from experts to establish whether the model 
output is rational203, or correlation of the output with 
other known features such as clinical markers204. Even 
for well- defined tasks, benchmark data are often sparse, 
meaning that the performance of the model on bench-
mark data does not necessarily represent the perfor-
mance of the model on new datasets. This sparsity of 
benchmark data is especially concerning because some 
machine learning models are known to be prone to over-
fitting, which means they become specific to the bench-
mark data and do not perform well on new datasets. If 
a machine learning model cannot reliably generalize 
to new, unseen scenarios, the practical applications are 
limited. Poor methods of performance evaluation can 
also lead to over- interpretation of findings and incorrect 
assumptions about causality.

Another limitation of many machine learning algo-
rithms is that they are ‘black boxes’, that is, they cannot 
be used to understand the problem they address or the 
outputs they produce. Although algorithms are trained 
using medical knowledge and expertise, explaining 
exactly why the algorithm performed in a given way 
is not possible205,206. For example, understanding why a 
deep learning algorithm labelled certain retinal images 
as showing hallmarks of retinopathy is impossible, 
even though the predictions might later prove accu-
rate on review by experts207. This lack of transparency 
can severely limit the usefulness of machine learning 
outputs and therefore the willingness of researchers to 
adopt these approaches. Fortunately, explainable AI, 
which aims to build models that can be interpreted and 
explained, is a growing field208. In explainable AI, algo-
rithms trace or rationalize their decision- making in a 
way that can be understood by humans.

Resolving the challenges involved in applying 
machine learning to neurodegenerative disease data will 
require collaboration between experts in biomedicine 
and machine learning. For example, selecting the right 
datasets for training and validation, and knowing how 
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to deal with missing data require a deep understand-
ing of data collection procedures. In order to respond 
to the pressing demands of developing machine learn-
ing systems in a highly complex and often ambiguous 
space, more cross- disciplinary training programmes are 
needed. In addition, given the caveats of using and eval-
uating machine learning technologies, it would be wise 
to create industry- wide AI assessment and certification 
tests to ensure that only robust, well- validated technol-
ogy can impact research or patient care. The widespread 
integration of machine learning into health- care settings 
would also pose several practical challenges. For exam-
ple, implementation of new systems into clinics needs 
to take into account concerns around job security and 
career progression of existing health- care personnel, 
and training needs to be conducted in a way that allows 
personnel to adapt to the new technology. In a survey of 
physician perspectives on AI implementation in clinical 

practice, the commercialization of medical AI systems 
and the legal, as well as ethical, responsibility of vendors 
of these systems were amongst the main concerns raised, 
which highlights the need for appropriate regulatory 
bodies to be introduced209.

In conclusion, the integration of machine learning 
into diagnostic and prognostic neurology practice, as 
well as the design of future therapeutics, is likely to be 
achieved with national and international efforts to estab-
lish multidisciplinary groups of experts to tackle some of 
the main challenges discussed in this Review article. The 
potential of these collaborative efforts is immense when 
we consider the health challenges our society will have to 
face in the next 50 years as a result of an increasing age-
ing population, and the benefits that would result from 
a faster and more accurate health servic

.
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