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Inƪuence of an InGaN superlattice 
preǦlayer on the performance 
of semiǦpolar ȋͷͷȂȌ green LEDs 
grown on silicon
XǤ Zhaoͷǡ KǤ Huangͷǡ JǤ Bruckbauerǡ SǤ Shenͷǡ CǤ Zhuͷǡ PǤ Fletcherͷǡ PǤ Fengͷǡ YǤ Caiͷǡ JǤ Baiͷ, 

CǤ TragerǦCowanǡ RǤ WǤ Martin Ƭ TǤ Wangͷ*

It is wellǦknown that it is crucial to insert either a single InGaN underlayer or an InGaN superlattice 
ȋSLSȌ structure ȋboth with low InN contentȌ as a preǦlayer prior to the growth of InGaNȀGaN multiple 
quantum wells ȋMQWsȌ served as an active region for a lightǦemitting diode ȋLEDȌǤ So farǡ this growth 
scheme has achieved a great success in the growth of IIIǦnitride LEDs on c-plane substratesǡ but has 
not yet been applied in the growth of any other orientated IIIǦnitride LEDsǤ In this paperǡ we have 
applied this growth scheme in the growth of semiǦpolar ȋͷͷȂȌ green LEDsǡ and have investigated 
the impact of the SLS preǦlayer on the optical performance of semiǦpolar ȋͷͷȂȌ green LEDs grown 
on patterned ȋͷͷȌ silicon substratesǤ Our results demonstrate that the semiǦpolar LEDs with the SLS 
preǦlayer exhibit an improvement in both internal quantum eƥciency and light outputǡ which is similar 
to their c-plane counterpartsǤ Howeverǡ the performance improvement is not so signiƤcant as in the 
c-plane caseǤ This is because the SLS preǦlayer also introduces extra misƤt dislocations for the semiǦ
polarǡ but not the c-plane caseǡ which act as nonǦradiative recombination centresǤ

he last two decades have seen an unprecedented success in developing III-nitride optoelectronics on foreign 
substrates, such as sapphire, which exhibit large lattice-mismatches with GaN. his has led to great success in 
commercialising III-nitride based emitters (light emitting diodes (LEDs) and laser diodes (LDs)), in particular 
blue LEDs. However, it is worth highlighting that a number of fundamental issues are still yet to be fully under-
stood. Dislocations have been proven as non-radiative recombination centres (NRCs)1, and thus considerable 
eforts have been devoted to the development of high quality GaN on widely used sapphire or silicon substrates. 
By contrast, III-nitride LDs with reasonably good performance and long life-time can only be obtained by homo-
epitaxial growth on GaN substrates or templates.

It is also well-known that it is crucial to insert a single InGaN underlayer or an InGaN/GaN superlattice 
structure (SLS) as a pre-layer prior to the growth of InGaN/GaN multiple quantum wells (MQWs) as an emit-
ting region in an LED. he performance of the III-nitride LEDs are then dramatically  improved2–10, although 
the pre-layer is typically grown at a low temperature which generates extra  defects8–10. Furthermore, even for 
the growth on GaN substrates (where the dislocation density is signiicantly low), III-nitride LEDs without any 
pre-layer exhibit much worse performance than those with a pre-layer but grown on  sapphire8–10. It suggests 
that factors in addition to dislocations also play a vital role in determining the performance of III-nitride LEDs.

In order to address this issue, a number of models have been proposed to provide a mechanism for the 
enhanced performance of III-nitride LEDs grown with a pre-layer2–10. So far, the most convincing model identi-
ies point defects induced by vacancies as an important additional source of  NRCs8–10. Furthermore, it has been 
demonstrated that the density of point defects in InGaN/GaN MQWs in the active region of an LED is signii-
cantly reduced if a pre-layer is prepared prior to the growth of the active  region9. Comparative experiments based 
on LEDs grown on sapphire and GaN substrates with or without an InGaN underlayer as a pre-layer provide 
solid evidence to support this  model9. he enhanced LED performance is due to a signiicant reduction in the 
density of point defects as a result of the insertion of such a pre-layer grown at a low temperature, while the 
experiment has also ruled out any other possibilities, such as enhanced performance due to a change in surface 
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 morphology4 or in strain  state7 or a reduction in internal electric  ields6. However, so far, all the research on this 
issue is restricted to III-nitride LEDs on c-plane substrates.

Very recently, semi-polar III-nitride LEDs, in particular III-nitride LEDs grown on the (11–22) semi-polar 
GaN surface, have drawn increasing attention due to a growing demand for developing LEDs emitting at longer 
wavelengths, such as green, yellow or even  red11,12. Semi-polar LEDs exhibit intrinsic advantages compared with 
their c-plane counterparts, such as signiicant reduction in  polarization12,13 and enhanced InN incorporation ei-
ciency in  InGaN14,15, both of which are critically important for developing long wavelength LEDs. So far, impres-
sive results on semi-polar LEDs have been obtained on extremely expensive and size limited GaN  substrates16,17. 
Although the performance of semi-polar LEDs is still far from that of blue LEDs on c-plane substrate, it has also 
been recognized that the major advantage of semi-polar LEDs, in particular semi-polar (11–22) LEDs, is due to 
the development of LEDs emitting at longer wavelengths, such as  yellow11,12.

A careful literature review shows that all semi-polar LEDs reported so far do not utilize growth schemes 
involving either an InGaN underlayer or InGaN SLS as a pre-layer. herefore, it is worth investigating whether 
the pre-layer plays a similar role in semi-polar LED to their c-plane counterparts. Of course, it is more attractive 
to investigate the issue on semi-polar LEDs grown on industry-compatible substrates, such as sapphire or silicon, 
in particular the latter due to an increasing demand for developing an integration of III-nitride optoelectronics 
and silicon technologies.

Prior to starting the investigation, the crystal quality of semi-polar (11–22) GaN on silicon needs to be 
improved to a point where the crystal quality of the (11–22) GaN is similar to or at least approach its c-plane 
counterpart on silicon. In order to address the material issues, our group spent the last decade on establishing 
a number of cost-efective approaches to achieve semi-polar (11–22) GaN with high quality on either m-plane 
sapphire or patterned (113) silicon  substrates11,12,18–20. For the latter, the combination of a stripe-patterning pro-
cess and anisotropic chemical etching is used to form parallel grooves with an optimised depth on (113) silicon, 
on which selective growth on the sidewall {111} facet of the silicon is performed. As a result, (11–22) GaN with 
signiicantly improved crystal quality on silicon has been achieved, and InGaN green LEDs on such a semi-polar 
GaN template have been  demonstrated20. hese provide us with a timely opportunity to investigate the inluence 
of an InGaN pre-layer on the performance of semi-polar LEDs grown on silicon, and then identify whether the 
InGaN pre-layer plays a similar role in semi-polar LEDs to their c-plane counterparts.

In this study, two semi-polar (11–22) green LEDs with a similar structure have been grown on patterned 
(113) silicon substrates: one with 15 pairs of InGaN/GaN SLS as a pre-layer and another without any pre-layer. 
Detailed optical investigations demonstrate that an enhanced internal quantum eiciency (IQE) and a reduc-
tion in eiciency droop have been obtained on the semi-polar LEDs with the SLS pre-layer compared with the 
one without any pre-layer. his is similar to the observations on c-plane counterparts as expected. However, it is 
notable that the improvement is not so signiicant as those for c-plane LEDs. Cathodoluminescence experiments 
identify that the reason is likely related to the generation of extra misit dislocations by the insertion of the SLS 
pre-layer although the InN content in the InGaN of the SLS is less than 3% and thus the lattice-mismatch in 
the SLS is quite small. herefore, the insertion of the SLS pre-layer leads to a reduction in point defect density, 
improving the IQE. However, these misit dislocations act as NRCs and reduce the IQE. Consequently, the overall 
efect is that the semi-polar green LED with the SLS pre-layer exhibits an improved IQE, but the improvement 
is not so signiicant as observed for its c-plane counterparts.

Results and discussion
Two semi-polar (11–22) green LEDs with a similar structure have been grown on our semi-polar (11–22) GaN 
templates with high crystal quality obtained on patterned (113) Si substrates. For the detail of the patterned (113) 
silicon and the material characterization of the semi-polar (11–22) GaN templates, please refer to our recently 
published  paper20. he LED structure with a SLS pre-layer has a 1.2 µm n-type GaN layer and then 15 pairs of 
 In0.03Ga0.97 N/GaN SLS (3 nm/6 nm), followed by a threefold InGaN/GaN MQW as an active region, with 3 nm 
quantum wells and 9 nm barriers (the InN content in the InGaN quantum well is estimated to be 25%) and a 
inal 150 nm p-type GaN layer, while the LED without any pre-layer has an identical structure except for the 
15 pairs of SLS. Figure 1 schematically illustrates these two LED structures with and without the SLS pre-layer.

Figure 2a and b show the photoluminescence (PL) spectra of the semi-polar LED samples with and without 
the SLS pre-layer as a function of temperature ranging from 10 to 300 K. Both samples show a strong emission 
peak at around 550 nm. Figure 2c shows the normalized integrated PL intensities of the two samples as a func-
tion of temperature, from which the room temperature IQE can be estimated. his is a standard, widely used 
method, which assumes 100% IQE at low temperature. he sample with the SLS pre-layer exhibits a 23% IQE 
at room temperature, which is considerably higher than the 13% IQE of the sample without a pre-layer. his 
demonstrates that the insertion of the SLS pre-layer indeed enhances the IQE of the semi-polar LED by a factor 
of 1.8. However, compared to c-plane samples with and without a pre-layer, this enhancement is signiicantly 
lower. For example, it has been reported that the quantum eiciency can be enhanced by a factor of 3.5 for c-plane 
LEDs featuring a SLS pre-layer9.

Figure 3a and b show the EL spectra of these two LEDs (with and without the SLS pre-layer) in a bare-chip 
form (i.e., without any packaging) as a function of injection current measured under identical conditions. In 
both cases, the EL intensity increases with increasing injection current. Figure 3c provides more details of the 
light output (i.e., integrated EL intensity) of both LEDs as a function of injection current, clearly demonstrating 
that the light output of the LED with the SLS pre-layer is higher than that of the LED without a pre-layer. hese 
results are in a good agreement with the IQE measurements as shown in Fig. 2. For example, the light output of 
the LED with the SLS pre-layer is enhanced by 30% compared with the LED without a pre-layer at a 20 mA injec-
tion current. his further proves the enhancement in light output as a result of utilizing a SLS pre-layer. Figure 3d 
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shows the current–voltage characteristics of the samples with and without the SLS pre-layer, which are fairly 
similar. his indicates that the insertion of the SLS pre-layer has not signiicantly afected the electrical properties.

To further investigate the inluence of the SLS pre-layer on the performance of semi-polar LEDs, time resolved 
PL (TRPL) measurements have been conducted on both samples at a low temperature (10 K). Figure 4a and b 
show the TRPL traces of the two samples measured under identical conditions at 10 K. A standard bi-exponential 
model is used, and thus TRPL traces I(t) can be described  by21–23

(1)I(t) = A1 exp(−t/τ1) + A2 exp(−t/τ 2)

Figure 1.  Schematic of the semi-polar (11–22) LEDs with and without the SLS pre-layer grown on (113) 
patterned Si substrates.

Figure 2.  Temperature dependent PL spectra of the semi-polar LEDs with (a) and without (b) the SLS pre-
layer; Integrated PL intensity of the the semi-polar (11–22) LEDs with and without the SLS pre-layer as a 
function of temperature (c).
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Figure 3.  Electroluminescence spectra of the semi-polar (11–22) LEDs with (a) and without (b) the SLS pre-
layer as a function of injection current; light output powers (i.e., integrated EL spectra) of the two semi-polar 
LEDs as a function of injection current (c); and I–V characteristic of the two semi-polar LEDs (d).

Figure 4.  Time-resolved PL spectra of the semi-polar LEDs with (a) and without (b) the SLS pre-layer, 
measured at a low temperature.
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  where the 1st and 2nd items represent the fast and slow components, respectively;  A1 and  A2 are constants; and 
τ1 and τ2 are the decay lifetimes of the two exponential components.

he itting results have been plotted as dashed lines. From the bi-exponential itting, the decay rates for the 
fast component and the slow component of the sample with the SLS pre-layer have been obtained as 0.91 ns and 
10.53 ns, respectively, while the sample without a pre-layer shows a fast decay rate of 0.89 ns and a slow decay 
component of 7.56 ns, respectively. It can be seen that the fast decay rates for the two samples are very similar, 
indicating that the inserted SLS pre-layer does not change the polarization-induced QCSE as the polarization 
in the InGaN/GaN MQWs in both (11–22) semi-polar LEDs is relatively weak due to the nature of semi-polar 
 LEDs11. However, the sample without a pre-layer exhibits a considerably faster decay rate for the slow component 
than the sample with the SLS pre-layer, implying the re-absorption of the emission from the SLS pre-layer whose 
emission is centred at 383 nm. he emission from the SLS pre-layer will be discussed below.

In order to investigate the impact of the insertion of the SLS pre-layer on the spatial dependence of the lumi-
nescence properties, cathodoluminescence (CL) measurements have been performed at room temperature. his 
provides a further insight on defect recombination on a micro/nano meter length  scale24.

Figure 5a,c show plan-view integrated CL intensity images of the InGaN/GaN MQW peak and the near band 
edge (NBE) emission peak of the sample without a pre-layer, respectively. Figure 5b,d display the integrated 
CL intensity image of the InGaN/GaN MQW peak and the InGaN/GaN SLS emission peak of the sample with 
the SLS pre-layer, respectively. Both are measured using an electron beam energy of 5 keV. In the case of the 
sample without the pre-layer the electron beam penetrated the MQW structure and also excited the n-doped 
GaN underneath. Whereas for the sample with the pre-layer, the electron beam did not reach the GaN, only 
penetrating into the SLS pre-layer, and only the emission from the InGaN/GaN SLS is observed in addition to 
the MQW emission for this sample. Figure 5e shows normalized mean CL spectra of both samples. he emis-
sion peak from the InGaN/GaN SLS is centred around 3.23 eV (383 nm) compared with the GaN NBE peak at 
3.39 eV (366 nm) due to the low InN content InGaN layer (around 3%) in the SLS. he MQW peak also appears 
at a slightly diferent position, which is most likely due to the presence of the SLS pre-layer having an efect on 
the growth of the subsequent MQW structure.

In all four intensity images in Figs. 5a–d, a number of dark lines and dark spots can be clearly observed. As for 
c-plane material, dark spots are associated with non-radiative recombination at threading dislocations. Dark lines 
in CL images of semi-polar III-nitrides are generally caused by non-radiative recombination at stacking faults or 
misit  dislocations25,26. he density of dark lines is higher in Fig. 5b compared with Fig. 5a. he majority of dark 
lines in the MQW CL image (Fig. 5a) of the sample without the pre-layer can be associated with misit disloca-
tions forming at the interfaces of the MQW structure generated by slip in the (0001) basal plane, since these dark 
lines do not appear in the CL intensity image of the GaN NBE emission (Fig. 5c). he more pronounced dark 
line on the right hand side of the Fig. 5c is attributed to a stacking fault as it appears at the same place in both 
the GaN NBE and MQW intensity images. In contrast to stacking faults, misit dislocations do not penetrate 
through the entire layer. hey are generally generated at interfaces when a threading dislocation bends into the 
plane of the interface. Hence, a high density is observed in the MQW intensity image, but not in the GaN NBE 
intensity image. Comparison of the MQW intensity images of the samples with and without the pre-layer shows 
that the sample with the pre-layer exhibits a higher density of dark lines. his indicates that the sample with the 
SLS pre-layer has a higher misit dislocation density than the sample without a pre-layer. Additionally, the CL 
intensity image generated from the SLS peak (Fig. 5d) shows a high density of dark lines, implying that a large 
number of misit dislocations were generated at the interfaces in the SLS pre-layer even before the growth of the 
MQW structure. he generation of misit dislocations for the sample without a pre-layer is largely due to the 
InGaN/GaN MQWs as a result of the large lattice-mismatch between InGaN and GaN. However, the enhanced 
misit dislocation observed on the sample with the SLS pre-layer is clearly due to the SLS pre-layer. he critical 
thicknesses for stress relaxation via the formation of misit dislocations depends on growth orientation. Detailed 
studies conirm that the critical thickness of InGaN grown on (11–22) GaN is much thinner than for growth 
on c-plane GaN or (20–21) semi-polar  GaN26–30. herefore, although the InN content in the InGaN of the SLS 
pre-layer is as low as 3%, misit dislocations are still generated. It therefore can be concluded that the insertion 
of the SLS indeed generates extra misit dislocations.

Based on previous studies, point defects such as nitrogen vacancies or surface point defects generated during 
high temperature growth of GaN layer can be captured by a low-temperature grown InGaN pre-layer8–10. As a 
result, the performance of the semi-polar (11–22) LEDs with the SLS pre-layer can be improved due to a reduc-
tion in point defect density. However, the insertion of the SLS also introduces extra misit dislocations acting 
as NRCs, thus leading to a reduction in optical performance. he consequence of the competition of these two 
mechanisms leads to an improvement in optical performance, but the improvement is not as signiicant as that 
observed for its c-plane counterparts.

Conclusions
his paper has systematically investigated the inluence of an InGaN/GaN SLS pre-layer inserted prior to the 
growth of the InGaN/GaN MQWs of a semi-polar (11–22) LED on patterned Si (113) on the optical performance. 
It was demonstrated that the semi-polar LED with the SLS pre-layer exhibits an improvement in both IQE and 
light output as expected, which is similar to its c-plane counterparts. However, unlike c-plane LEDs, the SLS pre-
layer also introduces extra misit dislocations. Consequently, the performance improvement is not as signiicant 
as that for its c-plane counterparts. For example, the IQE can be enhanced from 13% for the semi-polar LED 
without a pre-layer to 23% for the semi-polar LED with a SLS pre-layer (factor 1.8), while the enhancement in 
IQE for its c-plane counterpart can be up to a factor of 3.5.
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Methods
Photoluminescence measurements have been conducted as a function of temperature. he samples are held in 
a helium closed-circuit cryostat in a temperature range from 10 to 300 K. A 375 nm diode laser is used as an 

Figure 5.  Plan-view CL imaging at room temperature: Integrated CL intensity images of the InGaN/GaN 
MQW peak of the LEDs (a) without and (b) with the SLS pre-layer. (c) Integrated CL intensity image of the GaN 
NBE peak of the LED without the pre-layer. (d) Integrated CL intensity image of the InGaN/GaN SLS peak of 
the LED with the pre-layer. (e) Mean CL spectra of the LEDs with and without SLS pre-layer.
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excitation source. he luminescence is dispersed by a 0.55 m monochromator and then detected by a Jobin 
Yvon CCD.

Time resolved PL measurements have been carried out as a function of temperature by using a time-correlated 
single photon counting (TCSPC) system, where a 375 nm pulsed diode laser with a pulse width of 83 ps and a 
pulse period of 50 ns is used as excitation source, and the emission is detected by a Hamamatsu hybrid photon 
counting PMT. he response time of the system is 150 ps. he samples are held in a helium closed-circuit cryostat.

Device fabrication was performed on both semi-polar green LED epi-wafers in a same batch for detailed 
comparison by means of using a standard photolithography technique. Lateral LED mesas with a typical size 
of 330 × 330 µm2 were formed using dry etching. A highly transparent Ni/Au layer and a Ti/Al/Ti/Au alloy 
have been deposited by a thermal evaporator and then annealed by rapid thermal annealing in order to form 
p-contact and n-contact, respectively. A Ti/Au alloy has been inally deposited as pad electrodes for both p-type 
and n-type contacts.

Electroluminescence measurements have been performed on the bare chip LEDs as a function of injection 
current at room temperature in a continuous current injection mode using a Keithley 2,400 source meter.

Cathodoluminescence (CL) measurements have been carried out at room temperature using a ield emission 
gun scanning electron microscope (SEM). Samples are placed in the SEM chamber, and are tilted by 45°. he 
emission is collected by a Schwarzschild relecting objective with its optical axis perpendicular to the direc-
tion of the electron beam, and then dispersed with a 1/8 m focal length spectrometer, and inally detected by a 
1,600-channel electron multiplying charge-coupled device.

Received: 7 May 2020; Accepted: 15 July 2020
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