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ABSTRACT

Learning in uncertain, noisy, or adversarial environments is

a challenging task for deep neural networks (DNNs). We

propose a new theoretically grounded and efficient approach

for robust learning that builds upon Bayesian estimation and

Variational Inference. We formulate the problem of density

propagation through layers of a DNN and solve it using an

Ensemble Density Propagation (EnDP) scheme. The EnDP

approach allows us to propagate moments of the variational

probability distribution across the layers of a Bayesian DNN,

enabling the estimation of the mean and covariance of the pre-

dictive distribution at the output of the model. Our experi-

ments using MNIST and CIFAR-10 datasets show a signifi-

cant improvement in the robustness of the trained models to

random noise and adversarial attacks.

Index Terms— Variational inference, Ensemble tech-

niques, robustness, adversarial learning.

1. INTRODUCTION

Recently, machine learning models have shown significant

success in various application areas, including computer vi-

sion and natural language processing [1, 2]. However, these

models may have limited suitability for mission-critical real-

world applications due to the lack of information about the

uncertainty (or equivalently confidence) in their predictions

[3]. Information about uncertainty and confidence can im-

prove a model’s robustness to random noise and adversarial

attacks [4, 5]. Many real-world applications, including vari-

ous autonomous, military, or medical diagnosis and treatment

systems, require the estimation of a model’s confidence in its

decisions [4, 5]. Quantitative estimation of uncertainty in the

model’s prediction can be accomplished by exploiting well-

established Bayesian methods.

In Bayesian settings, we start by defining a prior proba-

bility distribution over the unknown parameters, i.e., weights

and biases of a DNN. Bayes’ theorem allows us to infer the

posterior distribution of these parameters after observing the

training data [6, 7, 8]. However, inferring the exact poste-

rior distribution is mathematically intractable for most mod-

ern DNNs, as these models do not lend themselves to exact

integration due to a large parameter space and multiple layers

of nonlinearities [9]. One of the most common scalable den-

sity approximation approaches is Variational Inference (VI).

The VI approximation method converts the intractable density

inference into an optimization problem that is solved using

standard algorithms, e.g., gradient descent [9, 7]. VI meth-

ods pose a simple family of distributions over the unknown

parameters and then find (through optimization) a member of

this family that is closest, in terms of Kullback-Leibler (KL)

divergence, to the desired posterior distribution [10]. Over

the past few years, VI has been used to estimate the poste-

rior distribution for fully-connected neural networks, convo-

lutional neural networks (CNNs), and recurrent neural net-

works [11, 12, 6].

However, current Bayesian approaches based on VI do

not propagate the variational distribution from one layer of the

DNN to the next layer [11]. Instead, a single set of parameters

is sampled from the variational posterior and is used in the

forward pass [11]. Alternatively, the dropout is used at test

time, mimicking a Bernulli distribution for the weights, to

generate various samples, which, in turn, are used to calculate

uncertainty in the output using the frequentist approach [6].

Recently, Dera et al. proposed a scalable and efficient ap-

proach, called extended VI (eVI), to propagate the first and

second moments of the variational distribution through all

layers of a CNN [8, 13]. Their method provided a mean vec-

tor and a covariance matrix at the output, corresponding to the

network’s prediction and uncertainty, respectively [8]. The

authors used first-order Taylor series approximation to com-

pute the mean and covariance after propagating the variational

distribution thorough the activation functions. However, the

first-order Taylor series approximation may fail when the ac-

tivation function is highly nonlinear, e.g., ELU, SELU, and

Swish [14, 15, 16].

We build our Ensemble Density Propagation (EnDP)
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framework using the powerful statistical technique developed

for density tracking in Ensemble Kalman Filters [17]. We

propagate random samples across the layers of DNNs and

estimate the first two moments of the variational posterior af-

ter passing through each layer, including nonlinear activation

functions. Our results show that propagating the variational

posterior using EnDP results in increased robustness to Gaus-

sian noise and adversarial attacks.

The rest of this paper is structured in the following way.

In section 2, we describe the general VI framework and in-

troduce our proposed Ensemble Density Propagation (enDP)

approach. EnDP results in the propagation of uncertainty in-

formation from the input, as well as networks parameters, to

the network output. In section 3, we present our results on a

classification task using the MNIST and CIFAR-10 datasets

and compare them to state-of-the-art VI approaches. In sec-

tion 4, we discuss our results and present the effect of the

ensemble size (number of random samples N) on the perfor-

mance of the proposed EnDP approach.

2. ENSEMBLE DENSITY PROPAGATION

A framework for the propagation of the variational posterior

density across layers of DNNs has been recently explored [8].

In this paper, we introduce the Ensemble Density Propaga-

tion framework for tracking moments across layers of DNNs.

We adopt the stochastic ensemble framework, drawing upon

the ensemble Kalman filter and other Monte Carlo approaches

[18, 19].

We define a prior probability distribution p(Ω) over the

set of weights Ω of a DNN. After observing the training

dataset D, we update our belief and find the posterior dis-

tribution p(Ω|D). As the direct inference of p(Ω|D) is in-

tractable, we employ VI to approximate the true posterior

with a parametrized distribution qθ(Ω), also known as the

variational posterior, with θ representing the distribution

parameters [10]. We assume qθ(Ω) to be a Gaussian distribu-

tion. In VI, we minimize the KL-divergence between the true

and the variational posterior distribution:

KL(qθ(Ω)
∣

∣

∣

∣p(Ω
∣

∣D)) =

∫

qθ(Ω) log
qθ(Ω)

p(Ω)p(D|Ω)
dΩ. (1)

By rearranging the terms in (1), we obtain the following

objective function:

L(θ) = − Eqθ(Ω)[log(p(D|Ω)] +KL(qθ(Ω)
∣

∣

∣

∣p(Ω)), (2)

where L(θ) is widely known as the variational free energy

and is composed of two terms, the expected log-likelihood,

which depends on the data, and the KL-divergence between

the prior and variational posterior, which does not depend on

the data and acts as a regularization penalty. For simplicity

and without loss of generality, we present our EnDP frame-

work for a single layer CNN with one max-pooling layer and

a fully connected layer before the soft-max function.

Convolution Operation: In our framework, the convolu-

tional kernels are assumed to be random variables endowed

with a multivariate Gaussian distribution. We assume that the

kernels within a convolutional layer are independent of each

other. This assumption reduces the number of unknown pa-

rameters and also forces convolutional kernels to extract fea-

tures that are uncorrelated with each other.

We consider the convolution operation as a matrix-vector

multiplication. We express the output of the convolutional

layer as z(kc) = X vec(W(kc)), kc = 1, · · · ,Kc, where X

represents a matrix whose rows are the vectorized sub-tensors

of the input image, W(kc) is the kth
c convolutional kernel with

vec(W(kc)) ∼ N
(

m(kc),Σ(kc)
)

, Kc is the total number of

kernels and (vec) is the vectorization operation. Thus, the

output of the convolution between the kth
c kernel and the input

image has a distribution z(kc) ∼ N
(

Xm(kc), XΣ(kc)XT
)

.

Nonlinear Activation Function: After the convolution, the

resulting random variables z(kc) will be propagated through

an element-wise nonlinear activation function ψ. We perform

stochastic sampling and draw N samples, z
(kc)
i , where i =

1, 2, · · · , N . We pass each ensemble member z
(kc)
i through

the activation function and obtain g
(kc)
i = ψ[z

(kc)
i ]. We find

the sample mean and covariance of g(kc) using:

µg(kc) =
1

n

N
∑

i=1

g
(kc)
i , (3)

Σg(kc) =
1

n− 1

N
∑

i=1

[

g
(kc)
i − µg(kc)

][

g
(kc)
i − µg(kc)

]T

.

Max-Pooling Operation: The max-pooling operation se-

lects the largest value in each patch of the given input. At the

output of the max-pooling layer, we approximate the mean by

µp(kc) = pool(µg(kc)). For the covariance matrix, we keep

rows and columns of Σg(kc) corresponding to the elements

of the mean vector retained after the pooling operation, i.e.,

Σp(kc) = pool(Σg(kc)). If we denote by d1 × d1 the dimen-

sion of g(kc). Thus, µg(kc) has the same dimension as g(kc)

and Σg(kc) has a dimension d21 × d21. At the output of max-

pooling, the dimensions of µp(kc) , and Σp(kc) become d2×d2
and d22 × d22, respectively, where d2 = (d1 − p)/s + 1, p is

the patch size of the pooling operation and s is the stride.

Fully-Connected (FC) Layer: The input to the FC layer

b is obtained by vectorizing the output of the max-pooling

layer. The mean and covariance of b are given by:

µb =







µp(1)

...

µp(Kc)






,Σb =







Σp(1) · · · 0
...

. . .
...

0 · · · Σp(Kc)






(4)



We denote the hth weight vector of the FC layer by wh ∼
N (mh,Σh), for h = 1, · · · , H , where H is the number of

output neurons. By employing the derivations in [8] for the

product of random vectors, we can compute the output mean,

µf , and the output covariance, Σf , of the FC-layer as:

µfh = mT
hµb, (5)

Σf =

{

Tr
(

Σhi
Σb

)

+mT
hi
Σbmhj

+ µT
bΣhj

µb, i = j.

mT
hi
Σbmhj

, i 6= j.

where h, hi, hj = 1, 2, · · · , H , and i, j refer to any two

weight vectors in the FC layer.

Soft-max Function: For multi-class problems, the network

output is given by the soft-max function, i.e., ŷ = φ(f),
where φ represents the softmax function and f is the out-

put of the FC layer. We can approximate the mean µy and

covariance Σy using first-order Taylor series approximation:

µy ≈ φ(µf ), and Σy ≈ JφΣfJ
T
φ , (6)

where Jφ represents the Jacobian matrix of φ with respect

to f evaluated at µf . The proposed EnDP framework can

be easily extended to multi-layer CNNs and various archi-

tectures (such as recurrent neural networks) by following the

same derivation presented above.

3. EXPERIMENTS AND RESULTS

We evaluated the performance of the proposed EnDP method

on a classification task, using two datasets, i.e., MNIST hand-

written digits and CIFAR-10 [20, 21]. We compared test ac-

curacy of our model with the state-of-the-art in the literature,

including a vanilla CNN, Bayes-by-Backprop (BBB), Bayes-

CNN, Dropout-CNN, and eVI [11, 12, 6, 8]. We evaluated

all models using test datasets of MNIST and CIFAR-10 under

three conditions, i.e., noise-free, Gaussian noise, and adver-

sarial attack. The targeted adversarial examples were gener-

ated using the fast gradient sign method (FGSM) [22].

3.1. MNIST Dataset

We used a CNN having one convolutional layer with 32 ker-

nels of size 5×5, followed by the rectified linear unit (ReLU)

activation, one max-pooling layer and one FC layer. We used

N = 1000 samples for the ensemble density propagation.

We tested all models at two levels of Gaussian noise, i.e.,

σ2
noise = 0.1, and 0.2. The adversarial examples were gen-

erated to fool each model into predicting digit “3” with two

attack levels, i.e., σadversarial = 0.1, and 0.2.

In Table 1, we present test accuracies of EnDP, eVI, BBB,

and a vanilla CNN for the MNIST test set at various levels of

Gaussian noise and adversarial attacks. In Fig. 1, we present

selected test results of EnDP for three different noise condi-

tions, i.e., noise-free, Gaussian noise, and adversarial attack.

We present test images with their ground-truth and predicted

labels, and corresponding outputs of the soft-max function

(the mean vectors µy and covariance matrix Σy from Eq. 6).

The diagonal elements of the covariance matrix, i.e., the vari-

ance elements, provide a meaningful and calibrated measure

of the model’s uncertainty or equivalently confidence associ-

ated with every prediction.

In Fig. 2, we present the test accuracy and training time of

EnDP for various sample sizes N used for ensemble density

propagation.

3.2. CIFAR-10 Dataset

We used a CNN with three convolutional blocks and one FC

layer. Each convolutional block included two consecutive

convolutional layers, each followed by Exponential Linear

Unit (ELU) activation function and one max-pooling layer at

the end [15]. The convolutional kernels in all blocks were of

size 3 ×3. The number of convolutional kernels in the first,

second and third block was set to 32, 64, and 128, respec-

tively. In total, our network included six convolutional layers,

each followed by ELU activation.

For the ensemble density propagation, we used a differ-

ent number of samples for each of the six ELU layers, i.e.,

Ni = 2di, where i = 1, 2, . . . , 6 represent ELU layers, and di
is the dimension of the feature map obtained after the ith con-

volutional layer. In Table 2, we report test accuracy of EnDP,

eVI, Bayes-CNN and Dropout-CNN for the noise-free case

and under adversarial and Gaussian noise conditions. The

noise level was set to 5% of the the highest conceivable value

(HCV), where HCV = 3 σnoise [23]. We generated the tar-

geted adversarial examples to fool each network into predict-

ing the label “cat”.

4. DISCUSSION

We proposed a new method for propagating variational pos-

terior distribution through nonlinear activation functions in

DNNs using the ensemble approach. We draw N random

samples, pass these samples thought the nonlinear activation

functions, and calculate the mean and covariance of the trans-

formed output. The propagation of the distribution through

Table 1. MNIST Test Accuracy

Noise/Attack level EnDP eVI BBB CNN

No Noise 97% 96% 96% 96%

Gaussian Noise

0.1 95% 94% 86% 79%

0.2 86% 85% 76% 70%

Adversarial Attack

0.1 95% 95% 91% 58%

0.2 83% 81% 45% 14%



Fig. 1. The output of the EnDP model, i.e., the mean vector µy and covariance matrix Σy of the soft-max function, is

presented for three test images. In sub-figures (b) and (c), test images were corrupted with Gaussian noise (σ2
noise = 0.1)

and adversarial attack (σadversarial = 0.1), respectively. The green color refers to the predicted output, while the yellow color

represents the ground truth. When the yellow block is not shown, the network prediction and the ground-truth labels matched.

In the covariance matrix, a large variance value indicates a low level of confidence or high uncertainty in the prediction.

DNNs results in robust performance against Gaussian noise

and adversarial attacks.

In the noise-free case, our approach, referred to as EnDP,

performed better or equally on two benchmark datasets

(MNIST and CIFAR-10) as compared to the state-of-the-

art models, including eVI, BBB, Bayes-CNN, Dropout-CNN,

and a vanilla CNN. Under noisy conditions and adversarial at-

tacks, EnDP outperformed all models (except for the MNIST

dataset at a low level of adversarial attack where EnDP and

eVI produced 95% test accuracy, Table 1). We note that as

the level of noise or severity of adversarial attack increased

(Table 1), the EnDP model maintained better performance.

The gap between the accuracy of EnDP and other models

increased. Similarly, in relatively complex network architec-

ture (CIFAR-10 dataset, Table 2), EnDP performed robustly

as compared to all other models in noise-free conditions as

well as under noise attack.

4.1. Effect of Sample Size (N )

We note that both the accuracy and training time increase with

the increasing number of samples used for ensemble density

propagation (Fig. 2). This behavior agrees with the well-

known trade-off between accuracy and computational cost.

Our empirical results show that the number of samples re-

quired to achieve comparable accuracy depends upon the size

of the feature map resulting from the preceding convolutional

layer. We found that the number of samples approximately

equal to twice the size of the feature map produced good re-

sults. For the case of MNIST, the output of the convolution

operation z is of size d = 24× 24 = 576. Therefore, we used

N = 1000 for our experiments, which resulted in comparable

accuracy at a reasonable computational cost. For CIFAR-10,

we varyN for each ELU layer depending upon the size of the

output of the preceding convolutional layer (Ni = 2di).



Fig. 2. The effect of number of samplesN used for EnDP on the test accuracy and training time for MNIST dataset is presented.

(a) Test accuracy increases as N increases. (b) Training time (in minutes) for one epoch as N is increased.

4.2. Robustness to Noise and Adversarial Attacks

We consider that the robustness of EnDP models to noise and

adversarial attacks is attributable to the propagation of mo-

ments of the variational posterior through the network layers.

The propagation of moments enables the model to use con-

fidence (i.e., variance/covariance) information during the op-

timization process. In the moment propagation settings, the

network learns “robust” parameters, including convolutional

kernels and weights of the FC layer. The learned “robust” pa-

rameters result in a robust behavior, especially when the input

is corrupted with noise or is adversarially attacked.

Both EnDP and eVI are based on variational posterior

density propagation and show robustness in noisy and adver-

sarial environments. However, the proposed EnDP method

is superior to eVI, as evident in the experimental results, es-

pecially at a high level of noise and adversarial attacks. In

our experiments, we used two activation functions, ReLU and

ELU. However, the EnDP framework is readily extendable

to all types of activation functions. Owing to the sampling

and stochastic nature of our proposed EnDP technique, we

consider that the performance of EnDP will be even better

for highly nonlinear activation functions. In fact, we expect

that for highly nonlinear activation functions (e.g., Gaussian

Error Linear Unit, and Scaled exponential linear unit), the

first-order approximation used in eVI might fail since higher-

order terms are neglected in the linearisation; however, the

proposed EnDP technique will perform robustly.

Table 2. CIFAR-10 Test Accuracy

Noise EnDP eVI Bayes- Dropout-

Type CNN CNN

Zero 86% 86% 85% 86%

Adversarial 82% 80% 68% 52%

Gaussian 85% 82% 77% 75%

4.3. Calibrated Uncertainty Information in the Model’s

Predictions

The predictions of modern neural networks (i.e., the output of

the soft-max function) are poorly calibrated and may provide

misleading interpretation, especially when the predicted out-

put is wrong [24, 25]. A key feature of the proposed EnDP

method is the availability of uncertainty information at the

output through the covariance matrix. For example, consider

the adversarial attack case in Fig. 1(c). The EnDP model erro-

neously predicted digit “3” instead of “2”; however, the vari-

ance values (diagonal elements) corresponding to digits “3”

and “2” were significantly larger as compared to all others. If

we set the confidence proportional to the inverse of the vari-

ance, the mentioned example revels that the EnDP model was

highly uncertain about its prediction and indicating low con-

fidence in its output. The availability of a calibrated measure,

i.e., the covariance matrix, can help establish the trustwor-

thiness of machine learning models. Furthermore, the vari-

ance information can provide insights that can help interpret

a model’s correct and incorrect predictions.

5. CONCLUSION

We proposed a new approach for the approximation of vari-
ational posterior in DNNs. We were able to propagate the
first two moments of the variational posterior through the lay-
ers of a multi-layer CNN using a stochastic ensemble tech-
nique. The proposed Ensemble Density Propagation (EnDP)
framework can approximate any number of moments. The
covariance matrix available at the output of an EnDP model
captures its uncertainty in the predicted decisions. Our ex-
perimental results using the MNIST and CIFAR-10 datasets
showed significantly increased robustness of the EnDP mod-
els to Gaussian noise and adversarial attacks. We consider
that the propagation of moments through layers of the net-
work results in robust learning and improved performance in
noisy conditions.
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