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ON THE HAMILTONIAN FORMULATION OF THE TRIGONOMETRIC SPIN
RUIJSENAARS-SCHNEIDER SYSTEM

OLEG CHALYKH AND MAXIME FAIRON

ABSTRACT. We suggest a Hamiltonian formulation for the spin Ruijsenaars-Schneider system in the
trigonometric case. Within this interpretation, the phase space is obtained by a quasi-Hamiltonian
reduction performed on (the cotangent bundle to) a representation space of a framed Jordan quiver.
For arbitrary quivers, analogous varieties were introduced by Crawley-Boevey and Shaw, and their
interpretation as quasi-Hamiltonian quotients was given by Van den Bergh. Using Van den Bergh’s
formalism, we construct commuting Hamiltonian functions on the phase space and identify one of the
flows with the spin Ruijsenaars—Schneider system. We then calculate all the Poisson brackets between
local coordinates, thus answering an old question of Arutyunov and Frolov. We also construct a complete
set of commuting Hamiltonians and integrate all the flows explicitly.

1. INTRODUCTION

The spin Ruijsenaars—Schneider model (RS model) has been introduced by Krichever and Zabrodin
[31] as a generalisation of the well-known non-spin model [38]. It is a system of n particles on the line,

with positions ¢; and spin variables a¥, b5, where ¢ = 1,...,n labels the particles and a = 1,...,d labels
the internal degrees of freedom. Its equations of motion have the following form (cf. [4]):
4 =i, (1.1a)
ag' :ZV(Qik)fik(ag —a), (1.1b)
ki
be :Z(V(Qik)fikbia = Vilawi) fribi ) - (L1c)
ki

Here fi; =3 , ai'b§ and V(2) = ((2) — ((2 +) where ((2) is the Weierstrass (-function, v is a coupling
parameter, and ¢;; := ¢; — ¢;. In the equations (1.1a)—(1.1c) it is assumed that ) _af =1 for all i it
is easy to see that such constraints are preserved by the flow. This reduces the dimension of the phase
space to 2nd. The rational and trigonometric (or, rather, hyperbolic) versions are obtained by setting
V(z) =27t — (2 +v)7! and V(z) = coth(z) — coth(z + ), respectively. Note that in [31] the equations
are written in 2n + 2nd coordinates, and the above form is obtained after a reduction, see [31, 4] for the
details (in the notation of [4], our variables a$, b correspond to ag, c).

In [31] the above dynamical model was derived by studying solutions of the non-abelian 2D Toda
equation. As shown in [31], the model admits a Lax representation, and its general solution can be
expressed in Riemann theta functions. Similar results for the Calogero-Moser model and the KP equation
were previously obtained in [23, 28, 30]. It is therefore natural to ask for a Hamiltonian formulation of the
spin RS model. In the rational case, the answer was given by Arutyunov and Frolov in [4]. To formulate
their result, let us define the antisymmetric bracket (bivector) on the phase space of the system (1.1a)-
(1.1c) by the formulas

{a,q;} =0, {a@aft =0, {q,b}}=70;b7, (1.2a)
1
{afﬂaf} :6(i¢j)q7j(a?aj +ajaj — f‘af —a?af), (1.2b)
o 18 @ 1 a a8
{a", 07} =af' Lij — dapLij — 5@;&;‘);(% —aj)b; (1.2¢)
i
(a3 1 (7 (a7 (%
(b2, b7 :5(i¢j)?(bi b+ bIbY) — b2 Ly + 0Ly, . (1.2d)
ij
Here L;; = q,ﬁiv, and d(;+;) := 1 — ;5. The above bracket can be viewed on the space of dimension
2nd + n with coordinates ¢;, af, b? ; it is then easy to check that the ideal generated by the n functions

Yo af —1is also an ideal with respect to this bracket, and so the bracket restricts onto the phase space of
dimension 2nd. With these definitions, it is shown in [4] that the formulas (1.2a)—(1.2d) define a Poisson
1
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bracket on the phase space of dimension 2nd, and the Hamiltonian flow with the Hamiltonian h = ). fi;
takes the form (1.1a)—(1.1c) with V(2) = 27t — (z + )~ L.

Note that the above L = (L;;) is the Lax matrix of the rational RS model, and h = v tr L. Arutyunov
and Frolov observed that the brackets between L;; admit an r-matrix formulation with the same r-matrix
as for the non-spin RS model. This led them to conjecture a similar result in the trigonometric case.
However, they were unable to prove that conjecture and to find a Hamiltonian interpretation for that
case, i.e. a trigonometric analogue of (1.2a)—(1.2d) remained unknown. One of the main results of this
paper is an explicit description of the appropriate brackets between the variables (g;, a$, b$) and a proof
of the Arutyunov—Frolov’s conjecture as a corollary.

We should mention that a Hamiltonian interpretation of the model (1.1a)—(1.1c) was found by Krichever
in [29] within his elegant geometric approach to the systems of Calogero—Moser type. Nonetheless, his
formula for the symplectic form (see [29, (3.21)]) is implicit and, while he constructs the action-angle
coordinates, the Poisson brackets between the original variables are not determined. (In the special case
of n = 2, the symplectic form has been calculated explicitly [40].) Another issue is that the symplectic
structure in [29] is constructed on a reduced phase space which is obtained by gauging away extra d(d—1)
degrees of freedom. However, such reduction is only valid for d < n. In comparison, our Hamiltonian
formulation is given in the original 2nd coordinates, it is completely explicit and remains valid for any
d. Another advantage of our approach is that it provides a completion of the original phase space of the
trigonometric spin RS model, in the same way as the Calogero-Moser space in [46] allows coalescence
of particles. To this end, we demonstrate the (degenerate) integrability of the system and explicitly
integrate all the flows, from which the completeness of the flows is obvious.

Let us say a few words about our methods. In our approach, the phase space of the system is
obtained by quasi-Hamiltonian reduction from a representation space of a framed Jordan quiver, using
the framework developed in [15, 44]. This is very natural from the viewpoint of the existing results for the
Calogero—Moser [46, 47, 12, 42, 14] and the (non-spin) RS systems [22, 34, 19, 20, 13]. Once a geometric
model is correctly identified, the remaining task is to confirm that by calculating the Poisson brackets
and flows in suitable local coordinates. This then becomes a natural extension of the methods and results
of our previous work [13]. Note that we work in the holomorphic setting, and so while we refer to the
system under consideration as to the trigonometric RS model, there is no actual difference between the
trigonometric and hyperbolic versions. The quasi-Hamiltonian reduction framework also offers a nice
perspective on the integrability of the system. First, it allows us to establish its degenerate integrability
in a very natural way. To further extend it to a Liouville integrable system is a non-trivial problem,
which in general does not have a canonical answer. Our solution to this problem can be viewed as an
analogue of the Gelfand—Tsetlin integrable system. It would be interesting to find a quantum version of
this integrable system. There are two possible approaches to this, either by using the double affine Hecke
algebras as in [43] or by using quantized multiplicative quiver varieties due to D. Jordan [26].

The paper is organised as follows. Section 2 outlines our main results. In Section 3, we describe all the
necessary ingredients for performing quasi-Hamiltonian reduction in the special case of a framed Jordan
quiver, including the corresponding representation spaces [15] and (double) quasi-Poisson brackets [44].
In Section 4 we describe local coordinates on the constructed quasi-Hamiltonian quotients and express
the Poisson brackets in the local coordinates. As a corollary, this provides the Hamiltonian formulation
for the spin RS model and proves the conjecture from [4]. Section 5 is devoted to the integrability of the
model. We show that the trigonometric spin RS system is degenerately integrable, and then extend it
to a completely integrable system and explicitly integrate all the flows. We also discuss the relationship
with the results of Krichever and Zabrodin [31]. Note that in Sections 4, 5 a modification of the spin
RS model is also considered, and similar results are obtained for that case. The paper finishes with the
appendix containing calculations with the brackets, used in the proofs of our main results.

Note added in proof: Alternative treatments of the complex trigonometric spin RS model can be found
in [6, 7].

Acknowledgement. The authors thank L. Fehér, I. Marshall, S. Ruijsenaars and P. Vanhaecke for
useful discussions. The work of the first author (O. C.) was partially supported by EPSRC under grant
EP/K004999/1. Some of the results in this paper appear in the University of Leeds PhD thesis of the
second author (M. F.), supported by a University of Leeds 110 Anniversary Research Scholarship.

1.1. Notations. The sets N, Z, C contain the zero element and we write N*,Z>* C* when we omit it.
By an algebra we always mean an associative algebra over C. Vector spaces, matrices, varieties are
also viewed over complex numbers. We write d;; or J(; ;) for Kronecker delta function. We extend this
definition for a general proposition P by setting p = +1 if P is true and dp = 0 if P is false. Throughout
the paper, the Greek letters placed as indices range through 1,...,d, for some fixed integer d > 1. The
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ordering function on d elements {1,...,d} is a skew-symmetric symbol defined by o(a,8) = 0 if o = 3,
ola, ) =+1if a < B, and o(r, B) = =1 if a > .

2. MAIN RESULTS

In the trigonometric case it is more convenient to work with x; = 2% and ¢ = e~27, rewriting
(1.1a)—(1.1c) in the form
& = 2fi %, (2.1a)
= Viefinlaf —af), (2.1b)
k#i
b =" (Virfinb§ = Viifriby ) | (2.1¢)
k#i
with
Vi = TitTh  Titqre (2.2)
Ty — T Ty — 4Tk
As before, we view the system under the constraint ) a$* =1 for all i = 1,...,n, hence the phase space
has dimension 2nd. Equations (2.1a)—(2.1¢) admit a Lax formulation [31, 4] with the Lax matrix
L= (Lij)ij=1..n»  Lij= 2oidy (2.3)

T —qr;
Arutyunov and Frolov conjectured in [4] that the brackets between L;; should satisfy the r-matrix for-
mulation of the non-spin trigonometric case [7, 41, 5]. Their conjecture can be formulated as follows.

Conjecture 2.1 ([4]). The phase space with coordinates (z;,a,b%") satisfying >, ad = 1 admits a
Poisson bracket such that

{zi,ze} =0, {xi, fir} = duzifin, (2.4a)

1 T; + xp T+ x; Tp + T; X+ x;
{fijs fu} = §fijfkl [5@#) P +§(j7£l) x] — +5(k7£j)x — + O }

Xy — Iy

+ 5(1#)

xj +a,  wptqx;  w; +qxl]
2 N a

1 T +x

+ = f 5
fit frj { (k) 3 “o T on—qu,  m—qm
$k+$z " xﬂrqﬂﬂz
— I T —qx;

zj ta :ijrqxl}
— Xk T; — QI

1 1
+ 5 fisfa [5( #h) } + 5 i i [5(#@

T + X; Tk + qx;
T — X5 Tk — qT;

(2.4Db)

T+ 3 +xl—|—qu}
- w1 —qrg]]

+ §fkjfkl [5(1‘7%) ] + fzgsz {5(#1

and such that the Hamiltonian vector field associated with the function h = (1 — q)tr L coincides with
(2.1a)—(2.1¢).

Remark 2.1. The above formulas are obtained in [4] from the assumption that the Poisson brackets in
the spin and non-spin cases are governed by the same r-matrix. Namely, following [4] define

T+ x; T, +x;

ij iz © J iy T
2x;
Y pen Y 0,
it izg T
T, +x 2x;
_ZEii®Eii+Zx_7xJ4Eii®Ejj_leix_Eij(@Ej]v
- ity i j iyt j
T+ x5
:_ZEZJ®EJZ+Z _xJ(E%@EJJ Ei; ® Eji),
Li = T

ij

where E;; denote the elementary n x n matrices with (Ejj)m = 0;x0;. Then, assuming (2.4a), the
relations (2.4b) are equivalent to

1
{Li,Ly} = (7“12L1L2 + L1Lat12 + L1721 Ly — LoT12Ly1) (2.5)

where L is the Lax matrix (2.3). See [4, Section 3] for the details.
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Let us now describe the space on which the quasi-Hamiltonian reduction will be performed, postpon-
ing a more detailed account to Section 3. Consider the space M whose elements are the matrix data
X, Z,{Va,Wata=1,..d, where X,Z € Mat, xn, Vo € Mat1xpn, Wy € Mat,x1. Clearly, M is an affine

space of dimension 2n + 2nd. Let M) d.q C M denote a subvariety defined by

XZX 1 Z7H1d, +Wi Vi)~ (Id, +WeVy) Tt = ¢1d,, . (2.6)

Here ¢ is a nonzero parameter, and all the factors are assumed invertible. Throughout the paper it will
be assumed that ¢ is not a root of unity. The group GL,, acts on M and /\/ln dq by

9(X, Z, Vo, Wo) = (9Xg™ ', 9Zg ", Vag ', gWa), g€ GL, . (2.7)
n.d.q// GLn is a smooth affine
variety of dimension 2nd, whose coordlnate rmg is CJ n, o q]GL", i.e. the ring of GL,-invariant functions
on ./\/ln d.q- The variety ./\/ln d4.q// GLn is an example of a multiplicative quiver variety. For general
quivers, such varieties were introduced by Crawley—Boevey and Shaw in the context of multiplicative
preprojective algebras [15] (see also [48] and [9, Appendix]). Van den Bergh [44, 45] interpreted them as
quasi-Hamiltonian quotients, so by his general result, M rXL dq // GL,, is a Poisson manifold with Poisson

bracket induced from a quasi-Poisson bracket on M. Van den Bergh’s bracket on M is an anti-symmetric
bi-derivation (bivector) defined in coordinates by

For ¢ not a root of unity, the action on M , 18 free and the GIT quotient M*

{Xijs Xu} = 5 ( it (X*)kj = 0ni (X2)at) 5 {Zijs Zma} = % (0r;(Z%)it — 60(Z%)1;) (2.8a)
{Xij, Z} = %((ZX)@(M + 0k (X Z)it + Z1j Xt — Xij Za) (2.8b)
{Xij, War} = %(%(XWa)i = XpjWai) »  {Xij, Vau} = % (Vo X)0i — Vi j Xit) (2.8¢)
{Zijs War} = %(%j(ZWa)i = ZkiWa,i) v {Zij, Vaut = %((VaZ)ﬂSu —Va,iZu) (2.8d)
Vo Vaa} = % o(B,a) (Va,;Vau + Va,;Vai) s (2.8¢)
Wi, War} = % o(B,a) (WskWa,i + WaeWp.i) (2.8f)

W W) =5 (5 + Wt o)
45 000, 8) (g (VW) + Wi iVi) (2:88)

In these formulas, o(a, 3) denotes the ordering function defined in §1.1. Note that the bracket does
not satisfy the Jacobi identity, but the induced bracket on M, //GL, does. This is because the
space Mn’ 4. With the GL,-action fits into the framework of the quasi-Hamiltonian reduction (2, 1], with
the left-hand side of (2.6) playing the role of a multiplicative moment map. Thus, the Poisson variety
// GL,, is an example of a quasi-Hamiltonian quotient. Our main result can then be stated as

n,d,q

n, d ,q
follows.
Theorem 2.2. The Poisson manifold /\/ln d q// GL,, admits local coordmates xi,af, b, with Y af =1,
so that the Hamiltonian vector field associated with the function h = 2(¢~" — 1) tr Z has the form (2.1a)-
(2.1¢c). Moreover, the Poisson bracket on ./\/ln d q// GL,, admits an explicit descm’ption in local coordinates,
and the brackets between x; and fi; = f‘b;‘ agree with the formulas (2.4a)—(2.4b), thus confirming
Conjecture 2.1. This also implies the validity of the r-matriz formulation (2.5).

We can explain how the above local coordinates are constructed. They appear as a parametrisation of
a local slice for the GL,-action on M:,d,q’ Namely, given x;,a$, b with Y° _ af =1, let us introduce

17
[eaNe} — j—
E a; bj , zg = 5ijxi> Zij =

We also set (W,); = a. Finally, introduce B, € Matix, with (By); := b and define Vg € Matyxy,
inductively by

qz; fiz

2.9
P (2.9)

Vi=BiZ', Vap=DBgZ '(Id, +WiVi) "t (Idy + W51 V1) !
Then it is easy to check that the constructed matrix data X, Z, V,,, W,, satisfy the moment map equation

(2.6). (To be precise, we need to assume that x;,a, b are generic, so that Z = (Z;;) is well-defined and

797
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invertible, and Id,, +WgV} is invertible for any 5.) This gives a subvariety in M with coordinates

n,d,q’
xi, af, b, and it is easy to see that the GL,-action on ./\/ln dq 18 locally transversal to it. Thus, we obtain
a local parametrisation of the space of orbits in ./\/ln a4, 1-€. local coordinates on /\/ln d q// GL,.

The explicit description of the Poisson bracket in the local coordinates is given in the following propo-
sition.

Proposition 2.3. The Poisson brackets between (x;, a, b) are given by

177

{$Z‘,$j} :O {$Z, J } = O {$Z‘, j} = 5ij~ribj , (2.10&)
i +z; a « a e
{af )} =500 j( 20l +agaf = agal] — ataf) + Jo(8, ) (et + afal)
1 1
+3 Z o(a,'y)a 1 +afal) — Z o( az + aiﬁa]) , (2.10Db)
~y=1 fy:l
1 x; +
{ag, b} =a$ Zij — SapZij — 506 ij (a8 — a$ )b} + S(awpadd]
p-1 d
+a Za (b] —bﬂ —5a52a7b7 72 o(a, W)b (af'aj + afa)), (2.10c)
=1 =1
? + « o (e 1 (e (e
(o, j}— O HED] + bﬁ)—b Ziy + b Zji + S0(8, ) (b0 — b))
a—1
— b2 Z a) )+ 05 " al(b) b)), (2.10d)
y=1

where o(—, —) is the skew-symmetmc pairing defined in § 1.1 and Z;j is defined in (2.9).

The formulas (2.10a)—(2.10d) are considerably more complicated than (1.2a)—(1.2d), which is prob-
ably why they have not been guessed earlier. The proof of this proposition relies on some fairly long
computations performed in Appendix A. Note that the fact that the bracket defined by the formulas
(2.10a)—(2.10d) is Poisson is not immediately obvious but follows from the reduction procedure. The
Arutyunov-Frolov’s conjecture (2.4a)—(2.4b) is then a direct corollary of Proposition 2.3 and the defini-
tion of f;;.

On the variety Mn dg
which Poisson commute as a consequence of (2.8a), see Lemma 3.5. The Hamiltonian flow for each of hy,
is complete and can be explicitly integrated, see §5.3 below (cf. [35]). Thus, one may view ./\/ln d q// GL,
as a completed phase space for the trigonometric spin RS system. The following theorem is another main
result of this paper.

// GL,, we have n algebraically independent functions hy, = tr Z* (k =1,...,n),

Theorem 2.4. The Hamiltonian system defined on ./\/ln d q// GL,, by the Poisson commutmg Hamiltoni-
ans hy, ..., hy, is degenerately integrable. Namely, there exists a Poisson subalgebra Q C C] n. 4 q// GL,,]
of (Krull) dimension 2nd — n, whose centre contains hy, ..., hy,.

This theorem is proved in Section §5.1. The algebra Q is described as follows. For any k €N,
o, = 1,...,d, define functions ¥, = tr(W, Vng) = VBZ’“W Note that ¢, € C| =

CIM,; 4.1/ GL n]. Then Q is the subalgebra of C[M; ; ]G generated by all £} ;

We should mention that for the rational spin RS model, degenerate integrability was established by
Reshetikhin [36]. His approach applies to a wider family of spin models related to simple Lie algebras,
and can be adapted to the trigonometric case as well [37, Section 6]. However, the reduction is performed
on the Heisenberg double of G (with G = SL,, for the type A model), which is of different dimension
compared to our space M. Another important difference is that we consider complexified dynamics, for
which the variety M | // GL,, provides a completed phase space.

In Sections 4, 5 we also discuss another integrable system defined by the Hamiltonians hj = tr Y'*, for
Y = Z — X~!. This system can be viewed as a modification of the trigonometric spin RS model, and it
has similar properties: the Hamiltonian flows are complete and can be explicitly integrated, and we also
have degenerate integrability.

Degenerate integrability is known to be a stronger property than Liouville integrability. In the real
smooth setting, it implies that the phase space can be fibred into invariant tori (or more general non-
compact fibers) of smaller dimension, see [33, 27]. Therefore, it is natural to expect that the above
Hamiltonians h; can be extended to a full set of nd commuting Hamiltonians on the variety M, // GL,,.

ndq

n,d,q

n,d,q
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We establish this fact in Section §5.2. Note that in general such an extension is not canonical. The
completely integrable extension that we construct can be viewed as an analogue of the Gelfand—Tsetlin
system.

3. THE QUASI-HAMILTONIAN PICTURE

In this section we describe the quasi-Hamiltonian reduction procedure for obtaining a completed phase
space for the spin trigonometric RS model. The reduction is performed on a representation space of a
framed Jordan quiver, and is an application of the general theory developed by Van den Bergh [44, 45].
Following his approach, we first introduce a suitable noncommutative quasi-Hamiltonian algebra; the
corresponding geometric objects will arise after passing to representation spaces for this algebra.

3.1. The quasi-Hamiltonian algebra. According to [44], a quasi-Hamiltonian algebra is a triple con-
sisting of an algebra A, a double bracket {—, —} on it, and a multiplicative moment map ® € A. These
must satisfy certain properties which should be regarded as noncommutative analogues of the properties of
quasi-Hamiltonian spaces [2, 1]. In [44, Section 6.7], it is explained how to associate a quasi-Hamiltonian
algebra to any quiver. We will not present Van den Bergh’s theory in full detail (see [13, Section 2] for a
brief account sufficient for the purposes of this paper), and simply describe below a particular choice of
A, {—, -} and @ that we make.

3.1.1. The algebra A. Consider a framed Jordan quiver ) which has two vertices, 0 and oo, and arrows,
2:0—0,v1,...,04: 00— 0. By Q we denote the doubled quiver, which has additional arrows y : 0 — 0
and wy,...,wg : 0 = oco. Let CQ be the path algebra of the doubled quiver; it is generated by the
idempotents eg, eo (representing the zero paths) and the arrows x,y,v,,ws, with the multiplication
given by concatenation of paths. We will be writing paths from left to right: e.g., zw, represents a path
that starts at 0 and ends at co. The element ey + ey, will be identified with 1. Introduce an algebra A,
obtained from CQ by formally inverting the elements 1 + zy, 1 + yz, 1 + wava and 1 + vow,. Below we
will also use a further localisation of A, obtained by inverting x; we denote the resulting algebra as A*.

3.1.2. The double bracket. By definition [44], a double bracket on an algebra A isamap Ax A - A® A,
(a,b) — {a,b} which is linear in both arguments and satisfies two properties,

{a,b} = —{b,a}° and {a,bc} = {a,b}c+b{a,c} . (3.1)
Here o denotes a linear map A® A — A® A defined by (u ® v)° = v ® u, so the first formula replaces the
usual antisymmetry. The second formula means that the bracket is a derivation in the second argument,
with A ® A viewed as an A-bimodule in the usual way, i.e. with a(u ® v)b = au ® vb. In the quasi-
Hamiltonian setting, this bracket is also required to be quasi-Poisson (we omit the definition, see [44,
Section 5] or [13, Section 2.2]).
By [44, Section 6.7], the path algebra CQ of any doubled quiver admits a quasi-Poisson double bracket.
In our situation, this bracket takes the following form:

{z,2} :% (®®ey—eo®2?), {y.y} = % (eo®y* —y* ®e) , (3.2a)
{z,y} :€0®60+%(yx®60+60®xy+y®x—x®y), (3.2b)
{z,w.}} = %60 ® TWws — %x Wy, Lx,va}= %vax ® eg — %va ®, (3.2¢)
{y, wa}} = %60 Q Ywq — %y @wa, fy,va}= %%y@ ey — %va Ry, (3.2d)
{va,vs} = % o(f,a) (Va ® v+ V3 QVa) , (3.2¢)
fwa, ws} = % o(B,a) (wa ® wp +ws @ wa) , (3.2f)

1 1
{va,wsl} =dap <eo ® eco + §wava ® eso + 560 ® vawa>

1
+ 5 o(a, B) (e0 ® VaWg + WaVa @ €no) - (3.2g)

The double bracket depends on a total ordering on the set of arrows of @, and our choice corresponds to
setting x <y < vy <wy <wvg < ... <wvg < wg. Itis assumed here that the bracket is linear over the
subalgebra Cey @ Cen, that is, {eo,al} = {ec,al} = 0 for all a. The above formulas are obtained by
using [13, Proposition 2.6]; they completely determine a double bracket on CQ due to (3.1).
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It is clear that this bracket uniquely extends to the localised algebras A and A*, defined above.
Considering A*, we can introduce z = y + x~!, and obtain the double brackets

1 1
{z,2} = 3 (eo®z*—2*®e), fx,2} = é(zx®eo+eo®xz+z®x—x®z). (3.3a)
1 1

{z,wa} = 5(60 ® 2We — 2 Q@ Wq), {z,0a} = i(vaz ®e)— Vg ® 2). (3.3b)

This follows from a direct calculation, or by using [13, Section 2.5].
3.1.3. The multiplicative moment map. For our choice of a quiver, the multiplicative moment map is the

following element ® = &7 + &, where

By = eo(1+zy)(1+yx)t (1 +wiv) ™t (1 +wgvg) teo, (3.4a)
Do = eo(1+v1wr) ... (1 4+ wavg)ess - (3.4b)

Note that the definition of ® in [44, 6.7] requires a total ordering on @, which we take as above. Consid-
ering A*, we can use the element z =y + 2! and write

Dy =epgrzr 27 (14 wivy) .. (14 wava) teo, (3.5a)
D = o1 +v1w1) ... (1 + wavg)eco - (3.5b)

The defining property [44, 5.1.4] of the moment map ® is that it satisfies
1
{{lbi,a}} = 5((161‘ RP;, —e; V;a+adP;, Ke; —P; ® eia) R (36)

for i = 0,00 and any a € A.

It will also be convenient to introduce ¢ = zzx~'2~!, which can be viewed as the moment map for
the quasi-Hamiltonian algebra associated to the subquiver Qg of @, obtained by deleting the vertex oo
and all the arrows passing through it. By the properties of the moment map and of the fusion procedure
[44, 5.3.1] we have

{{¢»a}}:%(a€0®¢—€0®¢a+a¢®€o—¢®60a)» (3.7)

for any a € C{z*!, 2*1). The above formula can also be verified directly. Another direct calculation
using (3.2¢) and (3.3b) shows that

1

{{¢7va}}:%(va¢®eo_va®¢)> {{(b’wa}: §(€0®¢wa—¢®wﬁ). (38)

3.1.4. Spin elements. For later use, let us introduce the following elements in A*
Sa = (L +wavy) ... (L+wivr)z, 1<a<d. (3.9)

We can see that sy = (®¢) !¢z, and we can obtain all the other elements inductively by noticing that
Sa = Ua+18at+1, Where uy, = (1 + wava)_l. In this way, we can obtain the double brackets between s,
and the generators of A*.

Lemma 3.1. We have:

{sa, 2} :%(sa®zfzsa®eo+eo®sazfz®sa) (3.10a)
{sa, 2} :%(sa@)xfxsa@eofeo®sa:cfx®sa) (3.10b)
{sa,v8} =— %(vgsa Qeo+ U D Sa); {Saswsl} = %(eo ® SqWg + Sa ® wg), for a> B, (3.10¢)
{sarvs} zé(vgsa ®eo— 8 ® Sa), {sa,ws} = %(eo ® SqWpg — Sq @ wg), for a < B, (3.10d)

See § A.2 for the proof. We can also obtain the double brackets between the elements s, themselves,
and this is proved in § A.3.

Lemma 3.2. We have:

1 1
{sa,s8) = 5(60 ® SaSg — S8Sa @ €g) + §O(a7ﬁ)(8g ® S — Sa ® 53) .
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Below it will be convenient to pass from v,, w, to the following spin variables:
Qo = Wq s bo = Va(l + Wa—1V0-1) ... (1 +wiv1)z. (3.11)
If we set sp = z, we can write b, = v484—1 for any 1 < a < d. Moreover,
Sa =2+ a1by + -+ agby - (3.12)

The double bracket can be written in the spin variables, and the only brackets not already among
(3.2a)—(3.2g) or (3.3a)—(3.3b) are gathered in the following lemma.

Lemma 3.3. We have:

1 1 1
{x, 0.} —2b T ® e+ b @z, {zb.}= §ba®z— §baz®eo (3.13a)
1 1
{an, b5} = 5 (o(a, B) — 0ap) €co @ anbs — ibﬁaa ® ep — 0aBoo ® Sp—1 (3.13b)
{ba, b5} = ( B) (bg ® by — ba @ bg) . (3.13¢)

Noting that Lemmas 3.1 and 3.2 also hold for the case & = 0 where sy = z, the proof is easily derived
using these double brackets and is omitted.

3.2. Representation spaces. Both A and A*, equipped with the above {—,—} and ® provide ex-
amples of quasi-Hamiltonian algebras in the framework of [44]. A noncommutative analogue of quasi-
Hamiltonian reduction consists in taking the quotient algebras

AT=A/(@—q), AT = A*/(®—q) (3.14)

for a chosen ¢ = qpep + goo€oo, With o, gee € C*. The algebra A? is an example of a multiplicative
preprojective algebra [15], while A®* is its localisation. The commutative counterpart is obtained by
taking the representation spaces of A? or A%*, respectively.

Recall that for an algebra A and any N € N, a representation space Rep(4, N) is the affine scheme that
parametrises algebra homomorphisms ¢ : A — Mat . The ring of functions on Rep(A, N) is generated
by the functions a;; for a € A, i,5 = 1,..., N defined by a;;(0) = o(a);; at any point ¢ € Rep(4, N).
The functions a;; are linear in a and satisfy the relations (ab);; = >_, aixbr;. On Rep(A, N) we have a
natural action of GLy, induced by conjugation on Matyx n.

To a double bracket {—, —} on A, one associates a bracket (antisymmetric biderivation) on Rep(4, N)
as follows [44]:

{a’ij7 bkl} = {av b};gj {CL, b}i/l : (3.15)
Here we are using Sweedler notation, abbreviating an element a =), a; ®a in A® A to o’ ®a”, so that
{a,b} = {a,b} @ {a,b}”. We have the following important result.

Theorem 3.4. [44, 7.8, 7.13.2] Assume that (A,{—,—},®) is a quasi-Hamiltonian algebra. Then
Rep(A, N) is a GLy-space with a quasi-Poisson bracket {—, —} determined from {—,—} by (3.15). The
GLy -valued function (®;;) associated with ® € A provides a (geometric) multiplicative moment map.
Therefore, Rep(A, N) (if smooth) is a Hamiltonian quasi-Poisson manifold in the sense of [2, 1].

With suitable modifications, this result can be applied to quivers, see [44, Proposition 1.7]. An
additional feature of that case is that representations are sums of vector spaces attached to the vertices,
and the arrows are represented by linear maps between corresponding spaces. For example, for the quiver
from §3.1.1, a representation of CQ consists of a vector space V = Vy @ V,, together with linear maps
XY Vo = Vo, Vo : Vo = Voo, Wa 1 Voo — Vg (the zero paths eq, e are represented by the identity
maps on the corresponding spaces). The dimension of a representation is a tuple (dim Vy, dim V). For
a € N2, we write Rep(CQ, @) for the space of representations of dimension @. Our main interest will be
in the case when dim V., = 1, so let us consider the spaces Rep(CQ, @) where & = (n, 1) with n > 1. By
choosing bases in Vy, Vs, we identify points of Rep(CQ, @) with collections of matrices (X, Y, V,, W),

X,Y € Mat, xn, Vi€ Matix,, W,€ Mat,x1, a=1,...,d. (3.16)
Isomorphic representations are related by a change of basis,
9-(X, Y, Vo, Wa) = (90X 951 90Y 95 ' 9ocVado > 90Wag') s 9= (90,900) € GLy X GLy . (3.17)

Thus, Rep(CQ, @) is isomorphic to an affine space of dimension 2n? + 2nd with the above action of
GL;, x GL;. The double bracket on C@Q induces a quasi-Poison bracket on the representation spaces
Rep(CQ, @). It can be calculated by applying the formula (3.15). In doing so one should think of the
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linear maps X, Y, V,, W, as being represented by block matrices acting on V = V) @ V4, and omit trivial
brackets that involve zero matrix entries. For example, applying this to (3.2a) gives

{Xij, X} = % (X)kjba — 0k (X)), {Yij, Y} = % (615 (Y2t — (Y?)kj0u) -

This equips Rep(CQ, @) with a quasi-Poisson bracket. Setting Z =Y + X!, we also derive formulas in
(2.8a)—(2.8g) in a similar way.
Fixing the value of the moment map ® to goep + ¢oo€oo, We get from (3.4a)—(3.4b) the following
equations:
(Id,, +XY)(Id, +Y X)) (Id, +W1 V1)t (I, +WaVy) ™! = qo1d,,, (3.18a)
1T+ ... (1+VaWy) = goo - (3.18b)
By taking determinants, we obtain (go)"¢eo = 1, cf. [15, Lemma 1.5]. To simplify the notation, set

4o = ¢, goo = q~ ™, then (3.18b) is automatically implied by (3.18a) and so can be omitted. Thus the
level set of the moment map is described by the equation

(Id,, +XY)(Id, +Y X))~ = ¢(Id,, +WyVa) ... (Id,, + W1 V1), (3.19)

where all the factors are assumed to be invertible. We denote this variety as M,, 4 4. Clearly, M,, 44 is a
representation space for the algebra A9 (3.14), seen as a subvariety of Rep(A, @). Similarly, representation
spaces for A?* are given by the equation

XZX 177 = q(Id, +WaVy) ... (Id,, +W1 V1), (3.20)

where Z =Y 4 X ~'. This is precisely the variety M’ ; = from Section 2.

The group GL,, x GL; still acts on M,, 4,4, ./\/l:’d’q by (3.17). Note that the subgroup C* of scalar
matrices of the form (AId,, ) acts trivially, and we can identify the action of (GL,, x GL;)/C* with
the GL,-action given by

9 (X, Y, Vo, Wa) = (9Xg™ ', 9Yg ", Vag ', gWa), ¢g€GL, . (3.21)
We can now introduce the following Calogero—Moser spaces:

Cn,d,q = Mn,d,q// GLn, CX = MX // GLn .

n,d,q — 7 in,dg
These are spin versions of the spaces from [22, 34, 13], which in their turn are g-analogues of the Calogero-
Moser spaces C,, from [46]. For ¢ not a root of unity, the GL,-action on M,, 44, M dg 18 free and
Crndg:Co 4 g are smooth varieties of dimension 2nd, cf. [13, Theorem 2.8, Proposition 2.9],

By Theorem 3.4, the varieties Rep(A, @) and Rep(A*, @) are quasi-Hamiltonian spaces, therefore,
Cn.d,q; C:; d,q CAN be seen as quasi-Hamiltonian quotients and so they are Poisson manifolds. By [45, Sec-
tions 8.2-8.3], the resulting Poisson bracket is non-degenerate, thus Cy, 4.4, Crf) d,q 2r¢, in fact, holomorphic
symplectic manifolds. In the next section we will explain their link to the trigonometric RS system.

We finish this section by a few useful facts about the quasi-Poisson brackets on Rep(CQ,a). First,
according to [44] with any double bracket on an algebra A one associates the bracket {—, -} : AxA — A
obtained by composing {—, —} with the multiplication m : A ® A — A, that is,

{a,b} = mo {a,b} = {a, b} {a,b}" . (3.22)

By [44, Proposition 5.1.2], if the double bracket is quasi-Poisson then the bracket (3.22) induces a Lie
bracket on A/[A, A]. Furthermore, if A admits a quasi-Hamiltonian structure, then the bracket (3.22)
induces a Lie bracket on A?/[A%, AY], see [44, Proposition 5.1.5].

Next, for any a € A, define tra = va:l a;;; this is a GLy-invariant function on Rep(A, N). Then

{tra,bp;} = {a,b}, (3.23a)
{tra,trb} = tr{a,b}. (3.23b)
Here on the left we use the bracket (3.15) on Rep(A4, N), while {a, b} on the right stands for the bracket
(3.22) on A. Both formulas are easy corollaries of (3.15), cf. [44, Proposition 7.7.3].
Lemma 3.5. We have {y*,y'} = {2%, 2!} =0 and {tr Y*, tr Y} = {tr Z¥ tr Z'} = 0 for all k1.

To prove this, note that {y,y} = (€0 ® eo)y? — y*(e0 @ €g) by (3.2a). We can then use [13, Lemma
A.3] with £ = {eg ® ep} to conclude that {y*,y'} = 0. By (3.23b), this implies {tr Y* trY'} = 0. For 2
the proof is the same. O
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4. LOCAL STRUCTURE

We continue with the notation of Section 3. The local coordinates on the Calogero-Moser space C,¢ d.g
have already been introduced in Section 2. Below we recall their definition and then calculate the Poisson
bracket in these coordinates.

4.1. Local coordinates. Let us rewrite the definition of the variety MTXL d,q USINg the spin variables
(3.11). They are represented by A € Mat,,«1 and B € Mat;,, given by

(Aa)i = Wal; ,  (Ba)j = Va(ldy +Wa—1Va—1) ... (Id, +W1V1)Z]; . (4.1)
y (3.9) and (3.12), we have
(Idp +WoVo) ... (Idy +WiVI)Z = Z + A1B1 + - + Ay B, (4.2)
Thus, the equation (3.20) becomes
d
gIXZX P =7+ Z Ay B, . (4.3)
a=1

Therefore, the variety /\/ln d,q 18 formed by the tuples (X, Z, A,, B,,) satistying (4.3) together with the
requirement of invertibility of X, Z and of the expressions (4.2). That is, we assume in (4.3) that

X,Z€GL,, Z+ABi+ - +A,B,€GL, (a=1,...,d). (4.4)

The Calogero—Moser space C ¢ // GL,, is obtained by taking quotient by the action

ndq ndq
9.(X, Z, AmBa) = (gXg Y9297, gA0, Bag™"), g€ GL, . (4.5)

Note that if we set A, = 0 for @ > 1 then we are effectively in the non-spin case d = 1.
Similarly, by truncating Aa, B for a > 2 gives M and so on. Thus, we have a chain of inclusions
mig CM)y, T My cc .. CCr gy The
variety Cn,1,q is Well—known, see e.g. [22, 34, 13]; in particular, it is shown in [34] that it is connected. For
d > 11it is not known whether C, is connected (it is believed to be true). Let C* C C,, , denote the

n,d,q
n1q- Lo see its link with the spin trigonometric RS system,
we are going to introduce local coordinates on C*.
Let b denote the phase space of the trigonometric RS system: this is an affine space of dimension 2nd
with coordinates (z;, af', b*) subject to >~ af =1 for i =1,...,n. Define a mapping

[

n,2,q’

and, after taking GL,-quotients, C*

n,d,q n,l,q n2q

unique irreducible component containing C*

g : (xlﬂazﬂbza) (X3Z7AavBOt)7 (46)

which associates to a point in h the matrices X, Z € Mat,, xn, Aq € Mat, x1, Bo € Mat|x, given by
Xij = Gyae, Zij = xqf_q (Aa)s = a®, (Ba)i =12, (4.7)
with fi; =", a'b§. Now define hyeg C b to be the open subset given by the conditions z; # 0, z; # qu;,

x; # xj for i # j, together with the invertibility conditions (4.4). Note that on b,eg the flow (2.1a)-(2.1c)
and the antisymmetric bracket (2.10a)—(2.10d) are both well defined. A simple calculation confirms that
X, Z, A, By satisfy the equation (4.3), thus we have a map & : b — M d,q- To show that breg is
non-empty, we can set a} = 1, b} = 0; # 0 and a® = b® = 0 for all i and a > 1. The variables z;, 0;
can be viewed as local coordinates on the non-spin variety C, 14 sitting inside C, 4 4. In these local
coordinates the matrix Z is given by Z;; = % It is equivalent to the Lax matrix in the non-spin
case [39], and its determinant can be easily evaluated using Cauchy formula from which it follows that
det Z # 0. The moment map equation (4.3) reduces to ¢ ' XZX ! = Z + A By, so the invertibility of
Z + A1 By is automatic. It follows that the conditions (4.4) are satisfied in this case, and so beg 7# 0.

Note that on the space hyeg there is a natural S,,-action given by 7.(z;, i, bY') = (215, al iy bf_l(i))
for 7 € S,. Under &, this corresponds to the action (4.5) by the corresponding permutation matrix.
Therefore, we have a well-defined map & : hreg/Sn — C*, and it is easy to see that it is injective. Since
hreg and C* are of the same dimension, £ has dense image, so this gives local coordinates on C*.

Now, both C* and beg/ S, are equipped with a bracket: indeed, Crf’ dg 182 Poisson manifold, while a

bracket on Breg /Sy is induced by the Sj,-invariant bracket (2.10a)—(2.10d).

Proposition 4.1. The map & : breg/Sn — C* intertwines the brackets on these two spaces, that is,
E{f.g} = {& f,€g} for any two functions on C*. Hence the bracket (2.10a)—(2.10d) on breg/Sn is
Poisson, and & is a Poisson map.
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Proof. Consider the functions
fro=tr(XF), ghs=tr(AaBpX*) = BsX"A,, keEN a,8=1,....d. (4.8)
Using (4.7), we obtain

& fr = fo, f*giﬁ = Zaabﬁ y 25 gozB beﬂff (4.9)

A local coordinate system near every point in b, can be extracted from these functions. Thus, the
proposition only needs to be checked for the functions (4.8). This is done in § A.4. O

Proposition 4.2. Let M* C ./\/lrxl denote the unique irreducible component containing ./\/ln 1,4- Then

the maps pz,p, : M* — Mat,xn deﬁned by p (X, Z, Vo, Wo) = X and p,(X, Z,V,,W,) = Z have dense
image. As a corollary, at a generic point of M* both X and Z have simple spectrum.

To prove this, we may restrict p,, p, on to ./\/ln 1,g- 1 our discussion of the map £ above we have seen
that X can be chosen generic diagonal, and so the restriction of ps has dense image. Switching the roles
of X, Z in the construction of the local coordinates on M., ,, we conclude that Z also takes generic

values (here we use that this space is connected). Hence, both Pz, D. have dense image when restricted
onto M*,  C MX*. O

In § A.5 the following result is proved.

n,l,q

Proposition 4.3. The elements z;, fi; generate a Poisson subalgebra of C[h] described by (2.4a)-(2.4b).
We also have

{zz,tr Z} ( — ) Z; fii s (4.10&)
{a] ,tr 2} = — ka D fin (4.10D)
{b5,tr Z} :ﬁ ;(‘/jkb;‘fjk — Vb frj) s (4.10c)

where Vi, is defined by (2.2).
Theorem 2.2 is an immediate consequence.

Remark 4.1. Our approach does not cover the case of the system (1.1a)-(1.1c) with the potential V(z) =
coth(z). That particular system was considered in [11] in relation to affine Toda field theory, see also
[32, 17, 18] for the geometric treatment.

4.2. Modified spin RS system. The variety M*
M, 4.4 (3.19), obtained by imposing invertibility of X; the same is true for C*, , and Cn.,d,q- According

nad,g AN be seen as an open subvariety of the variety

to Lemma 3.5, on the space C, 4, we have commuting Hamiltonians trY*, k = 1,...,n. In the local
coordinates introduced above, the first Hamiltonian looks as follows:

- 1
i=1

so it is a modification of the Hamiltonian for the spin RS system. Now, if we use trY =trZ —tr X !
instead of tr Z in (4.10a)—(4.10c) together with (2.10a), we get the following system:

b= g q%fnw (4.11a)

e S Vil — ) 4.11b
' (1 —4) = #l ik ( :
; q b

bs = > (Vi fik = Vigbi frg) — = 4.11c)
i T30 —q) £ kU5 3 b5 frs) z; (

The difference between these and (1.1a)—(1.1c) is due to the additional term in the third equation. In
the non-spin case d = 1, this Hamiltonian system first appeared in [25] in relation to the ¢-KP hierarchy
and bispectrality, see also [13]. It is therefore natural to expect that the system (4.11a)—-(4.11c) describes
solutions to the multicomponent ¢-KP hierarchy. We intend to return to this question elsewhere. Let us
also mention that the quantum version in the d = 1 case appeared in [10], cf. [9, Remark 3.25].
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5. INTEGRABILITY OF THE SYSTEM

5.1. Degenerate integrability. In this section we prove that the trigonometric RS system is degener-
ately integrable, see Theorem 2.4. We will use freely the notation from the previous sections.

Recall that a completely integrable system on a real symplectic manifold M 2" consists of n independent
functions Hi,..., H, in involution, i.e. with {H;, H;} = 0 for all 4,j. In this situation, according
to Liouville-Arnold theorem, generic compact joint level sets of H; are n-dimensional tori, and the
Hamiltonian dynamics on each of these tori is quasi-periodic and can be integrated in quadratures. The
notion of degenerate integrability [33] generalises this to a situation when there are 1 < k < n independent
functions Hy, ..., Hy in involution, together with a Poisson subalgebra Q C C'*°(M?") of dimension 2n—k,
such that each of H; Poisson commutes with all of Q. In that case, generic compact joint level sets of
the functions in @ are k-dimensional tori, and the dynamics for each H; is quasi-periodic on each of the
tori and can be integrated by quadratures. The case k = n corresponds to complete integrability, while
the case k = 1 is known as super-integrability. The same definition applies in the case when M?" is a
holomorphic symplectic manifold. See [27] for further details and references.

Let us consider the Calogero-Moser space C;, dg = : dg // GLy,; this is a smooth Poisson variety of
:L(,d,q with GL,,-invariant functions on M:deq.
hi := trZ%, i = 1,...n are independent and Poisson commute, by Proposition 4.2 and Lemma 3.5.
Introduce tf; = tr(WoV3Z*) = V3Z*W, and the subalgebra @ C C[C,,; | generated by all ¢%; with
kEeN, a,8=1,...,d. The following result is proved in § A.6.

Lemma 5.1. (1) We have {hi,tfga} =0 for any o, B and k > 0.
(2) For any «, 8,v,€ and k,l > 1 we have

dimension 2nd. We identify functions on C The functions

1
{tsea tixﬁ} :5 [0(77 ﬂ) + 0(67 a) - 0(67 B) - 0(’77 O[)} tlcyetixﬁ
1 1 1 1
+ 50(77ﬂ) tijltfoyﬁ + 50(6,01) tgetﬁgl - io(ea 6) tfxetsﬁ - 50(77 a) tlgzet{yﬁ
1

1 1 1
k+1 k+1 k 4l k+1 k+1 k 4l
o {ta? + itaj 95+ 2t7€taﬁ] + Oae {th; + itgetng + 2t7€t(w]

k k—1 l -1
1
k—T 4471 k+l—T471 k l—0o o 4k+l—0o
E 5Tt —E toy TtM] -3 [E 8t —E tggtad 1
T=1 T=1 o=1 o=1

This formula remains valid when k or 1 (or both) are equal to zero, provided that we omit the final four
sums.

(5.1)

L1
2

Remark 5.1. Here are some special cases of the relations (5.1). For k =1 = 0 we have

1
{troyev tgﬁ} :5aet9yﬁ - 575t35 + = |:6ae - 5’yﬁ + 0(’77 5) + 0(67 a) - 0(6, 5) - 0(’73 Ck):| (tgetgzﬁ + tgzetpyﬂ) .

2
In particular, for o = 8 and v = € we obtain {tJ,t0,} = 0. More generally, for k,1 > 1
1
ko4l 0 4l+k k+1 40 k4l I 4k
{t’y'y’ taa} :EO(’Y’ Ol) [t'ya toiy + t’y;r tory - t'ya toz'y - t’yoz ta'y]

1 k41 k+1 1 k41— k+1—
+§[t2at6; — 5t toa,y]+§ (19 thttmo —gktizoge

yaary

-1 k—
o

2

1
=1
If I =0 and k£ > 0, this becomes

1
k k k k k
{tw’ tga} = 20(’)/7 «) [tga loy 150 tg7 S tgw t?m tow] =0.

Note that we also have {t¥_,t! } =0 for any k,1 > 0.

o)

Remark 5.2. Tt is possible to write an analogue of (5.1) for the functions sga = BgZF A,. Tt is still true
that {h,, s’g)a} = 0, but the expressions for {s!., s,lga} are more complicated than (5.1). Note that s;‘;a are
trigonometric analogues of the functions J;' # considered in [4, (3.45)].

Lemma 5.1 shows that the algebra Q is Poisson. The degenerate integrability of h; follows from the
following result.

Proposition 5.2. We have h; € Q for alli. The algebra Q is finitely generated and dim Q = 2nd — n.
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Proof. The equation (3.20) can be written as
' XZX = (1d, +WaVy) ... (Id,, +W 1 1) Z. (5.2)
Raising it to power k gives
g rPXZE X =78 (5.3)
where the dots represent terms of the form Z"’WaVaZbW/gVB WLV, Z€¢, with a,b,...,c > 0. The trace
of every such term is easily expressed in terms of tg 5

tr(ZWoVaZ'Wp .. Vo, Z°) = tx(VaZ"' W .. VL ZT W) = (Vo ZPWp) ... (VR ZOT W) = th,, .. . 1840,

Thus, by taking traces in (5.3) we obtain (¢% — 1)tr Z*¥ € Q, i.e. hy € Q. It is now clear that Q
is generated by tflﬁ with 0 < 7 < n, since t’oiﬁ = V3Z*W, for k > n can be expressed through those
generators by the Cayley-Hamilton theorem and the fact that tr Z7 € Q for all j. It remains to calculate
the (Krull) dimension of Q. Note that it coincides with the maximal number of algebraically independent
elements of Q; this also equals the dimension of the span of df, f € Q at a generic point of Ci da Since
the Poisson bracket on Ci dg 18 non-degenerate and the functions h; are independent, the equations
{hi, f} =0 for f € Q imply that dim Q < 2nd —n. Hence, it is sufficient to show the opposite inequality,
dim Q > 2nd — n.

To this end, consider the component M* C M,
on MX, so dim M* = n? + dimC* = n? + 2nd. Consider the following GL,,-equivariant map:

T MY S CUI (X Z Ve W) > (2, Vi, Wa). (5.4)

We claim that generic fibers of 7 have dimension n. Indeed, take a generic point (X, Z, V,, Wy) in M*,
then by Proposition 4.2 Z has simple spectrum, so we may assume it is in diagonal form. Then (5.2)
tells us that X puts 7 = q(Id,, +W4Vy) ... (Id,, +W1V1)Z into a diagonal form. Therefore, for a given
(Z,Vy,Wy,), X is determined by choosing an eigenbasis for Z. Hence, 7=1(Z,V,,, W,) is n-dimensional.
As a result, m(M*) has dimension > n? + 2nd — n.

If we view elements of Q as functions of Z, V,,, W, then it is straightforward to check that dim Q > 2nd
at any point in C'+2nd where Z has simple spectrum and, say, Wi ; # 0. The dimension of Q may drop
after restriction onto m(M>). However, dim7(M*) > n2 + 2nd — n, and so 7(M*) C C*'+2nd i5 of
codimension at most n. Thus, the dimension of Q reduces by at most n, that is, dim Q > 2nd — n on
m(M*). As a corollary, dim Q@ > 2nd — n when viewed on M*. Since the functions in Q are constant
along GL,,-orbits in M*, the dimension of Q is the same whether viewed on M* or on C* = M*// GL,,.
We conclude that the span of df, f € Q has dimension > 2nd — n generically on C*, as needed. O

as in Proposition 4.2. Recall that GL,, acts freely

Remark 5.3. Similar results are true for the modified spin RS system given by the Hamiltonians h; =
trY* k=1,...,n on the variety C, 4, Namely, we can set tzﬁ := tr(W,V3Y*) and consider the algebra

Q generated by all t* g- Then the formulas (5.1) remain true for that case as well. We also have an

analogue of Proposition 5.2 proved in the same manner, and so the Hamiltonians hy = tr Y* define a
degenerately integrable system on the space C,, 4 4.

5.2. Algebra of first integrals and Liouville integrability. By Proposition 5.2, the Hamiltonians
hi = trZ%, i = 1,...,n define a degenerately integrable system. More precisely, this is true on a
connected component of the space C;’ dq OD which we have the local coordinates £ : hreg — C;’ dq 10
the real smooth case, any degenerately integrable system can be extended (in a non-canonical way) to a
completely integrable system, see [8, 27]. Therefore, it is natural to expect that there exists a complete
set of algebraic first integrals in our case, as well as in the case of the Hamiltonians tr Y?. Since h;

Poisson commute with any tlZ?a = tr(WpV,Z"), we may look for complementary Hamiltonians inside the
algebra Q generated by all tga. The algebra Q can be regarded as the algebra of joint first integrals for
the Hamiltonians hq, ..., h,.

Before discussing the general case, let us remark on some cases where the complete integrability is easy
to establish. The case d = 1 is trivial, since the functions hy, k = 1,...,n are enough for integrability.
Another case is d = 2, where we can complement the functions hy, k= 1,...,n by t¥, with k=1... n.
The latter functions Poisson commute with hj and between themselves by Remark 5.1.

Let us now introduce an infinite-dimensional version of the algebra of first integrals. Namely, given
d > 1 we define Q4 to be the commutative algebra freely generated by the symbols T ga with «, 8 €
{1,...,d} and k € N. These algebras form an increasing chain Q; C Q3 C ....

Proposition 5.3. The formulas (5.1) define a Poisson bracket on Qq4. As a result, we have an increasing
chain of Poisson algebras Q1 C Qo C .. ..
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Proof. Recall the representation spaces Rep(CQ, &) = C2n*+2nd whoge points are represented by the
matrix data (3.16). For any n > 1 we have a homomorphism ¢, : Q4 — C[Rep(CQ,a)]%"" defined by

Tga — t’g o We claim that
ﬂker on =0. (5.5)
n

To see that, it is enough to check that {t,’é(l ca,f=1,...,d, i =1,...k} are functionally independent
as elements of C[Rep(CQ,a)] if n is sufficiently large. This can be checked on the subspace where
Z = diag(z1,...,2n), by considering the matrix (9t} /0z;) of size kd* x n and showing that its rank is
kd? for large n. This is a straightforward exercise left to the reader.

It is clear now that if we define an antisymmetric bracket on Q4 by (5.1), then the map ¢,, intertwines
it with the quasi-Poisson bracket on C[Rep(CQ, @)]. Since Jacobi identity holds on C[Rep(CQ,a)]% ",
it must then hold on Qg4 due to (5.5). The fact that the resulting Poisson bracket is compatible with the
inclusions Q1 C 9y C ... is clear from (5.1). O

We can now construct an infinite family of central elements in Q4. For this, let us consider
S = (Id, +WyVy) ... (Id,, +W1\1)Z. (5.6)

It is easy to see that for any k, tr S* — tr Z* can be written as a polynomial in ¢! ., (see the proof of
Proposition 5.2). Let us denote this polynomial as hy 4. For example, we have

hip =ty s hon =265, 4 (811)?, hug = tas + b1y + 15ty -
Note that hy g does not depend on n. It is shown in §A.7 that {tr Sk,tgﬁ} = 0 on Rep(CQ,a) and
therefore
{Pr,d:tast = 0. (5.7)
Let us introduce Hy g4 := hk’d(Téa) by formally replacing tiBa with Téa. For example, Hy 1 = T},
Hyy = 2T} + (T1)%

Proposition 5.4. The elements Hy 4 are central in Qq. The subalgebra Hq C Qg4 generated by all Hy, o
with 1 < a <d and k € N is Poisson commutative.

Proof. According to (5.7), for any fixed n the functions hy, 4 Poisson commute with all £ on Rep(CQ, &).
We then use (5.5) to conclude that Hyq € Z(Q4). The commutativity of Hy . for all £ € N and
a =1,...,d is obvious from the inclusions Qg C Q, for f < a. (Alternatively, this also follows from
(3.10a), Lemma 3.2 and (3.23b).) O

The algebra generated by all Hy . can be viewed as a subalgebra of Gelfand-Tsetlin type in Qq4. As

a corollary, we obtain a completely integrable system on each C,*, ¢

Theorem 5.5. The functions hy o witha=1,...d and k =1,...n define a completely integrable system
on C;)d’q, thus extending the degenerately integrable system defined by the Hamiltonians hy, = tr Z*.

Remark 5.4. Strictly speaking, the above result is valid on the connected component C* C C;’ d.q» S€e
§4.1. We will ignore this subtlety in the proof below.

Proof. Let us introduce
So = (Idy, +Wo V) ... (Id,, + W41 V1) Z | a=1,....d. (5.8)

By definition, we have tr S* = tr Z¥+hy 4, and from the moment map equation we have tr S% = ¢=* tr Z*.
Thus, it is enough to prove that the functions tr Z* and tr S* with & = 1,...n, 1 < a < d are functionally
independent. We will use the following lemma.

Lemma 5.6. Near a generic point of C7f7d7q,

withi=1,...,n, 1 < a<d are functionally independent.

the 2nd — n local functions z;, Vo = Vai, Wa,i = Wa

s

Proof (of the lemma). It is sufficient to show that for any pairwise distinct z; and generic V,, W, with
a < d, one can find Vy € C" and X € GL, such that the moment map equation (5.2) is satisfied
with Z = diag(z1,...,2,) and with Wy ; = 1. In its turn, it is enough to find V; so that the matrix
Sq = (Id, +W4Vy) ... (Id,, +W1V1)Z has the eigenvalues ¢ 'z1,...,q¢ *z,. For fixed generic V,, W,
a =1,...,d — 1, we can view S; as a rank-one perturbation of S;_1. It is then an elementary fact
that the eigenvalues of a regular semisimple matrix can be independently perturbed by a small rank-one
perturbation, so we are done. O
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As a consequence of the lemma, we can use the above (2;,vVa,,Wa,;) as part of a local coordinate

system of C ; .. We have
tr ZF = Z 2k, t’;ﬁ = Zwayivﬁyizf . (5.9)
i i

We therefore may simply view tr Z* and tr S* with a < d and 1 < k < n as polynomials of (z;, Vais War,i)s
and we need to show that these polynomials are functionally independent. We will show that for any
a=1,...,d—1, the polynomials tr Z* and tr S’g withk=1,...,nand 8 < «a are independent. The proof
is inductive. For a = 1, we want to prove that tr Z*¥ and tr S¥, k = 1,..., n, are functionally independent.
We have tr S¥ = tr((Id,, +W1V1)Z)F = tr Z% + kt§, + ..., where the dots represent a polynomial in !,
with | < k. Hence it is sufficient to show the functional independence of tr Z* and t§; with k =1,...,n.
We can do this by looking at 2n x 2n Jacobian matrix J of derivatives of these functions with respect
to (z1,...,2n) and (v11,...,v1,,). This has a block structure (L(])O :;1) where Jy is the Vandermonde

. . otk .
matrix for z1,...,z,, and J; has entries ot = wi ;2F. Both Jy, J; are obviously nondegenerate for

generic z; and w; ;. This proves the o =1 case.

The general case is similar: we form a Jacobian matrix of derivatives of tr Z* and tr S’BC with respect
to the variables z; and v, ;. It similarly has an upper-triangular block structure, with the n x n blocks
Jo,.-.,Jo along the diagonal. By induction, we only need to check that the last block J, is non-
degenerate. Its entries are %‘%)k To show that it is (generically) nondegenerate, we may choose

Vs =Ws =0 for all § < a, in \?fhiCh case S, = (14 VoW,)Z and so this case can be analysed in the
same way as for « = 1. This finishes the proof of the theorem. O

5.3. Explicit integration. We begin by integrating the flows for the functions hy, = tr Z* (and for their
analogues, tr Y*). For hy the formulas are essentially the same as in [35]. The main difference is that we
work on a completed phase space, and that our flows are intrinsically Hamiltonian.

Proposition 5.7. Let t denote the time flow associated to %tr Z* for any k € N*. Given an initial
position (X, Z,V,, Wy) in C), o the solution at time t is given by
X(t)y=Xe 7" Z(t)=2, Vailt)=Va, Walt)=W,. (5.10)
Similarly, if T denotes the time flow associated to %tr Y*, then the solution at time T defined by an initial
position (X,Y, Vo, Wy) in Cp a4 is given by
X)) =Xe ™ 4y e ™ —1), Y1) =Y, Vilr)=Va, Walr)=W,. (5.11)
These flows are complete when viewed on the corresponding Calogero—Moser spaces.

Proof. Let us write the flow corresponding to 3 tr Z¥. Using (3.23a) together with the relations (3.3a)-
(3.3b), one obtains the following equations:

X=-XxzF Z=0, V,=0, W,=0,

which imply (5.10). For the flow corresponding to f trY*, the equations can be obtained by the same
method leading to
X=—XYF_YF1 Yv=0, Vo=0, Wa=0,
which are integrated by (5.11). Note that the expression for X (7) is well-defined even when the matrix
Y is singular.
The completeness of the flows is now clear, since the evolution described by (5.10) and (5.11) preserves
the invertibility of the factors appearing in the moment map equations (3.20) and (3.19), respectively. O

We can also integrate all the flows corresponding to the Hamiltonians tr S*. Note that the matrices
S,, represent the elements s, (3.9). The function tr S* defines a vector field on the representation space
of A% by the formula (3.23a). This vector field is given explicitly as follows.

Proposition 5.8. The vector field associated to the function tr S% is given by
X =—kXS*, Z=k(S*z- 25",
Vs = —kV3SE, Wz =kS*Ws for 8 <a,
ngO, WgzO for B > a.

We also have S"a =0.
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Proof. The first group of relations is obtained by using (3.23a) together with the relations (3.10a)—(3.10d).
The fact that S, = 0 follows from (3.23a) and Lemma 3.2. O

The following theorem is an immediate corollary.

Theorem 5.9. Let t denote the time flow associated to %tr Sk, Given an initial position (X, Z, V., W,)

n C;,d’q, the solution at time t is given by

X(t)= Xe 5, Z(t) = e'Sa Ze 15
Va(t) = Vge*tsii . Wa(t) = etSa Ws  for f < a,
Vﬁ(t)=V57 Ws(t) =Wz for 8> a.

The flow is complete on C ;.
Remark 5.5. A result similar to Theorem 5.9 can be obtained for Y instead of Z if we consider the

analogue of Lemmas 3.1 and 3.2 in that case.

Remark 5.6. One can enlarge the Gelfand—Tsetlin subalgebra Hg4 by adding the elements 70, a =
1,...,d. We already know that {Tga,Tgﬂ} = 0, see Remark 5.1. To see that each of Tgﬁ Poisson
commutes with Hg, we check that {t}, tr Sk =0 for all @ and k and then use (5.5). Since ths = VaWp,

the fact that {t35,tr S5} = 0 is immediate from Theorem 5.9.

Remark 5.7. The phase space of the (real) trigonometric RS system can be obtained from the moduli
space of flat SU(n)-connections on a torus with one puncture [24], see also [22]. Building on this relation,
it is remarked in [21] that the self-duality of this system could be seen as a manifestation of a natural
action of the mapping class group of the punctured torus. A proof of this statement (in the framework
of finite-dimensional quasi-Hamiltonian reduction) can be found in [19]. Similarly, the spin system can
be linked to the moduli space of flat connections on a torus with several punctures. Indeed, by fixing
the values of the first integrals tgﬁ = V3W3, one fixes the conjugacy classes of the matrices Id,, +W;3V3.
The corresponding subvariety of C:, d,q CAN then be interpreted as a character variety of the torus with d

punctures. Therefore, the quasi-Hamiltonian reduction that leads to C,, q should be compatible with a
natural action of the mapping class group of a torus with d punctures. We will return to this question
elsewhere.

5.4. Lax matrix with spectral parameter. Another approach to the integrability of the spin RS
system uses a Lax matrix with spectral parameter [31]. In our context, such a Lax matrix is given by

Zy=27+nS, where §=(Id,+W3Vy)...(Id, +W1V1)Z.

Here 1 € C is the spectral parameter. Note that S = ¢~'XZX ! due to the moment map equation, thus
Z, can be written entirely in terms of X, Z. To see the connection with [31], we use (4.2) to rewrite S as
S=27+4)",AaBq. Then Z, takes the form

Zy = (1+n)Z+nZAaBa.

If Z has the form as in (4.7), Z,) can be easily identified with the trigonometric Lax matrix from [31].
The following result is proved in § A.7.2.

Theorem 5.10. For any p,n € C and k,l € N, we have that {tr Zl’j,tr Zf,} =0.

This implies that if we expand tr Z,’; into a series in 7, tr Z,’; = Zf:o n'r.i, then {ry;,m ;} = 0 for
all k,1,4,j. In this way we recover the recipe for constructing first integrals from [31]. We remark that
Tko = tr Z% while each 7y, for ¢ > 0 can be rewritten as a product of tfw, i.e. they belong to the algebra
Q of the first integrals considered above.

Note that the integrals 74 ; are not sufficient to construct a completely integrable system on C*

n,d,q"
Indeed, they all are functions of X, Z and so do not distinguish points of Ci 4, that have the same X, Z
but different V,, W,. Assuming d < n, it follows from the results of [31, 29] that the maximum number
of independent Poisson commuting Hamiltonians that can be obtained from the 74 ; is nd — d(d — 1)/2,
which is strictly less than nd.

We can use 71 ; to construct a different commutative subalgebra in Q4 compared to the subalgebra
Hq of Gelfand—Tsetlin type constructed above. Namely, just replace all t]; 5 by Tfﬁ in the expression for
Tk,i. Denote the resulting subalgebra as R4y. We do not know whether it can be enlarged to a bigger
commutative subalgebra of Q4 which would produce a completely integrable system on C;) d.q- We only
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note that even if this is possible, the resulting integrable system will be different from the one constructed
from the subalgebra H4. To see this, it suffices to check that there are elements in H,; and R4 that do
not commute. One can check, for instance, that {t};,7%1} # 0 in general.

APPENDIX A

A.1. Computations with double brackets. We gather some results that we need when performing
computations with double brackets in the other appendices.

Firstly, we have noted that if (A, {—, —}) is a double quasi-Poisson algebra, its double quasi-Poisson
bracket satisfies the cyclic antisymmetry rule {b,a} = — {a,b}}° and the derivation property {a,bc} =
b{a,c}+{a,b}c, ie {a,bc} =b{a,c} @{a,c}’+{a,b} @ {a,b}” c using Sweedler’s notation. (This
is true for the less restrictive assumption that A has a double bracket.) There is a similar derivation
property in the first argument for the inner bimodule structure *, see [44, (2.4)], which gives {bc,a} =
{b,a} * c+bx* {c,al} or more explicitly, {bc,a} = {b,a} c@ {b,a}” + {c,a} @ b{c,a}”.

Secondly, note that from the above properties we get that for any a,b € A where a has an inverse a

fb,a' P =—a " {ba}at, {a ' 0} =—axf{a,b}xa". (A.1)
Thirdly, if @ = a1 ...a; and ¢’ = a} ... q] are two elements of A written in terms of generators, then
the double bracket between them is given by

-1

l

{a,d'} = ZZ cas—1)* (ay .. ai_y) fas,ar} (ar1 - -ar) * (astq - .- ag)
s=1t=1
k

=> "> (a1 ap ) {as, i} (aerr - ar) @ (a1 .. as1) fas, af} (@ .. @),

s=1t=1

~

using the derivation properties as above.

A.2. Proof of Lemma 3.1. We show the claim by descending induction, starting from o = d. So, the
first step is to show that

1
{sa,2} zi(sd®zfzsd®eo+eo®sdz—z®sd) (A.2a)

1
{sa,2} :5(5(1 RIr—x8qR ey — ey 4T — T ® 8q) (A.2b)

1
{54,058} =— i(vﬁsd ®e)+v3®8q) {sa,ws}= (sd Q@ wg + ey @ Sqwg) . (A.2¢)
To compute such double brackets, we use the relation sq = (<I>0)_lqbz and obtain

{sa,a} = {25 al} « oz + 5" = {b,a} * 2+ D5 o« {2, a} . (A.3)

The first term can be calculated with the help of (3.6):
1
{{(I)gl,a}} = —(I)al *{{(bo,a}}*q)al = —§(a¢61 ey — q)al ®eoa—|—aeo®<l>61 —eo®<1>61a).

(Note that in the case when a = vg or a = wg, some of the terms in this expression vanish due to
eovg = wgeg = 0.) The second term in (A.3) is calculated using (3.7)—(3.8), while for the third term we
use (3.3a)—(3.3b). Doing this for each of the cases a = z, z,vg, wg verifies (A.2a)-(A.2c). We leave the
details to the reader.

For the induction step, recall that s, = uq418a+1 for u, = (1 + wava)*l. Therefore,

{sa,a} = {uar1,a} * say1 +vat1 * {sas1,a} -

The second term is given by the induction hypothesis, while we can find the first term using the easily
verified formulas

1
{uat1, 2} :*(Ua+1 ® 2 — 2Uat1 @ €0 — €0 @ Ua+12 + 2 @ Uat1)

fuasr, 2} = (Ua+1 R T — TUat1 @ €0 — €0 @ Ua 1T + T @ Uay1),
1
fuat1, v} 155(a+1,6) (vaUat1 ® € + vg ® Uat1) + io(a +1, 5)(’Uﬁua+1 ®ep— Vg @ Ugt1) s

1 1
fuasi,wg} =— 55(a+1,/3)(60 ®at1 WE + Ugt1 @ wg) + 50(04 +1,8)(e0 ® Ugp1WE — Uat1 @ w,g) .



18 OLEG CHALYKH AND MAXIME FAIRON

In order to prove (3.10a)—(3.10d), we need to consider the cases a = x, z, vg, wg. We will do the case
a = wg, leaving the other cases to the reader.
First, if 8 < «, we can use (3.10c) and since o(a+ 1, 8) = —1 we get

1 1
{80, ws} = — i(soﬁLl ® Uat1Wg — Ua15a+1 @ wp) + §(Sa+1 ® Ua 1w + €0 @ Uat1Sat1Wa)
1
:i(eo ® SqWg + Sq @ Wg) .
Next, if 8 = a+ 1, we still use (3.10c) and find
1 1
{sa, waq1} =— 5(5(14-1 ® Ua+1WB + Uat1Sat1 @ Wa) + §(Sa+1 ® Ua+1Wa+1 + €0 @ Uat1Sa+1Wat1)

:5(60 & SaWa+1 — Sa @ wa+1) .

Finally, if 8 > o + 1, we need (3.10d) and since o(a + 1, 8) = +1 we get

1 1
{50, wat1} =§(sa+1 ® Ua+1WE — Uat1Sat+1 D WE) + 5(60 ® Ua+1Sa+1W8 — Sat1 @ Uat1Wg)
1
:§(eo®saw5—sa®w[3). O

A.3. Proof of Lemma 3.2. Using the cyclic antisymmetry of the double bracket, we only need to show
that for any a > 3,
1
{sa,s58} = 5(60 ® 8088 — 5850 Q€9+ 5o @ S5 — S3 D Sq) . (A4)

Using the elements r, = 14w, v, and the definition of sg as (3.9), we can write sg = rg...r 2. Therefore,
we find that

B
{sa,s8 =rp...11 {50, 2} + Z 8. Tyt {Sa,ry Fry—1... 112, (A.5)

~y=1
To find the double brackets {{sq, 7}, we use (3.10c) and we obtain
1
{sa, 4} = 5(60 ® Saly — Ty @ SaSa @ Ty — TS Qeg), 1<y<a.

For any 8 < a, it remains to substitute these double brackets together with (3.10a) back in (A.5), and
we obtain (A.4) after simplification. O

A.4. Proof of Proposition 4.1. Recall that f; := tr(X*) and g’je = tr(AYBX*). First, we need
to compute the Poisson brackets between those functions. We have remarked in §3.2 that the Poisson
bracket {—, —} on C, 44 is (globally) defined from the corresponding Lie bracket {—, —} on A?/[A9, A9
by (3.23b). In fact, it is sufficient to compute that bracket in A/[A, A], then projects into A?/[A%, AY].
Assuming that z is invertible, the same holds in A*. Therefore, we need the following lemma.

Lemma A.1l. For any k,l > 1, the following identities hold in A* /[A*, A*]
{a¥ 2!} =0, {2F, anbpz'} = kanbga™, (A.6a)

k !
1 .
{aybea®, anbpr'} =3 <TE_1 — ;_1) (anbgz” aybex™ T 4 aabﬁx’“‘”_’”avbeﬂ)

_|_

O(a7 ’7) (a’ybexkaabﬁxl + aabexkavbﬁxl)

o(e, B)(anbprta,b.at — agbeara,bpal)

N~ N~ DN

+

1
[o(€, @) + Sac] anbez™arbgax’ — 5[0(5, Y) + 6p,] anbexabga’

e—1 B—1
+ Oue (zxk + Z a>\b,\xk> a,yngl — 03y Ao bex” (le + Z a#b#xl> . (A.6b)

A=1 p=1

The proof can be seen as a special case of [16, Lemma 3.2]. By taking the traces and using the identity
(3.23b), we obtain the Poisson brackets between the functions ( f, 925). To write them in terms of f*, g(’iﬁ

and hﬁ’él = tr(A, B X*ZX"), we use
tr(AaBﬁXkAVBEXl) = (BBXkAW)(BEXlAa) = g'ljﬁglae7
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and similar variants.

Lemma A.2. For any a,8=1,...,d and k,l > 1,

{fk, fl} = 0 (A7a)
1 k l
(ohoosth =L (z—z (002" + 4747,
r=1 r=1
1 ! k kE 1 1 k l kE 1
+ 50(07) (03590 + 95e9ap) + 50(6: B) (95590e — 95cGap)
1
+ 5[0(6) Oé) + 6(16 - 0(ﬁ7 7) - 6ﬁ'Y] g']jeg(l)zﬁ
e—1 B—1
+Bachll + 0ac Y gF\ghs — 0y bl — 050 ) gl gk (A.7¢)
A=1 p=1

Our goal is to show that for the functions (f%, g’vce) generating the ring of functions at a generic point,
the following equalities hold

E{fu iy =AE S €N}y € {Fig0sy =€ fr. € 00p}, {05 ghp} = {6705 € 00}

where we compose with £ the identities from Lemma A.2 in the left hand sides, and use the expressions
(4.9) in the right hand sides. In fact, we will be quite pedantic and prove these identities also after
summing over « and/or v ranging from 1 to d. This allows us to show that the Poisson brackets given
in Proposition 4.1 are correct one at a time. Note that in local coordinates, we use £*X;; = 6;5z;,
€*(AaBg)ij = agb] while we simply write £*Z;; = Z;;.

To show that the brackets in (2.10a) are correct, first notice that {z;,z;} = 0 implies &*{f, fi} =
{& fr, & fi} as both expressions vanish. Second, recall that by assumption ) a = 1 for all i. Thus,
from {x;, bf} = 5l-jxib@

Z{f i€ ghp} = Z{xl,bf 2} = kakﬂbﬁ

1,7=1

ST frighsy =k D€ tr(Aa B X ) = k bkt
@ @ =1

and we get £*{ fi, 2., 9h s} = {€" fr, € 24 9l5}- Third, without summing, we get again that £*{ fx, g}, 5} =
{€ fr, €95} using {af, 25} = 0.

To see that we need (2.10d), (2.10c) and (2.10b), we will respectively sum over all values of « and ~,
all values of v and finally not sum at all the functions £* {g’je, gl 5} and {£ g’je, &g, 5}, to show that they
agree. We get from Lemma A.2 that we can write

é—*{g’lje’glaﬁ}_ (Z Z) Z ( x, ;Yb; ;ﬂ+l r a+bﬁ k+l r ’Ybe ;‘ ;)z)

ij=1

1 n
+50(e.8) Y (batalialag — b5ata)vlala) (A8)

ij=1

1 €

+§[0 ) + Oae ijxj ?bf _7[ (8,7) + 04/ ZbJJ;/b?zz
i,j=1 1,7=1
+ e (sz + Za”f‘) 'Ybﬁ:c — 08y Z (ZJZ + Z a”b”) ztadbs xf,
4,5=1 i,j=1

In the first case, we have to prove

Z E4{95e Gap} = Z{bj o, bl (A.9)

v,a=1 1,j=1



20 OLEG CHALYKH AND MAXIME FAIRON

The right-hand side of (A.9) can be read as

(A'g)RHS = i ({b l}xkbﬁ + {%7 i }b + {b;, bf}xfmi)

=
=(k = 1) beab? LY L !+ )
=1
ééy
+ > akal(v] 2y - 052;) Z okl (bsb] — b5b?)
i,j=1 1,j=1
n e—1 n B—1
+ D wpwb Yy a by = 05) = > afaiby Y el (o = 0]).
i,j=1 A=1 i,j=1 n=1

Now, the left-hand side of (A.9) can be written from (A.8), after summing over «,~ and using the
condition Z’v a] = 1 when possible. We get

n k
1 —r,.r
(A9 us =3 g b?b; <E - E > (F f“ T4 ght ) (A.10a)

i,j=1

n d n
+ L Z b;bfxfxﬁ Z o(a,7) (aja§ + afa)) + %o(e,ﬂ) Z k (bBb6 — bebﬁ) (A.10Db)

1,j=1 a,y=1 1,j=1
1 d 1 d n
+ 3 Z[ o(€, ) + dqe) Z aibsz ?bf L ~5 Z[O(ﬂ,’y) + 03] Z b;-z?a;bfxé (A.10c)
a=1 h,j=1 =1 i,j=1
+ > abal(Zyh] — Zjb5) + > Zaf‘bj)‘ kol — Z Za“b“ sk (A.10d)
1,j=1 1,j=1A=1 t,j=1p=1
To reduce this expression further, remark that by definition of the ordering function o(—, —)
d
> olayy) (afaf +afa]) = 3 (alaf +afa)) = 3 (alaf +aa]) =0,
a,y=1 a<ly a>y

after relabelling the indices in the second sum, so that the first term of (A.10b) disappears. Then, write
(A.10a) as

n n k l
(A10a) =(k — 1) D2 005ttt 1 2 57 ol (Z Z) Fay T b af g
i=1 i,j=1 r=1 r=1
i#]

so that the sum for ¢ # j can be written as (here we assume k > [, the case k < [ is exactly the same)

k
N

3 20 3 BT

i,7=1 r=Il+1 v J

7 (A.11)
1 Zbﬂbem’+xﬂ (ahal — alak) = —2 Z | (vfe5 + 005

alleZ*xJZJ 311J:171*x1 A

i#] i#]

after relabelling indices to obtain last equality. Finally, let’s look at the terms in (A.10c)-(A.10d) with
no factor Z;;. They can be written as

s

;i‘ Al]e- z )~ |35 | a Jb?+22a?b9bf 23wt | |

a>e y>p =1 p=1
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and if we split the sum ) . _ as Zi -y 11 and do the same with the sum over v > 3, we get after
using the conditions ) af =1 (and the same for )

n B—
> akal ( Za?b§bf Zb; ]bf+2ajbjbf Zaé‘bfbj)
=

i,j=1
B—1

= Z kel (Z a} (b} — b5)b — >l (b — bf)b;) :

1,j=1 pn=1

Summing together all the terms, we have reduced the left-hand side of (A.9) to the form

n

(A9) s =(k — 1) S bfbcal ! — % i Tt i (bfb; +b§3b;) + %o(e,ﬂ) Zn: ke (bfb; - b;bf)

; . Yy — <
i=1 i,7=1 1,j=1
i#]
p-1
+ Z ahal — Z;ib5) + Z ahal (Za — b5 — Za“ (bt — b7 )bS > .
i,j=1 1,j=1

This is precisely the right-hand side of (A.9). In the second case, we show

n

d
S &gk ghst = D {b5ak agb]al} (A.12)
y=1

i,7=1

The right-hand side of (A.12) can be read as

(A12)RHS = Z ({b;,xi}xfa?bﬁ+{x],bf}b€af‘zﬁ+{ bﬁ}‘rj i, +{b]7 i }x] i z)

1,5=1
= (k1) Zb; apfoh+ 4 1 Zm lx]”f (b5b0ag + b5ba)
,5=1
i#£]
1
+§;oan lexfajibfb;aa +ajaj) lea?m bebﬁ_bsbﬂ>

n

- > b O‘bEZa (O = b)) = O(aze) Zx]xbﬁ b

7,7=1 1,7=1
n
Sea Z whalb] (Z” + me) — )" ahalbt Zjia0
i,j=1 i,j=1
after some easy simplifications. To get the left-hand side, we sum (A.8) over v and we write
1 & Ti+x;
arBire k+l k_ 1+ apfre apBire
(A12), ;g = ZaZ LR DY xszﬁ (ai bob; + aZ] bj) (A.13a)
i,5=1 ¢
oy
14
+3 Zo a,”) Z xfxibjbf (ala§ + afa)) Z zhwial (b?bﬁ - b;bf)
y=1 4,j=1 ,j=1
(A.13b)
1 1 d n
5[ €,a) + Oac) Z ahalbsa agb? — = Z[o(ﬁ,’y) + 03] Z x.’;xéa?bﬁ»azbf (A.13c)
1,j=1 “/ 1 i,j=1
n B—1
+ Oac Z akalb) <Z” + Za’\bA> - > bl (Zji + Za5b5> ad'bs, (A.13d)
5,j=1 1,j=1 p=1
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where we used an argument similar to (A.11) to rewrite the first line of (A.8) in order to obtain (A.13a).

Next, we can write after rearranging terms

(A.13c) + (A.13d)
d n

1
€ Ié] k.l € B
“[1 = 20(0<0)] E 353 ij adt; — 3 E [1—26(55)] E ziriaib5alb;

2 =
y=1 1,j=1

;_n

3,7=1
n

n
+ e Z x?zibz <Zw + Za“ﬁ‘) _ Z x?xéZjia?bE - Z z?xéaf‘b? a?bf
j 1

1,j=1 i,j=1 ij=1 u=

p—1
— O(a<e) Z xj Zb; adb? + Z xfmﬁa v Za?(bﬂ—bf)
3,7=1 1,5=1 u=1

+ Oac Z ahalvf (Z” +ZGW> S ahat 2,085,

1,j=1 i,7=1
where we used again the condition Ziil a! = 1. Tt is not hard to see that replacing the terms in (A.13c)
and (A.13d) by this last expression gives that (A.12); ;¢ and (A.12) ¢ coincide. In the third case, we

need to prove that

E ok dlsl = Y (aJtiakaral). (A-14)
4,j=1
By antisymmetry in (2.10c), we can write
{a] ]} = = 09y Zjs + a) Zji — 15(# >xz L0 (0] — a)) + Syepyalt]
B d
—i—a”Za b —b?) (55A,Za“b” - on(v,a)bf(a‘i’a; +afaj),
o=1

so that the right-hand side yields
(ML) g =( = ) 3 o]k > abal ({a] a2 bsb] + {a] 07 bsas + {05, af ya)b] + {65, Yaja? )

i=1 ‘,j—l

(k1 Zajb; agbfat 4 S 4t lx]+xl(b§bf Ta? + bibPala?)

i,7=1
i#]
a,) Z mfxib;bf ajai +aja Z 3 bebﬂ — bebﬁ)
3,j=1 i,j=1
k.l e
+ [0(y<8) — O(a<o)] Z i xial b bfgal
i,5=1
+ 0ca Za:] vib]a ”< —&-ZaAb’\) 35y Z wiaibsa f‘( —|—Za”b”> :
i,j=1 i,5=1

This is obtained by simplifying terms without any non obvious manipulation. Now, remark that we can

write o€, &) = d(eca) = O(e>a) = 1 — 0ca — 20(e>q) SO that

1
5[0(57 a) +0ca — 0(5»7) - 557] = [5(7<[3) - 5(a<e)] .
We can also repeat the argument in (A.11), to get

n

k
;(Z—z) 5 et s )

r=1 r=1/ 4,57=1
1 « T, +T
— }: B, .k+1 Z 1kt J B8 B
= —l a;’bf ?bz 1 5 .I'zl‘]m( ?b] ?bi‘i‘aZbZ ?b;) .
4,j=1
i#£j
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Incorporating these two facts in (A.14) ;¢ gives us

k n
1 —T,.Tr
(A14)pys =3 (Z — Z) Z abﬁ ’Ybe : f-H Ty xi§+l xj)

r=1 r=1/ 4,j=1

Z ekl ( ajai +aja Z 3 bebﬁ — bSbY)

3,7=1 1,9=1

1 k1l € ﬁ a
—|—§[o(e,a)—|—5 — — 054 Z zjr;a]b5b; ag

7,7=1
+ bea Z akalbla) (Z” + Zm,x) —0py Y abalbiad (Zﬂ + ZC“”’“) :
i,j=1 i,j=1

This is nothing else than (A.8), which is (A.14), ;4 as desired.

A.5. Proof of Proposition 4.3. We need the following lemma.

Lemma A.3. Foranye,vy=1,...,d and j,k,l=1,...,n,

. . ; T+
{bja fkl} :(ijbl - Zjlbj) (ZZJ - Zkg)fkl + 5(]¢k)]7k

1 Ti+ X
+ 506 2
J

S(fir— fr)

(besz+blfkj)+ blfk; b;fjl

e—1

23

+ fr Y () = b5)(a) — ap) (A.15a)

A=1
x; + T

xk( ap —a)(fa — frr)
flcl( al) + an’le akle

{af, fu} =a] Zy — a) Ziy + 5( #h)

x1—|—xl

Proof. As usual, we use the normalisation ) af =1, and we compute from (2.10c)—(2.10d) that

d
{05, fud =D ({65, ag }b + ag {5, 07°})
a=1

e—1

b5 (fi1 — frr) — Z ajb;

a=1

xj—&—xk

=b;Zkj — fuZij + 5(]75’6)

d
Z o(7,0) frula] (af, — a7) + af (a) — a])] (A.15Db)

d d
1
— Jful Z ay (b5 —b5) + b; Z a)‘b;‘ + 3 Z Z o(a, k)bj'b5(afay + agaf) (A.16)

a=1k=1
Z;

306 (lfsz + b5 fi) + FraZus — 05 Z50

d a—1

d
Z & (b§bY — bSYY) +fklzal by —bS) = > > agbSal (b —bf)

A=1 a=1p=1

M\H N

Our aim is to reduce some of these thirteen terms, mostly using properties of the ordering function

o(—, —). Summing the fourth, sixth and eleventh terms of (A.16) together yields

e—1 e—1 e—1
€ € ]' € €
- Z apbpbs + > apb)bf + Z Z] (apbRb — apdbs)
= A=1

A=e+1 A=1

d

1 1

=3 ) “(apb)by — apbb;) = 5 (Fgbi = frab5).
:1
AFe
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The fifth and twelfth terms of (A.16) give

e—1 e—1
—fr Y ap(b} — b +szzaz = 05) = fu () —ap) (b} — b5)
A=1 A=1

1

(o3
bj'afay + b'agay — bf'alfaj; — bj'ajaf)

l\D\»—l

Q‘P
-

R
E

HM

bi)(afay + ajag),

N)M—l

d a—1 d a—1
1
52 bs (b — b)) (2afaf — afaf — afal) ZZbE b — b)) (afa — afay)
a=1p=1 a=1p=1
1 d a-1 1 d d
DI (AL RS D SV AT
a=1p=1 a=1p=a+1
1 d d 1 d d ]
2 Z Z b6 — b )agaj = b} Z Zb;-(agb;"a;.‘ —ajbjay) = §b§ (fra — f) -
a=1 u;l a=1p=1
JIEe"

Introducing the different terms back in (A.16), we find

xj—i—xk

{65, fra} =(bj Zij — b5Z50) + (Zij — Zij) fra + 5(];£k) b5 (fi1 — frt)
1 Ti+x,, . .
+ 50620 7 l(b fra + 0] fig) + §(blfkj - bjfjl)
J
e—1
+ fr > (0F = b5) (a7 — ap),
A=1

as desired. For the second identity, we need (2.10b) and(A.15), then the same kind of manipulations
allow to find {a], fr:}. O

To establish Proposition 4.3, we have from Lemma A.3 and the identity 25:1 a] =1 that

d
{fijs fra} = Z ({al, fr}b] +al{b], fr})

v=1

Ti+T
=(fij — frj)Za + 5(#1@) ik

(fk] Jig)(fir = frr)

1 T+ 1
+ 55(1‘7&1) l(fl] fij)flcl + Efijfil - §fkjfil
d
1
520D 010 fua(]b](af — af) + af (a] = a])b]) (A.17)
y=1lo=1

+ ijle Zifi; + (Zij — ij)fkl

itz T+
kfzj(fjl fkl)+ 5(37& A

+ 5(#’@ (fufkl + fifrs)

d v—1

+%filfkj fl]fjl+fklzza;y *b'y *CL?).

=1 =1
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The sums in the third line of (A.17) can be re-expressed as follows :

%sz Z l Z Z] (ab)(af, — a7 ) + af (a} — a])b])

v=1 Lo=v+1 o=1
1 g g (on
:afkl Z [ Z Z] H(af —af) —a](af — af )bj)7

v=1 Lo=~+1 o=1
after swapping the labels o <> v for the second term in the sums. This is nothing else that

1 g G’ o

| 3 -5 -t -

v=1 Lo=v+1 o=1

Summing with the last term of (A.17), we get

d d ~v—1

1
ifklz Z Z b} —b7)(ap — ap Jrszzza 2 =01 (a}) — ap)
y=1 | A=~y+1 A=1 =1 =1
1 1 d d
:ifkl Z —b})(ap —a}) = 5 Z Z (b)ap — bla} — apb} + a'b})
y=1 A= y=1A=1
Ay

1 1
ifkl(fij = fij = frj + fij5) = ifklflj - §szfkj .
We can thus rewrite (A.17) as

Ti + T
{igy fuy =fiiZa — fejZa + 5( #h)

T, +x;

(fkgle T frr = Figfu + fij frr)
(flgfkl fijfkl> + *fz‘jfil - 1f/cjfiz + %fklflj - %fklflcj

xj—i—:zck

+ 5(#[

+ Zyj fa — Zjlfij + 21 frit — Zj fra + 5];&1@ (fmfgl fijfr)

a:]—|—xl

+ 5(]7&1 (fufkl+lefk3)+ lefkj fijfjl~

Now, remark that we can rearrange terms to obtain

{fijs fra} =fi (Zil + ;fil) — frj <Zil + ;fil) + fu (ij + 1fkj) fij ( i+ fjl)

xr; + 2

1 1
+ fri <le + flj> — fu (ij + 2fkj> + 5(1;&1) (fl]fkl Jijfrt)

x; + Tk

5(1#) (fk]fll Trjfur — figfu + fijfr)
T —|—xk i+ x]

+ 5(J¢k) (quyz fij fer) + 5(J¢l =z —— (fzjfkl + fifrs) -
After that, a simple rearrangement using
1 1lx; +qx
Zl" —Jii = Il i Al
]+2f] 2$1—q1‘]fj ( 8)

leads to (2.4b). This proves the first claim of Proposition 4.3. To prove the second claim, we use Lemma
A.3 to get

1 T, +T 1
{a, frr} —25 (i#h) : Z(CLZ —a)) fir + (a] —a)) (Zik + 2fik> ,
T; —&-xk

1 1 1
165, fur} =500 (befgk + b frj) + b (ij + 2ka> — b5 (ij + ijk) :

Using (A.18) we get, after summation over k, the relations (4.10b)—(4.10c). The remaining relation
(4.10a) is obvious. O



26 OLEG CHALYKH AND MAXIME FAIRON

A.6. Proof of Lemma 5.1. Let u € {y, 2z}, and remark that we can write {u, u} = —1[u*®ey—eo@u?],
together with
1 1 1 1
{u,wa } = 560 Q@ UWq — U R Wa, Lu,va}= at ®eg — v Qu. (A.19)

Now, consider the elements w,vgu! € A for any [ € Nand «, 8 = 1,...,d. The following statement holds
in A/[A, A] if u =y, and A*/[A*, A*] if u=z.

Lemma A.4. For any k,1>1 and o, 3,v,e =1,...,d, we have that

{uka wavﬁul} =0 )
1
{w vk wavsu'}y =5 [0(7, B) + o(e, @) — o(e, B) — (7, )] waveu® wavput

1 1

+ 50(7,ﬁ) WaUg wvveuk*‘l + 50(6, @) wavguk'H Wy Ve

1 1

- §O(€,ﬁ) wavgu® wveut — 50(7, @) wavgu wyvu®
1 1

— 675 [waveukﬂ + iwav@ wvveuk"‘l + §waveuk wvvgul (A.20)

1 1
+ e [wvvgukﬂ + iwavgukﬂ Wy Ve + iwaveuk wvvgul

= 1 7
~3 g wavﬁukJrl*Tw,yveuTJrg wavgukme,szul*”

=1 o=1 _
-1 k T
k41— k— l
+ 3 E WaVaUT WryVell =4 g WaVRU" | WyVell T
o=1 =1 i

The same holds without the sums if k =0, 1 =0 or both k =1=0.

We delay the proof of this lemma until § A.6.1 to explain how we can conclude from this result. Denote
by U the matrix representing u € {z,y}. Then ¢, = tr(W,V.U'), and Lemma 5.1 is deduced from Lemma
A4 and (3.23b) by using that tr(W,VsU*W,V.U') = (V.U'W,)(VaUW,) = tflet’,jﬁ. O

Remark A.1. A similar result also holds for u € {x, eq+ 2y}, and with u = z+y~! if we decide to localise
at y. We have in those cases {u,ul} = +3[u* ® ey — €9 ® u?], and (A.19) also holds. Then, Lemma A.4
can also be proved, except that we need to change the signs in front of the last two lines in (A.20). We
do not discuss these cases any further.

A.6.1. Proof of Lemma A.4. First, we note from the discussion at the beginning of § A.1 that

kol
{{uk7 ul }} — _% Z Z (uk77+a+1 Qul—otTl ko1 g ulfa+7'+l) )

T7=10=1

Next, using (A.19), we remark that
fu, wavp} =wa {u, v} + {u, wa Y vg

1 (A.21)
=3 (WaVaU ® €9 — WaUs @ U+ €9 @ UWLUE — U @ W Vg) -
Therefore
1 E
Lk, wavgul = Z (wavﬁukfﬂrl ® Ut — wavguF T @ Ul
T=1
+uF T @ uTwavpu! — wF T © uT’lwavﬁul> (A.22)

l

1

-3 Z Z (U/a'Uﬁuk—T-l-U-H X ul—otT—1 _ wavﬁuk—r+a—l ® ul_g+7—+1) .
7=10=1

After application of the multiplication map, we get 0 and the first equality follows. To prove that (A.20)

holds, write

{{wwveuk, wavgul }} = Wy Ve * {{uk, wavgul }} + wavp {{wvve, ul }} « uk 4 {w,ve, wavs } ub s uf (A.23)
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Again, we begin by reducing the two first terms. Using (A.21) and (A.22) gives

l
T :=wy v, * {{uk, wav/_gul }} - Z wavgu‘Fl {u, w,yve}}o w7 % uf
o=1

!
> (wavpuF T @ wopad T — wavgut T @ wy vl PO

Il
|
N[ =
]~

T=10=1
k
1 _ _ _
+ 5 Z (wavguk ™+l w.vauHT b wavﬁuk T® w,yveulJrT)
=1
k
1 _ _ _
+ 2 E (uk T® wvvguTwav,gul — Tt g Wy Veu” 1wav3ul)
T=1
l
1 _ _ _
~3 E (wavgu”w,yvfuk @ul=7 — wavgu’ 1w.yvgu”C ® ut ”H)
o=1
l
1 _ _ _
~3 g (wuvguk+” '® wn,vgul o+l _ wav,@ulﬂ'” ® wyveul ") .

o=1
This gives, after multiplication and modulo commutators
1k
moT = —= § § (wavﬁuk77+a+1w’yveul+77071 o wavﬁuk77+07lw’yveulJr'rch»l) ,
T=10=1

because the last four sums cancel out. Relabelling indices, we write

k—1 l -1 k
1 D 0 0 3 360 ) ol (AT
7=10=l 7=00=1 7+=ko=1 71=10=0

k-1 !
1 _ _
=-3 g wo v T w v + E wavaut T w voul =7

T=1 o=1

L1
2

-1 k
g W vpu’ wyvuF T 4 g wav@uk_vaveuHT]
o=1

T=1

It remains to compute {w, v, wavg}. We can find from (3.2e)-(3.2g)

1 1
fwyve, wavs} = — 50(7, @) (Wae @ WyVg + Wy Ve @ Wa V) — 50(5, V) (Wa VWA Ve & €9 + Wa Ve ® WAVg)

1 1
— 03y (wav6 ® e+ iwave ® wyvg + Ewavgw.yve ® 60)

1 1
+ e (eo ® wyvg + iwave ® wyvg + 560 ® wvvgwav5>

1 1
+ 50(6, a) (60 @ WyVWAVE + WaVe ® WyVE) — 50(6, B) (Wavg ® WAVe + WaVe @ Wyvg) .

k

By applying the multiplication map m on {w-ve, wavg} ul x uF we get
1
m o ({w,ve, wavp} ul ¥ uf) = — 50(7, a) (wavgukwwvgul + wyvgukwavgul)
1
— io(ﬁ,'y) (wavngveukul + waveukwyvlgul)

1 1
— (5&, (wavéukul + iwaveukwvvlgul + Qwavﬁwyveukul)

1 1
+ dae (ukw,yvgul + §waveukwwv5ul + 2ukwfyv€wavﬁul)

+ —o(e, @) (ukwvvewav[;ul + waveukw.yvgul)

=N

- 50(6, B) (wavgukwwveul + waviukwyvgul) .

Adding m o T to this last expression finishes the proof. |
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A.7. Computations with S. To simplify notations in this appendix, we denote by s the element sq4
given by (3.9) with a = d.

A.7.1. Some brackets. Recall that (5.7) holds if we can show that the relation {tr Sk,tfw} = 0 on
Rep(A*,a). Moreover, we have that ¢, P and tr S* are traces of the matrices representing the elements
wavpzt and s*. Using (3.23b), the desired relation follows from the following lemma.

Lemma A.5. For any k,l € N and 1 < o, 8 < d, {s*, wav52'} = 0 in AXJ[AX, AX].
Proof. We use (3.10a) and (3.10c) to get

i
{s,wavpz" | = {s, wa} vaz’ + wa {5,058} 2" + Z wavpz” s, 2} 2T
T=1

:5(3 Q@ wavaz’ + €9 ® sSWavgz’ — waaz's ® eg — wavpz' @ 'S).

Hence,
k
sF wavsztt =mo ST sk Y s wavpz' W ox 877 | = 1 (sPwavgz’ — wavgzts®),
B > B B B
T=1
which vanishes modulo commutators. O

A.7.2. Proof of Theorem 5.10. Consider the following result.
Lemma A.6. Let z, = z +ns for arbitrary n € C playing the role of a spectral parameter. Then,
{zﬁ,z%}zo mod [A™, AX], for any p,n € C,k, 1 € N*.

Using this lemma together with (3.23b) we get the property {tr Zl’j , tr Zf,} = 0 since the matrix Z,
represents the element z, € A*. Thus, Theorem 5.10 follows directly from this intermediate result.
To prove Lemma A.6, we use the derivation properties of the double bracket to see that

1
H{ZZVZ;} = {Zﬂaz”]}}/ 2271 {Zﬂv'zn}” Z£771 mod [-AXaAX]' (A24)

Hence, the first step is to compute the double bracket {{z,,z,}. Using that z, = z + ns and the same
with p, we need {z, 2z}, {s, 2} given in (3.3a),(3.10a) together with

1
{s, s} = 5(60 ®s2—s2®ep), (A.25)

which is a special case of Lemma 3.2. This yields

{ZM’Z'O} :JL{Z’Z} + U{{SVZ} - 77{{& z}}o + {{575}
1

1
:5(60®z2—z2®eo)+5u(s®z—zs®eo+eo®sz—z®s)

1 1 9 9
—5n(z®s—eo®zs+sz®eo—s®z)+im)(eo@s —s$°®ep).

By grouping terms together, we can write
1 1 1
£z, 20} =§(eo®zzn—zzu®eo)—|—iu(eo®szn+s®z—z®s) - in(szu®eo+z®s—s®z).
We can use that us = z, — z for the terms with a factor u, and do the same with 7. We can write in this
way
1 1 1
{2 20 B 25(60 ® 2u2y — Zp2p @ €o) + i(zu ®z—2Q®z,)+ 5(2'71 ®z—2® zy).

Substituting back in (A.24), we get modulo commutators

Lok Lok -1 ko i-1y 4 Lo k-1 k=11
H{zu,zn}:§(zuzzn — 22,2y )+§(Z" zzy — 22, %)

This is clearly zero when p = 7. If u # 1, we can substitute z = ﬁ(uzn —1z,) in the two groups of
terms, which then vanish modulo commutators. O
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