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Figure 1: Given a 20-frame walking motion pre-ix (white), our model can generate diversiied motion: walking (yellow),

walking-to-running (blue), walking-to-boxing (green), and walking to dancing (red), with arbitrary duration. The correspond-

ing animation can be found in teaser.mp4 in supplementary video.

ABSTRACT

Humanmotion modelling is crucial in many areas such as computer

graphics, vision and virtual reality. Acquiring high-quality skele-

tal motions is diicult due to the need for specialized equipment

and laborious manual post-posting, which necessitates maximiz-

ing the use of existing data to synthesize new data. However, it

is a challenge due to the intrinsic motion stochasticity of human

motion dynamics, manifested in the short and long terms. In the

short term, there is strong randomness within a couple frames, e.g.

one frame followed by multiple possible frames leading to diferent

motion styles; while in the long term, there are non-deterministic

action transitions. In this paper, we present Dynamic Future Net,

a new deep learning model where we explicitly focuses on the

aforementioned motion stochasticity by constructing a generative

model with non-trivial modelling capacity in temporal stochas-

ticity. Given limited amounts of data, our model can generate a

large number of high-quality motions with arbitrary duration, and

visually-convincing variations in both space and time. We evaluate

our model on a wide range of motions and compare it with the
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state-of-the-art methods. Both qualitative and quantitative results

show the superiority of our method, for its robustness, versatility

and high-quality.
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networks; Learning latent representations.
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1 INTRODUCTION

Modeling natural human motions is a central topic in several ields

such as computer animation, bio-mechanics, virtual reality, etc,

where high-quality motion data is a necessity. Despite the improved

accuracy and lowered costs of motion capture systems, it is still

highly desirable to make full use of existing data to generate di-

versiied new data. One key challenge in motion generation is

the dynamics modelling, where it has been shown that a latent

space can be found due to the high coordination of body motions

1
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[21, 34, 39]. However, as much as the spatial aspect is studied, dy-

namics modelling, especially with the aim of diversiied motion

generation, still remains to be an open problem.

Human motion dynamics manifest several levels of short-term

and long-term stochasticity. Given a homogeneous discritization

of motions in time, the short-term stochasticity refers to the ran-

domness in next one or few frames (pose-transition); while the

long-term one refers to the random in the next or few actions

(action-transition). Tradition methods model them by Finite State

Machines with carefully organized data [31], which have limited

model capacities for large amounts of data and require extensive pre-

processing work. New deep learning methods either ignore them

[21] or do not explicitly model them [39]. Very recently, dynamics

modelling for diversiied generation has just been investigated [40],

but only from the perspective of the overall dynamics, rather than

the detailed short/long term stochasticity.

In this paper, we propose a new deep learning model, Dynamic

Future Net, or DFN, for automatic and diversiied high-quality mo-

tion generation based on limited amounts of data. Given a motion,

we assume that it can be discretized homogeneously in time and

represented by a series of posture and instantaneous velocities.

Following the observation that it is easier to learn the dynamics in

a natural motion latent space [21], we irst embed features in the

data space into a latent space. Next, DFN learns explicitly the his-

tory, current and future state given any time, where we also model

several conditional distributions for the inluences of history and

future state on the current state. The state-wise bidirectional mod-

elling (extending into both the past and future) separates DFN from

existing methods and endows us with the ability of modelling the

short-term (next-frame) randomness and long-term (next-action)

randomness. Last, for inference purposes, we propose new loss

functions based on distributional similarities as opposed to point-

wise estimation [39, 42], which captures the dynamics accurately

but also keep the randomness that is crucial for diversiied motion

generation.

We show extensive experimental results to show DFN’s robust-

ness, versatility and high-quality. Unlike existing methods which

have to be trained on one type of motions a time [40, 42], DFN

can be trained using both single type of motions or mixed motions,

which shows DFN’s ability to capture multi-modal dynamics and

therefore its versatility in diversiied motion generation. Visual

evaluation shows that DFN can generate high-quality motions with

diferent dynamics.

In summary, our formal contributions include:

(1) a new deep learning model, Dynamic Future Net, for auto-

matic, diversiied and high-quality human motion genera-

tion.

(2) a new dynamic model that captures the transition stochas-

ticity of the past, current and future states in motions.

(3) insights of the importance of both short-term and long-term

dynamics in human motion modelling.

2 BACKGROUND AND RELATED WORKS

2.1 Human pose and motion embedding

Given a human motion sequence, it is useful to ind the low dimen-

sion representation of the whole sequence. Holden et al. [22] for

the irst time use a convolution neural network to project the entire

sequence to a low dimensional embedding space. Using this more

abstract representation, one can blend motions or remove noises

from corrupted motions. In [20, 21], the authors further make use of

the power of the learnedmotionmanifold and decoder to synthesize

motions with constraints. Another important application of motion

embedding is motion style generation [8], in which the embedding

code can be tuned to matched the desired style. Although modeling

a motion sequence with auto-encoders is straightforward, how it

can model the dynamics of human motion is not clear. In [28], the

authors model a motion sequence as a trajectory in pose embedding

manifold, then use a bidirectional-RNN to encode the trajectory to

model the dynamics of the trajectory, which can improve motion

classiication results. Moreover, they designed a graph-like network

to better represent the human body components.

The existing methods focus on the embedding of the poses and

dynamics. However, they do not explicitly model the distributions

of these latent variables which governs the stochasticity of the

dynamics. In this paper, we go a lever deeper and learn the latent

variable distributions for the embedded poses and dynamics.

2.2 Deterministic human motion prediction
and synthesis

In the efort of modelling motion dynamics, many methods employ

deterministic transitions [2, 4, 9, 13, 17, 19, 24, 29, 36], especially in

human motion prediction or generation. They either focus on short

term dynamics modeling or spatial-temporal information of the

overall dynamics. In [42], the authors propose a training technique

for RNN to generate very long human motions. Although this

technique solves the problem of the freezing phenomena of RNN,

their model is deterministic, which makes the training diicult:

given a past state, if multiple possible future motions are present

in the data, the network will average them, which is a common

problem in many human motion prediction methods.

One solution to this problem is to introduce control signals [14,

37]. They design several networks and make the character to follow

a given trajectory in real-time. In [33], the control signal becomes

the 3d human pose predicted by neural nets as a reference for an

agent to imitate. In [1], the authors co-embed the language and

corresponding motions to a share manifold, ignoring the fact that

language-to-motion is a one-to-manymapping. Even with a speciic

control signal, one can still expect that there are diferent motions

corresponding to the same control signal, essentially indicating the

multi-modality nature of human motion dynamics.

Diferent from the existing methods, our paper focuses on the ex-

plicit modelling of the multi-modality nature of motion transitions

in human motions. Further, we also aim to learn the stochastiity in

those transitions.

2.3 Stochastic human motion synthesis

In [40] the authors combine RNNs and Generative Adversarial Net-

works (GANs) to generate stochastic human motions. They use a

mixture density layer to model the stochastic property, and use an

adversarial discriminator to judge whether the generated motion

is natural or not. In MoGLow [18], the authors for the irst time

use normalizing low to directly model the next frame distribution.

2
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One advantage of this method is that it can capture complex dis-

tributions without learning an apparent latent space. Given the

same initial poses and the same control signals or constraints, the

model still generate diferent motion sequences. Chen et al. [5]

combine Dynamic motion primitive and variational Bayesian ilter

to model the human motion dynamics. They show that the latent

representations are self-clustering after training. However, in the

transitions, it needs the information of the whole sequence, which

separates it from being a pure generative model.

Our method difers from existing approaches in its treatment in

the relations between the past, current and future states of human

motions. Unlike the aforementioned methods, we explicitly model

the current state based on both the past and the future. Also, we

further model their randomness in the latent space that captures

the transition multi-modality.

2.4 Stochastic RNN model

Modelling the stochasticity in time-series data has been a long-

standing problem, such as music, hand writing and human voice

[11, 25, 38]. The VRNN [7] for the irst time combines Variational

AutoEncoder (VAE) [27] and recurrent neural networks for this

purpose. Later in [23], the authors disentangle the latent variables

of the observation and the dynamics, with the observation latent

being used to recover the full observation information, and the

dynamic latent capturing the dynamics.

A key modelling choice in stochastic RNNmodels is the relations

between the past, current and future. In early work, the posterior

of current state is inferred from the past information, which makes

it lack the ability to foresee the future. In [3, 10, 35], the authors

show that the performance can be improved by incorporating the

future state with a backward RNN in the inference stage. In [12], the

authors design a model that can go beyond step-by-step modelling,

and predict multiple steps up to a given horizon. Similar efort is also

made in reinforcement learning, where the reward function takes

the discounted future reward into consideration [12, 15]. In [16], the

authors went further and designed a model that can predict multiple

future scenarios, then choose the one with highest predicted reward

from all the possibilities.

We observed that human motions follow a similar philosophy:

the current state is a result of the past motion but also a particular

choice for a certain planned future. Our research is inspired by

Stochastic RNN models but focuses on human motion transition

stochasticity.

3 METHOD OVERVIEW

Our method takes a homogeneous series of human pose representa-

tions as input. This representation contains the 3D joint coordinates

relative to the root, and the root translation velocity over ground

plane and the rotation velocity around the y-axis. We propose the

Dynamic Future Net to model the motion dynamics as a future-

guided transition and generate random natural human motions

that transit between diferent actions.

As illustrated in Fig. 2, DFN is composed of three modules, a

pose encoder, a pose trajectory encoder and a stochastic latent RNN.

The pose encoder (Section 5.1) maps the high dimensional human

pose to a latent space while the pose trajectory encoder (Section

5.2) embeds the trajectory in the latent pose space into a code.

Such compact representations of pose sequences can facilitate the

learning process [28]. As a key module, the stochastic latent RNN

(Section 5.3) deploys a stochastic latent state and a deterministic

latent state to learn two latent distributions for the pose-embedding

and the future trajectory embedding. Such explicit learning of two

diferent latent distributions on the one hand forces the model to

learn strong temporal correlation and on the other hand generates

motions with varied and natural transition. During inference we

combine the past, current and future state to infer the current

latent state distribution, and we combine the past and future to

infer the future latent state distribution. In the generation stage,

unlike existing methods [10] where the current state is generated

from the past state only, we irst generate the future state and

combine it with the past state to generate the current latent state

prior, from which we sample the current latent state then decode it

to the pose-embedding and recover the current pose and velocity.

We regard this process as a self-driving motion generation process

guided by the envisioned dynamic future. In this way, the model

can learn and generate rich and varied natural motions.

Figure 2: Overview of the proposed Dynamic Future Net-

work. In the learning process, the network take human mo-

tion sequence as input and predict the long term distribu-

tion and the short term(next frame) distribution.

4 DATA PREPARATION

We train our model on the CMU Human motion capture dataset.

As the skeletons in the origin dataset are diferent, we irst retarget

all motion to a chosen skeleton as in [21]. The skeleton contains

24 joints, we irst extract the X and Z global coordinate of the root,

and rotate the human pose to the Y-axis direction as in [22], the

3
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global position and angle of human pose can be recovered from the

X-Z velocity and the rotation velocity around the Y axis. Finally the

original human pose vector contains 76 degrees of freedom, 72 for

3D joint positions, 4 for the global translation and rotation velocity.

Figure 3: The pose-velocity auto-encoder network. The in-

put of the encoder is the 76 dimensional pose-velocity vec-

tor. The encoder outputs two code, one for pose, the other

for velocity. The pose code and velocity code is fed into a

quaternion decoder and velocity decoder separately. The 3D

joint positions are recovered from quaternions by the For-

ward Kinematics (FK) layer.

5 METHODOLOGY

Formally, we start by describing a motion as a homogeneous time

series: {�0, . . . , �� }, where �� is the motion frame at time � and

contains the joint positions and global velocities. Starting with a

joint distribution � (�<� , �� , ��+1:�+� ), we model the inluence of

the past frames �<� and future frames ��+1:�+� on the current

frame �� by transition probabilistic distributions � (�� |��+1:�+� )

and � (�� |�<� ), where � is the duration of a short-horizon future.

The key reason of such a modelling choice is based two observa-

tions: the current frame is a result of the past motion and therefore

conditioned on it, captured by � (�� |�<� ). Meanwhile, the current

frame is also a choice made for certain planned future, e.g. needing

to stop swing the legs aiming for a transition from walk to stand-

ing, captured by � (�� |��+1:�+� ). In addition, since the past motion

will also limit the possibilities of the future motion, there is also

a impact of the past on the future, � (��+1:�+� |�<� ). Overall, the

joint probability:

� (�<� , �� , ��+1:�+� ) ∝ � (�� |��+1:�+� )� (��+1:�+� , �� |�<� ) (1)

Not that the two probabilities on the right side play diferent roles.

� (��+1:�+� , �� |�<� ) is the probability of unrolling from the past to

the future. Given a known past, this is a joint probability of both the

current and the future, containing all the possible transitions. On

top of it, � (�� |��+1:�+� ) dictates that if the future is also known,

then the current can be inferred. This explicit modelling of the

transition probabilistic distributions between the past, current and

future helps capturing the transition stochasticity, which facilitates

diversiied motion generation as shown in the experiments.

Learning the transitional probabilities in the data space, however,

is diicult due to the curse of dimensionality. We therefore project

motions to a latent space, which involves embedding the frames

as well as the dynamics. We then learn the transition distributions

in the latent space. During inference, we then recover motions

from sampled states in the latent space to the original data space.

DFN is naturally divided into three components: Spatial (frame)

embedding, dynamics embedding and dynamics modelling.

5.1 Spatial Embedding

We use an auto-encoder for frame embedding, �� = ������� (�� )

and �̂� = ������� (�� ), shown in Figure 3. ������� is multi-layer

perceptron network to project the data into the latent space. Then

we separate the latent feature into two components to represent

the pose code and the global velocity code. ������� contains two

components, the quaternion decoder and the velocity decoder. The

quaternion decoder takes the pose latent feature as input and out-

puts joint angles (represented by quaternions), and the velocity

decoder takes the latent velocity feature as input and outputs the

velocity. The quaternion decoder essentially is a diferential Inverse

Kinematics module. As stated in [32], using joint rotations instead

of joint positions maintains the bone lengths. After the reconstruc-

tion, we use a Forward Kinematics layer to compute the 3D joint

positions. To train the auto-encoder, we use a Mean Squared Error

loss function:

��� =
1

�

�∑

�=0

| |�� − �̂� | |
2
2 (2)

where � is the number of frames in a motion.

5.2 Dynamics Embedding

Figure 4: A seq-to-seq network for trajectory embedding.

After learning the pose latent space, we project the dynamics as

trajectories in this space using a Recurrent Neural Network shown

4
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in Figure 4. We employ a sequence-to-sequence architecture as

it forces the model to learn long-term dynamics. The RNN con-

sists of Gated Recurrent Unit (GRU) [6], encodes a sequence of

encoded frames {�� , . . . , ��+� } into a latent representation�� , and

then unroll to reconstruct the same sequence {�′�+1, . . . , �
′
�+�

} from

�� given �� . To �� = ������� (�� ), �� is a future summary over

multiple frames. We use the following loss function:

��� = ���� + ������ℎ (3)

�ℎ��� ���� =

1

�

�∑

�=0

| |�� − �
′
� | |

2
2

������ℎ =

1

�

�∑

�=0

| |�� − �̂� | |
2
2

where� is the frame number of a motion,�� and �̂� are the original

and reconstructed joint velocities. To facilitate training, we use Eq.

2 to pre-train the posture auto-encoder an ix its weights when

training the RNN module.

5.3 Dynamics modelling

Generative Model. After embedding the poses and dynamics into

a latent space, we now explain the dynamics modelling, which is the

key technical contribution of this paper. We propose a new dynam-

ics model that captures the joint distribution � (�<� , �� , ��+1:�+� ).

Rather than directly learning the distribution in the data space, we

aim to learn the latent joint distribution � (�<� , �� , ��+1:�+� ), where

we abstract the past, current and future features separately. First,

given the Markov property, we assume that all past information

�<� is encoded into ℎ� which is a deterministic (known) past state.

Next, we assume that the of future information ��+1:�+� can be

summarized into a future state �� , and �� is drawn from a distribu-

tion over all possible future states conditioned on ℎ� . Last, we also

assume that there is a current state �� which captures the current

information �� and �� is drawn from a distribution of all possible

current states. Then we can therefore assume:

� (�<� , �� , ��+1:�+� ) = � (��+1:�+� , �� |�<� )� (�<� )

∝ � (�� |��+1:�+� )� (�� |�<� )� (��+1:�+� |�<� )

= � (�� |�� )� (�� |ℎ� )� (�� |ℎ� )

= � (�� |�� , ℎ� )� (�� |ℎ� ) (4)

where we directly use �� , ℎ� and �� to replace the corresponding

� variables by assuming mappings between them which will be

explained later. Diferent from existing methods [10, 35], our di-

rect conditioning of the current state on the future and past state

� (�� |�� , ℎ� ), and the future state on the past state � (�� |ℎ� ) allows

us great lexibility in modelling the stochasticity in transitions. The

generation model is shown in Fig.5 a.

Future Feature Prior.Givenℎ� , we irst predict the future state,

via � (�� |ℎ� ). Here, we assume a diagonal multivariate Gaussian

prior over �� [5, 14, 26]

� (�� |ℎ� ) = ��������(�� ; �
�
� , �

�
� ),

where [�
�
� , �

�
� ] = �

�

�
(ℎ� ) (5)

where �
�
� and �

�
� are the mean and covariance. �

�

�
is a three-layer

MLP with hidden dimension 256 and LeakyReLU activation. It

contains all the possible future state given the past. It can represent a

goal or a driving signal for the generative process. Also it forces the

model to learn rich motion transitions and long term correlations,

overcoming the freezing problem of traditional RNN [42].

Current Feature Prior. Next, we explain � (�� |�� , ℎ� ). Although

ℎ� is a known (deterministic) past, �� is random. We therefore irst

sample a speciic future state �� , then decode it to an unrolled future

summary�� , and inally condition the current state �� on ℎ� and

�� . We therefore have:

� (�� |�� , ℎ� ) ∝ � (�� |�� , ℎ� )� (�� |�� , ℎ� ) (6)

� (�� |�� , ℎ� ) = ��������(�� ; �
�
� , �

�
� ) (7)

[��� , �
�
� ] = �

�
� (ℎ� ,�

�
� )

where � (�� |�� , ℎ� ) is parameterized by a four layer MLP with hid-

den dimension 128 with LeackyReLU activation. ��� and �
�
� are the

mean and covariance. �
�
� is a two layer MLP with hidden dimension

128. After being able to sample the current state �� , we can compute

the current feature �� via �� = ��� (�� , ℎ� ), where the MLP has

three hidden layer with 128 dimensions and LeakyReLU activation.

Finally, given the current and future state, the past state is up-

dated as follows (Fig.5 c):

ℎ�+1 = GRU(ℎ� , �� , �� ) (8)

where the GRU has two stacked layer and hidden state of dimension

128. Now the generation model in Fig.5 a is complete.

Diferent from existingmethods [7, 10] where the prior of current

state is a function of past state ℎ� only, and where the future state is

shared with the current state, we let the model learn two diferent

distributions for current and future states. The prior of current state

is also a function of the future state, which will force the model to

make use of the future information.

5.4 Inference

In the generation model in Fig.5 a, the key variables to be inferred

are �� and �� , shown in Fig.5 b. The posterior of the future state ��
is dependent on past state ℎ� and its unrolled future summary�� .

The posterior of the current state �� is dependant on the feature �� ,

the past state ℎ� and the future summary�� . We irst factorize the

dynamics as follow:

�(�≤� |�≤� ) ≈

�∏

�=1

�(�� |�≤�−1, �� , �≤�+� ) =

�∏

�=1

�(�� |ℎ� , �� ,�� )

(9)

where � is the total length of motion. Here we approximate the

�(�� |�≤� ) with �(�� |�≤�+� ), as the correlations between �� and the

far future is likely to be small, so we only consider up to � +� . Then

for each time step, we use a MLP to parameterize the posterior:

�(�� |ℎ� , �� ,�� ) = ��������(�
�
� , �

�
� ), [�

�
� , �

�
� ] = ��� (ℎ� , �� ,�� )

(10)

where the MLP has two hidden layers with 32 dimensions and

LeakyReLU activation. For the future state we approximate its

posterior as follow:

�(�� |ℎ� ,�� ) = ��������(�
�
� , �

�
� ), [�

�
� , �

�
� ] = ��� (ℎ� ,�� ) (11)
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Figure 5: The stochastic latent RNN. a) Generation Model. The current pose embedding feature �� depends on the current and

past latent state �� and ℎ� . �� depends on the past state ℎ� and the future summary�� which depends on the future latent state

�� and past state ℎ� b) Inference on �� and �� . c) Transition of ℎ�

where the MLP has two hidden layers with 512 dimensions and

LeakyReLU activation.

5.5 Temporal diference loss

Besides inferring �� and �� , we also constrain the dynamics of � . We

assume a relation between two states ��1 and ��2 at �1 and �2 where

�1 < �2, similar to [12]:

� (��1 , ��2 , �1, �2) ∝ � (��2 |��1 , ℎ�1 , ℎ�2 ) (12)

where we parameterize the posterior:

�(��1 |��2 , ℎ�1 , ℎ�2 ) = ��������(��1 ; ���1 , ���1 ) (13)

where ���1 , ���1 = ��� (��2 , ℎ�1 , ℎ�2 )

where ���1 and ���1 are the mean and covariance. Here the MLP has

two hidden layers with 32 dimensions and LeakyReLU activation.

This way we can sample �
���������
�1

during inference. Meanwhile,

we hope to reconstruct ��2 with the time diference �� = |�1 − �2 |

�����2
= ��� (�

���������
�1

, ��) (14)

where the MLP for skip prediction has three hidden layers each

with 32 dimensions and LeakyReLU activation.

5.6 Learning

Finally, we compose all terms for the loss funtion:

���Φ �� + �� (15)

where Φ is the set of all learnable parameters in our networks and

�� =

�∑

�=1

[−��(�(�� |ℎ� , �� ,�� ) | |� (�� |ℎ� ,�� ))

−��(�(�� |ℎ� ,�� ) | |� (�� |ℎ� ))

+���(� (�� |�� , ℎ� )) + ���(� (�� |�� , ℎ� ))]

�� =

∑

�1,�2

[−��(�(��1 |��2 , ℎ�1 , ℎ�2 ) | |� (��1 )) + � (��2 |��1 , �1, �2)]

�� is the KullbackśLeibler divergence.

After training the pose auto-encoder and the sequence auto-

encoder (Section 5.1-5.2), we freeze their parameters and train the

dynamics model (Section 5.3).

6 EXPERIMENT AND RESULTS

For all our experiments, we use CMU MoCap database1. CMU

dataset is a high-quality dataset acquired using optical motion

capture systems, containing 2605 trials in 6 categories and 23 sub-

categories. Its high-quality serves our purposes well as it provides

good data ‘seeds’ for motion generation. Also, the tremendous ef-

fort that went into capturing the data shows the need for tools

such as DFN for data augmentation. To carefully evaluate DFN,

we select with diferent motion classes with diferent features and

dynamics, shown in Tab.1, to show that DFN can generate new

high-quality motions with arbitrary lengths using diferent motion

preixes. Next, we evaluate DFN on data with single and mixed

motion classes to see its ability to learn the diferent transition

stochasticity on data with a single type of dynamics and mixed

types of dynamics. Last, we push the limit of DFN by reducing the

training data, to show that DFN can make use of a small amount of

data to generate high-quality and diversiied data, which is crucial

for data augmentation. More example can be found in the supple-

mentary video.

6.1 Open-loop Motion Generation

We irst show open-loop motion generation, where we do not mod-

erate accumulative errors. We use a 8 to 20-frame motion preix to

start motion generation to get 900 frames (dfn˙run2box˙2char and

dfn˙boxing˙3char in the video). The motion stability indicates that

DFN does not sufer from the problem of cumulative error that is

common in time-series generation [39]. Given the same preix, the

diversity is shown in their transitions between diferent postures

(short-term) and diferent actions (long-term).

6.2 Dynamics Multi-modality

We investigate howwell DFN can capture diferent transition stochas-

ticity in diferent motions, using several types of motions with

diferent properties (shown in Tab.1). We irst train DFN on them

separately then jointly. The results can be found in dfn˙walk˙top,

dfn˙walk˙close, walking1-walking2, running1-running3, dancing1

1http://mocap.cs.cmu.edu/
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Motion Cyclic Main Body Part Rhythmic Dynamics

Walking Yes Lower No Low

Boxing No Upper No High

Dancing No Full Yes High

Running Yes Lower No High

Table 1: Motion types and their features.

and boxing1 in the video. We observe that DFN can learn the tran-

sition stochasticity well when trained on single type of motions.

The diversity can be found in short-term and long-term transitions,

which are two-levels of multi-modality captured well by DFN. In

walking (dfn˙walk˙top and dfn˙walk˙close in video), the short-

term stochasticity is shown in within-cycle motion randomness,

which enriches the walking style. The long-term stochasticity is

shown when a turning is generated. The action-level transition has

also been captured and generated. Similar observations are also

found in other motions.

When trained on mixed data (combining all motion in Tab.1),

DFN learns higher-level action transitions between diferent mo-

tion classes. We can see examples (action˙transition in video and

frame-level image in supplementary ile) that transit from dancing

to running, from boxing to dancing or from slow walk to running,

showing the modelling capacity at two levels. Within a single ac-

tion, diversiied styles are learned well. Between diferent actions,

transitions are learned well too. This demonstrates the beneits

of modelling randomness explicitly between the past, current and

future state, which would otherwise make it hard to capture the

multi-modality and lead it to average over all types of dynamics,

resulting in meaningless mean poses and motions.

6.3 Diversiied Generation

Although visually it is clear that DFN can generate diversiied

motions, we also numerically show the diversity especially when

the duration of generation becomes long. First, we randomly select

training data of diferent classes, and show their latent feature

trajectory in Fig. 6, with embedding dimension of 16. We then

use a PCA model to project the embedding features to 2D. The

trajectories are continues and smooth without extra constraints on

the auto-encoder. It shows that the motion dynamics are captured

well in the latent space, which is critical in motion generation. Next,

we show a group of generated motions in Fig. 7. Even with the

same motion preix, motions start to diversify from the beginning,

which is a distinct property lacking in deterministic generators in

most action-prediction models such as [30], and our sequence is in

3d which is more diicult than 2d [41].

Distributional Shift in Time. The motion diversity increases

in time. To show that there is a distributional shift of poses, we

randomly pick an initial sequence from training data, then randomly

generate 4096 sequences each with 128 frames. We visualize the

current latent state � and latent feature � at � = 32 and � = 128 in Fig.

8. Note that the distributions of � and � capture the stochasticity at

two diferent levels, one at the stochastic state level and the other

at the latent feature level. The red dots represent them at � = 32

and the yellow dots at � = 128.

Figure 6: Randomly selected training motions in the latent

space. Color indicate diferent motion class. Smooth trajec-

tories are universally obtained by embedding.

Figure 7: Pose embedding trajectory of randomgenerated se-

quences given same initialization with 20 frame. The circle

mark the irst frame. We see that as time goes, these trajec-

tory depart from each other.

For both � and � , the red (� = 32) are concentrated more, showing

that the diference between the 4096 generated motions are still

somewhat similar in the early stage. However, the yellow (� = 128)

show that the generated motions start to diversify later. Not only

they shift out of the original red region, indicating that they are in

now in diferent pose regions, they also start to divergemore, shown

by diferent modes in yellow areas, meaning they have diverged

into several diferent pose regions.

Distribution Matching in Time. Another way to test the di-

versity of generated motions is to see their statistical similarity to

the training motions. Since the motion preix is from one particular

motion, the more similar the generated motions are to the whole

7
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Figure 8: Four groups of motions generated from four dif-

ferent motion preixes, each group with 4096 motions, and

their � (Left) and � (Right) at � = 32 and � = 128. We can see

that the earlier distributions are more concentrated and di-

verge fast as time passes.

Figure 9: Four groups of motions generated from four dif-

ferent motion preixes, each group with 4096 motions. The

x axis represents the time dimension, and the y axis repre-

sent themean distance to average pose at each time step. The

band represents the variations.

training dataset, the more diverse they are, because the generated

motions have leave the original motion region where the motion

preix is.

We employ the mean-distance distribution as a measure, as in

[41]. For each time step, we calculate the mean pose of all generated

motions, then calculate the Euclidean distances between the mean

pose and all other poses at that time step. We then plot the mean

distance and variance in Figure 9. The blue background indicate the

mean and variance of mean-distance distribution of the training

dataset. It shows that as time goes, the mean-distance distribution

of generated poses gradually matches that of the training data. This

further shows the generation diversity.

6.4 Generation on Limited Training Data

DFN aims to solve the problem of data scarcity, so it should only

require as little data as possible for generation. We therefore push

DFN to its limit by reducing the training data, to see the minimal

amounts of data needed. To investigate each individual type of

motions, we train DFN on walking, running, and boxing data sepa-

rately. We start from full training data where the longest sequence

lasts for around 10 minutes, and gradually reduce the duration by

sampling until the quality of the generated motions start to dete-

riorate. Although DFN responds to reduced training data slightly

diferently on diferent motions, we inally able to reduce the train-

ing data to a tiny amount, with the longest sequence being only

15 seconds (12 second for walking, 15 second for boxing and 7 sec-

ond for running). DFN can still generate stable motions even when

trained on merely a 7-second long motion. (The result can be seen

in reduced˙data in video) The impact of reducing the training data

is mainly on the diversity of the motion. (However we can see in

supplementary video that the generated boxing motion still has a

certain of diversity). Less training data contains fewer transition

diversities (both short-term and long-term). The generated motions

therefore are less diverse. This is understandable as DFN cannot

deviate too much from the original data distribution to ensure the

motion quality.

6.5 Comparison

To our best knowledge, the only similar paper to ours is [40] which

also focuses on diversiied motion generation. However, the biggest

diference is that DFN explicitly models the inluence of the future

on the current. This enables DFN to explicitly model the transition

randomness at diferent stages and levels. This is the key reasonwhy

DFN can be trained well on multiple types of motions, separately

and jointly, which has not been shown in [40]. However, a direct

numerical comparison is diicult due to the lack of widely accepted

metrics for diversiied motion generation. In addition, the method

in [40] uses heavy post-processing while DFN does not.

7 CONCLUSION AND DISCUSSIONS

In this paper, we propose a new generative model, DFN, for diver-

siied human motion generation. DFN can generate motions with

arbitrary lengths. It successfully captures the transition stochastic-

ity in short and long term, and capable of learning the multi-modal

randomness in diferent motions. The training data needed is small.

We have conducted extensive evaluation to show DFN’s robustness,

versatility and diversity in motion generation.

There are twomain limitations in ourmethod. There is no control

signal, and sometimes it can overly smooth high-frequency motions.

We will address them in the future. Our explicit modelling of the

future makes it convenient to introduce desired future as control

signals;while replacing some of the Gaussian components with

multi-modal priors might mitigate the over-smoothing issue.
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