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A B S T R A C T

Background: Low-dose interleukin-2 (ld-IL-2) enhances regulatory T-cell (Treg) function in auto-inflamma-

tory conditions. Neuroinflammation being a pathogenic feature of amyotrophic lateral sclerosis (ALS), we

evaluated the pharmacodynamics and safety of ld-IL-2 in ALS subjects.

Methods: We performed a single centre, parallel three-arm, randomised, double-blind, placebo-controlled

study. Eligibility criteria included age < 75 years, disease duration < 5 years, riluzole treatment > 3 months,

and a slow vital capacity � 70% of normal. Patients were randomised (1:1:1) to aldesleukin 2 MIU, 1 MIU, or

placebo once daily for 5 days every 4 weeks for 3 cycles. Primary outcome was change from baseline in Treg

percentage of CD4+ T cells (%Tregs) following a first cycle. Secondary laboratory outcomes included: %Treg

and Treg number following repeated cycles, and plasma CCL2 and neurofilament light chain protein (NFL)

concentrations as surrogate markers of efficacy. Safety outcomes included motor-function (ALSFRS-R), slow

vital capacity (SVC), and adverse event reports. This trial is registered with ClinicalTrials.gov, NCT02059759.

Findings: All randomised patients (12 per group), recruited from October 2015 to December 2015, were alive

at the end of follow-up and included in the intent-to-treat (ITT) analysis. No drug-related serious adverse

event was observed. Non-serious adverse events occurred more frequently with the 1 and 2 MIU IL-2 doses

Keywords:

Amyotrophic lateral sclerosis

Randomised clinical trial

Low dose interleukin-2

Neuro-inflammation

Biomarkers

Regulatory T cells

* Corresponding author at: NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK.

** Corresponding author at: Department of Pharmacology, AP-HP.Sorbonne Universit�e, Piti�e-Salpêtri�ere Hospital, 47, Bd de l’Hôpital, F-75013 Paris, France.
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compared to placebo, including injection site reactions and flu-like symptoms. Primary outcome analysis

showed a significant increase (p < 0¢0001) in %Tregs in the 2 MIU and 1 MIU arms (mean [SD]: 2 MIU: +6¢2%

[2¢2]; 1 MIU: +3¢9% [1¢2]) as compared to placebo (mean [SD]: -0¢49% [1¢3]). Effect sizes (ES) were large in

treated groups: 2 MIU ES=3¢7 (IC95%: 2¢3�4¢9) and 1 MIU ES=3¢5 (IC95%: 2¢1�4¢6). Secondary outcomes

showed a significant increase in %Tregs following repeated cycles (p < 0¢0001) as compared to placebo, and a

dose-dependent decrease in plasma CCL2 (p = 0¢0049). There were no significant differences amongst the

three groups on plasma NFL levels.

Interpretation: Ld-IL-2 is well tolerated and immunologically effective in subjects with ALS. These results war-

rant further investigation into their eventual therapeutic impact on slowing ALS disease progression.

Funding: : The French Health Ministry (PHRC-I-14-056), EU H2020 (grant #633413), and the Association pour

la Recherche sur la SLA (ARSLA).

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a fatal neuromuscular

disorder characterised by progressive muscle wasting and weak-

ness. Since the introduction of riluzole two decades ago [1],

trials have failed to deliver more effective disease-modifying

remedies. Recent consensus guidelines for ALS trials emphasise

the importance of incorporating biomarkers of target engage-

ment and disease activity at an early stage of therapeutic

development [2].

Microglial cell activation is evident in the pathology of ALS at all

disease stages [3] and in the transgenic SOD1 ALS mouse in which

expression of macrophage-typical cytokines precedes clinical symp-

toms [4]. Furthermore, biomarkers of neuro-inflammation are ele-

vated in patients with ALS and have been shown to correlate with

disease severity and predict disease progression [5,6].

Although evidence of a neuro-inflammatory contribution to ALS

pathogenesis is compelling [7], until now all therapeutic attempts to

modify the neuro-inflammatory response in the ALS clinical context

have failed [8]. However, most of these trials have targeted non-spe-

cific suppression of neuro-inflammation. Such approaches have a

high risk of harm for people with ALS, where toxicity may outweigh a

beneficial drug effect. In this context, reinforcing physiological tolero-

genic dominance within the neuroimmuno-inflammatory system

may provide a more effective approach to control cytopathic neuroin-

flammatory states compared to aggressive general immune suppres-

sion.

CD4+FOXP3+ regulatory T-cells (Tregs) physiologically regulate

immune responses, contributing to the induction and maintenance of

tolerance, thus preventing the onset of autoimmune and inflamma-

tory diseases [9]. Previous studies have shown that in ALS patients,

decreased levels of Tregs were correlated with increased disease

severity and were predictive of disease progression and survival, sug-

gesting that they may be a potential target for therapy [10�12]. Tregs

are exclusively reliant on the cytokine Interleukin 2 (IL-2) for their

generation, activation and survival [13]. Low dose IL-2 (ld-IL-2)

administration induces the selective expansion of Tregs in mice and

humans [14,15]. Several clinical trials exploring the therapeutic

potential of ld-IL-2 in auto-immune and inflammatory conditions

have now been reported, showing the feasibility and clinical safety of

this approach [16]. Building upon our experience with ld-IL-2 in

type-1 diabetes [17], we therefore examined the safety and pharma-

codynamic effects of ld-IL-2 in ALS through a phase-2a, randomised,

double-blind, placebo-controlled trial. Our primary objective was to

verify within a small pilot study, whether immune and inflammatory

parameters of ALS patients could be modified with low dose IL-2

therapy towards an improved tolerogenic state, with an acceptable

safety profile.

2. Methods

2.1. Study design and participants

This three-arm, randomised (1:1:1), double-blind, single-centre

study of 2 doses of ld-IL-2 in parallel versus placebo included patients

at the Montpellier Amyotrophic Lateral Sclerosis Reference Centre in

France. The study protocol was submitted by the Sponsor (Centre

Hospitalier Universitaire de Nı̂mes) and approved by an independent

ethics committee (Le Comit�e de Protection des Personnes Sud

M�editerran�ee III; reference number: 2014.09.01-ter), declared on clin-

icaltrials.gov (NCT02059759) and was designed for adults less than

Research in context

Evidence before this study

We searched PubMed up to Feb 1st 2020 with the terms

“(interleukin-2 OR IL-2)” AND “(clinical trials)”. We also

searched PubMed with the terms “(interleukin-2 OR IL-2)” AND

“(ALS OR motor neurone disease OR motor neuron disease)” as

well as “(ALS OR motor neurone disease OR motor neuron dis-

ease)” AND “(regulatory T cells OR Tregs)”. We also searched

PubMed under the terms “(interleukin-2 OR IL-2)” AND “(rand-

omised clinical trials)”. We searched www.clinicaltrials.gov for

published randomised placebo-controlled trials using low dose

IL-2 (ld-IL-2). We imposed no language restrictions on any of

the searches. Searches revealed evidence of a satisfactory pro-

file of safety and tolerability across diverse immunological dis-

orders but no published randomised controlled trials (Class 1

evidence) on ld-IL-2 or agents thought to act in a similar fashion

in ALS or other neurological disorders.

Added value of this study

Despite many studies on the potential benefits of ld-IL-2 on

auto-immune and neurodegenerative disorders, including ALS,

there have been very few randomised controlled trials in the

field. This study adds Class 1 evidence to the rapidly developing

research area and provides new evidence on Treg responsive-

ness to repeated cycles of ld-IL-2, while extending the under-

standing of the pharmacodynamic impact of ld-IL-2 in the

context of neuroinflammation in ALS.

Implications of all the available evidence

This study, built on existing evidence that shows that ld-IL-2

expands Treg numbers and Treg frequency (when expressed as

a percentage of CD4+ T cells) in healthy volunteers and in auto-

immune and inflammatory disorders, provides a sound evi-

dence base for future clinical studies of ld-IL-2 in ALS and other

neurological disorders.
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75 years old with probable, or laboratory-supported probable or defi-

nite ALS as defined by El Escorial Revised ALS diagnostic criteria [18].

The main inclusion criteria consisted of disease duration of less than

5 years, stable on riluzole treatment for over three months, and a vital

capacity � 70% of normal. Patients with severe cardiac or pulmonary

disease, cancer, other life-threatening diseases, respiratory or feeding

assistance, clinical signs of infection, positive serology (IGM) for

recent infections (cytomegalovirus, Epstein-Barr virus), or human

immunodeficiency virus, auto-immune disorders (except asymptom-

atic Hashimoto thyroiditis), any clinically significant laboratory

abnormality (excepting cholesterol, triglyceride and glucose), or

other diseases precluding functional assessments were excluded, as

were those who had received a vaccination in the 8 weeks preceding

the first experimental dosing. All patients provided signed informed

consent before entering the study.

2.2. Randomisation and masking

Allocation was performed and blinding assured via a web-based

inclusion and randomisation (with blocking) application. A statisti-

cian otherwise not involved in the study prepared randomisation

lists. The size of blocks (3) remained undisclosed to all participants

until unblinding. Clinical treatment unit (CTU) preparation and label-

ling were performed by a pharmacist at the Clinical Trial Pharmacy

Unit of the University Hospitals of Montpellier, France, who was the

only unblinded trial researcher. All laboratory assays were

completely blinded. Samples were only identified by barcodes with

the correspondence to randomisation number, time in the study

(number of sampling time points=7), or treatment group (placebo, 1

MIU IL-2, 2 MIU IL-2), unknown to the laboratory producing the data.

Prior to unblinding, accuracy of sample labelling was tested via geno-

typing of 20 common single nucleotide polymorphisms (LGC Geno-

mics Division, Hoddenson, UK) allowing us to correct one mismatch

on two samples over 251 samples collected.

2.3. Procedures

Upon inclusion by an investigating physician, baseline assess-

ments were performed and included: routine blood haematology,

biochemistry, and thyroid function tests, slow vital capacity, ALS

Functional Rating Scale Revised (ALSFRS-R), chest x-ray, and electro-

cardiogram (Fig. 1). Following randomisation (� 2 weeks before first

administration on day 1), patients started a 5-day cycle of once-daily

sub-cutaneous injections. 5-day cycles were repeated twice, on

weeks 5 and 9, for a total of 3 cycles of treatment per patient (Fig. 1).

After the last treatment cycle, all patients were followed up for safety

monitoring for a further 3 months.

Proleukin� (aldesleukin) at 22 MIU vials was purchased from

Novartis-Pharma France. Clinical trial unit pharmaceutical prepara-

tion consisted of visually identical 1 ml polypropylene syringes con-

taining 0¢5 ml of either placebo (glucose for injection preparation D

5% solution), or 1 MIU or 2 MIU of IL-2, according to randomisation.

Assessments performed during the 6-month study period are

indicated in Fig. 1. Vital signs, concomitant medications and adverse

events were assessed at each visit. Slow vital capacity was assessed

according to current recommendations (https://www.encals.eu/out

come-measures).

2.4. Clinical immunophenotyping

Clinical flow cytometry was performed by the Department for Cell

and Tissue Engineering of the Montpellier University Hospital,

France, within 2 h of phlebotomy. Peripheral blood was drawn into

EDTA tubes and stained with two panels of monoclonal antibodies to

identify CD3+, CD4+, CD8+ and regulatory T cells (Tregs; CD4+ CD25+

CD127low/- FoxP3+), NK cells, B lymphocytes and monocytes. A

representative gating scheme is shown in supplementary Fig. 1. B

cells, NK cells and CD3+ T cells are expressed as percentages of total

lymphocytes; CD4+ and CD8+ T cells are expressed as percentages of

CD3+ cells. Tregs are expressed as percentages of CD4+T cells. Effector

T cells (Teffs) are calculated as the difference between total CD4+ T

cells and Tregs and expressed as percentages of CD4+ T-cells. Mono-

cytes are expressed as percentages of CD45+ leukocytes.

2.5. Mechanistic immunophenotyping

At each study visit, 20 ml blood was collected into sodium heparin

tubes and peripheral blood mononuclear cells (PBMC) isolated and

cryopreserved as detailed in the supplementary methods. For analy-

sis of Treg function, cryopreserved PBMC were thawed and stained

with a cocktail of monoclonal antibodies (details in supplementary

methods). Suppression assays were then performed in V-bottom 96-

well plates by co-culturing 500 sorted CD4+CD25�/low CD127+ Teffs in

the presence or absence of CD4+CD25high CD127low Tregs at various

ratios (Treg:Teff 0:1, 1:2 and 1:1) with 1 £ 103 CD19+B cells. Cells

were stimulated with PHA (4 mg/ml; Alere) and incubated at 37 °C,

5% CO2, for 6 days. Proliferation was assessed by the addition of 0¢5

mCi/well [3H] thymidine (PerkinElmer) for the final 20 h of co-cul-

ture. Conditions were run in 6 replicates, and proliferation readings

(counts per minute [CPM]) averaged. Any samples with averaged

proliferation less than 3000 CPM from the Teff wells alone were

excluded. The percentage suppression in each culture was calculated

using the following formula: percent suppression = 100 � [(CPM in

the presence of Tregs � CPM in the absence of Tregs) £ 100]. All time

points from an individual were analysed concurrently.

2.6. Plasma chemokine determination

Plasma chemokine analysis was performed on �80 °C frozen

plasma samples at Humanitas Clinical and Research Centre, Milan

(Italy). CCL2 and CCL17 plasma levels were measured by Multiplex

bead assay (Luminex Human HS Cytokine Panel - R&D Systems), and

CCL18 by ELISA (Quantikine ELISA kit (DCL180B, R&D Systems).

2.7. Plasma neurofilament light chain protein determination

Plasma concentrations of the neurofilament light chain (NFL) pro-

tein were measured using an immunoassay with electrochemilumi-

nescent detection (Meso Scale Discovery) at Queen Mary University

of London, London (UK), as previously described in detail [19]. Plasma

NFL concentration was also measured using Single Molecule Array

(Simoa) technology, at the University of Gothenburg (Sweden), as

previously described in detail [20].

Full details of clinical and biochemical phenotyping methods are

provided in the supplementary material.

2.8. Outcomes

The primary pharmacodynamic outcome was the change in Tregs

as a percentage of CD4+ T-lymphocytes on day 8 measured by clinical

flow cytometry. Secondary pharmacodynamics were Treg number

and percentage at all time-points, including expression as incremen-

tal areas-under-the-curves (iAUC), and plasma levels of CCL2 and NFL

as markers of disease activity. Exploratory analyses included meas-

urements of the number and frequency of leucocyte populations by

flow cytometry as well as Treg cell functionality tests. Monocyte

polarisation in response to treatment was investigated through anal-

ysis of their chemokine production profile (CCL17 and CCL18). Safety

was assessed through a systematic check for predefined events

(injection site reactions, flu-like symptoms, fatigue, gastro-intestinal

signs, allergic reaction), abnormal vital signs, ECG results, chest radio-

graphs, laboratory tests, and records of all adverse events reported
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during the study. As a secondary clinical outcome, changes in clinical

function (ALSFRS-R and slow vital capacity (SVC)) with time were

assessed throughout the study.

2.9. Sample size

Previous data [17] demonstrated that 6 patients per group

achieved 88% power to detect a 60% increase in Tregs at p a=0¢05

(Mann & Whitney test). Because impact on disease activity is also of

primary interest, we retained 12 patients per group to achieve 80%

power at p a(2-tailed)= 0¢05 for detecting a 40% decrease in plasma

NFL-MSD (Mann- Whitney U test) based on a previous ALS study [19].

Interim safety data were evaluated once by an Independent Data

and Safety Monitoring Board (DSMB) after the first 12 patients were

included and had completed a first cycle of treatment including day 8

assessments. The interim report remained undisclosed until the end

of the study.

2.10. Statistical analyses

Categorical variables are described as absolute and relative fre-

quencies. Quantitative variables are summarized by mean, standard

deviation, 95% confidence interval (95% CI), median and range. Effect

size with 95% CI was calculated for the primary pharmacodynamics

outcome. Flow cytometry parameters were analysed as changes from

baseline at D8 (primary criteria) and D64, i.e. absolute differences

between each time point and baseline (D1). Overall immune cell

changes with time for the first (D1, D8, D29) and third cycles (D57,

D64, D85) were summarised as incremental time-normalised areas-

under-the-curves (iAUC, using the trapezoidal method), minus D1 or

D57 values respectively; iAUCt for trough values were calculated

using values measured at D1, D29, D57 and D85 minus D1. Eosinophil

counts were analysed in the same way as cytometry parameters.

ALSFRS-R measures were summarised by regression slopes from D1

to D85. For SVC and NFL-MSD, absolute differences between D85 and

baseline D1 were analysed. For CCL2, CCL17 and CCL18, baseline nor-

malised values at D64 were analysed. For statistical inferences with

regards to differences between the three study arms, we used a

Fisher-Hayter’s two-stage MCP testing strategy approach by first

using a Kruskal-Wallis H test (KW-H) checking for differences among

all groups, and only when significant at p < 0¢05, Mann-Whitney U

tests (MW-U) were used for pairwise comparisons of each active arm

to placebo, to pinpoint the detected differences without the need for

further adjusting the nominal p value threshold [21]. Dose-response

relationships on summary measures were analysed using Jonck-

heere-Terpstra J test (JT-J) assessing whether the change in outcome

Fig. 1. Trial profile. ALSFRS-R: Amyotrophic Lateral Sclerosis Functional Rating Score � Revised; BT: Routine blood tests (see supplementary methods for detail); Cyt: Fresh Blood

Cytometry (see supplementary methods for detail); SVC: slow vital capacity; PBMCs: Peripheral Blood Mononuclear Cells; Inj: sub-cutaneous injection; D: day; ECG: electrocardio-

gram; ITT: intention-to-treat. *Time frames corresponding to at-hospital visits.
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variable was constantly increasing across levels of doses (linear trend

test). For within group comparisons of time-points we used a Wil-

coxon match-paired signed rank test (Wx-W test).

The full protocol is available upon request and access to material &

data are subjected to preliminary agreement with the Sponsor.

3. Results

Between September 21st and December 4th 2015, thirty-nine

patients were screened. Of these, 3 were excluded and 36 random-

ized (Fig. 1). After 12 inclusions and 1 cycle of treatment, the inde-

pendent DSMB found no safety concerns, and inclusions continued.

With only one exception (see Fig. 1), all randomised patients com-

pleted the 3 cycles of treatment over 3 months and the 3-month post

treatment follow-up. All 36 randomised patients were included in

the intention-to-treat and safety populations (Fig. 1). Of 252 maxi-

mum possible assessments for clinical and laboratory measurements

for primary/secondary outcomes in the trial, all but one were avail-

able for analysis (Fig. 1).

Patient characteristics and disease history are shown in Table 1

and Supplementary Tables 2 and 3. Though between-group baseline

differences were not statistically significant, the 2 MIU group had a

higher female-to-male ratio, and slightly more severe disease fea-

tures. Nonetheless, no clear imbalance that would influence the

results was identified between groups.

Clinical tolerance was satisfactory at both doses of IL-2. During the

entire follow-up (D1-D169), no drug-related serious adverse event

(SAE) occurred and most non-serious adverse events (NSAEs) were

transient and of mild to moderate grades. During the treatment

period (D1-D85), frequencies of patients presenting NSAEs during

cycles were higher in the IL-2 groups, n = 11 (92%) and n = 12 (100%)

at the 1 and 2 MIU/day doses respectively, compared to n = 3 (25%)

with placebo (Table 2). Local reactions at injection sites (erythema,

pain) were the most common NSAEs of comparable frequency in the

2 active treatment groups (all patients except one experienced injec-

tion site reactions) while only one patient reported such an event in

the placebo group. Flu-like symptoms (including myalgia, chills,

fever, arthralgia), which are characteristic of IL-2 treatment [17],

were reported only for the 2 MIU/day dose (25%). One patient in the

2 MIU/day group withdrew from treatment after 2 days of treatment

in the third cycle because of severe flu-like symptoms not responding

to symptomatic therapy (see Fig. 1).

Outside treatment cycles, only one case of nausea/vomiting was

imputed to treatment among other AEs. One patient (1 MIU/day

group) with a history of prostatic adenoma developed severe urinary

retention 10 days after the last administration and required hospital-

isation for prostatic surgery. Other events were related to ALS disease

or other pre-existing conditions.

No abnormalities were observed among the routine laboratory

parameters, except for an elevation of C - reactive protein at day 8 in

the one patient developing flu-like symptoms in the 2 MIU/day

group, and another at D57 in relation to a viral infection. As for hae-

matology parameters, no significant changes were observed except

for eosinophil counts that were significantly increased compared to

placebo at day D8 and D64 in the 2 MIU/day group (Supplementary

Table 2); changes of a lesser degree were observed at 1 MIU/day and

were significant only at D64. In the 2 MIU/day group, 3 patients pre-

sented eosinophil increases above 1¢5 £ 109/l but remained asymp-

tomatic. All counts were close to baseline values at D169 (no

significant differences between groups) and all within normal range.

The a priori defined primary pharmacodynamic outcome of an

increase in the frequency of Tregs as a percentage of CD4+ T-

Table 1

Demographic and clinical baseline characteristics of study participants.

Placebo (n = 12) IL2 at 1 MIU/d (n = 12) IL2 at 2 MIU/d (n = 12)

Age

Mean (SD) 56¢45 (9¢57) 54¢98 (10¢99) 57¢68 (12¢91)

Median (Range) 56¢20 (42¢2 to 69¢7) 54¢80 (40¢2 to 75¢4) 61¢25 (36¢5 to 76¢6)

Sex (female) 3 (25%) 5 (41¢7%) 3 (25%)

BMI

Mean (SD) 26¢80 (5¢6) 25¢34 (2¢53) 24¢39 (1¢71)

Median (Range) 25¢10 (22¢2 to 43¢4) 24¢90 (21¢90 to 28¢7) 24¢35 (21¢6 to 26¢7)

Age at onset

Mean (SD) 54¢27 (9¢85) 52¢43 (11¢02) 55¢80 (12¢86)

Median (Range) 55¢30 (38¢1 to 68¢0) 52¢20 (37¢4 to 72¢6) 58¢25 (35¢1 to 76¢0)

Disease duration (years)

Mean (SD) 2¢2 (1¢44) 2¢60 (1¢33) 1¢96 (1¢44)

Median (Range) 1¢75 (0¢5 to 5¢0) 2¢85 (0¢9 to 4¢6) 1¢45 (0¢6 to 4¢6)

Duration of riluzole treatment (months)

Mean (SD) 16¢58 (12¢49) 20¢70 (14¢90) 14¢18 (11¢47)

Median (Range) 12¢35 (4¢6 to 39¢8) 17¢45 (5¢0 to 45¢1) 11¢10 (3¢1 to 34¢0)

Diagnosis

Definite 5 (41¢7%) 6 (50%) 4 (33¢3%)

Probable 5 (41¢7%) 6 (50%) 3 (25%)

Probable � laboratory supported 2 (16¢7%) 0 (0%) 5 (41¢7%)

Familial form 0 2 (16¢7%) 2 (16¢7%)

Site of onset

Limb 11 (92%) 11 (92%) 9 (75%)

Bulbar 1 (8%) 1 (8%) 3 (25%)

Slow vital capacity (percentage predicted)

Mean (SD) 94¢4 (12¢4) 101¢5 (18¢1) 93¢6 (16¢3)

Median (Range) 96¢5 (77¢00 to 119¢00) 101¢0 (79¢00 to 132¢00) 94¢5 (72¢00 to 118¢00)

ALSFRS-R score

Mean (SD) 38¢8 (3¢4) 38¢0 (4¢8) 37¢8 (5¢3)

Median (Range) 38¢5 (34¢00 to 45¢00) 38¢0 (30¢00 to 44¢00) 39¢5 (26¢00 to 44¢00)

NFL-MSD (pg/ml)

Mean (SD) 127.84 (89.90) 135.55 (76.80) 178.19 (94.84)

Median (Range) 116.6 (6.7 - 349.2) 103.4 (46.2 - 245.5) 144.2 (109.1 - 460.0)

Categorical data are presented as number (%). ALSFRS = Amyotrophic Lateral Sclerosis Functional Rating Score � Revised.

BMI = Body Mass Index. SD = standard deviation. NFL-MSD= neurofilament light chain protein � electroluminescent detec-

tion method (Meso Scale Discovery).
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lymphocytes at D8 was dose-dependent (JT-J test, p < 0.0001) and

highly significant for both treated arms (MW-U test, p < 0¢0001; 2

MIU: mean [SD]: +6¢2% [2¢2]; 1 MIU: mean [SD]: +3¢9% [1¢2]) as com-

pared to placebo (mean [SD]: �0¢5% [1¢3]) (see Table 3, Fig. 2a and b).

Effect sizes were large for both IL-2 groups: 2 MIU ES=3¢7 (95% CI:

2¢3�4¢9); 1 MIU ES=3¢5 (95% CI: 2¢1�4¢6). Furthermore, when exam-

ining the range of change from baseline in Treg frequency, a clear dis-

tinction was observed in all IL-2 recipients (range of change: +23 to

+139%) with no overlap with the placebo group (range of change:

�51 to +9%, Fig. 2a). Secondary outcomes for Tregs revealed that the

frequency and absolute count significantly and dose-dependently

(JT-J test, p < 0.0001 for both frequency and absolute count)

increased compared to baseline and placebo during subsequent treat-

ment cycles (Fig. 2a�d, Table 3 and Supplementary Table 2). Further-

more, the peak during cycle 3 tended to be higher than that observed

during cycle 1, suggesting that successive treatment cycles have

residual effects that might be cumulative. This suggestion is further

supported by significantly higher iAUC trough Treg levels (measuring

the residual Treg change before beginning a new cycle) in IL-2 arms

as compared to placebo (Fig. 2e and f, Table 3 and Supplementary

Table 2). Overall, the 2 MIU arm resulted in higher Treg peaks and

trough levels than the 1 MIU arm. Ld-IL-2 also resulted in a moderate

increase in the frequency and number of NK cells for both IL-2 groups

(maximum 1¢7 fold increase in number at D64 for the 2 MIU group);

an increase in the number of CD8 T cells for both IL-2 groups (maxi-

mum 1¢4 fold increase in number at D64 for the 2 MIU group); an

increase in the number of CD4+ Teffs for both ld-IL-2 groups

(maximum 1¢6 fold increase in number at D64 for the 2 MIU group)

and a decrease in the frequency of monocytes in the 2 MIU group at

D64 (all data shown in Table 3 and Supplementary Table 2).

Exploratory analyses of Treg phenotype and function were per-

formed using cryopreserved PBMC focussing primarily on responses

at baseline and following 3 cycles of treatment (D1 and D64). We

observed good correlation between the frequency of Tregs defined in

blood by clinical cytometry and when sorting Tregs from cryopre-

served PBMC (R2=0¢91, p < 0¢0001). Similar to results in fresh blood,

analysis of cryopreserved PBMC revealed a significant increase in the

frequency of Tregs following 3 cycles of ld-IL-2 treatment (Supple-

mentary Fig. 3a�c).

Furthermore, batched analysis on the same day of all time-points

from a single individual allowed direct comparison of CD25 expres-

sion on Tregs quantified through median fluorescence intensity (mfi)

(Fig. 3a�c). Comparisons of percent change from baseline after three

cycles (D64) showed a significant dose dependent increase in CD25

expression on Tregs (JT-J test, p < 0.0001). Median increase in Tregs

CD25 mfi was 1.94 fold in the 2MIU arm and 1.84 fold in the 1MIU

arm (CD25 mfi, median [range], D1 vs D64: 2MIU 4651 [2892�5886]

vs 9015 [4220�14446], Wx-W test, p = 0¢002; 1 MIU = 4230

[3388�5423] vs 7778 [5564�9037], Wx-W test, p = 0¢001) compared

to no change in the placebo arm (4105 [2992�5656] vs 3867

[1923�5669], Wx-W test, p = 0¢83).

A smaller, but still significant increase in CD25 expression was

also observed on Teffs (CD25 mfi, median [range], D1 vs D64: 2 MIU=

426 [116�897] vs 528 [122�948], Wx-W test, p = 0¢02; 1 MIU= 336

Table 3

Immune cell parameters at baseline (D1) and response.

Dose group Baseline D1 D8 change from D1 D64 change from D1 iAUC trough D29-D57-D85 D169 change from D1

CD8 (% CD3+) 2 MIU 25¢0 (8¢9) �3¢1 (1¢7)** �4¢3 (2¢6)** �1¢4 (1¢1) �1¢4 (1¢4)

1 MIU 24¢1 (6¢2)) �2¢0 (1¢2)* �2¢7 (1¢3)** �1¢0 (0¢6) �0¢6 (1¢4)

Placebo 26¢1 (9¢0) �0¢4 (2¢3) �0¢3 (2¢5) �0¢9 (1¢5) �1¢5 (2¢4)

Treg (% CD4+) 2 MIU 7¢6 (2¢4) 6¢2 (2¢2)**** 7¢6 (3¢9)**** 0¢4 (1¢2)*** 0¢2 (1¢0)

1 MIU 7¢6 (1¢8) 3¢9 (1¢2)**** 4¢4 (1¢5)**** 0¢1 (0¢9)** 0¢1 (0¢9)

Placebo 7¢1 (1¢5) �0¢5 (1¢3) �1¢2 (1¢2) �0¢5 (0¢3) �0¢3 (1¢4)

NK (% CD45+) 2 MIU 2¢4 (1¢0) 1¢4 (0¢9)*** 1¢2 (0¢9)*** 0¢4 (0¢5) 0¢2 (0¢5)

1 MIU 3¢2 (2¢1) 1¢1 (1¢0)** 1¢4 (0¢8)*** 0¢2 (0¢5) 0¢1 (0¢9)

Placebo 3¢6 (2¢4) �0¢2 (0¢8) �0¢1 (0¢7) �0¢2 (0¢6) �0¢6 (1¢4)

CD19 (% CD45+) 2 MIU 3¢5 (2¢0) �0¢3 (0¢9) �0¢2 (1¢1) �0¢1 (0¢8) 0¢3 (1¢2)

1 MIU 3¢3 (1¢0) �0¢3 (0¢4) �0¢2 (0¢2) �0¢1 (0¢3) 0¢3 (0¢5)

Placebo 3¢4 (1¢8) �0¢1 (0¢9) �0¢2 (0¢6) �0¢2 (0¢5) �0¢1 (0¢4)

Monocytes (% CD45+) 2 MIU 6¢7 (1¢2) �0¢6 (1¢4) �1¢4 (1¢3)** �0¢7 (1¢3) �0¢9 (1¢7)

1 MIU 5¢4 (1¢2)* 0¢5 (0¢5) �0¢04 (0¢6) 0¢1 (0¢5) �0¢1 (0¢5)

Placebo 7¢3 (2¢5) 0¢2 (1¢0) 0¢1 (1¢0) 0¢2 (0¢6) �0¢2 (0¢8)

Eosinophils (% total WBCa) 2 MIU 2¢7 (1¢8) 3¢3 (1¢5)*** 6¢8 (4¢1) *** 1¢8 (1¢0)*** 0¢4 (1¢3)

1 MIU 2¢3 (1¢8) 1¢0 (0¢8) 2¢5 (2¢2)** 0¢6 (0¢5) �0¢2 (0¢7)

Placebo 2¢3 (0¢9) 0¢6 (0¢7) 0¢4 (1¢2) 0¢2 (0¢6) 0¢6 (1¢0)

Results are expressed as relative frequency: mean (SD). a total leukocytes from haematology lab. Comparisons of each dose group to placebo group by Mann-Whitney

test: *p< 0¢05, ** p<0¢01, *** p<0¢001, **** p<0¢0001.

Table 2

Safety� number of patients (frequency) presenting non-serious adverse events during treatment cycles.

Adverse events Treatment group Total (N = 36)

2 MIU (N = 12) 1 MIU (N = 12) Placebo (N = 12)

Injection site reactions 12 (100%) 11 (91¢7%) 1 (8¢3%) 24 (66¢7%)

Flu-like symptoms 3 (25¢0%) 0 0 3 (8¢3%)

Fatigue 2 (16¢7%) 1 (8¢3%) 2 (16¢7%)0 5 (13¢9%)

Gastro-intestinal signs 2 (16¢7%) 1 (8¢3%) 0 3 (8¢3%)

Rhinitis 2 (16¢7%) 0 0 2 (5¢6%)

Nasopharyngitis 1 (8¢3%) 1 (8¢3%) 0 2 (5¢6%)

Headache/Migraine 4 (33¢3%) 0 0 4 (11¢1%)

Chest pain 1 (8¢3%) 0 0 1 (2¢8%)

Cold sweat 0 1 (8¢3%) 0 1 (2¢8%)

Arthralgia 1 (8¢3%)0 0 0 1 (2¢8%)

Myalgia 0 0 1 (8¢3%) 1 (2¢8%)

Total 12 (100%) 11 (91¢7%) 3 (25¢0%) 26 (72¢2%)
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[132�478] vs 362 [124�577], Wx-W test, p = 0¢001; placebo= 251

[195�919] vs 263 [158�881], Wx-W test, p = 0¢24; Supplementary

Fig. 3d�f).

Treg function was assessed by in vitro co-culture assays using

Teffs from the corresponding time point as responder cells. In cul-

tures lacking Tregs, we observed no effect of ld-IL-2 administration

on the proliferation of responder T cells (Supplementary Fig. 3g�i).

However, we did observe an increase in suppressive function of Tregs

following 3 cycles of ld-IL-2 therapy, which reached statistical signifi-

cance for the 1 MIU dose (percent suppression, median [range], D1 vs

D64: 2 MIU = 53% [18-88] vs 76% [19-91], Wx-W test, p = 0¢06; 1

MIU = 65% [23-84] vs 80% [36-97], Wx-W test, p = 0¢001; Fig. 3d and

Fig. 2. Effect of IL-2 treatment on Treg number and frequency. Panels a to d: change in frequency (a-b) and absolute number (c-d) of Tregs throughout the study for all three arms

(open triangles, placebo; blue squares, 1 MIU of IL2; black circles, 2 MIU of IL2). a & c: data points indicate mean values, and error bars their associated SEMs. b & d: change in the

number and frequency of Tregs between baseline and the three days after the final injection of one treatment cycle (D8) or 3 treatment cycles (D64). Data points represent the per-

patient change in Treg frequency (b) and number (d). Three group comparisons by the Kruskal-Wallis H test at D8 and D64 (p < 0.0001) for panel b and d. Panels e-f: iAUC of trough

levels of Tregs during the study. Data points indicate mean values, and error bars their associated SEMs for Treg number (e) and frequency (f). Verum to placebo comparisons by the

Mann-Whitney U test: *** p < 0.001, ** p < 0.01.
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Fig. 3. Effect of IL-2 treatment on Treg phenotype and suppressive function. Panel a to c: CD25 mfi expression on Tregs at baseline (D1) and 3 days after completion of 3 treatment

cycles (D64) in all three study groups: (a) 2 MIU, (b) 1 MIU and (c) placebo. Panels d to f: autologous suppressive function of Tregs measured by in vitro co-culture assay at baseline

(D1) and 3 days after completion of 3 treatment cycles (D64) in individuals treated with (d) 2 MIU, (e) 1 MIU and (f) placebo. Panel g: Change in suppressive function of Tregs follow-

ing 3 cycles of treatment relative to baseline levels in all three groups. Bars represent mean values, and error bars their associated SEMs. Panels h-i: Relationship between the rela-

tive change in Treg frequency (h) and Treg CD25 mfi (i) measured by mechanistic immunophenotyping cytometry (x-axis) and Treg suppressive function (Y axis) following 3 cycles
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e). In contrast, we observed a slight decrease in Treg function in the

placebo group (percent suppression, median [range], D1 vs D64: pla-

cebo= 73% [53�95] vs 59% [32-97]; Wx-W test, p = 0¢07; Fig. 3f).

When comparing the percent change in Treg suppressive function

over the treatment period (relative to suppression at baseline), we

observed a significant difference between both groups treated with

ld-IL-2 when compared to placebo (KW-H test, p < 0.0021, 2 MIU vs

placebo, MW-U test, p = 0¢0076; 1 MIU vs placebo, MW-U test,

p = 0¢001; Fig. 3g). We also assessed the relationship between the

change in Treg suppressive function and the change in Treg fre-

quency or change in CD25 expression in response to treatment for

each individual. In both cases, we observed a highly significant corre-

lation between these measurements (Treg suppressive function vs

Treg frequency: R2=0¢42, p = 0¢0001, Treg suppressive function vs

Treg CD25 mfi: R2=0¢33, p = 0¢001 Fig. 3h-i) with individuals

who received ld-IL-2 clearly clustering away from those who

received placebo.

Plasma levels of the CCL2 chemokine were assessed in order to

evaluate the potential for a therapeutic impact of ld-IL-2 on individu-

als with ALS through change in this marker of disease activity. Fol-

lowing the third treatment cycle (D64), we observed a significant

difference between the three groups in the plasma levels of CCL2

(KW-H test, p = 0¢005, Fig. 4a), both active dose groups showing a

dose-dependent change in CCL2 levels (JT-J test, p = 0.0049), which

were significantly reduced compared to placebo with the 2 MIU dose

(MW-U test, p = 0¢005), though not reaching statistical significance

with the 1 MIU dose (MW-U test, p = 0¢06). Second, we measured

plasma levels of chemokines associated with macrophage/microglial

polarization (CCL17 and CCL18). We observed a significant difference

between treatment groups at D64 in CCL17 and CCL18 (KW-H tests,

p = 0¢0001 and 0¢0028, respectively, Fig. 4b and c), with an increase

in both treatment groups compared to placebo (MW-U tests, CCL17:

2 MIU p = 0¢0001 and 1 MIU p = 0¢0138; CCL18: 2 MIU p = 0¢0012 and

1 MIU p = 0¢0094). For all three chemokines, in both treated group

values returned to baseline by D85 (cycle 3 trough level).

These results suggest that ld-IL-2 treatment was associated with a

decrease of an inflammatory marker associated with ALS, and a con-

comitant shift of monocytes towards the M2 phenotype.

With regard to disease progression, we did not observe any signif-

icant differences among the three groups with regards to time related

changes in the ALSFRS-R score (KW-H test, p = 0¢12), slow vital capac-

ity (KW-H test, p = 0¢59), or plasma NFL-MSD levels (KW-H test,

p = 0¢84; supplementary Fig. 4). For NFL, re-analysis of the plasma

samples using the Simoa approach provided similar results (KW-H

test, p = 0¢30). However, in the overall population, none of these

parameters showed statistically significant changes over the treat-

ment period � ALSFRS-R (points/month) mean slope [95% CI]= �0¢8

[�2¢4, +0¢8]; SVC (percent predicted) mean change at D85 from D1

[95% CI]= �2¢2 [�23¢4, +19¢0]; NFL-MSD D85 change from D1, (pg/

ml) mean change [95% CI] = + 0¢63 [�62¢5, + 63¢7]; NFL-SIMOA D85

change from D1, (pg/ml) mean change [95% CI] = �1¢64 [�26¢25,

+22¢97] � demonstrating that these parameters were poorly sensi-

tive to change over the relatively short treatment period.

4. Discussion

First, our results show that IL-2 at two low doses was clinically

well tolerated in ALS subjects over three cycles, and no further safety

issues were detected following treatment withdrawal. In keeping

with previous reports [16], our findings show that ALS patients, who

are particularly vulnerable to treatment toxicity, can withstand

repeated cycles of treatment with ld-IL-2. The safety of ld-IL-2 is fur-

ther supported by the lack of significant deterioration in ALSFRS-R or

SVC over the treatment period across all groups, and within groups,

including placebo. The lack of any detectable functional change may

be related to the relative insensitivity to change of these clinical out-

come measures over the short treatment period, but is nonetheless

reassuring in terms of safety.

Second, we observed a significant, dose dependent increase in

both the absolute number and relative frequency of Tregs in both the

2 MIU and 1 MIU groups. Comparing these results to those obtained

in a double-blind randomised clinical trial in individuals with Type 1

Diabetes [17], we observed a similar magnitude of Treg response to

ld-IL-2, with a ~1¢5-fold increase in the Treg percentage of CD4+ cells

following 5 days of treatment at 1 MIU.

Of note, all individuals in both groups on active treatment showed

an increase in Treg number and frequency. Thus, although it has been

suggested that Tregs from ALS patients may have impaired endoge-

nous responsiveness to IL-2 [22], potentially making them unrespon-

sive to ld-IL-2 treatment, in this cohort of ALS patients we observed

no evidence of intrinsic impairment in Treg responsiveness to

ld-IL-2.

Third, we have shown that the increase in Treg response was sus-

tained over 4 weeks following a 5-day treatment cycle. This is

of treatment (values at D64 vs D1). Open triangles denote individuals receiving placebo, blue squares 1 MIU and black circles 2 MIU of IL2. **** p < 0.0001, *** p < 0.001, ** p < 0.01,

ns: p > 0.05 by the Wilcoxon match paired sign rank test (a to f) and by the Mann-Whitney test (g).

Fig. 4. Effect of IL-2 treatment on plasma chemokine concentrations. Panels a to c: variation in plasma chemokine levels throughout the study for CCL2 (a), CCL17 (b) and CCL18 (c).

Concentrations are expressed as a percentage of baseline value for each individual and points indicate mean values, and error bars their associated SEMs. Open triangles denote indi-

viduals receiving placebo, blue squares 1 MIU and black circles 2 MIU of IL2. Three dose comparisons at D64 panels a to c, by the Kruskal-Wallis rank test: (a) p < 0.005; (b)

p < 0.0001; (c) p < 0.0028.
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important as optimum clinical efficacy is likely to require a sustained

increase in Treg levels, and therefore potentially a continuous life-

long treatment with ld-IL-2. We selected our treatment schedule

based on the study in type 1 diabetes [17], and the present study con-

firms a significant expansion in Treg number and frequency at trough

levels (i.e. before the start of each treatment cycle) and also that this

expansion increases with repeated cycles. However, it remains to be

verified whether our treatment schedule is the most effective for con-

trolling neuro-inflammation in ALS, or whether different treatment

schedules (e.g., more frequent administration of ld-IL-2) will be more

therapeutically useful.

Taken together, our findings suggest that in this ALS cohort there

was no loss of sensitivity to ld-IL-2 with repeated administration.

Consistent with this and in agreement with other reports [16], we

observed that ld-IL-2 leads to a preferential increase in expression of

CD25 on Tregs. This may increase sensitivity of Treg cells to both

administered and endogenous IL-2, thus potentially enhancing and

sustaining any treatment effect.

In order to understand the relevance of the change in Treg num-

ber to any treatment effect, we assessed Treg function before and

after ld-IL-2 administration. We used an autologous co-culture assay

to measure the ability of FACS-isolated Tregs to suppress the prolifer-

ation of CD4+ effector T cells. Our results demonstrate that, overall,

treatment with ld-IL-2 results in both an increase in Treg frequency

and in Treg suppressive function. This improvement in Treg function

is highly significant in the 1 MIU arm, with all individuals showing an

increase in function, while in the 2 MIU group only a trend toward

significance was observed, due to increased variation in response

between individuals. This improvement of Treg function following

ld-IL-2 treatment is consistent with previous observations in ALS that

the suppressive function of Tregs among individuals with ALS could

be improved by ex vivo expansion driven by recombinant IL-2 [22].

The dual efficacy of ld-IL-2 is illustrated by the highly significant cor-

relation between increased Treg frequency and function, though we

also observed individual variation in treatment response with some

treated individuals showing a more significant change in either Treg

frequency or Treg function and others showing an increase in both.

Conversely, individuals in the placebo group tended to lose either

Treg frequency or function during the same timeframe.

With regard to ld-IL-2 effects on blood markers of ALS disease

activity, we found a significant and dose-dependent reduction in the

plasma concentration of CCL2. CCL2 is a small chemokine belonging

to the C��C subfamily which signals through the CC chemokine

receptor 2 (CCR2) and drives circulating leucocytes towards sites of

neuroinflammation [23]. CCL2 knockout mice have reduced infiltra-

tion of circulating leucocytes at sites of neuroinflammation and resis-

tance to disease in models of autoimmunity and inflammation [23],

suggesting this pathway plays a role in driving pathogenesis. Ele-

vated CCL2 expression levels have been observed in neural tissue

from individuals with ALS and are associated with infiltration and

activation of macrophages and microglia. CCL2 levels in biological flu-

ids are also elevated in individuals with ALS and have been shown to

correlate with disease score [24] and survival [5], indicating that

CCL2 is a useful biomarker of disease activity.

Mechanisms underlying the polarisation of myeloid cell activation

states have been proposed to harbour significant potential for inter-

vening in the progression of neurodegenerative diseases, including

ALS [25]. In experimental ALS models, an M1/inflammatory micro-

glial phenotype characterizes end-stage disease phases and exerts

neurotoxic activity with detrimental outcomes, while a shift to an

M2/immunoregulatory microglial phenotype has been shown to pro-

tect motor neurons [26]. Monocytes also show polarised activation,

with distinct chemokine expression profiles recognized as suitable

markers for defining their M1 or M2 profiles [27]. In experimental

ALS models, inflammatory monocytes are recruited to the spinal cord

and contribute to disease progression by increasing neuronal loss

and reducing lifespan [28]. Interestingly, ld-IL-2 treatment was asso-

ciated with a significant increase of plasma levels of CCL17 and

CCL18, in keeping with a change in macrophage/microglial polarisa-

tion towards an immunoregulatory/M2-like phenotype [29]. To our

knowledge, there is no information on CCL17 in blood in ALS, while

CCL18 has been investigated, but no significant association with dis-

ease progression was observed [30]. It will be important in future

ALS studies to investigate these and other biomarkers of microglial

polarisation in CSF. Overall, the changes in inflammatory biomarkers

of macrophage activation and polarisation are consistent with a role

of ld-IL-2 in controlling cytopathic microglial activation associated

with ALS progression.

Tregs are known to influence macrophage activation and polarisa-

tion, primarily towards an M2-like phenotype [31], raising the possi-

bility that these changes are a direct result of the increased number

or functional capacity of Tregs induced by ld-IL-2. However, cells of

the monocyte-macrophage lineage do express functional IL-2 recep-

tors, and their expression of CD25 (IL2RA) is increased under inflam-

matory conditions [32], in keeping with the notion that macrophage/

microglial polarisation may also occur as a direct result of ld-IL-2 act-

ing directly on these cells.

Finally, we did not observe across groups any significant differ-

ence in changes in plasma NFL concentrations in response to treat-

ment. Although there was an over 20% increase in the mean of NFL

levels in the placebo group consistent with the disease progression

over time, this difference was not statistically different from zero due

to a large variance in this group. In contrast, no increase was

observed in the two ld-IL-2 treated groups. Based on published data

[19], we estimated that it should be possible to detect a treatment

effect with relatively few patients per group, but in the context of

this randomised (and strictly blinded) study, post-hoc power analysis

suggests that this is a large underestimate, as supported by recent

reports [33]. In the light of these findings it is possible that analyses

of neurofilament proteins in the CSF will be more informative [34].

Altogether, considering the dose-dependency of responses over

Treg expansion and function and of inflammatory markers CCL2,

CCL17 and CCL18, the selection of the 2 MIU IL-2 dose seems more

appropriate for further clinical development. However, the 1MIU

proved better tolerated though still significantly effective compared

to placebo. It is likely that a flexible dose approach in further clinical

development should be considered.

The main limitation of this study is that the results were

obtained on a small sample of a highly selected population of slowly

progressing patients over a short period of treatment. Although this

design minimises informative censoring due to death which ham-

pers analysis of repeated measures in ALS studies [35], it does not

allow us to generalise our findings to the overall ALS population,

nor does it provide the power to detect even large changes in clini-

cal parameters. The demonstration in an ALS population that ld-IL-2

is engaging the Treg target was a necessary step towards the next

level demonstrating ld-IL-20s potential clinical efficacy in slowing

down the rate of disease progression. In a recent experiment using

the SOD1 mouse ALS model [36], it was shown that in vivo Treg

expansion using an IL-2/IL-2 antibody complex was associated with

a significant increase in survival. Nonetheless, preclinical ALS mod-

els have unfortunately proved inadequate predicting clinical out-

comes in drug development, and in the case of ld-Il-2, are unlikely

to help defining how much Treg amplification is required to achieve

clinical benefit.

In conclusion, this study shows that ld-IL-2 is safe over 3 monthly

cycles in people with ALS. In addition, we provide clear evidence for

in vivo amplification of Treg numbers, frequency and suppressive

function with ld-IL-2. Importantly, in the light of the previous find-

ings of raised CCL2 in plasma and CSF of ALS patients, our observation

that plasma CCL2 is decreased in a dose-related fashion to ld-IL-2

treatment supports the notion that this therapeutic approach may
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translate into an effective therapy. A phase 2b/3 study based on these

observations is ongoing (www.mirocals.eu; ClinicalTrials.gov

NCT03039673), which may confirm the usefulness of these bio-

markers as early surrogate outcomes for clinical efficacy.
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