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Sampling-based search for a semi-cooperative target

Isaac Vandermeulen1, Roderich Groß2, and Andreas Kolling3

Abstract— Searching for a lost teammate is an important
task for multirobot systems. We present a variant of rapidly-
expanding random trees (RRT) for generating search paths
based on a probabilistic belief of the target teammate’s position.
The belief is updated using a hidden Markov model built from
knowledge of the target’s planned or historic behavior. For
any candidate search path, this belief is used to compute a
discounted reward which is a weighted sum of the connection
probability at each time step. The RRT search algorithm uses
randomly sampled locations to generate candidate vertices and
adds candidate vertices to a planning tree based on bounds on
the discounted reward. Candidate vertices are along the shortest
path from an existing vertex to the sampled location, biasing the
search based on the topology of the environment. This method
produces high quality search paths which are not constrained
to a grid and can be computed fast enough to be used in real
time. Compared with two other strategies, it found the target
significantly faster in the most difficult 60% of situations and
was similar in the easier 40% of situations.

I. INTRODUCTION

Communication is essential for the successful completion

of many tasks performed by teams of mobile robots. In real

environments, robots often communicate over inexpensive

ad-hoc networks which have limited connectivity that is

affected by distance and line of sight [1]. The robots may

lose connectivity as they move throughout their environment.

There are several possible solutions to this problem.

• Constant connectivity [2], [3], [4]: The robots’ motions

are restricted to maintain connectivity. This constraint

enables constant communication but makes the team

less effective at other tasks as they cannot spread out.

• Periodic connectivity [5], [6], [7]: The team can sep-

arate temporarily with a plan of where they will meet

back up. This strategy provides some flexibility but is

inconvenient when tasks take unpredictable times, as

some robots will be forced to wait for others.

• Intermittent connectivity [8]: The team can separate

without a reconnection plan. This approach requires

robots to search for each other to communicate.

The best communication strategy for real robots depends on

a range of factors, including the size of the environment and

how predictably the robots behave. In predictable controlled

situations, a conservative strategy with preplanned meetings

may be best. However, in unstructured environments where
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Fig. 1. A searcher (purple) has a belief (green cells) of a target robot’s
position. Using this belief, it constructs a planning tree using a discounted
search reward (low reward = blue, high reward = yellow) and follows the
tree’s best path (orange) to search for the target.

robots must modify plans in response to unpredictable events,

intermittent connectivity provides the most flexibility.

When robots communicate intermittently, they do not have

a prearranged meeting and must instead search for each other.

Within a team, robots are cooperative and, when connected,

can share information such as a planned path or behavior,

which will make search easier. However, intermittent com-

munication is only useful in unpredictable situations where

robots do not follow their plans exactly. Therefore, the search

target can be considered semi-cooperative. It may provide

some useful information about its behavior, but does not

guarantee that it will behave exactly as planned.

In this paper, we present a sampling-based search al-

gorithm that can be used by teams of robots operating

in unpredictable environments. This algorithm is inspired

by rapidly-exploring random trees (RRT) [9] but includes

important modifications for the search problem. The planning

tree is based on a probabilistic belief of the target’s position

and attempts to maximize a reward function related to the

probability and time needed to find the target (Figure 1).

As the objective is maximization instead of RRT’s usual

objective of minimization, the algorithm is modified to avoid

adding all vertices to the longest branch of the tree. When

searching, the searcher follows a path in the tree and can

reuse parts of the tree for planning future search paths.

II. RELATED WORK

Search theory dates back to the 1940s motivated by the

US navy’s antisubmarine missions during World War II [10].

Most early efforts were focused on searching for stationary

targets [11], [12] or targets which moved randomly, indiffer-

ent to the searcher [13], [14]. This one-sided search problem

has recently been studied by the robotics community [15],

[16]. The typical approach to search uses a belief of a target’s

location, updated using a motion model, to plan a path that



maximizes the probability of finding the target over some

time horizon.

A belief is a probabilistic description of a target robot’s

position based on information known by a searcher. Beliefs

evolve over time as the searcher expects its target to move.

Three methods of describing and updating beliefs are:

(a) Markov models use a probability vector over a graph—

corresponding to a discretization of the environment—

which is updated using transition probabilities that only

depend on the robot’s current state [17], [18], [19]. Vari-

ants such as second-order Markov models [20], semi-

Markov models [8], and hidden Markov models [21]

provide more realistic models in the same framework.

(b) Particle filtering algorithms use a finite set of particles,

each representing one possible target behavior, moving

in continuous space according to the target’s dynamics,

with each particle using different control inputs [22],

[23], [24]. A probability hypothesis density filter replaces

the point particles with Gaussian distributions [25], [26].

(c) Historical data can also be used to build a model, if

enough data is available or can be simulated [27].

Using any of these methods, the searcher can maintain a

belief used to plan its search path. This path maximizes the

probability of finding the target over a finite horizon [17],

[23], [27], [20], [8], the probability of finding the target per

unit time [22], a discounted reward which values finding the

target quickly [18], [28], or a fairness-based reward which

values regularly observing multiple different targets [19].

Finding the optimal path is NP-hard, so branch-and-bound

[17], [18], [20], mixed integer linear programming [27],

multi-level optimization [29], and depth-first search [23] are

used to plan near-optimal paths on grids.

Our search algorithm uses a sampling-based planner.

Sampling-based planners have been popular in robotics since

the development of probabilistic roadmaps (PRM) [30] and

rapidly-exploring random trees (RRT) [9] in the late 1990s.

Both techniques use random samples to construct a graph,

which in the case of RRT is a tree. By rewiring the tree

as vertices are added, RRT∗ is asymptotically optimal [31].

Although originally used to minimizing distance, RRT has

also been used to minimize localization error [32], mechan-

ical work over uneven terrain [33], probability of capture in

pursuit-evasion [34], and distance from a moving target [35].

In this paper we use a sampling-based planner to maximize a

discounted reward function based on finding the target robot

as quickly as possible.

III. COMMUNICATION MODELS

Depending on hardware, robots communicate using one

of a variety of wireless signals. This signal’s strength de-

termines the probability of successful communication [36].

Distance and line of sight can influence signal strength [37]

resulting in a variety of communication models (Figure 2).

For two robots located at positions, q0, q1, in an environ-

ment, Q, let C(q0, q1) ∈ [0, 1] denote the probability that

they can communicate. As C can depend on many factors,

such as the environment’s physical properties and the type of

Fig. 2. Communication between robots can be limited by line of sight
(left), distance (center), or both (right) depending on the type of wireless
communication used.

wireless signal used, we will assume that a good estimate of

C is available for any pair of locations. This assumption is

reasonable as C can be estimated experimentally from signal

strength data at a few points [1], [38].

When planning a search path, the searcher needs the

probability of communication if it were at some qsea ∈ Q. As

the target’s position is not known, the searcher can estimate

this probability by

P(communication) =

∫

Q

C(qtar, qsea)dµ(qtar) (1)

where the searcher’s belief of the target’s location is de-

scribed by a probability measure µ : Σ → [0, 1] over Σ, a

σ-algebra on Q.

The method of approximating the integral in (1) depends

on what kind of target belief is used. We will store the

belief as a probability vector, btar ∈ R
|Y|, over Y , a cellular

decomposition of Q. Although qsea is known, we can also

represent it using a vector bsea ∈ R
|Y| whose elements are

all 0 except the element corresponding to the cell containing

qsea which is 1. Using these vectors, we approximate (1) by

P(communication) = b⊤tarCbsea (2)

where C is the communication matrix whose (i, j)th element

is the probability of communication between cells yi and yj .

This approximation is valid if the cells of Y are small enough

that communication strength is similar everywhere in a cell.

IV. TRACKING AN UNSEEN TARGET

To plan its search, the searcher needs probabilistic de-

scriptions of where it believes its target is and how it moves.

We assume that the target robot is semi-cooperative and is

not actively trying to avoid the searcher so its behavior is

independent of the searcher’s location. In this paper, the

decomposition, Y , is a polygonal lattice and the belief is

a probability vector, b ∈ R
|Y|, with elements

bi = P (qtar ∈ yi | information known by searcher) (3)

If the target and searcher can communicate, then

bi =

{
1 if qtar ∈ yi

0 otherwise.

Otherwise, b will have many non-zero entries and will need

to be updated using a probabilistic motion model.

In this paper, we use a hidden Markov Model (HMM) to

update b. HMMs augment the cells, Y , of a basic Markov

model with a set of hidden states, X . These are “hidden”

because they can include information about the target that

cannot be directly observed—a planned path, objective, or
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Fig. 3. State transition graph of an HMM using direction states to model
momentum.

velocity—in addition to its observable location. Similar to

the cell belief vector, b ∈ R
|Y|, we define a state belief

vector, w ∈ R
|X |. As w contains more information than b,

we first update the state belief with a Markov update rule

w[τ ] = Aw[τ − 1] (4)

where A : R|X | → R
|X | is a sparse left-stochastic update

matrix whose (i, j)th element is the probability that a robot

in state xj at time τ − 1 will be in state xi at time τ . Each

state corresponds to a physical location so the cell belief is

b[τ ] = Pw[τ ] (5)

where P : R
|X | → R

|Y| is a sparse projection matrix

mapping each state to one or a few nearby cells. Since both

A and P are sparse with fewer than some constant number

of non-zero elements in each row and column, updating a

belief using (4)–(5) is O(|Y|). Therefore, for a fixed cell

size, the complexity of updating the belief scales linearly

with the area of the environment.

The HMM update law (4)–(5) is Markovian because it

assumes the belief at time τ only depends on the belief

at time τ − 1 and not any older information. For ordinary

Markov models, where X = Y and P = I , this assumption

is restrictive because most robots’ motion does depend on

events from more than one time step ago. However, for

HMMs, it is not restrictive because the states of X can

include any relevant information.

Example 1 (Momentum). Real robots have second order

dynamics so momentum effects how they move. For the

vast majority of robotic tasks—exploration, coverage, search,

delivery—the robot moves in straight lines much more than it

goes back-and-forth over the same location. To incorporate

momentum and bias the HMM towards straight paths, we use

X = Y×Θ, where Θ is a set of directions (Figure 3), and the

transition probabilities ai,j are higher between states with

the same direction. HMMs with these direction states are

equivalent to second-order Markov models.

Example 2 (Variable velocity). Real robots do not travel

at fixed velocities. To incorporate variable velocity into an

HMM, we add a chain of transit states (Figure 4) between

two states that would otherwise be adjacent. Each transit

state can either transition to the next transit state in the

chain or to the original end state. The transition probabilities

are computed from the distribution of times that it takes to

Start End

P

t
Fig. 4. HMMs can include a chain of transit states (top) to approximate
the distribution of times (bottom) needed to transition between two states.

Fig. 5. A known target path (left) can be incorporated into an HMM by
adding a chain of path states (right).

transitioning between the two original states which depends

on the robot’s velocity distribution. HMMs with transit states

are equivalent to semi-Markov models.

Example 3 (Planned path). Cooperative robots which are

localized in the same map can share their planned paths

with each other before separating. The searcher can use its

target’s planned path to generate a set of path states along

the path (Figure 5). Each state transitions to the next path

state and multiple path states can be in the same location if

the path intersects itself.

Example 4 (Multiple behaviors). If a target has m possible

behaviors, with behavior i described by Xi, the searcher

can model all the behaviors using X = X1 ∪ · · · ∪ Xm.

Each behavior can be thought of as a different layer of the

HMM with some low probability transitions between layers

to represent changing behavior. For example, a target with

a known initial planned path has a top layer of path states

which transitions to a middle layer of direction states which

transitions to a bottom layer of stuck states which only

transition to themselves (Figure 6). The transitions between

layers are unidirectional because the robot will not return to

an abandoned path and will not start moving after getting

stuck.

Example 5 (Historic data). If a robot behaves repetitively,

historic or simulated data of a its behavior can be used to

build a more accurate HMM. The structure of this HMM may

consist of multiple layers including direction, path, transit,

stuck, or other kinds of states. The transition probabilities be-

tween these states are determined using discretized versions

of the historic paths. The model based on historic data can

be verified by comparing the paths to the HMM’s stationary

distribution (Figure 7). A stationary distribution does not

change when updated using A and it can be computed from

the eigenvectors of A [39].



Fig. 6. A layered HMM containing a layer of path states (orange) which
transitions to a layer of direction states (blue) which translates to a layer of
stuck states (red). Each layer represents a different behavior.

Fig. 7. Historic paths (left) can be used to determine transition probabilities
of an HMM. The model’s stationary distribution (right) closely resembles
the density of paths.

V. EFFECTS OF OBSERVATIONS

The searcher uses an HMM, (4)–(5), to predict its target’s

behavior and location. However, it also has another useful

source of information: its own observations. Whenever the

searcher is not able to communicate with its target, it can use

this negative observation to narrow the belief distribution and

avoid searching in places it has been recently.

Bayes filtering is the general problem of using observa-

tions to update a belief [40]. Given some observation, we

use the Bayes’ filter to update each element of the belief by

wi[τ ] ∝ P(observation | x[τ ] = xi)
(
aiw[τ − 1]

)
(6)

where ai is the ith row of A and wi is the ith element of

w, the belief that the robot’s true state, x is xi. The way

that the first term of (6) is defined depends on the kind of

observation.

A negative observation is when the searcher is not able to

communicate with its target. The communication matrix, C,

defines the probability of communication by (2). Using the

HMM projection, (5), the probability of communication in

terms of the state belief is wtarP
⊤Cbsea. For a single state

of X , the first term in (6) is then [8]

P(no communication | x[τ ] = xi) = 1− (pi)⊤Cbsea

where pi is the ith column of the projection matrix, P .

Substituting this expression back into (6), and aggregating

over i the update rule for the whole vector is

w[τ ] ∝
(
1− P⊤Cbsea[τ ]

)
⊙
(
Aw[τ − 1]

)
(7)

where 1 ∈ R
|X | is the vector consisting of all ones and

⊙ : R|X | × R
|X | → R

|X | is the elementwise product.

VI. EVALUATING SEARCH PATHS

When a robot decides to search, it uses its belief, b, to

plan a finite length search path. Ideally, we would minimize

the expected time required to find the target, but since it is

impossible to guarantee that a searcher will find a mobile

target in finite time, expected time is not a useful optimiza-

tion criterion. Instead, we could maximize the probability of

success [17], [23] but this criterion does not value finding the

target quickly. To prioritize paths that find the target quickly,

we use a discounted reward function [18]. For an infinitely

long discrete path, p, the discounted reward is

J(p) =
∞∑

τ=1

βτ−1∆φ[τ ] (8)

where β ∈ (0, 1] is the discount factor and ∆φ[τ ] is the

probability of finding the target at time τ when following p.

Smaller β results in greedier behavior whereas β close to 1
results in more conservative behavior.

The probability of connecting to the target for the first

time at time τ , ∆φ[τ ], can be expressed as

∆φ[τ ] = φ[τ ]− φ[τ − 1] (9)

where φ[τ ] is the probability that the two robots have been

connected at least once by time τ . When updating the state

belief using (7), the new belief must be normalized and the

normalization factor is the inverse of the probability that the

robots did not connect in the previous time step. Without

normalizing, the update law,

ŵ[τ ] =
(
1− P⊤Cbsea[τ ]

)
⊙
(
Aŵ[τ − 1]

)
(10)

with ŵ[0] = w[0] gives a vector, ŵ[τ ], that sums to the

probability of never connecting by time τ . Therefore

φ[τ ] = 1− 1
⊤ŵ[τ ]. (11)

Using (9)–(11) we can iterate through the vertices of a path

and use the ŵ and φ at the previous vertex (with ŵ[0] = w[0]
and φ[0] = 0) to compute ŵ, φ and ∆φ at each vertex.

The discounted reward in (8) assumes an infinite length

path. When searching, the searcher plans finite length paths,

but can extend a path if it does not find the target. Therefore,

we should compare finite length paths based on all the

possible paths starting with a given finite-length path. Any

path starting with p is guaranteed to have a reward of at least

Jmin(p) =

|p|∑

τ=1

βτ−1∆φ[τ ] (12)

which would be achieved by a path with no chance of finding

the target after the end of p. Similarly, it is impossible for

any path starting with p to have a reward greater than

Jmax(p) = Jmin(p) + β|p| (1− φ[τ ]) (13)

which would be achieved by a path guaranteed to find the

target one time step after the end of p. By their definitions,

Jmin increases monotonically and Jmax decreases monoton-

ically as more vertices are added to the end of a path.



Using these bounds, if Jmin(p1) ≥ Jmax(p2), then every

path starting with p1 is at least as good as any path starting

with p2 so there is no need to consider any paths starting

with p2. For paths starting with the same two vertices, this

inequality is useful when using one planning tree as the basis

of a new one.

Theorem 1. Let p1 and p2 be two paths of length T whose

first two vertices are q[0], q[1] and let p′1 and p′2 be the same

paths with q[0] removed. Suppose that Jmin(p1) > Jmax(p2)
for some initial belief w[0]. Then Jmin(p

′
1) > Jmax(p

′
2) for

the initial belief w[1] obtained by updating w[0] using (7).

Proof. Let ∆φi[τ ] and ∆φ′
i[τ − 1] represent the marginal

probabilities at the same location along pi and p′i. The

difference between these probabilities is conditioned on the

fact that the robots were not connected at q[1] so

∆φ′
i[τ ] =

∆φi[τ ]

1−∆φi[1]
.

Using this relationship in (12)–(13), we can similarly express

the reward bounds as

Jmin(pi) = ∆φi[1] +
1

β(1−∆φi[1])
Jmin(p

′
i) (14)

Jmax(pi) = ∆φi[1] +
1

β(1−∆φi[1])
Jmax(p

′
i). (15)

Since both paths start with the same vertices, ∆φ1[1] =
∆φ2[1] and the reward bounds get transformed by the same

linear relationship. As linear relationships preserve inequali-

ties, if Jmin(p1) > Jmax(p2) then Jmin(p
′
1) > Jmax(p

′
2).

VII. SAMPLED SEARCH PATHS

To plan a search path that maximizes the discounted

reward, we first construct a search tree using a sampling-

based algorithm (Algorithm 1). Vertices are added to the tree

based on the values of Jmin and Jmax for the path to that

vertex from the root vertex. Each vertex contains a location,

q, and the data—ŵ, φ, ∆φ, Jmin, and Jmax—required to

compute the bounds iteratively from the parent vertex’s data

using (9)–(13). The root vertex is located at the searcher’s

location with its current belief, φ = ∆φ = Jmin = 0, and

Jmax = 1. As the tree grows, it keeps track of its best vertex,

v∗, and prunes the tree whenever v∗ is updated. The stopping

criterion is either the size of the tree, the reward of v∗, or

the number of rounds of the algorithm.

A. Growing the tree

The planning tree grows (Algorithm 2) by adding new

vertices based on a randomly sampled location, qrand ∈ Q.

The sampled location is used to create one candidate vertex,

vnew, for each existing vertex of the tree. Unlike RRT which

chooses vnew along the straight line from v to qrand, our

search algorithm chooses vnew along the shortest path in Q.

This method of selecting vnew biases the locations of new

vertices based on the topology of Q resulting in vertices

in topologically central locations which tend to be the most

useful for search.

Algorithm 1: Search tree

Input: Environment, Q ⊂ R
2; searcher’s location,

q0 ∈ Q; and initial belief, ŵ[0]
Output: Search tree, T
1 v0 ← root vertex at q0 with belief ŵ[0]
2 T ← planning tree consisting of v0
3 v∗(T )← v0 /* Maximizes Jmin */

4 while stopping criterion is not met do

5 Grow T /* Algorithm 2 */

6 if v∗(T ) has been updated then

7 Prune T /* Algorithm 3 */

8 return T

Algorithm 2: Grow tree

Input: Environment, Q ⊂ R
2; and planning tree, T

Output: Planning tree, T , with new vertices added

1 qrand ← uniformly random location in Q
2 for τ ∈ {0, . . . , τmax(T )} do

3 for v ∈ T at depth τ do

4 p← shortest path from v to qrand within Q
5 qnew ← location one time step along p
6 vnew ← vertex at qnew with parent v
7 if Jmin(vnew) > Jmin(v

∗(τ)) then

8 v∗(τ)← vnew

9 Add v∗(τ) to T
10 if Jmin(v

∗(τ)) > Jmin(v
∗(T )) then

11 v∗(T )← v∗(τ)

12 return T

Candidate vertices are compared using Jmin. Since Jmin

increases monotonically along a path, most vertices at depth

τ have a larger Jmin than any vertices at depth τ ′ < τ . If we

added a single vertex per round like in RRT, the algorithm

would favor adding vertices deep in the tree. Similarly, if we

added a single vertex based on Jmax, it would favor vertices

adjacent to the root vertex. To avoid these biases and better

balance growth and branching, we add multiple vertices—

one at each possible depth—for each sampled location. After

k rounds, the tree will have O(k2) vertices and we will have

checked O(k3) candidate vertices. As each candidate vertex

is checked in constant time, it takes O(n3/2) to construct a

tree with n vertices.

B. Pruning the tree

We saw in Section VI that if Jmin(v1) ≥ Jmax(v2) then

every path through v1 is better than any path through v2
could ever be. Using this criterion, we prune the tree to

remove poor quality vertices from previous rounds. To prune,

we keep track of the vertex, v∗(T ), that maximizes Jmin.

Initially, in Algorithm 1, v∗(T ) is the root vertex; when

Algorithm 2 adds vertices to the tree, it also updates v∗(T ).
After v∗(T ) is updated, we prune the tree by removing all



Fig. 8. A randomly sampled location is used to generate candidate
vertices along the shortest paths to that location (left). Algorithm 1 adds
the candidate vertex at each depth that maximizes Jmin (low is blue; high
is yellow).

|T | = 165 |T | = 95

Fig. 9. Before pruning (left) a tree has some vertices whose Jmax (bottom
half of circle) is lower than some other vertex’s Jmin (top half of circle).
Pruning removes these vertices, resulting in a smaller tree (right).

vertices with Jmax(v) ≤ Jmin(v
∗(T )) as they are no longer

useful (Algorithm 3). By pruning, we often remove close

to half of the tree’s vertices (Figure 9) making every future

round of Algorithm 2 more efficient.

Algorithm 3: Prune tree

Input: Planning tree, T
Output: Planning tree, T , with some vertices removed

1 for vertex v ∈ T do

2 if Jmax(v) < Jmin(v
∗(T )) then

3 Remove v from T

4 return T

C. Re-rooting the tree

Using a search tree, T , the best search strategy is to follow

the path to v∗. After moving to the first vertex, v1, of this

path, if the searcher has not found its target, it can replan by

building a new search tree, T ′ with root v′0 = v1. Rather than

build T ′ from scratch, it can reuse any vertex of T which is

a child of v′0. This re-rooting process can save many of the

original vertices (Figure 10).

By Theorem 1 all the reward bounds for children of v′0 are

updated in the same way by (14)–(15). Similar equations are

used to update each vertex’s other properties ŵ, φ and ∆φ.

To re-root the tree (Algorithm 4), we update the properties of

children of v′0 using these rules and remove all other vertices.

|T | = 95 |T | = 51

Fig. 10. Re-rooting takes an existing tree (left) and only keeps vertices
that are children of the new root vertex. This new tree (right) has its vertices
properties updated based on the new root.

This process is easiest if the vertices are sorted by depth so

that children get updated after their parent and can be updated

using the parent’s updated data.

Algorithm 4: Re-root tree

Input: Planning tree, T ; and new root vertex, v′0 ∈ T
Output: Planning tree, T ′ rooted at v′0
1 Create new tree T ′ with v′0 as root vertex

2 Sort vertices of T by depth

3 for vertex v ∈ T do

4 if v’s parent is in T ′ then

5 v′ ← re-rooted version of v with v′0 as root

6 Add v′ to T ′

7 return T ′

VIII. RESULTS

The search algorithm described in this paper could be

used to reconnect teams of robots who are performing a

variety of tasks, such as search, coverage, surveillance, or

delivery. To evaluate its effectiveness we applied it to a

simple relay scenario in an environment with communication

limited by distance and line of sight (Figure 11). The target

robot wanders by repeatedly following the shortest path to

a randomly selected location. The searcher acts as a relay

between the wandering robot and a stationary base station.

After finding the target, it returns to the base station and

then searches again. The search is successful when the two

robots are within communication range (blue in Figure 11)

and there are no obstacles between them. Both robots’ linear

velocities vary between 0.8–1.2m/s and angular velocities

vary between 36–54 ◦/s. In this semi-cooperative scenario,

the searcher knows the target’s general behavior—that it

travels between randomly selected locations—but it does not

know the target’s current location or planned path. Based on

this knowledge, the searcher uses an HMM derived from

simulated target paths. The searcher is also aware that its

communication is limited by distance and line of sight and

uses this knowledge when evaluating potential search paths.

We compared the sampling-based search with β = 5/6
with two baseline algorithms:

• Random: The searcher chooses random locations in Q
and follows the shortest paths between these locations

until it finds its target.

• Greedy: The searcher uses a belief of the target robot

updated using (7) and greedily follows the shortest path

to the location with the highest belief.

For the sampling-based search, we tested various values of

β and found that for β > 1/2, the performance was not

very sensitive to β and performance decreased with β below
1/2. For each algorithm, we simulated a scenario where the

searcher finds the target and returns to the base station 500

times and recorded the times needed to find the target after

leaving the base stations (Figure 12). The sampling-based

mean time-to-find of 67.8 s was significantly faster than both



Fig. 11. The search simulations are set in an environment measuring
44m by 26m. Assuming there is a line of sight, the searcher (blue) can
always connect with its target (green) if they are less than 2m apart and
the probability of connection decreases linearly to 0 probability at 3m. The
searcher must return to its base station (orange) whenever it finds its target.
Its beliefs are updated using an HMM based on simulated target paths (green
lines).
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Fig. 12. Time-to-find distributions for three search algorithms based on
500 searches in the environment in Figure 11. The smoothed distributions
were obtained by kernel density estimation using a Gaussian kernel with
bandwidth 0.4. The 95% confidence interval for the means of each distri-
bution were computed by bootstrapping with 1000 resamplings of the data.

the greedy (85.2 s) and random (96.2 s) searchers at the 95%

confidence level using a two-sided t-test.

Although the mean times-to-find indicate better perfor-

mance, the distributions in Figure 12 are not normal. There-

fore, we also computed the 9 deciles for each distribution

(Table I). The differences between the first 4 deciles, repre-

senting the fastest 40% of the searches, are not statistically

significant at the 95% confidence level. These searches

represent easy scenarios where the target robot happens to be

relatively close to the base station and any searcher leaving

the base station is likely to find it quickly. For the remaining

slowest 60% of the searches, the sampling-based searcher

is significantly faster at the 95% confidence level. These

searches represent difficult searches where the target is far

away and the searcher needs to follow a relatively long path

while using a much wider belief distribution than in the easy

searches. It is in these scenarios that the planning strategy can

have the largest effect and for these scenarios the sampling-

TABLE I

DECILES, Di , FOR THE DISTRIBUTIONS IN FIGURE 12. THE p-VALUES

ARE THE PROBABILITIES THAT THE SAMPLING-BASED DECILE IS LOWER

THAN THE OTHER ALGORITHM’S DECILE.

Sampling Greedy Random
i Di (s) Di (s) p Di (s) p

1 16.94 14.38 0.418 14.82 0.457
2 30.92 28.52 0.542 27.36 0.172
3 40.28 42.62 0.468 35.36 0.061

4 50.40 55.12 0.334 52.18 0.688
5 59.48 74.68 0.001 66.84 0.047

6 68.24 96.36 0.000 86.28 0.005

7 82.68 112.70 0.000 112.66 0.000

8 97.12 133.38 0.000 144.74 0.000

9 127.08 156.52 0.000 214.64 0.000

based strategy is significantly faster than either benchmark

strategy.

The total time needed for the searcher to find the target

and return to the base station 500 times ranged from 6.8–

8.1 h. The simulations were performed in C++ using a

standard laptop computer running Linux and took between

2.4–3.5 h to perform. As the simulation times, which include

the planning times, were lower than the real time needed

to follow the planned search paths, our sampling-based

search planner could be used in real time on a robot with

hardware comparable to a standard laptop computer. Future

work will involve more extensive evaluation on real robots

using search while performing various kinds of tasks, and

the application of RRT-like planning algorithms to other

maximization problems such as data acquisition or coverage.

IX. CONCLUSIONS

The ability to search for a disconnected teammate is

useful for robotic teams with limited communication which

need to separate temporarily and cannot guarantee their

exact behavior after separating. In this paper we presented a

method of planning search paths over continuous space based

on a belief of a semi-cooperative target robot’s location. The

belief is updated using an HMM built from historic data of

the target’s behavior or a planned path previously sent to

the searcher. At every time step where the searcher does not

find the target, it uses this negative observation to narrow the

belief and help guide the search.

Using the belief, the searcher plans a path to maximize

a discounted reward function that uses a discount factor to

prioritize finding the target quickly. Search paths are planned

by building a tree of possible search paths using a process

similar to RRT. The locations of candidate vertices are based

on the shortest path in the environment between an existing

vertex and a sampled point, biasing the tree based on the en-

vironment’s topology which tends to consider directions that

are more useful for search. Candidate vertices are evaluated

using bounds on the discounted rewards of every path passing

through that vertex. Since the reward bounds are strongly

dependent on depth in the tree, multiple vertices—one at

each depth—are added per round. The reward bounds are

also used to prune the tree by removing old vertices which



are no longer useful. The searcher searches by following

the best path in the tree and can re-root the tree to use

it as the basis of a new search tree at a new location.

We compared this algorithm against benchmark greedy and

random searchers. The three approaches required similar

times to find the target in the fastest 40% of cases where the

belief was narrow or the target was nearby and so search was

easy. In the slower 60% of cases where the target was more

difficult to find, the sampling-based algorithm significantly

outperformed the two benchmarks.
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