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ABSTRACT

Turbulent convection is thought to act as an effective viscosity in damping equilibrium tidal
flows, driving spin and orbital evolution in close convective binary systems. Compared to
mixing-length predictions, this viscosity ought to be reduced when the tidal frequency |lC |
exceeds the turnover frequency l2E of the dominant convective eddies, but the efficiency of
this reduction has been disputed. We reexamine this long-standing controversy using direct
numerical simulations of an idealized global model. We simulate thermal convection in a full
sphere, and externally forced by the equilibrium tidal flow, to measure the effective viscosity a�
acting on the tidal flow when |lC |/l2E & 1. We demonstrate that the frequency reduction of
a� is correlated with the frequency spectrum of the (unperturbed) convection. For intermediate
frequencies below those in the turbulent cascade (|lC |/l2E ∼ 1 − 5), the frequency spectrum
displays an anomalous 1/lU power law that is responsible for the frequency-reduction a� ∝
1/|lC |

U, where U < 1 depends on the model parameters. We then get |a� | ∝ 1/|lC |
X with

X > 1 for higher frequencies, and X = 2 is obtained for a Kolmogorov turbulent cascade. A
generic |a� | ∝ 1/|lC |

2 suppression is next found for higher frequencies within the dissipation
range of the convection (but with negative values). Our results indicate that a better knowledge
of the frequency spectrum of convection is necessary to accurately predict the efficiency of
tidal dissipation in stars and planets resulting from this mechanism.

Key words: binaries: close – convection – hydrodynamics – planet-star interactions

1 INTRODUCTION

Turbulent convection in stars is believed to dissipate the tidal shear

excited by gravitational interactions in close stellar binary or plan-

etary systems, and this process can play an important role in deter-

mining the orbital and spin evolution of low-mass binary stars or

short-period planets (e.g. Mazeh 2008; Ogilvie 2014). The timescale

for these evolutionary processes is inversely proportional to the ef-

fective viscosity, and so estimating the stellar (or planetary) viscos-

ity is of crucial importance in applications. The laminar viscosity

in convective envelopes is much too small to be relevant for tidal

evolution (e.g. in the Sun; Hanasoge & Sreenivasan 2014), and so

turbulent convection is usually thought to act as an effective turbu-

lent viscosity a� that is responsible for damping oscillatory tidal

flows. This mechanism is usually invoked to explain the circular-

ization and synchronization of binary systems containing low-mass

or solar-like main-sequence stars (e.g. Zahn 1989; Zahn & Bouchet

1989; Meibom & Mathieu 2005; Meibom et al. 2006; Van Eylen

et al. 2016; Lurie et al. 2017; Triaud et al. 2017; von Boetticher

et al. 2019), and evolved stars (e.g. Verbunt & Phinney 1995; Beck

et al. 2018; Price-Whelan & Goodman 2018).

The effective viscosity due to convection can be estimated by

★ E-mail: vidalje63@gmail.com

neglecting the oscillatory nature of the tidal flow such that a� ≃

a2E (leading to the standard constant lag-time tidal model, e.g.

Alexander 1973; Eggleton et al. 1998), where a2E is the turbulent

viscosity predicted by mixing-length theory (MLT) (e.g. Spiegel

1971). Understanding and characterizing the interaction between

oscillatory tidal flows and turbulent convection has been referred to

as the Achilles’ heel of tidal theory (Zahn 2008). Zahn (1966) first

realized that a� ought to be reduced when the tidal frequency |lC | is

faster than the turnover frequency l2E of the dominant convective

eddies. The magnitude of this inhibition has been however disputed

(e.g. Goodman & Oh 1997), and two contradictory prescriptions

have been used. Zahn (1966, 1989) proposed the linear scaling

a� ∝ a2E ( |lC |/l2E )
−1, (1)

which is derived by applying MLT arguments assuming that the

largest eddies dominate the dissipation, but Goldreich & Nicholson

(1977) proposed instead a quadratic reduction

a� ∝ a2E ( |lC |/l2E )
−2 (2)

that is derived by assuming that the dominant contribution to the

effective viscosity at short tidal periods comes from eddies in the

turbulent (Kolmogorov) cascade with a turnover time-scale compa-

rable with the oscillation period.

When equations (1)-(2) are evaluated in stellar models, they

© 2020 The Authors



2 J. Vidal & A. J. Barker

typically lead to very different predictions for tidal evolutionary

timescales (e.g. Price-Whelan & Goodman 2018). Thus, applica-

tion of tidal theory to convection zones remains uncertain, and

determining the correct frequency-reduction law of the turbulent

viscosity is crucial before we can apply tidal theory to interpret

observations of close binaries (e.g. Kirk et al. 2016; Lurie et al.

2017; Van Eylen et al. 2016; Triaud et al. 2017; Price-Whelan &

Goodman 2018) and possibly also short-period planetary orbits (e.g.

Rasio et al. 1996). It is possible that the two laws could be valid

in different frequency ranges. Indeed, scaling (1) seems to work

well when applied to certain stellar oscillations (Gonczi 1982) or

in early calculations of pre-main sequence circularization (Zahn &

Bouchet 1989), whereas quadratic scaling (2) could be relevant for

much shorter forcing periods, such as those that are relevant for the

interaction between acoustic modes and convection (Goldreich &

Keeley 1977; Goldreich et al. 1994; Samadi et al. 2001).

The frequency-reduction law of the turbulent viscosity acting

on tidal flows has been also independently revisited with direct

numerical simulations (DNS). The two laws were first recovered in

separate studies, which support either the linear scaling (Penev et al.

2007, 2009) or the quadratic suppression (Ogilvie & Lesur 2012;

Braviner 2016; Duguid et al. 2020). The coexistence of the two

scaling laws has however been found subsequently, using an ideal-

ized turbulence model (Goldman 2008) and in our previous global

DNS (Vidal & Barker 2020). These recent results have the potential

to reconcile the previous theoretical and numerical findings. More-

over, the recent numerical findings have shed light on the fact that

the two scaling laws may be appropriate for different reasons than

those originally suggested. On the one hand, the quadratic suppres-

sion has been convincingly found for high frequencies |lC | ≫ l2E ,

particularly those outside the turbulent cascade (Ogilvie & Lesur

2012; Braviner 2016; Duguid et al. 2020; Vidal & Barker 2020).

On the other hand, the linear reduction, which has been only ob-

served in an intermediate-frequency range (with |lC | ∼ l2E ), may

be correlated with the frequency spectrum of the (unperturbed) con-

vection. Indeed, the convective frequency spectrum is expected to

be flatter than the Kolmogorov frequency spectrum in that range,

as reported for Boussinesq (Vidal & Barker 2020) or compressible

(e.g. Penev et al. 2011; Horst et al. 2020) convection, such that

predictions (1)-(2) may not be generic.

Owing to the importance of this problem to understand tidal

evolution, we continue our numerical investigation (Vidal & Barker

2020) using global DNS of convection in the presence of the equi-

librium tidal flow to gain robust physical insights into the efficiency

of tidal dissipation in slowly rotating convective stars or planets.

Our global model complements the previous local studies in Carte-

sian geometry (e.g. Ogilvie & Lesur 2012; Braviner 2016; Duguid

et al. 2020), in that we study more realistic tidal flows, and we

explore convective flows in stellar-like (or planetary-like) spherical

domains in which the flow is free from the influence of artificial

periodic (or shearing-periodic) boundary conditions. On the other

hand, global DNS are typically more computationally-demanding

than local DNS, which prevents us from studying very long tidal

periods relative to convective timescales.

The paper is organized as follows. We present our global model

and numerical methods in Section 2, and discuss the general proper-

ties of the unperturbed convection in Section 3. Direct computations

of the turbulent viscosity are presented in Section 4. The implica-

tions of our results are presented in Section 5, and we conclude the

paper in Section 6.

2 FORMULATION OF THE PROBLEM

2.1 Convection model

We study the interplay between tidal flows and convection using

an idealized model of fully convective stars or giant planets. We

model a full sphere of radius ' and volume + , filled with a fluid

of uniform (laminar) kinematic viscosity a and thermal diffusivity

^, and employ spherical coordinates (A, \, q) centered on the body.

The body possibly rotates at the angular velocity ΩB1I , where 1I is

the Cartesian unit vector along the polar axis. We model convection

in the Boussinesq approximation (Spiegel 1971), considering slight

fluctuations of temperature Θ and velocity from the motionless con-

duction state )0 (A) sustained by the homogeneous internal heating

source Q) . The gravitational field is g = −W r, where r is the posi-

tion vector and W is a constant, which represents the leading-order

component for a low-mass body that is not very centrally condensed.

The primary body is also subjected to tidal forcing from an orbiting

companion, which drives large-scale tidal flows in the fluid interior

(Ogilvie 2014; Le Bars et al. 2015). Following Goodman & Oh

(1997), we divide the total velocity field u + [0 into two compo-

nents, a turbulent convective flow u and a background large-scale

tidal flow [0 (see below).

We employ dimensionless quantities for the simulations, adopt-

ing ' as the length scale, the viscous timescale '2/a as the

timescale, and (aQ) '
2)/(6^2) as the unit of temperature (as in

Vidal & Barker 2020). The dimensionless Boussinesq equations for

the fluctuations [u,Θ] in the rotating frame are

mu

mC
+ (u · ∇) u = −∇? + ∇

2u + '0Θ r − f , (3a)

mΘ

mC
+ (u · ∇) Θ =

1

%A

[
2 u · r + ∇2

Θ

]
− Q, (3b)

∇ · u = 0, (3c)

with the dimensionless (reduced) pressure ? and

f = (2/�) 1I × u + (u · ∇)[0 + ([0 · ∇) u, (4a)

Q = ([0 · ∇)Θ. (4b)

We have discarded the term ([0 ·∇) )0 in the temperature equation,

since it should be negligible when V ≪ 1 (e.g. Lai et al. 1993, in

the ellipsoidal geometry). We have also introduced in equations (3)

the Rayleigh number '0, the Prandtl number %A and the Ekman

number � . They are given by

'0 =
U) WQ) '

6

6a^2
, %A =

a

^
, � =

a

ΩB'2
, (5a–c)

whereU) is the thermal expansion coefficient. The Rayleigh number

measures the strength of the convective driving, and the Ekman

number the strength of viscous diffusion with respect to global

rotation. Since many low-mass stars are slow rotators (e.g. Nielsen

et al. 2013; Newton et al. 2018), we will mainly ignore global

rotation in the DNS by setting � = +∞ (though we will also consider

a few slowly rotating cases, see below).

Equations (3) are complemented with boundary conditions at

the (dimensionless) spherical boundary A = 1. For the temperature,

we employ the isothermal conditionΘ = 0 (we expect to obtain sim-

ilar results using fixed flux conditions). To avoid spurious numerical

issues associated with angular momentum conservation in global

simulations of tidal flows (e.g. as observed in Favier et al. 2014),

we enforce the no-slip (NS) boundary conditions (BC) u = 0. The

latter BC does not qualitatively affect the (small-scale) turbulent

flows driven in the bulk in our simulations, compared to the more

realistic stress-free (or free-surface) BC for stellar applications.

MNRAS 000, 1–14 (2020)



Tidal dissipation in convective stars or planets 3

  

Figure 1. Sketch of the tidal problem in the inertial frame. The companion

is orbiting around the fluid body in the orbital plane (dashed line), with

angular velocity Ω>A1 1I . Color bar illustrates log10 ( |u |2) for our DNS

with '0 = 8 × 106.

2.2 Tidal forcing

Previous numerical studies modeled the tidal flow with either an

(ad-hoc) external forcing (Penev et al. 2009), or with a background

unidirectional shear flow in a shearing box (Ogilvie & Lesur 2012;

Braviner 2016; Duguid et al. 2020). For a more realistic astro-

physical model, we consider self-consistently the large-scale (non-

wavelike) equilibrium tidal flow in a homogeneous body. We assume

that the companion is a point mass, moving on an aligned circular

orbit around the star with the angular velocity Ω>A11I (as depicted

in figure 1). Thus, the dominant component of the tidal potential

has the spherical harmonic degree ; = 2 and azimuthal order < = 2

(Ogilvie 2014). In the frame rotating with the fluid at the rate ΩB ,

the resulting (dimensionless) flow is in the GH-plane and takes the

form (e.g. Barker & Lithwick 2013)

[0 = −
lC V

2

(
sin(lC C) cos(lC C)

cos(lC C) − sin(lC C)

) (
G

H

)
, (6)

where V ≪ 1 is the dimensionless tidal amplitude (roughly the ratio

of tidal displacement to unperturbed radius), lC = 2 (�−1 − �−1
>A1

)

is the dimensionless forcing frequency and �−1
>A1

= (Ω>A1'
2)/a is

the dimensionless orbital frequency.

2.3 Numerical modeling

We follow the numerical implementation introduced in Vidal &

Barker (2020) to account for tidal flows. The nonlinear equations

(3) are solved in their weak variational form by using the spectral-

element code Nek5000 (e.g. Fischer et al. 2007). The computational

domain is decomposed into 3584 non-overlapping hexahedral ele-

ments. Within each element, the velocity (and pressure) is repre-

sented as Lagrange polynomials of order N (respectively, N − 2)

on the Gauss-Lobatto-Legendre (Gauss-Legendre) points. Tempo-

ral discretization is accomplished by a third-order method, based

on an adaptive and semi-implicit scheme in which the non-linear

and Coriolis terms are treated explicitly, and the remaining linear

terms are treated implicitly. Solutions are de-aliased following the

3/2 rule, such that 3N/2 grid points are used in each dimension

for the nonlinear terms, whereas only N points are used for the

linear terms. We have checked the numerical accuracy in targeted

simulations by varying the polynomial order from N = 7 to N = 9.

'0, %A � D2E ;�

1 × 105, 1.0 +∞ (1.84 ± 0.1) × 101 (4.6 ± 0.8) × 10−1

3 × 105, 1.0 +∞ (3.18 ± 0.2) × 101 (3.9 ± 1.1) × 10−1

6 × 105, 1.0 +∞ (4.40 ± 0.2) × 101 (3.5 ± 1.1) × 10−1

1 × 106, 1.0 +∞ (5.64 ± 0.3) × 101 (3.2 ± 1.0) × 10−1

2 × 106, 1.0 +∞ (7.74 ± 0.4) × 101 (2.9 ± 1.0) × 10−1

4 × 106, 1.0 +∞ (1.00 ± 0.1) × 102 (2.5 ± 0.8) × 10−1

8 × 106, 1.0 +∞ (1.31 ± 0.1) × 102 (2.2 ± 0.2) × 10−1

1 × 106, 0.3 +∞ (1.43 ± 0.1) × 102 (2.5 ± 0.9) × 10−1

1 × 106, 1.0 10−1 (5.64 ± 0.3) × 101 (3.1 ± 1.0) × 10−1

1 × 106, 1.0 10−2 (4.86 ± 0.3) × 101 (2.9 ± 1.0) × 10−1

Table 1. Characteristics of (unperturbed) DNS with NS conditions. Rayleigh

number '0, Prandtl number %A , convective velocity D2E , and turbulent

length scale ;� .

The efficiency of tidal dissipation is investigated by computing

an effective volume-averaged viscosity coefficient a� , introducing

the volume average 〈·〉+ = (1/+)
∫
+
· d+ . The forcing amplitude V

must be large enough to obtain a measurable tidal response, but too

large values could strongly modify the results when the amplitude

of the tidal flow is much larger than the convective flow (e.g. see

in Penev et al. 2009; Duguid et al. 2020). Only small differences in

the properties of the convection have been found for the values of

V considered below (always smaller than a few percent for volume-

averaged quantities when V ≤ 5 × 10−2, not shown).

Finally, we initiated the convection with random noise to the

temperature field and let it saturate without tides (i.e. V = 0) for

most of the simulations, before switching on the equilibrium tidal

flow. We have checked that initiating the convection together with

the tidal flow does not lead to noticeably different results.

3 UNPERTURBED CONVECTION

We simulate highly super-critical convection with '0 ≫ '02 and

%A = 1, where the critical value for linear onset, computed using

a dedicated linear solver (Vidal & Schaeffer 2015; Monville et al.

2019), is '02 = 4019 with NS conditions (this corrects the value

given in Vidal & Barker 2020, which corresponds instead with the

critical value for stress-free BC). The parameters and outputs for the

DNS with V = 0 are summarized in table 1. The spatial spectrum

of the unperturbed convection is illustrated in figure 2. The spectra

are well converged with our adopted resolution and they exhibit

(small) inertial-like ranges, with a Kolmogorov scaling (∝ −5/3)

that emerges more clearly when '0 is increased.

For astrophysical applications, the convection is often char-

acterized using MLT by the (unperturbed) turbulent viscosity

a2E ∼ D2E ;� , with a typical amplitude of the flow D2E and a typi-

cal length scale of the turbulent eddies ;� . To define the convective

velocity D2E , we use the volume-averaged root-mean-square radial

velocity D2E = (〈D2
A 〉+ )1/2 that characterizes the radial mixing. We

find D2E ∝ '00.45 in the DNS (top panel in figure 3), which is in rea-

sonably good agreement with the MLT scaling ∝ '01/2 expected

in the fully turbulent regime (e.g. Spiegel 1971). This indicates

that the convective velocities in our DNS are in an approximately

diffusion-free regime, as is expected in stars and planets.

The length scale ;� is usually defined as a function of the local

pressure scale height in stellar interiors, but this definition cannot

be self-consistently employed in Boussinesq models. Estimating ;�
in global models is difficult (except for rapidly rotating convection,

MNRAS 000, 1–14 (2020)



4 J. Vidal & A. J. Barker

1 10 100

l

10−2

10−1

100

101

102

103

104

−5/3

Ra = 3e5

Ra = 6e5

Ra = 1e6

Ra = 2e6

Ra = 4e6

Ra = 8e6

100 101 102
10−1

101

103

r ≤ 0.6

Figure 2. Instantaneous volume-averaged spectrum of the kinetic energy, as

a function of the spherical harmonic degree ; ≥ 1 (using orthonormalized

spherical harmonics). Thick black line shows the Kolmogorov power law

;−5/3. Spectra have been computed by interpolating the data to a spherical

grid, and then by performing a spherical harmonics analysis (Schaeffer

2013). Inset shows the volume-averaged spectra restricted to A ≤ 0.6.
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Figure 3. Top panel: Convective velocity D2E as a function of '0 in DNS.

Bottom panel: Length scale ;� as a function of '0. Dashed line is the

power law ;� = 3.17'0−0.17. Horizontal line indicates the value ;� = 1/3

considered in Vidal & Barker (2020) with '0 = 106.
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Figure 4. Frequency spectrum of the convective flux 〈DAΘ〉+ in DNS with

'0 = 4 × 106. Inset panel shows the convective (angular) frequency l2E

as a function of '0.

as reported in Guervilly et al. 2019), but a useful characterization of

turbulent flows is the Taylor wavenumber :) (e.g. Rieutord 2014)

:) =

√
〈|∇ × u |2〉+ /〈|u |2〉+ , (7)

from which we can estimate a turbulent length scale as ;� = c/:)
(based on the half wavelength). Note that this scale does not rep-

resent the energetically-dominant eddies, but a scale intermediate

between the “outer scale" and the dissipation scales, and fairly rep-

resents the mean size of the eddies in the turbulent cascade. Indeed,

in our DNS that do not possess very long inertial ranges, ;� works

reasonably well to define the typical size of the turbulent eddies

(which we have verified by visual inspection of the flow). We show

in figure 3 (bottom panel) the evolution of ;� as a function of '0 in

the DNS, and observe that the length scale displays the power law1

;� ∝ '0−0.17. It also agrees with the value ;� ≃ 1/3 at '0 = 106,

which was considered in Vidal & Barker (2020).

An estimate of the the convective (angular) frequency l2E
is also required. By analogy with stellar models, one can define

the convective frequency based on the input parameters (as also

considered in Ogilvie & Lesur 2012). To do so, we introduce the di-

mensionless Brunt-Väisälä frequency # (A) given here by #2 (A) =

−2A2 '0/%A , and define a typical convective frequency l2E ∼ |#0 |

with the mean radial value |#0 | = |#2 (1) |1/2/2 ∝ ('0/%A)1/2,

whose scaling agrees with MLT (e.g. Spiegel 1971). Alternatively,

a more accurate definition could be based on the turbulent prop-

erties of the convective flows. In the following, we compute the

frequency spectrum of the time series - (C) defined as |F {- (C)}|,

1 A similar scaling for ;� can be obtained by considering that it should scale

like the geometric mean ;� ∼ ([')0.5, with the outer scale ' ∼ 1 and the

dissipation scale [ ∼ '/'43/4 (Rieutord 2014), where '4 is a Reynolds

number of the large-scale eddies (assuming '4 ∼ '00.5, consistently with

figure 3). This gives ;� ∼ '0−0.19' in dimensional units.

MNRAS 000, 1–14 (2020)
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Figure 5. Frequency spectrum of 〈DGDH 〉+ for DNS with '0 = 4 × 106.

The thick dashed line shows the power law 1/l0.66, and the thick gray line

indicates the scaling 1/l2 expected for a Kolmogorov cascade.

where F is the Discrete Fourier Transform, as a function of the

angular frequency l. We first remove the mean value of the time se-

ries and then apply a Hanning window function before we compute

numerically the Fourier transform (using the FFT algorithm, and

normalizing by the length of the signal). One may define l2E as the

frequency that provides the maximum contribution to the convective

flux 〈DAΘ〉+ , but the convective frequency is actually poorly con-

strained from the spectrum of this quantity, which does not exhibit

a clearly defined peak (see figure 4). We choose to instead define

the convective frequency as l2E = D�/;� , to be consistent with

simple MLT expectations. We find that l2E ∝ '00.62 in the DNS

(see inset), which is quite close to the MLT prediction l2E ∝ '00.5

(e.g. Spiegel 1971).

We show in figure 5 the frequency spectrum of the Reynolds

stress component 〈DGDH〉+ , where the angular frequencies have

been normalized by l2E (bottom axis) and |#0 | (top axis), for the

illustrative DNS with '0 = 4 × 106. Several different regimes are

observed (which are also relevant for the spectrum of the kinetic

energy, not shown). For very low frequencies l2E . O(10−1), we

observe frequency-independent white noise. Within an intermediate

frequency range (here 10−1 . l/l2E ≤ O(1)), denoted below as

the anomalous range, the spectrum is characterized by an anomalous

1/lU power law with exponents U < 1 that vary with '0 and %A in

full spheres (as we will discuss further below). For larger frequencies

l/l2 ≥ O(1) in the turbulent cascade, the spectrum first displays

the power law 1/l2 expected for Kolmogorov turbulence (Landau

& Lifshitz 1987; Kumar & Verma 2018). Finally, the frequencies

belong to the dissipation range of the convection when l/l2 ≫ 1,

first with the power-law scaling 1/l4 in a narrow frequency interval

(as found in laboratory experiments, see in Liot et al. 2016) and then

with a steeper decay.

4 EFFICIENCY OF TIDAL DISSIPATION

4.1 Effective viscosity coefficient

We primarily extract the turbulent viscosity from our DNS by defin-

ing an effective viscosity coefficient a� , which is computed by bal-

ancing the mean rate at which convection does work on the tidal

flow with the mean rate of viscous dissipation of the latter flow (e.g.

Goodman & Oh 1997; Duguid et al. 2020; Vidal & Barker 2020).

This leads to a� = 〈aC (A, \, q)〉+ with

aC (A, \, q) = −
1

(lC V)2Δ)

∫ )

C0

u · [(u · ∇)[0] dC (8a)

and the integrand

u · [(u · ∇)[0] = −
lC V

2

[(
D2
G − D2

H

)
sin(lC C)

+2 DGDH cos(lC C)
]
, (8b)

where Δ) = ) − C0 is the time-interval used for integration (with

C0 being an appropriate initial time in the saturated regime). The

time average in expression (8a) is obtained by fitting a linear slope

to the cumulative time integral (e.g. see figure 13 in Duguid et al.

2020), to reduce turbulent noise. Global simulations in the presence

of large-scale tidal flows are very demanding, because they must

be run for a sufficiently long duration to reduce noise. We have

therefore integrated each simulation with a tidal flow for at least

one viscous time unit (i.e. Δ) ≥ 1), corresponding with more

than a hundred tidal periods, to obtain converged statistics for the

effective viscosity. Finally, since the background flow strictly does

not satisfy the boundary conditions in a sphere, we have verified that

the volume average is not dominated by regions near the boundary,

and is instead due to interactions with turbulent flows in the bulk

(not shown here, but see figure 5 in Vidal & Barker 2020).

We show in figure 6 the direct computations of a� in the DNS

with '0 = 106 and '0 = 4 × 106, assuming a tidal amplitude of

V = 5 × 10−2 (which is e.g. a relevant value for a solar-mass bi-

nary in a one-day orbit). We also over-plot the frequency spectrum

of the Reynolds stress component F
{
〈DGDH〉+

}
as the gray lines

in both panels. The clearest result evident in figure 6 is that a�
decreases as the ratio |lC |/l2E is increased, which means that the

efficiency of the dissipation is reduced for fast tides. For the particu-

lar DNS with '0 = 106, the two canonical frequency-reduction laws

(linear and quadratic) are approximately obtained, which were pre-

viously discussed in Vidal & Barker (2020). However, our more

thorough analysis reveals that the frequency-reduction law fol-

lows several successive power laws that are in good agreement

with the frequency spectrum of the unperturbed convection. Within

the anomalous (intermediate-frequency) range where the frequency

spectrum of the unperturbed convection varies as 1/lU (with power

exponents U < 1 in full spheres), the viscosity is reduced as

a� ∝ 1/(|lC |/l2E )
U. Then, for higher frequencies in the (nar-

row) turbulent cascade that displays the Kolmogorov power law

1/l2, the previous frequency-reduction scaling ceases to be valid

and is replaced by a quadratic reduction for the effective viscosity

(with only positive values).

Therefore, we obtain two successive frequency-reduction laws

for the effective viscosity for frequencies below the dissipation range

of the turbulence. Although our turbulent cascade corresponds here

to a narrow frequency interval, our results confirm that a Kol-

mogorov spectrum is associated with a quadratic reduction (as

postulated by Goldreich & Nicholson 1977, though it is unclear

whether their mechanism applies in detail). However, for smaller
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(b) '0 = 4 × 106

Figure 6. Direct measurements of the effective viscosity a� in non-rotating

DNS with %A = 1 and V = 5 × 10−2, as a function of |lC |/l2E

or |lC |/ |#0 |. Squares: a� > 0. Circles: a� < 0. Horizontal dashed

lines: MLT expectation a2E = D2E ;� in the low-frequency regime (i.e.

|lC | ≪ l2E ). The gray curve shows the frequency spectrum of 〈DGDH 〉+
for unperturbed convection with V = 0, as a function of the scaled angular

frequency |l |/l2E (same horizontal values as |lC |/l2E ). Background

colors refer to figure 5.

frequencies in the anomalous range (i.e. outside the turbulent cas-

cade), the frequency reduction of the effective viscosity is neither

quadratic nor linear, but follows instead the anomalous frequency

spectrum 1/lU of the convection. Moreover, the power exponent

U < 1 is reduced in full spheres when the Rayleigh number is in-

creased, for instance with U = 0.74 ± 0.05 when '0 = 106 and

U = 0.66 ± 0.05 when '0 = 4 × 106.
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Figure 7. Direct measurements of the effective viscosity a� in non-rotating

DNS as a function of |lC |/l2E (or |lC |/ |#0 |). DNS with '0 = 106,

%A = 0.3 and V = 5 × 10−2. Squares: a� > 0. Circles: a� < 0. Horizontal

dashed lines: MLT prediction a2E = D2E ;� . The gray curve shows the

frequency spectrum of 〈DGDH 〉+ for unperturbed convection with V = 0,

as a function of the scaled angular frequency |l |/l2E (same horizontal

values as |lC |/l2E ). Background colors refer to figure 5.

We show in figure 7 the effective viscosity measured in DNS

with '0 = 106 and %A = 0.3 (this is relevant for liquid metals,

e.g. Kaplan et al. 2017). Exploring cases with smaller %A is impor-

tant because %A in stellar or planetary convection zones is much

smaller than unity (e.g. Hanasoge & Sreenivasan 2014). The fre-

quency range of the Kolmogorov cascade is slightly larger in this

case compared to figures 6, and more importantly the transition be-

tween positive and negative values occurs at larger tidal frequencies

(within the dissipation range) but always when |a� | . a. Note also

that the value of the exponent U is different in the intermediate-

frequency regime, showing that U also depends on %A , which indi-

cates a parameter-dependence within the anomalous range.

Note that we have been unable to accurately determine a� in

the low-frequency regime (|lC | . l2E ) with these simulations.

This is because the amplitude of the tidal flow in this regime was

too weak to give a sufficiently strong signal-to-noise ratio. A crude

extrapolation of our results into the low frequency regime is broadly

consistent with expectations from MLT though, which would predict

a� ∝ a2E ∼ D2E ;� when |lC | → 0. The proportionality constant

is often assumed to be 1/3 without rigorous justification (e.g Zahn

1989; Ogilvie & Lin 2007), based on the analogy with kinetic

theory for a microscopic viscosity. Here we instead find values

close to 1, or in fact in excess of 1 if a� continues to follow the

spectrum for smaller |lC |/l2E , indicating more efficient dissipation

at low frequencies from this mechanism than the naive application

of MLT would predict. This result is broadly consistent with local

simulations (Duguid et al. 2020), and prior theoretical work obtained

with an idealized turbulence model (e.g. Goldman 2008).
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Figure 8. Direct measurements of the effective viscosity a� in non-rotating

DNS as a function of |lC |/l2E (or |lC |/ |#0 |), showing the transition

to negative values of a� . DNS with '0 = 106, %A = 1 and |lC | V =

20. Squares: a� > 0. Circles: a� < 0. Horizontal dashed lines: MLT

prediction a2E = D2E ;� . The gray curve shows the frequency spectrum

of 〈DGDH 〉+ for unperturbed convection with V = 0, as a function of the

scaled angular frequency |l |/l2E (same horizontal axis as |lC |/l2E ).

Background colors refer to figure 5.

4.2 Negative values

Statistically significant negative values of the turbulent viscosity are

were found in figures 6 and 7 for much higher frequencies within the

dissipation range, which are consistent with previous local results

and asymptotic theory (Ogilvie & Lesur 2012; Duguid et al. 2020).

The transition towards negative values is better illustrated in figure 8

using DNS with '0 = 106 and %A = 1, but with the fixed amplitude

|lC | V = 20 for the tidal flow (instead of fixing V). This allows

us to investigate more efficiently the transition between positive

and negative values, without disturbing (to the same extent) the

frequency spectrum of the convection contrary to figures 6-7 (for

which the amplitude of the tidal flow increases when |lC | increases,

see figure 3 in Vidal & Barker 2020). In the narrow frequency

interval where the frequency spectrum displays a 1/l4 power law,

we find that the eddy viscosity is reduced by the same amount but

has positive values. For larger frequencies within the dissipation

range, the effective viscosity changes sign and then follows a generic

quadratic reduction once |a� | . a.

For very high frequencies, our results indicate that |a� | ∝

(|lC |/l2E )
−2 even for these negative values, consistently with

asymptotic theory (Ogilvie & Lesur 2012; Duguid et al. 2020).

Moreover, since the change of sign of a� seems to occur when

|a� |/a . 1 in dimensional units (corresponding with frequencies

|lC | firmly within the dissipation range), this probably indicates

that the observed negative values are not astrophysically relevant

but result from (necessarily) adopting simulation parameters that

are far removed from their astrophysical values (see below).
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(a) '0 = 106
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(b) '0 = 4 × 106

Figure 9. |ℜ4 ( â�,GH) | (red squares) and |ℑ< ( â�,GH) | (blue circles) of

the contribution to the effective viscosity defined by equation (9a), as a

function of |lC |/l2E in DNS with %A = 1 and V = 5× 10−2. Background

colors refer to figure 5.

4.3 Complementary analysis

We can alternatively compute the effective viscosity associated with

each component of the volume-averaged Reynolds stress by relating

the stress to the time history of the rate of strain (thus accounting

for the oscillatory nature of the tidal flow, see e.g. Ogilvie & Lesur

2012). In the Fourier domain, this gives

F {〈DGDH〉+ } = â�,GH lC V F {cos(lC C)}, (9a)

F {〈D2
G〉+ } = â�,GG lC V F {sin(lC C)}, (9b)
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8 J. Vidal & A. J. Barker

and similarly for F {〈D2
H〉+ }, where [â�,GH , â�,GG] are complex-

valued quantities.

In the regime of high-frequency tidal forcing (|lC | ≫ l2E ),

Ogilvie & Lesur (2012) and Duguid et al. (2020) used asymptotic

theory to demonstrate the visco-elastic nature of the tidal response

for quantity (9a), using a simple oscillatory shear. In the latter ex-

pression, the real part ℜ4 (â�,GH) represents a turbulent viscosity

(which is in phase with the tidal shear and out of phase with the tidal

displacement) associated with this component of the flow, which

provides a contribution to the total a� . Asymptotic theory indi-

cates that for high frequencies, this quantity should scale as |lC |
−2

(with possibly negative values). On the other hand, the imaginary

part ℑ< (â�,GH) is related to an effective elasticity (which is out of

phase with the tidal shear and in phase with the tidal displacement)

and should obey a linear reduction |lC |
−1 in that regime (indicat-

ing an effective elastic modulus that is independent of frequency).

We show in figure 9 direct computations of â�,GH from equation

(9a) for two different values of '0, which confirm the universal

nature of the visco-elastic response of 〈DGDH〉+ at high tidal fre-

quencies (here |lC |/l2E ≥ O(10)). We broadly obtain a linear

reduction |ℑ< (â�,GH) | ∝ |lC |
−1 in the high-frequency regime, and

we also recover the expected scaling in |lC |
−2 for the turbulent

viscosity |ℜ4 (â�,GH) | in this regime. The latter is always smaller

than |ℑ< (â�,GH) |, indicating a primarily elastic response to high

frequency shear, with a weaker viscous component.

However, this asymptotic theory does not apply for the lower

forcing frequencies |lC |/l2E ≤ 10 that we consider here. Indeed,

for these lower frequencies, |ℜ4 (â�,GH) | and |ℑ< (â�,GH) | have

comparable magnitudes, and the viscous component can even dom-

inate. Hence, the predictions of the asymptotic theory cannot be

strictly invoked to support the quadratic reduction for lower frequen-

cies than those contained in the dissipation range of the convection

in our simulations. Instead, we find that the a� behaves similarly to

the frequency spectrum of 〈DGDH〉+ (e.g. figure 6), indicating that

this is a key quantity governing the frequency-reduction of the eddy

viscosity in our simulations.

We also illustrate in figure 10 the contribution to a� from

ℑ< (â�,GG) computed from (9b). Similar results are obtained for

the 〈D2
H〉+ component (since DG and DH play symmetrical roles,

not shown). The amplitude of the effective viscosity contribution

from this component is in broad quantitative agreement with figures

6 and 9, which cross-validates our computations for the turbulent

viscosity. This also agrees with Penev et al. (2009), who showed that

the effects of convective turbulence on a large-scale oscillatory shear

flow is fairly well represented by an effective viscosity coefficient.

4.4 Inclusion of weak rotation

We now introduce global rotation to assess the robustness of the

observed frequency-reduction laws for slowly rotating stars or

planets. One measure for the degree of rotational constraint in

convection-driven flows is given by the convective Rossby number

'>2 = �
√
'0/%A. Weakly rotating convection is believed to ap-

proach non-rotating convection (e.g. Gastine et al. 2016; Long et al.

2020), and so quantitatively similar results are expected for the tur-

bulent viscosity when '>2 ≫ 1 (as considered below). We show

in figure 11 the DNS with '>2 = 102 (� = 10−1) and '>2 = 101

(� = 10−2). By comparison with figure 6a, we observe values of

a� that are close to the ones obtained in the non-rotating DNS.

Our results indicate here that weak global rotation does not

significantly modify the frequency-reduction laws of a� found in
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Figure 10. Effective viscosity contribution |ℑ< ( â�,GG ) | computed from

expression (9b), as a function of |lC |/l2E in DNS with '0 = 106, %A = 1

and V = 5 × 10−2. Background colors refer to figure 5.
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Figure 11. Direct measurements of the effective viscosity a� in weakly

rotating DNS with '0 = 106, %A = 1 for tidal amplitude V = 5 × 10−2,

as a function of |lC |/l2E (or |lC |/ |#0 |). Red squares: a� > 0 in DNS

with '>2 = 102 (� = 10−1) and V = 5 × 10−2. Empty circles: a� < 0

in DNS with '>2 = 102 (� = 10−1) and V = 5 × 10−2. Empty triangles:

a� < 0 for DNS with '>2 = 101 (� = 10−2) and V = 10−2. The horizontal

dashed lines indicate the MLT expectation a2E ∼ D2E ;� for '>2 = 102

(� = 10−1), and the gray curve shows the frequency spectrum of 〈DGDH 〉+
for unperturbed DNS with '>2 = 102 (� = 10−1) as a function of l/l2E

(same horizontal axis as |lC |/l2E ). Background colors refer to figure 5.
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non-rotating spherical convection. Yet, rapid rotation is known to

strongly affect spherical convection (e.g. Guervilly et al. 2019),

and is therefore believed to strongly modify the effective viscos-

ity when '>2 ≪ 1 (Mathis et al. 2016). Another complication

with incorporating rapid rotation in our model is that the tidal

(elliptical) instability can be triggered for large enough V when

−1 ≤ Ω>A1/ΩB = �/�>A1 ≤ 3 (Barker et al. 2016; Vidal & Cébron

2017). Further work is required to explore this regime, which might

be relevant for giant planets or young rapidly rotating stars.

5 DISCUSSION

5.1 Non-Kolmogorov turbulent spectrum

Our DNS have shown that the frequency-reduction of the eddy

viscosity is directly correlated with the frequency spectrum of the

convection (which is largely unaltered by the tidal flow). Outside the

dissipation range of the convection, we have recovered the quadratic

reduction for frequencies in the Kolmogorov cascade (Goldreich

& Nicholson 1977), but for lower frequencies where the frequency

spectrum is less steep than the Kolmogorov spectrum, we have found

a new frequency reduction that is surprisingly smaller than the linear

suppression proposed by Zahn (1966). One could look at the scales

that dominate the effective viscosity to get further physical insight

into this problem. Zahn (1966) indeed assumed that the dissipation

is dominated by the largest eddies, whereas Goldreich & Nicholson

(1977) assumed that the ‘resonant eddies’ dominate the dissipation.

To this end, we illustrate in figure 12 the radial dependence of

the turbulent viscosity for the illustrative DNS with '0 = 106 and

V = 5 × 10−2 for different tidal frequencies. We show the power

spectrum (normalized by its maximum value) of the ; = < = 0

component (i.e. the surface-average per shell) of quantity (8a) as a

function of the radius A. Within the anomalous range (|lC |/l2E & 1

in figures 12a-b), the eddy viscosity is dominated by turbulent ed-

dies deep in the interior. We also find a significant contribution of

the interior eddies in figure 12d, for DNS with much higher frequen-

cies |lC |/l2E ≥ 10 (i.e. characterized by the quadratic suppression

with negative values), but smaller-scale turbulent interactions are

also triggered nearer the surface (except in the outer thin thermal

boundary layer). These radial profiles do not allow us to disentangle

easily the length scales that are responsible for the various scaling

laws for a� . However, they do show a tendency for larger radii to

contribute more at high frequencies. This trend might be expected

if the ‘resonant eddies’ at each radius (with frequencies comparable

with |lC |) are important, since the convective heat flux increases

with radius such that the local convective eddies have larger fre-

quencies nearer the surface. However, our simulations do not pro-

vide convincing support for this hypothesis (see also in Duguid et al.

2020).

In light of our findings, we have revisited the numerical results

of Penev et al. (2009) from an independent viewpoint. Indeed, they

argued that the observed linear scaling for the effective viscosity

in their DNS was due to the shallower than Kolmogorov frequency

spectrum of the convection. Hence, one might wonder whether

their DNS were subject to 1/lU dynamics (as found in our DNS).

We reproduce in figure 13 the frequency power spectrum of the

convective flows in their DNS. The spectra are less steep than the

expected Kolmogorov spectrum 1/l2, in broad agreement with the

power law 1/lX with2 X ≈ 1.2. The latter value is incompatible

with our results, since we have always found 1/lU power laws with

U < 1 within the anomalous range. Instead, the reduction factor

for a� obtained by Penev et al. (2009) could result from eddies

in a turbulent cascade (as in Goldreich & Nicholson 1977), but

only if the theoretical scaling for a� is modified to account for

spatial spectra with non-standard power exponents (≠ −5/3) in the

turbulent cascade.

Indeed, a simple predictive theory can be developed for incom-

pressible flows, which relates the power exponent X of the frequency

spectrum to the power exponent Λ of the spatial spectrum of the

turbulent kinetic energy, such that (Goldman & Mazeh 1991)

Λ =
3X − 1

1 + X
, X =

1 + Λ

3 − Λ
. (10a,b)

Standard Kolmogorov turbulence withΛ = 5/3 gives X = 2 (Landau

& Lifshitz 1987), as considered by Goldreich & Nicholson (1977).

We can then deduce from (10) that the frequency-reduction of the

eddy viscosity is a� ∝ 1/|lC |
X (see the derivation Appendix A in

Goldman & Mazeh 1991). Note that the 1/lU spectra observed in

our DNS with U < 1 cannot be explained by the latter theory, since

the spatial exponentΛ predicted by (10) that is required to match X <

1 does not agree with the observed spatial spectra in figure 2. A non-

Kolmogorov “cascade" with Λ ≠ 5/3 could be produced by scale-

dependent buoyant driving or non-negligible viscous damping, and

it might also result from anisotropic or inhomogeneous turbulence.

We show in figure 14 the time-averaged spatial power spectra

of the velocity components reported in Penev et al. (2009). To

be more consistent with the incompressible theory, we have only

shown the power spectra of the horizontal velocity components as

a function of the horizontal wave numbers :G and :H (since their

anelastic results could differ more importantly from this simple

incompressible theory in the vertical direction, as a result of their

adopted density stratification). The spatial spectra, which are clearly

flatter than the Kolmogorov spectrum (i.e. with Λ ≤ 5/3), are in

good agreement with the power law :−Λ
8

with the exponentΛ = 1.18

given by expression (10a) assuming X = 1.2 (see figure 13).

Finally, we reproduce in figure 15 the horizontal effective eddy

viscosity coefficient, computed from the DNS of Penev et al. (2009),

as a function of ( |lC |/l2E )
−1 using Penev’s representation. Even

if the measurements are subject to relatively large uncertainties, the

frequency-reduction of the eddy viscosity in the fast tide range (here

( |lC |/l2E )
−1 ≤ 1) is in good agreement with our prediction using

equation (10) assuming X = 1.2. Moreover, our theory is also more

consistent with the fact that the eddies with convective timescales

close to the tidal forcing period were responsible for most of the

dissipation in the compressible DNS, as reported by Penev et al.

(2009) (contrary to Zahn’s assumption). Therefore, the fact that

frequency-reduction law reported in Penev et al. (2009) appears

broadly consistent with a linear suppression cannot be taken to

conclusively support Zahn’s prescription.

To summarize, very different frequency spectra can be gen-

erated by turbulent convection, leading to different prescriptions

for the frequency-suppression law of the eddy viscosity. They can

manifest in the form of anomalous 1/lU power laws for low to

intermediate frequencies, such that the frequency-reduction law of

the eddy viscosity is expected to be directly correlated with the

anomalous frequency spectrum (as reported here). Additionally,

the convection can also exhibit a turbulent cascade that is less steep

2 The exponent X given in figure 3 has a typo in Penev et al. (2009), which

has been corrected in Penev et al. (2011).
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Figure 12. Normalized power spectrum of the time-averaged ; = < = 0 component (i.e. average on a spherical shell) of equation (8a) as a function of radius A

in DNS with '0 = 106, %A = 1 and V = 5 × 10−2. These indicate the radii that provide the dominant contribution to a� .

than the Kolmogorov spectrum (e.g. Penev et al. 2009), such that the

quadratic reduction factor of the eddy viscosity initially proposed

by Goldreich & Nicholson (1977) ought to be modified accordingly.

5.2 Astrophysical implications

Our findings indicate that the frequency dependence of the eddy vis-

cosity is surprisingly much more complex than initially proposed

by Zahn (1966) and Goldreich & Nicholson (1977). We can quali-

tatively extrapolate our findings to weakly rotating stellar interiors

as illustrated in figure 16. For very low frequency forcing, stan-

dard expectations from MLT (e.g. Spiegel 1971) predict the eddy

viscosity to scale as a� ∼ D2E ;� ∝ ('0/%A)1/2 in dimensionless

units, independently of the tidal frequency when |lC |/l2E ≪ 1.

The latter scaling is consistent with constant tidal lag-time models

(e.g. Alexander 1973; Hut 1981; Eggleton et al. 1998), which are

commonly applied in astrophysics. However, since this model is

only valid for very low tidal frequencies (|lC | ≪ l2E ), the con-

stant time-lag model should not be used for the majority of tidal

applications, particularly those in which |lC | & l2E .

In the presence of fast tides |lC |/l2E ≥ 1, the effective vis-

cosity ought to be reduced. A 1/|lC |
U power-law reduction is first

expected, with shallow exponents U < 1. Secondly, for frequencies

in a turbulent cascade that is characterized by a power-law spatial

spectrum with an arbitrary exponentΛ, the effective viscosity should

be reduced as a� ∝ 1/|lC |
(1+Λ)/(3−Λ) (Goldman & Mazeh 1991).

This gives a quadratic reduction for standard Kolmogorov turbu-

lence (as proposed by Goldreich & Nicholson 1977). This quadratic

reduction is probably the relevant one in stars and planets (e.g. Gol-

dreich & Keeley 1977), but further work is required to assess this

hypothesis with more realistic compressible (or anelastic) models.

Finally, for much higher frequencies, the eddy viscosity may exhibit

a quartic reduction a� ∝ 1/|lC |
4 in a narrow transition range to-

wards the dissipation scales of the turbulence, and then a quadratic

suppression |a� | ∝ 1/|lC |
2 with possibly negative values for tidal

frequencies further into the dissipation range when |a� | . a (see

also in Ogilvie & Lesur 2012; Duguid et al. 2020).

Based on our results, robust quantitative extrapolation is cur-

rently challenging beyond the aforementioned qualitative picture.

The latter two frequency regimes may be not relevant in astro-
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Figure 13. Frequency spectra of the three velocity components [DG , DH , DI ]

in anelastic DNS, obtained from figure 3 in Penev et al. (2009).

physics, because they would require very large values of |lC |/l2E .

MLT indeed predicts l2E ∝ ('0/%A)1/2 in the fully turbulent

regime (in broad agreement with our DNS, as shown in the in-

set panel in figure 4). For solar-like stars, typical values for the

Rayleigh and Prandtl numbers are indeed '0 = 1019 − 1024 and

%A = 10−6 − 10−4 (Hanasoge & Sreenivasan 2014), such that

the turbulent cascade should extend to much higher frequencies,

and the lower bound of the dissipation range should be shifted

to |lC |/l2E ≫ O(10), compared with our simulations. Values

a� ≫ a are thus expected in most stellar interiors. Negative values

a� ≤ 0 may be theoretically possible in stellar interiors, but very

large values of |lC | would probably be required, which are likely to

be unrealistic for large-scale tidal flows. The turbulent convective

damping of the acoustic modes (Goldreich & Keeley 1977) also

provides an indirect viewpoint that may suggest that the observed

negative values are not physically relevant. Indeed, if the observed

correlation between the frequency spectrum of the convection and

the frequency-reduction law of the eddy viscosity is generic, then

the turbulent cascade should extend until very large frequencies3

because a quadratic reduction of positive eddy viscosities is proba-

bly required to explain the damping of these modes (e.g. Goldreich

et al. 1994; Samadi et al. 2001).

The power spectrum observed within the anomalous range may

naively appear as a transition between the zero-frequency and the

Kolmogorov-like scalings (as in Goldman 2008). However, this is

more probably an occurrence of 1/lU turbulent noise (Niemann

et al. 2013), which is a robust feature of various turbulent flows

(e.g. Herault et al. 2015a; Pereira et al. 2019). This power spectrum

may thus exist in turbulent stellar (or planetary) interiors, resulting

from the long-term properties of the turbulent flows (according

to prior statistical theories, e.g. Herault et al. 2015b). We have

unfortunately found here power exponents U < 1 that vary with

'0 and %A in full spheres (see the slopes in figures 6a and 7, both

3 The acoustic modes have much larger frequencies than those of tidal

forcing.
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Figure 14. Time-averaged horizontal power spectrum of the velocity com-

ponents [DG , DH ] in anelastic DNS (obtained from the top panels of figure 3

in Penev et al. 2009), as a function of the horizontal wave numbers [:G , :H ]

in plane-layer geometry.
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Figure 15. Comparison between theory (10), linear reduction, and direct

measurements of the eddy viscosity (denoted here  0
1212

) in compressible

DNS (extracted from the weak forcing case of figure 12 in Penev et al.

2009). The two data sets (red squares and blue circles) have been computed

using two different methods (see details in Penev et al. 2009). Two power

laws  0
1212

∝ ( |lC |/l2E )
−X with X = 1.2 have been drawn (one for each

data set in the range ( |lC |/l2E )
−1 ≤ 1).
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Figure 16. Expected behavior of a� as a function of |lC |/l2E in turbulent

stellar interiors. Laminar viscosity a, turbulent viscosity a� ∼ D2E ;�
(MLT) in the low-frequency regime. Λ is the power exponent of the spatial

spectrum of the kinetic energy. Background colors refer to figure 5.

obtained at '0 = 106), contrary to preliminary findings in plane-

layer geometries (with U ≃ 0.5, which will be presented elsewhere).

This indicates an important model-dependence to the anomalous

range, and so we cannot currently extrapolate the numerical values

of U for very turbulent interiors.

Our DNS also suggest that a� could be reduced (over its low

frequency asymptotic value) for smaller frequencies |lC |/l2E . 1

as indicated in figure 16, because the anomalous range may extend

until |lC |/l2E ≃ O(0.1) or perhaps below (as observed in the

various frequency spectra). Yet, since computations of the low-

frequency spectrum of turbulent flows are very challenging, we

have been unable to directly measure the eddy viscosity within the

low-frequency regime, and we do not have very reliable estimates

of the transition values between the two regimes for very turbulent

stellar interiors.

To illustrate one of the uncertainties in applying our results,

we briefly explore how the theoretical timescales for binary spin

synchronization are affected by changes in the slope U of the

anomalous regime. To do so, we consider a continuous piece-wise

power-law profile for a� based on our simulations (as illustrated

in figure 16). We adopt a� = D2E ;� for lC/l2E ≤ 0.3, then

a� ∝ 1/|lC |
U for 0.3 < |lC |/l2E < 3, and finally a� ∝ 1/|lC |

2

when |lC |/l2E ≥ 3 (discarding the possible negative values of

a� ). We consider the values 0.5 ≤ U ≤ 1 that span our simulations.

We use main-sequence stellar models computed with MESA (see

Appendix A for further details), where D2E and ;� are here the con-

vective velocity and mixing length that vary with stellar radius, and

l2E = D2E/;� . We calculate the correct equilibrium tide in con-

vective regions (Terquem et al. 1998; Ogilvie 2014), which differs

from the commonly-adopted but strictly incorrect equilibrium tide

of Zahn (1989), and then compute the dissipation integral. We thus

obtain a tidal quality factor &′
eq, from which the timescale for tidal

synchronization of the stellar spin of the primary star interacting

with a companion of mass "2 is (after correcting a typographical

error in formula (7) of Vidal & Barker 2020)

gΩ =
2&′

eq

9cA2
6

(
" + "2

"2

)2 %4
>A1

%2
3H=

%B
, (11)

where A2
6 is the dimensionless squared radius of gyration, %3H= =

10−1 100 101

Porb
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108

109

1010

1011
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M/M⊙ = 0.5

M/M⊙ = 0.8

M/M⊙ = 1

M/M⊙ = 1.2

Figure 17. Synchronization timescale gΩ (in years), as a function of %>A1
(in days), due to convective damping of the equilibrium tide (e.g. Terquem

et al. 1998; Ogilvie 2014), for a star of mass " with the initial spin period

%B = 10 days. The companion has a fixed mass "2 = "⊙ . Viscosity

prescription based on figure 16 with 0.5 ≤ U ≤ 1 within the anomalous

range 0.3 < |lC |/l2E < 3, and a quadratic reduction when |lC |/l2E ≥

3 (i.e. with Λ = 5/3). Solid lines (respectively dashed lines) have been

computed with U = 0.5 (respectively U = 1).

2c/(�"/'3)1/2 is the dynamical timescale, %>A1 = 2c/Ω>A1
is the orbital period, and %B = 2c/ΩB is the (initial) spin pe-

riod. We show in figure 17 the results for gΩ as a function of

%>A1 with "2 = "⊙ (where "⊙ is the solar mass) and %B = 10

days in each case, for a range of main-sequence stellar models

with masses "/"⊙ ∈ [0.2, 0.5, 0.8, 1.0, 1.2] that correspond to

the stellar ages [2.9, 3.3, 2.6, 4.7, 2.9] Gyr. This shows that for an

anomalous regime spanning a decade in frequency, uncertainties in

U only affect gΩ by a factor of two or three (except near spin-orbit

synchronization at %>A1 = %B = 10). On the other hand, if the

anomalous range is much wider, uncertainties in U could have more

important effects on gΩ (not shown).

Finally, the power spectrum of the turbulent cascade is also un-

certain. Kolmogorov spectra have been robustly reported for Boussi-

nesq convection (Kumar & Verma 2018), but compressible convec-

tion (e.g. Penev et al. 2011; Horst et al. 2020) may display different

non-Kolmogorov spectra (depending on the convection setup). Fur-

ther work is required to characterize the frequency spectrum of more

realistic stellar convection so that we can robustly apply our results

to astrophysical tidal evolution.

6 CONCLUDING REMARKS

In this paper, we have revisited numerically the long-standing con-

troversy regarding the interaction between equilibrium tidal flows

and turbulent convection. We have conducted DNS of thermal con-

vection within an idealized global model of a fully-convective fluid

body, which is a simple analogue of a low-mass star or core-less

giant planet, to measure the turbulent viscosity a� acting on the

large-scale equilibrium tidal flow.

Our results have highlighted that quantifying the efficiency of

tidal dissipation resulting from this mechanism is more complex

MNRAS 000, 1–14 (2020)
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than was previously believed. Indeed, we have found that neither

the often-disputed linear (Zahn 1966) or quadratic (Goldreich &

Nicholson 1977) scaling laws for the turbulent viscosity are gener-

ally valid for tidal frequencies |lC | that exceed the dominant con-

vective turnover frequency l2E . Instead, we have demonstrated that

the frequency-reduction law of the eddy viscosity is correlated with

the frequency spectrum of the unperturbed convection, and we have

obtained here various scaling laws in our DNS.

The eddy viscosity is first reduced as a� ∝ 1/|lC |
U for tidal

frequencies below those in the turbulent cascade, with shallow expo-

nents U < 1. Then, for frequencies in a turbulent Kolmogorov-like

cascade with the spatial power exponent Λ, we have consistently

combined our numerical findings with Penev’s previous results to

show that a� ∝ 1/|lC |
(1+Λ)/(3−Λ) . For the standard Kolmogorov

cascade, which is probably the relevant one over a broad range of

scales in stars or planets (as supported by observations of solar

acoustic modes, e.g. Goldreich & Keeley 1977; Samadi et al. 2001),

Λ = 5/3, leading to a� ∝ 1/|lC |
2 (Goldreich & Nicholson 1977).

However, further work is required to explore the robustness of this

scaling in more realistic (compressible or anelastic) models. Our

results finally support the universality of the quadratic reduction

law |a� | ∝ |lC |
−2 for very high frequencies in the dissipation range

of the convection, which is consistent with asymptotic predictions

when |lC |/l2E ≫ 1 (Ogilvie & Lesur 2012; Duguid et al. 2020).

Our findings have important consequences for interpreting

astrophysical observations such as those that constrain tidal syn-

chronization and circularization of main-sequence binaries (e.g.

Meibom & Mathieu 2005; Meibom et al. 2006; Van Eylen et al.

2016; Lurie et al. 2017; Triaud et al. 2017) and the circulariza-

tion of evolved stars (Verbunt & Phinney 1995; Beck et al. 2018;

Price-Whelan & Goodman 2018). Indeed, it appears that further

fundamental knowledge of stellar convection is required before we

can be confident in modeling the tidal evolution of astrophysical

systems due to this mechanism. Hence, further work is required to

understand the properties of more realistic convection models in the

presence of oscillatory tidal flows. The transitions between the var-

ious regimes observed in our DNS remain for instance poorly con-

strained, since we have necessarily adopted simulation parameters

that are far removed from their astrophysical values, and so should

be further explored in more realistic models of stellar convection.

The anomalous 1/lU spectrum should be also further investigated

as a function of '0/%A , as well as the slope of power spectrum

of the turbulent cascade, which would be very challenging numer-

ically in more turbulent setups. Astrophysical extrapolations also

employ crude applications of MLT to the low-frequency regime,

which is known not to be accurate in detail (e.g. Goldman 2008)

and departures from MLT have been found in DNS of compress-

ible convection (e.g. Anders et al. 2019). Hence, MLT predictions

should be carefully compared to more turbulent DNS of convection.

We have considered only circular orbits in this paper, but dif-

ferent tidal components generally coexist (e.g. for eccentric orbits,

see in Ivanov & Papaloizou 2004; Vick & Lai 2020) and they could

be damped at different rates (e.g. Lai 2012). We have also neglected

dynamical tides (e.g. Ogilvie & Lin 2007), although their interaction

with convection may be important when inertial waves are excited.

Indeed, tidally-excited inertial waves (restored by Coriolis forces)

may be the key driver of binary circularization and synchroniza-

tion in sufficiently rapidly rotating stars (e.g. Ogilvie & Lin 2007;

Goodman & Lackner 2009; Ivanov et al. 2013; Favier et al. 2014).

Finally, note that our simple physical picture should remain

qualitatively valid in weakly rotating interiors (i.e. slow rotators).

However, rapid rotation is known to strongly affect convection-

driven turbulence, as reported in DNS of plane-layer (e.g. Barker

et al. 2014; Currie et al. 2020) and spherical convection (e.g. Kaplan

et al. 2017; Guervilly et al. 2019), and it has also been proposed

that it could modify the effective viscosity (Mathis et al. 2016). Fur-

ther work is required to explore rapidly rotating convection, which

might be relevant for giant planets or young rapidly rotating stars.

Since the frequency spectrum of the convection could be strongly

impacted by rapid global rotation, the interactions between tidal

flows and convection is worth investigating for these applications.

Nonlinear tidal flows can also be triggered in rapidly rotating inte-

riors for sufficiently large tidal deformations (such as the elliptical

(tidal) instability, e.g. Barker et al. 2016; Vidal & Cébron 2017),

which could enhance tidal dissipation for the shortest orbital periods

(Barker 2016; Vidal et al. 2018, 2019). Understanding the interplay

of these flows with convection also deserves future work.
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APPENDIX A: MESA CODE PARAMETERS

We use MESA version 12778 (Paxton et al. 2011, 2013, 2015,

2018, 2019). The inlist file that we use is given below. We alter

initial_mass to generate a given stellar model.

&star_job

create_pre_main_sequence_model = .true.

/ !End of star_job namelist

&controls

! starting specifications

initial_mass = 1.0

initial_z = 0.02d0

MLT_option = ’Henyey’

max_age = 5.0d10

max_years_for_timestep = 1.0d8

use_dedt_form_of_energy_eqn = .true.

use_gold_tolerances = .true.

mesh_delta_coeff = 0.3

when_to_stop_rtol = 1d-6

when_to_stop_atol = 1d-6

/ !End of controls namelist

This paper has been typeset from a TEX/LATEX file prepared by the author.
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