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1 INTRODUCTION

ABSTRACT

Turbulent convection is thought to act as an effective viscosity (vg) in damping tidal flows
in stars and giant planets. However, the efficiency of this mechanism has long been debated,
particularly in the regime of fast tides, when the tidal frequency (w) exceeds the turnover
frequency of the dominant convective eddies (w.). We present the results of hydrodynamical
simulations to study the interaction between tidal flows and convection in a small patch of a
convection zone. These simulations build upon our prior work by simulating more turbulent
convection in larger horizontal boxes, and here we explore a wider range of parameters. We
obtain several new results: 1) v is frequency-dependent, scaling as w ™~ when w/w, < 1, and
appears to attain its maximum constant value only for very small frequencies (w/w, < 1072).
This frequency-reduction for low frequency tidal forcing has never been observed previously.
2) The frequency-dependence of vg appears to follow the same scaling as the frequency
spectrum of the energy (or Reynolds stress) for low and intermediate frequencies. 3) For high
frequencies (w/we 2 1 —5), ve « w™2. 4) The energetically-dominant convective modes
always appear to contribute the most to vg, rather than the resonant eddies in a Kolmogorov
cascade. These results have important implications for tidal dissipation in convection zones of
stars and planets, and indicate that the classical tidal theory of the equilibrium tide in stars and
giant planets should be revisited. We briefly touch upon the implications for planetary orbital
decay around evolving stars.

Key words: hydrodynamics — convection —binaries: close — planet-star interactions — planetary
systems — stars: rotation

dissipation of tidal energy. For example, tidal excitation of internal
gravity waves (e.g. Goodman & Dickson 1998; Ogilvie & Lin 2007;

Understanding tidal interactions is important because they drive
spin and orbital evolution in a wide range of astrophysical systems.
In many such systems the influence of tides has been inferred, such
as from the distribution of eccentricities (Meibom & Mathieu 2005;
Geller & Mathieu 2012; Van Eylen et al. 2016; Triaud et al. 2017;
Nine et al. 2020) and spin periods of close binaries (Meibom et al.
2006; Lurie et al. 2017). In other cases the effects of tides have been
directly observed, such as the tidally-excited oscillations of heart-
beat stars (Welsh et al. 2011; Zimmerman et al. 2017; Guo et al.
2020), the tidally-driven inspiral of WASP-12b (Maciejewski et al.
2016, 2018; Patra et al. 2017; Yee et al. 2019), or for various fea-
tures of moons within the Solar system (Fairén 2017 and references
therein). With such a diversity of applications, there is a growing
interest in improving tidal theory.

There are currently many aspects of tidal interactions that are
active areas of research, and in particular, mechanisms relating to the
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Barker & Ogilvie 2010; Barker 2011; Weinberg et al. 2012; Essick
& Weinberg 2016) can be important in stellar radiation zones, and
this mechanism may be responsible for the observed orbital decay
of WASP-12 b (Maciejewski et al. 2016; Patra et al. 2017; Chernov
et al. 2017; Weinberg et al. 2017; Bailey & Goodman 2019; Yee
et al. 2019). The excitation of inertial waves is being studied in
the convective envelopes of rotating stars or giant planets (e.g. Wu
2005; Ogilvie & Lin 2007; Goodman & Lackner 2009; Papaloizou
& Ivanov 2010; Favier et al. 2014; Barker 2016), and this mechanism
may be important for tidal circularisation and spin synchronisation.
In giant planets, the role of stably-stratified (or semi-convective)
layers is also being explored (Fuller et al. 2016; André et al. 2017;
André et al. 2019; Pontin et al. 2020) with possible application to
the orbital migration of the moons of Jupiter and Saturn (e.g. Lainey
et al. 2009, 2012, 2017, 2020).

In this work we focus on tidal dissipation resulting from the
interaction of large-scale (non-wavelike) equilibrium tides and con-
vection inside stars or giant planets. This is a classical tidal mech-
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anism that is commonly believed to be important in stars (or giant
planets) with convective envelopes (Zahn 1966; Zahn 1989, 2008).
The interaction between the tide and convection is thought to act like
an effective viscosity vg (which is much larger than the microscopic
viscosity) in damping the large-scale tidal flow. However, the effi-
ciency of this mechanism is expected to be reduced when the tidal
shear frequency w exceeds that of the relevant convective frequency
we, but the power law of this reduction has long been a matter of
debate (e.g. Goodman & Oh 1997), and this issue is still often con-
sidered as “the Achilles’ heel of tidal theory" (Zahn 2008). Using a
refinement of mixing-length theory, Zahn (1966) used phenomeno-
logical arguments to predict that vg ~ (w/we)~ ! whenw/we > 1,
while, by applying similar ideas to a Kolmogorov turbulent cascade,
Goldreich & Nicholson (1977) predicted vg ~ (w/we)"2 when
w/we > 1. 1tis essential to determine which of these (if either) are
correct because the corresponding timescales of tidal evolution can
differ by many orders of magnitude between these two prescriptions
(e.g. Duguid et al. 2019).

Modern numerical techniques and computational power allow
the dissipation of the equilibrium tide to be explored through nu-
merical experiments. Although this has not yet completely settled
the issue, the evidence in favour of the —2 power law of Goldreich
& Nicholson (1977) for w/we > 1 has been mounting in recent
years using a variety of models. The work of Goldman (2008) fol-
lowed the ideas of Goldreich & Nicholson (1977) by applying an
idealised turbulence model to obtain an analytical expression in
agreement with the —2 power law. An asymptotic theory valid in
the limit of high frequency tidal forcing has been developed (Ogilvie
& Lesur 2012; Duguid et al. 2019), which robustly predicts a =2
scaling (and its predictions have been verified using laminar sim-
ulations; Braviner 2015; Duguid et al. 2019). Various simulations
have been performed which support the —2 scaling, such as homo-
geneous convection in a triply-periodic Cartesian domain (Ogilvie
& Lesur 2012), the convection analog of ABC flow in a Cartesian
domain (Braviner 2015), Rayleigh-Bénard convection in a Cartesian
domain with horizontally-periodic and stress-free boundary condi-
tions in the vertical direction (Duguid et al. 2019), and convection
in a full sphere which is homogeneously heated (Vidal & Barker
2020). With such a diversity of models one would be forgiven for
assuming the matter is settled. However, Penev et al. (2009) ob-
served a —1 law as proposed by Zahn (1966) for a limited range of
tidal frequencies spanning 0.5 < w/w, < 4. Their model is unique
in that they allowed for multiple density scale heights within the
domain. More recently, there is evidence that both the —1 and -2
power laws may coexist in (Boussinesq) spherical convection (Vi-
dal & Barker 2020). However, in both of these latter studies, the —1
power law was observed only for intermediate frequencies w ~ wc,
and not for w/w, > 1 as originally proposed by Zahn (1966).

The purpose of this study is to build upon Duguid et al.
(2019) (hereafter Paper I), which explored the interaction between
Rayleigh-Bénard convection and an oscillatory tidal-like flow in
Cartesian domains, by exploring larger domain sizes and by per-
forming a much wider parameter survey. The former is important be-
cause our previous results suggested that the energetically-dominant
modes of the convection (the large-scale modes) contributed the
most to the effective viscosity, and we desire to obtain results that
are independent of the size of our Cartesian domain. Our wider pa-
rameter survey will also enable us to explore the effective viscosity
not just for the highest forcing frequencies, but over a wide range of
astrophysically-relevant frequencies.

Despite the results of Paper I agreeing with the power law
proposed by Goldreich & Nicholson (1977) for high frequencies, our

observation that the largest scales dominated the effective viscosity
differs from the mechanism proposed in their theory. Indeed, in
Paper I, we found that the largest scales were comparable with
the domain size, and thus an investigation into the impact of any
constraints of adopting such a limited domain size is important. As
well as investigating larger domains, and guided by Penev et al.
(2009) and Vidal & Barker (2020) we explore further the turbulent
statistics of the convection, both with and without the tidal shear.
This will enable us to determine if the nature of the turbulence,
and its statistical properties, is key to understanding the frequency-
dependence of the effective viscosity. If so, this would provide an
important advance in our understanding of this mechanism.

This paper is structured as follows. In section 2 we describe
the model used in this investigation. This includes the governing
equations and mathematical descriptions of the diagnostics that we
have employed. In section 3 we analyse the results of our extensive
parameter survey. We begin with an exploration of unsheared con-
vection, which lays the groundwork for the analysis of simulations
with an imposed tidal-like shear flow. Analysis of the key quantities
is performed throughout. In section 4 we discuss the importance
of the results, highlighting our most important findings and we
then consider some astrophysical implications in section 5. We then
conclude in section 6.

2 MODEL SETUP

We follow the approach used in our previous work, which we shall
briefly summarise here (see Paper I for further details). We con-
sider a small Cartesian patch of the convective envelope of a star
with a large-scale non-wavelike tidal (shear) flow. In order to model
the convection we adopt the Boussinesq approximation (Spiegel
& Veronis 1960) and the classical Rayleigh-Bénard setup (Chan-
drasekhar 1961). Our Cartesian coordinates and domain are defined
such that x € [0,Lxd], y € [0,Lyd] and z € [0,d], where z is
the local radial direction and d is the layer depth (which strictly
must be small relative to the local pressure scale height) and x and
y represent the two horizontal directions. The boundary conditions
are shearing-periodic in x and periodic in y with stress-free, imper-
meable, and fixed temperature walls on the top (z = d) and bottom
(z=0).

Tidal deformations of stars are typically small and we are
mainly interested in the regime of linear tides in this work!. As such,
we can study the effect of each component of the full tidal potential
on the fluid separately. Consequently, we choose an oscillatory shear
flow which is linear in the local coordinates (Ogilvie & Lesur 2012),
and represent this flow as a ‘background flow’ of the form
uy = %x cos(wt)ey , (1)
where agw/d is the amplitude of the tidal shear. The amplitude of
the tidal displacement is ag, and the tidal frequency is w.

We solve the momentum equation in terms of the perturbed
velocity (u) about our tidal-like background flow (u(), where the
total velocity is u + ug. This is coupled with the thermal energy
equation, which we solve for a temperature perturbation, 6, about a
linear background temperature profile (the conduction state). This
temperature perturbation is defined as 6 = agT, where « is the

I We neglect nonlinear tidal effects such as the elliptical instability in con-
vection zones (Barker & Lithwick 2013; Barker 2016), which might be
important for tides in the shortest-period hot Jupiters.
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thermal expansion coefficient, g is the gravitational acceleration and
T is the “actual" temperature perturbation. We non-dimensionalise
the equations using the thermal time-scale, d?/k, where « is the
(constant) thermal diffusivity, as our unit of time and d as our unit
of length. We will also later re-interpret our results in terms of the
convective (“free-fall") time. Thus the non-dimensional form of the
governing equations under the Boussinesq approximation are

0

a—l:+u -Vu +u0-Vu+u~Vu0=—VP+RaPrGeZ+PrV2u,
(22)

00

E+u~V0+uo-V9:uz+V29, (2b)

V-u=0, (2¢)

Uz =0=0zuy=0;uy=0 on z=0andz=1, (2d)

where P is the pressure and we have neglected introducing new
symbols for dimensionless quantities for simplicity. The equations
contain two non-dimensional parameters, the Rayleigh number (Ra,
which measures the strength of convective driving to diffusive pro-
cesses) and the Prandtl (Pr) number (the ratio of viscous to thermal
diffusion), which were defined in Paper I. In the interests of limiting
our parameter survey we fix the Prandtl number in this work to
Pr = 1. We also define the scaled Rayleigh number as R = Ra/Ra,
where Ra. is the critical Rayleigh number for the onset of (un-
sheared)? convection given our geometry and boundary conditions
(Chandrasekhar 1961). The equations are solved numerically us-
ing the Cartesian pseudo-spectral code Snoopy (Lesur & Longaretti
2005; Lesur & Ogilvie 2010), which uses time-dependent wavevec-
tors to deal with the linear spatial dependence of u(. For more
details see Paper I.

2.1 Quantities of interest

We seek to explore the frequency dependence of the effective (also
known as eddy or turbulent) viscosity which arises as a result of the
interaction between the oscillatory background tidal (shear) flow
and the convective motion. This effective viscosity can be related
to tidal quality factors (Ogilvie 2014), and so it is relevant for
determining the tidal evolution of astrophysical bodies. We evaluate
this by defining the effective viscosity as (Goodman & Oh 1997;
Ogilvie & Lesur 2012; Braviner 2015; Paper I)

-2 T
vE (w) = m /TO Rxy(t) cos(wt) dt, 3)

we integrate over a suitable period of time 7'—7( covering many tidal
periods, and Ryy is the Reynolds stress. The Reynolds stress deter-
mines the energy transfer rate between the shear and the convection,
which can in principle operate in either direction (see Ogilvie &
Lesur 2012 and Paper 1), transferring energy from (to) the convec-
tion to (from) the shear, and is defined as

1
Rxy (1) = ‘_//V uxuy dv, 4)

where V = LxLyd (and d = 1 with our non-dimensionalisation) is
the volume of our domain.
We define the convective frequency as w. = uy™/d, where

2 We have found no evidence that the shear strongly modifies the onset
Rayleigh number, as noted in Paper 1.
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u™ represents the time-averaged root-mean-square vertical veloc-
ity. When the tidal frequency is much smaller than the convective
frequency, w < we, the convection ‘feels’ the tidal shear as an
effectively constant background shear flow due to the large differ-
ences in flow timescales. In such a situation the effective viscosity
could be expected to scale like the eddy viscosity of convection
as predicted by mixing-length theory (MLT). In the MLT formula-
tion (e.g. Bohm-Vitense 1958; Zahn 1966; Zahn 1989) the effective
viscosity is calculated using v%lt oc w™ItMIt where w™t is the con-
vective velocity (which is typically some relevant statistic of the
vertical/radial component of velocity), /™ is the mixing length (in
stellar convection this is typically a multiple of the pressure scale
height) and there exists a constant of proportionality. In our simu-
lations, we define this constant of proportionality so that3

VE
a= _urzms 7 (5)
As with our previous work (Paper I) we will find it helpful
to evaluate the 1D horizontal wavenumber (spatial) spectrum. To
obtain this we first Fourier transform the three velocity components
in the two horizontal directions to obtain the discrete version of

(j=x,yorz)
ﬁj(kx,ky,z,t):/ / uj(x,y,z, 1) X4k ¥) dydy.  (6)

The 1D horizontal energy spectrum is then defined by writing k =
ki cosf, ky = k sinf, time-averaging and vertically integrating,
so that

. ) 1 T 1 2 e e
E(kL):Tlgnmﬁ/o /0 /O (uxux+uyuy+uzuz) k, d6dzdt.
)

Here & defines Fourier transformed quantities, * defines complex
conjugates.
In our simulations, k and ky take on the discrete values

_ 27ny _ 2nny

k , = ,
T L YL

(3)
where ny and ny are integers (smaller than or equal to N /2 =
Ny /2), so we approximate eq. 7 by considering rings with fixed

width in wavenumber space. In simulations with various Ly = Ly,

for each R we select the number of k; values N| = NLargeSt where

N;Mgm is the number of k x values in the largest domain with length

L?rgem. We also pick the maximum k value in the largest domain
as the largest value to evaluate for k, . We then define the set of k|

values to be

2nn
klz{Lng:sl:nJ_eN0<Nl}, )

X

so that each ring has width 27/ L?rgeSt. For each ring we identify

the set K of integer pairs (ny, ny) such that (kx, ky) lies inside the
k ring,

_ . 27”’“_ 27T(YZJ_+1)
K =1 (nx,ny) : JTargest <2 [ largest (10)
X X

w n

3 Note that this strictly differs from the usual mixing length “a" parame-
ter, since it combines the usual parameter with the coefficient involved in
converting ™™ o a viscosity — which is commonly assumed to be 1/3
without rigorous justification.
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We note that some of the k bins contain no ky , ky values, and in
such cases we remove this bin and interpolate between the adjacent
bins.

Our numerical approximation to the 1D horizontal energy
spectrum is then

1
= / / Oyl +uyu +il iy dz dr.
Z(T_TO) Ty

x)EK
an

Note that every wavenumber pair (kx, ky ) falls in exactly one ring,
so the sum of E(k_ ) over all k, rings exactly equals the sum over
all horizontal wavenumber pairs. Our algorithm therefore partitions
all of the temporally-averaged and vertically-integrated energy into
bins which correspond approximately to a horizontal wavelength
27 /k, . This allows us to examine the energy contained in the vari-
ous horizontal length-scales.

Previous numerical work (Penev et al. 2009; Paper I; Vidal &
Barker 2020) has suggested that the frequency (temporal) spectrum
of the kinetic energy, and/or Reynolds stress, may be important for
determining the frequency dependence of the effective viscosity.
In particular, it appears that for a certain “intermediate" range of
frequencies (meaning for an interval around w ~ w.), the Reynolds
stress frequency spectrum may have the same frequency depen-
dence as the effective viscosity (Vidal & Barker 2020), though this
has not yet been demonstrated for low frequencies, and the spec-
trum may depend on the nature of the convection (e.g. Penev et al.
2009). Therefore, we evaluate the frequency spectrum, which is a
commonly used diagnostic in turbulent convection (e.g Ashkenazi
& Steinberg 1999; Kumar et al. 2014; Kumar & Verma 2018), by
computing

N /_ ooH(t) (DY(1) "' dr with T = (E, Ryy) (12)

where (I') is the volume-averaged kinetic energy E or Reynolds
stress Ry, H is the Hann window function (Oppenheim & Schafer
2010) which we have applied in order to reduce spectral leakage
and @ is the angular frequency. We present the frequency spectra
with application of a 20-point moving average in order to clean
up the signal. We will later plot these spectra by scaling & by the
convective frequency w.

Despite our previous work (Paper I; Vidal & Barker 2020), and
that of (Ogilvie & Lesur 2012; Braviner 2015) finding agreement
with Goldreich & Nicholson (1977) that vg o (we/w)? for high-
frequency tidal forcing, i.e. w > w,, the mechanism they proposed
has not been explored in detail. In particular, Goldreich & Nicholson
(1977) proposed that with a short tidal forcing timescale 77 the res-
onant eddies would have a small length scale A and small typical ve-
locity u 4 corresponding to the values expected in a Kolmogorov cas-
cade, /1™ ~ (77 /Tecony)?/? and uy /u™ ~ (27 /Tcony)/? giving
an effective eddy viscosity vg ~ Aduy ~ (77 /Tcony)? « (we/w)>.
However, Paper I hinted that this argument may not be correct, since
the large scale energetically-dominant convective modes appear to
contribute the most to the effective viscosity, and the contribu-
tions appeared to fall off rapidly with increasing wavenumber. One
shortcoming of our previous analysis was that the convection was
intentionally simulated in a small horizontal domain (to enable a
more straightforward comparison with asymptotic theory), but this
artificially constrained the turbulent state, as the most energetically-
dominant modes were always at the box scale in these simulations.
In this paper, we revisit this issue with simulations in wider hori-
zontal domains that are “more turbulent", and present an analysis of

the time-averaged and vertically-integrated wavenumber (spatial)
spectrum of the kinetic energy, E (nx,ny), and Reynolds stress,
Rxy(nx,ny), where n; are the integer wavenumbers n; = k;L;/,
and i = x or y. With this we are able to evaluate contributions to the
effective viscosity from each wavenumber in the flow, enabling us
to directly test the mechanism proposed by Goldreich & Nicholson
1977).

2.2 Parameter survey

In this work we explore the behaviour of four of the key parameters
in the problem. Our main focus is the frequency dependence of the
effective viscosity vg (w). Our new simulations build upon Paper
[ by simulating wider horizontal domains (Ly, Ly > 2), leading
to “more turbulent" convection for a given R, and by exploring
further the low frequency regime, w < w.. The parameters of
our simulations are summarised in Table 1. The data for Ly =
Ly = 2 is the same as that presented in Paper I, which brings the
total number of simulations performed in this study to be in excess
of 700. Details of some of the simulations are given in Table 1.
The strength of the convection is varied by varying R. Due to the
demanding nature of these simulations, which for convergence of v
are required to be integrated for multiple tidal periods (in some cases
this means hundreds of diffusion times), we are limited to values
of R < 1000, which is much smaller than the values expected in
stars*. We therefore hope to find robust features in our simulations
that can be extrapolated to real stars or planets. We also revisit here
the dependence of vg on tidal amplitude ag.

For these simulations our initial conditions are small ampli-
tude, solenoidal, homogeneous random noise for the velocity field
and zero temperature fluctuation. We use a pseudo-random number
generator seeded from the system clock in order to ensure that the
initial conditions are unique in each simulation to a high probability.

3 RESULTS
3.1 Convection without shear

We begin our investigation by considering convection in the absence
of oscillatory shear. In particular, for reasons that will become clear
later on, we are interested in the wavenumber (eq. 11) and frequency
spectra of the energy (eq. 12) and how these vary as the strength of
the convective driving R, and domain size Ly = L are varied.

We compute the wavenumber spectrum of the kinetic energy
as described by eq. 11 for R € {2,100, 1000} and various domain
sizes Ly = Ly € {2,4,8,12,16,24,32}. The results can be seen in
Fig. 1. We ensure that the resolution per unit length for a given R
is held constant in all but the smallest domains, which are slightly
better resolved. This ensures that the de-aliasing scale, defined by
k"‘ilias = 27Ny /(3Ly) (Where Ny is the number of grid-points in
the x direction), occurs for the same value of &k, . These simulations
have been found to be well resolved by comparing the spectra for
various resolutions.

From these results we observe an energetically dominant peak
in the spectrum at k; ~ 2 (which, we note, is similar to the onset
wavenumber 7r/v2), which corresponds to a lengthscale of LP3K ~
3, for each value of R. In cases with smaller Ly, the energy is
instead preferentially dominated by the largest wavenumbers in the

4 The convection zones of Sun-like stars are expected to have Ra €
[10%',10%*] and Pr € [1077,1073] (e.g. Hanasoge et al. 2016).

MNRAS 000, 1-18 (2020)
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Figure 1. Time-averaged and vertically-integrated kinetic energy spectrum, £, as a function of horizontal wavenumber k_ , for R € {2,100, 1000} (denoted
by dashed, solid and dot-dashed lines, respectively) and various domain sizes (see legend) for convection in the absence of oscillatory shear (ag = 0). These
spectra are visually indistinguishable (above the inherent variability within the convection) when a weak tidal shear is applied. The thick grey lines show the
classical Kolmogorov —5/3 power law for the turbulent cascade of energy, for reference. The inset panel shows that the vertical convective velocities obey the
classical diffusion-free mixing-length scaling (e.g. Spiegel 1971). We note this data is for the fixed domain size of (8, 8, 1) corresponding to the cases displayed

in Fig. 2.

box. The spectrum in smaller domains is similar to those in larger
domains except for the smallest k; values.

In the more turbulent cases with R € {100, 1000}, we can see
from Fig. 1 that they possess identifiable inertial ranges that extend
from the peak of the spectrum until £, =~ (20, 30), respectively,
which are consistent with the classical Kolmogorov —5/3 power
law (e.g. Kolmogorov 1941; Davidson 2015). For even higher & ,
we observe a dissipation range in which the energy falls off faster
with k| . The cases with R = 2 for all domain size are laminar and
lack a clear inertial range. We show in the inset panel of Fig. 1 that
the convective velocities obey the classical diffusion-free scaling of
mixing-length theory, such that uJ™ o ROS,

We note that in order to make fair comparisons the spatial
resolution has been chosen such that the aliasing scale takes the
same value of Kk , ky. The result of this is that in the larger domains
there are more K x , ky, pairs to be distributed in the k bins, which we
note we have fixed for each R case. As such the smaller domains have
lower resolution in k space than the larger domains despite being
equivalently resolved in real space, hence the increased variation in
the spectrum for smaller domains. Various statistics for these cases
can be seen in Table Al in Appendix A, which show that we attain
convergence for sufficiently large Ly = Ly.

We next compute the frequency spectrum of the kinetic
energy, as described by eq. 12, for various cases with R €
{50, 70, 100, 200, 300, 500, 700, 1000} and a fixed domain size of
(8, 8, 1), which has been guided by our analysis of the wavenumber
spectrum. These are shown in figure 2, which are computed by us-
ing a 20-point moving average in order to smooth the original noisy
signal (see insert). The angular frequency @ in each case has been
scaled by the convective frequency.

In the Kolmogorov description of turbulence, the inertial range
follows a —2 power law in the frequency spectrum (Landau & Lif-
shitz 1987; Kumar & Verma 2018). This power law is highlighted
in figure 2 by the solid black line. For each value of R, this iner-

MNRAS 000, 1-18 (2020)

tial range begins at @/w, ~ 3 and extends to higher frequencies
with increasing R. In the case of R = 1000 this inertial range ex-
tends until @/w, ~ 6 while for R = 50 the range is vanishingly
small. This can more clearly be seen in Appendix A where Fig. 2
has been re-plotted with application of an (&/w)? scaling factor
(as well as zooming in on a narrower range of frequencies) which
highlights the short inertial ranges. We observe a dissipation range
above the inertial range, as is evident from the more rapid drop-off
in the energy for higher frequencies. The key feature of this figure
is our observation of a new power-law for intermediate frequencies
d/we < 3, with an approximate exponent of —0.5 which extends
over approximately two decades to lower frequencies. For very low
frequencies, @/we < 1072, the spectrum then flattens off to indi-
cate frequency-independent white noise. We note that not all of our
spectra extend to low enough frequencies to observe the appearance
of this white noise due to computational limitations.

Snapshots of the horizontal flow showing the u, and u, com-
ponents of velocity at chosen times are presented in Fig. 3 for ex-
ample simulations with R € {2, 100, 1000}, all in (8, 8, 1) domains.
We note that these snapshots are also representative of cases includ-
ing the oscillatory shear, since the flow is not strongly modified by
its presence.

In the more turbulent cases, R € {100, 1000}, the flow is fully
three-dimensional and temporally chaotic for all domain sizes ex-
plored. As R is increased ever smaller features in the flow appear,
which is consistent with the extension of the inertial range in Fig. 1.
For the laminar cases with R = 2 the flow consists of spatially per-
sistent features with temporally-periodic amplitudes that are similar
to the results in smaller domains presented in Paper I. The frequency
spectrum for this laminar case, and in smaller domains, consists of
discrete peaks. On the other hand, we comment that R = 2 sim-
ulations in larger domains with Ly = Ly > 12 instead exhibit a
chaotic flow (which is still non-turbulent due to the lack of an iner-
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Figure 2. Frequency (temporal) spectra of the volume-averaged kinetic energy for various values of R (see legend), with a domain size of (8, 8, 1) in the
absence of oscillatory shear. The solid lines highlight the scaling expected in the inertial range of (&/w. )2 for a Kolmogorov cascade. For frequencies above
those in the inertial range, we observe a power law decay of magnitude greater than —2 which can be attributed to the dissipation range (beyond which lies

high-frequency noise). The dotted lines represent the (@/we) %

power law that exists at frequencies lower than the inertial range until a flattening of the

spectrum at very low frequencies (corresponding with white noise). We note that the displayed spectra represent smoothed 20-point moving averages of the
full spectrum to reduce noise. The inset panel is an example of the frequency spectrum for the case of R = 100 before smoothing.

tial range), with a frequency spectrum that is more similar to those
with larger R values.

3.2 Frequency dependence of the effective viscosity

We now move on to the main task of the paper, which is to anal-
yse the interaction between oscillatory tidal (shear) flows and con-
vection. The oscillatory (tidal) shear flow, described by eq. 1, is
now introduced and we begin by presenting results for the mag-
nitude of the scaled effective viscosity @ (eq. 5) in simulations
with various values of R € {2,100, 1000}, w = [0.001, 10000],
Ly(=Ly) €1{2,4,8,12,16} and ag = [0.05, 1]. Details of the typ-
ical ranges of these parameters for various cases, including further
details such as the resolution, are given in Table 1 and appendix A.
The results are presented in Fig. 4, where w has been scaled by the
relevant convective frequency w.. The main result here is that vg is
a frequency-dependent quantity and is strongly attenuated for high-
frequency tidal forcing, in agreement with prior works (Ogilvie &
Lesur 2012; Paper I; Vidal & Barker 2020).

In order to reduce the influence of noise on the computation
of vg, we evaluate eq. 3 by computing the cumulative integral,
to which we apply a linear fit to determine vg. This method also
allows us to define an error in vg using two standard deviations
from the mean slope, as adopted in Paper 1. To ensure convergence,
the simulations are run for tens to thousands of tidal periods (with
the exception of some cases with w < 0.1 that could only be run for
approximately one tidal period). These long-duration simulations
were successful in reducing the error in the computation of vg,
which is demonstrated by the small error bars in Fig. 4, which are
typically smaller than the symbols plotted.

In the high frequency regime w/w. = 5, for all values of R,
we observe a clear —2 power law (represented by the dotted lines

in Fig. 4). This corresponds with the high-frequency scaling law
(Vg w‘z) of Goldreich & Nicholson (1977), and clearly dis-
agrees with the high-frequency scaling law (vg o w1 of (Zahn
1966). This result is consistent Paper I, as well as prior simulations
of similar problems such as homogeneous convection (Ogilvie &
Lesur 2012) and ABC flows (Braviner 2015). The theory of Goldre-
ich & Nicholson (1977) assumes a Kolmogorov turbulent cascade to
obtain a —2 power law for vg . In Paper I we noted that R = 2 simula-
tions were laminar and yet still followed the —2 scaling. This remains
true for the larger domains considered here, thus demonstrating that
a turbulent flow is not required to obtain a —2 power-law scaling
for vg at high frequencies. The behaviour of laminar convection
with R = 2 can probably be explained by applying the asymptotic
theory developed in Paper I, which extends that of Ogilvie & Lesur
(2012), providing all convective modes are accounted for, though
we do not attempt to do so here as our larger domains would require
considering many modes. We will later show (see Fig. 7) that the
scatter in the high frequency regime for R = 100 can be attributed
to an amplitude (ag) dependence of «.

Fig. 4 provides evidence for a previously undiscovered scaling
veE « w0 for intermediate frequencies with w/we ~ (1072, 1).
This new regime is clearly observed in the middle panel with
R = 100 in all domains with L, > 2, and is highlighted by the
solid line representing a -0.5 power law (this regime is also present
with R = 2 in the largest domains Ly > 12). To the best of our
knowledge, this is the first time this scaling has been observed in
simulations, and it has also never been predicted theoretically. The
cases with Ly = 2 previously presented in Paper I instead exhibit
a frequency-independent vg for w < w,. This difference demon-
strates the importance of resolving the peak of the spatial spectrum
(see Fig. 1). This new intermediate regime is not evident in the
R = 1000 simulations, probably because we have not been able to
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Figure 3. Snapshots of the uy (left) and u, (right) velocity compo-
nents for convection in the absence of oscillatory shear. The values of
R € {2,100, 1000} and the domain size are displayed in each panel. As
expected, as R is increased, ever smaller scales are manifested in the flow
(as seen in the bottom three rows), though large-scale components remain.
The flow in the sheared cases is similar.

run simulations for sufficiently low frequencies to observe it clearly
(these cases are particularly computationally expensive). The low-
est frequencies for R = 1000 may be starting to transition to this
regime, but we are unable to confirm this at present.

For cases exhibiting an intermediate regime with a —0.5 power
law, the magnitude of a becomes independent of the domain size
and tidal amplitude, as long as the domain size is large enough to
resolve the peak of the wavenumber spectrum (Fig. 1). We also note
that the magnitudes of vg in the intermediate and low frequency
regimes are significantly larger than for the cases in smaller boxes.
They are also larger, by more than an order of magnitude, from the
naive expectation from MLT, which would predict @ = 1/3 (Zahn
1989). This suggests that convection is more efficient at damping
low frequency tidal flows than previously expected.

The R = 2 case exhibits a change in behaviour in this in-
termediate frequency range as we increase the domain size, from
frequency-independent behaviour in smaller boxes, to following a
—0.5 power law in larger boxes. This coincides with our observation
that the flow transitions from deterministic to chaotic in the largest
boxes, as well as being related to the requirement to resolve the
energetically dominant scales (see Fig. 1), which we will address
further in section 3.3. Note that the flow is non-turbulent for R = 2,
and yet it still exhibits the same —0.5 scaling for vg.

MNRAS 000, 1-18 (2020)
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In Paper I we observed a frequency independent regime for
w/we <5, which can be seen in Fig 4, in domain sizes of (2,2, 1)
for all R (it also occurs in domains up to Ly = 8 for the R = 2
cases). In larger domains, this frequency-independent regime is
only observed for very low frequencies, w/w, < 1072, We have
only observed this regime for R = 100 due to the computational
expense of probing such low values of w. Indeed, these typically
require approximately 1000 diffusion times to obtain convergence
in the evaluation of v . Where possible, we have shown the best fit
to the frequency-independent regime with dashed lines in Fig. 4.

On physical grounds, there are no restrictions on the sign of the
effective viscosity defined by eq. 3. Indeed, in Paper I, as suggested
in the earlier simulations of Ogilvie & Lesur (2012), we observed
robust negative values for vg for very high frequencies in the turbu-
lent cases. In Fig. 4 we have denoted positive values with circles and
negative by triangles. In Paper I, we found that in laminar cases the
initial conditions determined the sign of vg. This behaviour is again
observed in the R = 2 cases up to domain sizes of (8,8, 1). In the
(12,12, 1) cases, where the flow is chaotic, and there is an increase
of energy transfer between convective modes, there appears to be
a preference towards positive values for vg, with negative values
only occurring around the transition between the intermediate and
high frequency regimes.

For the more turbulent R € {100, 1000} cases with the do-
main size (8, 8, 1) we observe the same behaviour as in the smaller
box simulations of Paper I, in that vg transitions from positive
(w/we < 10) to negative values (w/w. 2 10). However we note
that for the R = 100 cases in the large domain (12, 12, 1), vg is also
positive for frequency ratios much larger than 10. We have also con-
ducted simulations in small (2,2, 1) domains with R = 10000 (not
presented) where the transition to negative values is shifted to higher
frequencies, w/w, ~ 30, than for R € {100, 1000}. This suggests
that the transition to negative values occurs for unrealistically high
tidal frequencies in convection with astrophysically-relevant values
of R.

Convection in stars is much more turbulent, with much larger
values of R, than we can explore in our simulations. One of our
key goals is to determine if there are robust features or scaling laws
as R is varied. In Fig. 5, we compare the scaled effective viscosity
as a function of the scaled shear frequency for various values of
R € {50, 100, 200, 500, 1000} in a fixed domain size (8,8, 1).

Fig. 5 shows the frequency dependence of vg in our simula-
tions. We include a range of R > 50 in this plot, but by plotting
[vEl/ul™ d we collapse the low frequency data (w/we < 1) onto a
single “master curve". This collapse is only observed in simulations
in large domains that resolve the energetically-dominant length-
scale, for which further increases in domain size are not observed
to strongly affect our results (see Fig. 4). The scaling adopted here
assumes the convection to approach a diffusion-free mixing-length
regime in which convective velocities scale as VR (which is demon-
strated in the inset panel in Fig. 1; e.g. Spiegel 1971), such that w,
and vE would also be expected to scale as VR. We have therefore
demonstrated in Fig. 5 that the convective velocities (and domi-
nant length-scales) for R > 50 are essentially in the diffusion-free
mixing-length regime for our simulations. At higher frequencies,
there is still considerable scatter which comes mainly from depen-
dence on the shear amplitude a. In the inset, symbols + correspond
toap =1, etoag =0.5and X to ag = 0.05. There is a systematic
increase in vg with amplitude, which we will explore further below.
However, the data for the same values of a( collapse reasonably well
onto their R-independent curves even for high frequency tides. For
numerical reasons it is difficult to get consistent results for vg with
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Figure 4. Scaled effective viscosity |vg |/u™d as a function of scaled shear frequency, w/ w, that arises from the interaction between the oscillatory tidal
flow and convection. Various shear amplitudes are shown, in the range a¢ € [0.05, 1], and the effects of a( will be discussed later (and shown in Fig. 7). The
cases shown have R € {2, 100, 1000} (top to bottom respectively) with various domain sizes (see legend). We denote the sign of the effective viscosity using
circles for positive and triangles for negative values. Error bars are shown but these are often smaller than the sizes of the symbols. The dashed lines show

horizontal fits to the low frequency regime. The solid lines show the (w/w,

)~0-5 scaling for intermediate frequencies, which is a new result in this work. The

dotted lines show the classic (w/w,)~2 scaling for high-frequency tidal forcing. The scatter of points in the frequency range w/we = (109, 102) for R = 100
and w/we = 40 for R = 1000 can be attributed to a shear amplitude dependence that is shown more clearly in a later in Fig. 7.
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Figure 5. Scaled effective viscosity as a function of the scaled shear frequency, similar to figure 4. The cases shown here have R € {50, 100, 200, 500, 1000}
(see legend) for a fixed domain size of (8, 8, 1) and with shear amplitudes in the range ag = [0.05, 1] (not highlighted here to avoid confusion). Power law lines
are displayed for exponents of {0, —0.5, —2} for low, intermediate and high frequency cases respectively (see legend). This shows that the frequency-dependence
of the effective viscosity is robust to changes in the Rayleigh number over this range. The scatter of points in the frequency range w/w. = (10°, 10%) can be
attributed to a shear amplitude dependence that is illustrated clearly in the inset panel.

low amplitude tides at low frequencies, so the low frequency points
w/we < 0.1 are mostly for amplitudes above 0.5, but generally
we found little evidence for significant variation of scaled effective
viscosity with amplitude at low frequency.

The frequency-independent low frequency regime is observed
when w/we < 10_2, for each of R = 50, 100 and 200, though
we should point out that there only are few simulations with such
low frequencies. The dashed line in this case is the linear fit to the
constant slope for the R = 100 cases, which also matches those with
R =50 and 200.

It is clear from Fig. 5 that the new intermediate scaling regime
for w/we ~ (1072, 1—5) holds for all R values explored, highlight-
ing that this new regime is also robust. In the high frequency regime,
when w/we 2 1 -5, we observe a robust transition to a —2 power
law for all values of R. However, in this regime, there is more scatter
in the points from a single “master curve", which can be attributed
a shear-amplitude dependence of our results, since here we adopt
various ag € {0.05,0.5, 1} (as we will explain further below).

Negative (positive) values of the effective viscosity in Fig. 5 are
denoted by triangles (circles). If we consider the lowest frequency
for each R € {50, 100,200, 500, 1000} for which vg is negative,
we find this to occur at approximately w/w. € {2,4,5,30,20},
respectively. This shows that with exception of the R = 500 case,
the larger the value of R the higher frequency required to obtain
negative values of the effective viscosity. We also note that the
apparent discrepancy in the R = 500 case could be the result of the
particular discrete values of the frequency that have been run.

3.3 Comparing the frequency spectra to effective viscosity

In previous work (Penev et al. 2009; Paper I; Vidal & Barker 2020)
it has been suggested that the frequency (temporal) spectrum of the
kinetic energy E (&) (or Reynolds stress) may play an important role
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in determining the frequency-dependence of the effective viscosity.
In this section we explore more closely the connection between
the frequency spectrum of the kinetic energy and the frequency
dependence of the effective viscosity. Examples of the frequency
spectrum of the kinetic energy (evaluated after applying a Hann
window function) can be seen in Fig. 6 for the low frequency tide
regime with w € {0.3,0.06} (top) and the high frequency tide
regime with w € {700,800} (bottom). All cases in Fig. 6 have
R = 100 and a shear amplitude ag = 0.5 covering two cases in
each of the high and low frequency regimes with domain sizes
L, € {8,12} (dark red and dark blue, respectively) and the tidal
frequencies (see legend) denoted by the vertical dashed lines. For
these plots we scale the angular frequency @ = 2x/t (where T
represents the period of each Fourier component) of the spectrum
by the relevant convective frequency (w.) in each simulation, so
as to make a meaningful comparison between these spectra results
and the profiles of vg. In Fig. 6 the solid lines represent the 20-
point moving average of each full kinetic energy spectrum (which
are plotted using faded lines). We also note that similar spectra
have been obtained for all simulations that have been run for a long
enough duration.

In these low tidal frequency example cases (Fig. 6 top) we ob-
serve a small inertial-like range defined by a —2 power law (green
line) (Landau & Lifshitz 1987; Kumar & Verma 2018) in the kinetic
energy spectra starting at @/w, ~ 4 and extending to @/w, ~ 10.
Beyond this, we observe a dissipation range where the spectrum
transitions to a power law decay with magnitude greater than 2, fol-
lowed by low-power noise at very high frequencies as a consequence
of the finite time-step size. For frequencies lower than the inertial
range, we observe a power law exponent that is consistent with
—0.5 (light blue line) extending down to @/w. = 107! before the
spectrum approaches white noise for the lowest observable frequen-
cies. The frequency spectrum of the kinetic energy and Reynolds
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Figure 6. Examples of the frequency spectrum of the kinetic energy for
convection in the presence of oscillatory shear, with R = 100, ag = 0.5,
(Lx,Ly,Lz) € {(8,8,1),(12,12,1)} (red and blue, respectively) and
w € {0.3,0.06} (top, with w < w,) and {700, 800} (bottom, with w >
wc). The angular frequency has been scaled by the relevant convective
frequency. The solid lines show the 20-point moving average of the full
spectrum, which is shown using faded lines. An inertial range is observed,
where the spectrum follows an (&/w.)~2 power law (green line), before
entering the dissipation range for the highest . We also observe a significant
region which features a (@/we) "% power law in the spectrum, which
matches the scaling observed for vg in Figs. 4 and 5. The vertical dashed
lines correspond to the frequency of the oscillatory shear in each case.
Similar results are obtained for the frequency spectrum of the Reynolds
stress.

stress are both consistent with the un-sheared cases presented in
section 3.1 for all cases where the shear frequency is in the low or
intermediate regimes. We note that in the high frequency regime the
shear introduces a strong resonant response in the spectrum at the
shear frequency, which is related to the larger shear amplitude agw
at high frequencies. The rapid drop-off in the frequency spectrum
then allows the energy injected by the shear to become observable
for these high frequencies. Fig. 6 also shows that the shape of the
frequency spectrum is independent of domain size, providing the
energetically-dominant convective modes are resolved spatially.

In the high frequency cases (Fig. 6 bottom) the spectrum be-
haves similarly to the low frequency cases when &/w, < 5. We
observe a significant modification of the spectrum in the high fre-
quency regime beginning with a substantial peak in the spectrum
at the shear frequency. The peak is not confined to the discrete
frequency of the shear and has a substantial lead and lagging tail.
Further, we observe a significant resonant chain of peaks each with
the same shape as the main peak.

‘We now compare the frequency spectra (evaluated after apply-
ing a Hann window) of kinetic energy (blue) and Reynolds stress
(red) with the scaled effective viscosity in figure 7. Note that the
symbols denoting the scaled effective viscosity are shown as a func-
tion of the scaled tidal frequency, w/w,., whereas the spectrum is
plotted as a function of @/w,. As before, the solid lines for the spec-
trum represent its 20-point moving average. We demonstrate these
comparisons for cases similar to those in figure 4, that is, cases
with R € {2,100, 500} (cases with R = 1000 were excluded due
to the difficulty in reaching the intermediate regime), domain sizes
Ly =Ly €{2,4,8,12,16} and various amplitudes ap = [0.05, 1].
For each value of R, we show a representative spectrum of kinetic
energy and Reynolds stress, choosing cases with the longest run
time to effectively probe the low frequency regime. As the domain
size does not significantly alter the spectrum as long as it is “large
enough" (see figure 6), we plot a case with a domain size (8,8, 1)
for each R. Similarly, the shear in the low-frequency regime only
weakly affects the spectrum, as we can observe from comparing
figures 2 and 6, so we adopt a representative case for each R with
w < 1 that has the longest run time. In figure 7 the symbols now
denote the amplitude of the shear (see legend for the values).

The key result of figure 7 is that for low and intermediate
frequencies such that w/w. < 5, the frequency dependence of
vE (w) closely follows the spectrum of the energy and Reynolds
stress. This agrees with the global simulations of Vidal & Barker
(2020). It is an important result because it suggests that we can infer
the frequency dependence of vg in stars if we know the spectrum
of the convection.

It is worth highlighting that, although the left and right y-axis
values are offset, the range of values in both is similar. We also
note that there is a good agreement between the spectrum of the
kinetic energy and the Reynolds stress, though the kinetic energy
has slightly smaller amplitude than the Reynolds stress.

We continue our analysis of figure 7 by considering the high
frequency regime where w/w. 2 1. As alluded to earlier, we ob-
serve an amplitude dependence in the magnitude of vg, which is
most clearly observed in cases with R = 100 and shear amplitudes
of ap € {0.05,0.5, 1}. This amplitude dependence shifts where the
transition to the —2 power law begins, which is here observed to oc-
cur when w/we = (0.6, 1.5, 3), respectively. In the high frequency
regime, Vg o w2 for higher w. This only agrees with the spectrum
for a narrow range of frequencies corresponding to the inertial-like
range. For higher frequencies, the spectrum transitions into a dis-
sipation range, where the power law exponent is steeper than —2,
whereas the effective viscosity continues to follow the —2 power
law. This again suggests that, despite the power law of the inertial
range and the frequency dependence of the effective viscosity being
the same, this cannot explain the robustness of vg o w2 for high
frequency tidal forcing.

For intermediate frequencies, w/we ~ (1072,109), we ob-
serve a strong agreement in the power law of the effective viscosity
with both the kinetic energy and Reynolds stress frequency spectra
for all R plotted. The transition from intermediate to high frequency
regimes in the effective viscosity does not always coincide with
when the spectrum falls off more steeply than a —0.5 power law.
In fact, the R = 100 cases clearly demonstrate that the amplitude
dependence plays a role in deciding when the effective viscosity
transitions to the quadratic scaling regardless of the slope of the
spectrum.

Although we have shown that there is good agreement with
the frequency-dependence of the scaled effective viscosity and the
frequency spectrum of kinetic energy (or Reynolds stress) in the
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intermediate and low frequency regimes, the relationship between
these quantities is a constant of proportionality. That is, we have
shown that vg (w/we) o E(&/w.). Since the intermediate and low
frequency spectrum appears to be approximately amplitude and
domain size independent, this constant of proportionality may be
some function of R (and possibly Pr which we have not explored
in this work).

For the R = 2 cases shown in figure 7, we only display do-
main sizes of Ly = L, € {12,16}, since these are required to
obtain a —0.5 power law in the intermediate regime. This may be
related to the transition to a chaotic flow and/or the requirement
of resolving the energetically dominant scales in larger domains.
Cases in smaller domains exhibit a frequency spectrum consisting
of discrete peaks, suggesting little energy exchange between eddies
with different time-scales. However, in the larger domains the fre-
quency spectrum is more continuous. This suggests that this new
—0.5 power law regime is a consequence of the frequency spectrum
of chaotic/turbulent flow. In addition, the robustness of this new
regime for both laminar and turbulent flows indicates that it may be
relevant for understanding the interaction between tidal flows and
convection in stars and giant planets.

In Table 1 we summarise three key quantities of interest from
our simulations and the range of parameters explored. The key
quantities are:

e time averaged rms of the vertical component of velocity, u7™.

e linear fit values of « in the low frequency regime, indicating
the constant of proportionality between vg and u"d.

e v = vg(w/w)?, which represents the y-axis crossing of the
quadratic fit to the high frequency regime, for R = 100, ag €
{0.05,0.5, 1}, including only simulations such that w/w, > 1.

In the interests of examining the amplitude dependence of the ef-
fective viscosity in the high frequency regime, Table 2 lists y and
uy™ for the cases with R = 100 in a domain of size (8,8, 1) for
three different amplitudes ag € {0.05, 0.5, 1}.

In the larger domains, the low frequency regime is shifted to
significantly lower frequencies than in the cases in Paper I which
makes this regime computationally difficult to examine. Where pos-
sible we report the linear fit to the low frequency regime to provide
an estimate of « there. It is clear that as the domain size increases
then the magnitude of the linear fit to @ also increases until we
reach an approximate convergence once the energetically dominant
modes of the convection are contained in the box. This convergence
can be seen most clearly in the cases with R = 100 in Table 1.

In the high frequency regime we examine the quantity y and
find that it increases with R in chaotic and turbulent cases but
appears to have a smaller value than in the laminar, deterministic
cases (R = 2 small domains L, < 8). In Table 2 we see that y also
increases with increasing shear amplitude.

As would be expected the data in Table 1 shows that as R
increases so does uy™. For increasing domain size the values of
u;™ converge once Ly ~ 4, which we note is similar to when
the peak of the wavenumber spectrum is contained within the box.
Table 2 shows that the shear amplitude has little, if any, effect on
u;™, which is used to scale the shear frequency. As such this, the
amplitude dependence of y to be unlikely to be due to the shear
significantly modifying the convection.
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3.4 Spatial structure of the Reynolds stress and effective
viscosity

To explore the mechanism governing the interaction between tides
and convection in more detail, we analyse the spatial (wavenum-
ber) spectrum of the Reynolds stress Iéxy(nx,ny) and effective
viscosity Vg (nx, ny). These quantities are vertically-integrated and
time-averaged spatial spectra that are computed as a function of
the horizontal integer wavenumbers ny and ny, as described in
section 2.1. The computation of Vg (ny,ny) requires sufficiently
good temporal resolution that the time integral (as in equation 3) is
accurately computed.

Example cases are shown in figure 8 with R = 100 and ag =
0.5 for two different domain sizes (8,8,1) and (12,12, 1), each
demonstrating three cases for each box size which lie in the low,
intermediate and high frequency regimes (the respective frequencies
can be seen in the figure). For adequate temporal averaging, we
ensured that at least 10 snapshots were taken per tidal period, and the
simulations were integrated for many tens of tidal periods. Similar
figures have been obtained for a number of other cases that show
similar behaviour. We also note that the spectra in Fig. 8 have been
zoomed in to show the lowest wavenumbers, since we find higher
wavenumbers to contribute negligibly.

We observe that Iéxy (nx,ny) is maximal in a ring that coin-
cides with the energetically-dominant wavenumber in Fig. 1, and
this quantity then falls off rapidly in magnitude with increasing n
and ny. The same wavenumber ring also provides the dominant
contribution to Vg (nx,ny). The modes in this ring provides the
dominant contribution to the total effective viscosity vg, suggest-
ing that the largest (energetically-dominant) scales of the convection
are the most important. This appears to contradict the main hypoth-
esis of Goldreich & Nicholson (1977), who claim that the resonant
eddies dominate the interaction, and that the largest scales could at
most contribute a comparable amount as the resonant eddies. There
is a peak in the frequency spectrum (e.g. of the Reynolds stress) at
the forcing frequency, but this does not appear to be correlated with
a ring of modes in the wavenumber spectrum. Instead, it appears
that it is the response of the energetically-dominant modes at the
forcing frequency that dominates the contribution to vg. However,
we caution that our simulations do not possess a sufficiently long
inertial range to clearly test the expectations of Goldreich & Nichol-
son (1977) solely within the turbulent cascade, which would require
much more turbulent simulations.

In the high frequency cases, the Vg (nx,ny) spectra shows a
strong negative contribution from the nearly x-aligned components
of the flow, and a slightly weaker contribution from the positive
nearly y-aligned components. This is compatible with the predic-
tions of the asymptotic theory in Paper I. Note also that more modes
provide an observable contribution to vg for larger frequencies,
which results from the larger shear amplitude agw in these cases.

4 DISCUSSION

In this paper we have presented a much wider parameter survey than
Paper I, and in particular we have studied convection in wider boxes,
allowing the peak of the energy spectrum to be fully resolved. These
new simulations support our prior results for high frequency tidal
forcing, in that we find strong evidence in favour of v oc w2, but
they have also uncovered a new intermediate frequency scaling that
has not been previously reported (or predicted). This new frequency
scaling has vg o w93 for frequencies 1072 < w/we < 1-5
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_ (e T ms _ typical resolution

R Ly (= Ly) w a_(ug"sd) v =vE(w/w:) u; =dwc (NxaNy’Nz) ap

2 2 [0.001, 1000] 0.163 21.071 5.484 (64, 64,32) [0.0005, 1]

2 4 [0.08, 1000] 0.386 20.538 4.354 (64, 64,32) 0.05

2 8 [0.01, 1000] 2.63 25.629 4.698 (64, 64,32) 0.05

2 12 [0.01,2000] - 3.923 4.278 (128, 128, 64) [0.05,1]

2 16 [0.1,500] - 4.888 4.091 (128, 128, 64) [0.05,1]

5 2 [0.001, 1000] 0.168 23.663 13.44 (64, 64,32) 0.05

10 2 [2,5000] 0.144 28.450 22.87 (64,64, 128) 0.05

50 8 [0.1, 10000] - 5.761 34.39 (128,128, 128) [0.05,1]
100 2 [10, 10000] 0.061 3.967 63.85 (64,64, 128) [0.0005, 1]
100 4 [1,10000] 2.356 8.318 49.07 (64,64, 128) [0.05,1]
100 8 [0.05, 1000] 5.109 see table 2 49.06 (128,128, 128) [0.05,1]
100 12 [0.06, 10000] 5.074 11.794 48.78 (128,128, 128) [0.05,1]
200 8 [0.1, 10000] - 11.177 68.16 (128,128, 128) [0.05,1]
500 8 [30, 10000] - 24.785 104.1 (256, 256, 192) 0.05
1000 2 [100, 70000] - 23.570 178 (128,128, 128) 0.05
1000 4 [100, 1000] - - 145.8 (192,192, 128) 0.05
1000 8 [30, 10000] - 39.36 143.1 (256,256, 192) 1
10000 2 [1000, 50000] - 156.577 495.1 (192,192, 384) 0.05

13

Table 1. Table of simulation parameters and output data. The (horizontal) fit to the data for vg for very low frequencies is used to obtain @ = (urTE‘d)
z

(which can only be clearly obtained in cases with R < 100). Also shown is the y-intercept of the fit to the data in the high frequency regime for which

vE « (w/we)"2. We also report the volume-averaged RMS convective (vertical) velocity component, uy

™S = dw,. The table features various values of R

with a range of different domain sizes and reports the typical resolutions (Ny, Ny, N;) used for each set of simulations. Effects of the shear amplitude, ay,

are neglected in these results but we report the range of values explored.

R a  y=ve(@lo?
100 0.05 11.403 48.83
100 0.5 29.282 48.47
100 1 133.38 49.93

Table 2. Table listing values of y = vg (w/wc)?, which is the y-intercept
of the linear fit to the high frequency regime assuming a (w/wc)~2 power
law, and the time and volume averaged vertical component of the velocity
(the convective velocity), ul™, for various shear amplitudes, ag. All cases
are for R = 100 and with domain size (8, 8, 1). This shows the effects of
varying the tidal amplitude on our high-frequency results for vg.

(depending on amplitude). In this section we discuss further this
new regime, and some of the implications of our results.

Previous simulations of anelastic convection (Penev et al.
2009), and Boussinesq spherical convection in a model with ho-
mogeneous internal heating (Vidal & Barker 2020), have observed
an intermediate frequency scaling for vg o« w~! for a range of
frequencies around w ~ w.. This is consistent with the —1 slope
in the frequency spectrum of the kinetic energy in the simulations
of Vidal & Barker (2020) (and possibly also in Penev et al. 2009).
This differs from our results in this frequency range, where we
find vE w05 In addition, simulations with various strengths of
convective driving in spheres are found to give different exponents
from -0.5 to -1 in the intermediate regime (Vidal et al. 2020). Fur-
ther work is required to explore in detail this difference, though we
hypothesise that it may result from the radial variation in the heat
flux in the spherical model, which is constant in our Cartesian case.

The study of the frequency spectrum of turbulent convec-

MNRAS 000, 1-18 (2020)

tion has been primarily directed towards the inertial range in order
to make comparisons between the classical theories (Kolmogorov
1941; Bolgiano 1959; Obukhov 1959), which are based on the spa-
tial spectrum, and experiments (Sano et al. 1989; Ashkenazi &
Steinberg 1999; Wu et al. 1990; Shang & Xia 2001; Liot et al.
2016), where the data is primarily temporal in nature, with the
objective of understanding the nature of the turbulence. The low
frequency portion of the spectrum has received far less attention,
with the majority of prior interest coming from the classical area of
“1/f noise" (Dmitruk & Matthaeus 2007; Pereira et al. 2019; Vidal
et al. 2020). Our results suggest that an understanding of the fre-
quency spectrum of convection may allow us to predict the effective
viscosity acting on the equilibrium tide for low and intermediate
frequencies (though perhaps not for high frequencies). As such, this
provides new motivation for research into the long term dynamics
of turbulent convection in more realistic models.

The agreement of the frequency spectrum and the effective
viscosity was observed to break down when the high frequency
regime was reached. The transition to the high frequency regime
depends on the tidal amplitude, where larger amplitudes are found
to shift the transition to higher frequencies. This may be related
to the relative energy in the tidal shear to the convection at these
frequencies. However, this should be explored further in a future
investigation.

Despite the existence of a —2 power law in the frequency spec-
trum of convective turbulence Landau & Lifshitz (1987); Kumar &
Verma (2018), which the effective viscosity follows, the effective
viscosity trend maintains this power law even when the frequency
spectrum transitions into the dissipation range with a much faster
fall-off. This demonstrates that the effective viscosity does not fol-
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Figure 8. Examples of the temporally-averaged and vertically-integrated
spatial spectra of the Reynolds Stress I@xy (nx,ny) (left column) and ef-
fective viscosity Vg (nx,ny) (right column) as a function of the integer
wavenumbers 71, and r,,. The top three rows are for R = 100 with w/w, €
{0.02,0.2,20} with a domain size of (Lx, Ly, Lz;) = (8,8, 1). The bot-
tom two rows are also for R = 100 but with w/w. € {0.01,0.2,212},
and for the larger domain size of (Lyx, Ly, L) = (12,12, 1), which more
clearly demonstrate the dominant ring in the spatial spectrum. The frequen-
cies shown correspond to cases in the low, intermediate and high frequency
regimes. Similar results are obtained for all values of R and domain sizes
explored.

low the spectrum at high frequencies (at least in our simulations),
and the agreement in the power law may be coincidental. In the the-
oretical prediction of Goldreich & Nicholson (1977) the —2 power
law was predicted by applying Kolomogorov turbulence and assum-
ing that the “resonant eddies" that are resonant with the tidal shear
would would provide the dominant contributions to the effective
viscosity. However, we have shown that a turbulent cascade is not
required to obtain a —2 scaling (see also Ogilvie & Lesur 2012;
Braviner 2015). For example, R = 2 cases possess no inertial range
in the wavenumber spectrum, which is hence non-Kolmogorov-
like, and yet we still obtain a —2 power law for vE. An independent
prediction of the —2 scaling was made using asymptotic analysis
(Ogilvie & Lesur 2012) which we extended in our Paper I to include
thermal effects, which also allows for the prediction of negative
effective viscosities.

Goldreich & Nicholson (1977) claimed that the “resonant
modes" provide the dominant contributions to the effective vis-
cosity, but the largest scale modes could contribute a comparable
amount. We have conducted a Fourier analysis of the spatial struc-
ture of the Reynolds stress and of the contributions to the effective
viscosity. We found that the effective viscosity is dominated by the
energetically-dominant ring of modes in wavenumber space. We
do not observe any appreciable contribution from resonant eddies.
‘We do however observe a significant temporal resonance observed
in the frequency spectrum (which is found to occur for all spatial
wavenumber bins above the dissipation lengthscale).

In this paper, and in Paper I, we provided robust measurements
of negative effective viscosities, as originally found in a slightly
different convection model by Ogilvie & Lesur (2012). Here we find
that increasing the strength of the convection shifts the transition to
higher frequencies, suggesting that for realistic Rayleigh numbers
in planets and stars, the frequency required to produce a negative
vE, and therefore tidal anti-dissipation, would be prohibitively high
(see also Vidal & Barker 2020). The negative values may therefore
not be relevant in reality.

5 ASTROPHYSICAL IMPLICATIONS

In many astrophysical applications, tidal forcing occurs in the high
frequency regime for the dominant convection eddies, such that
w/we > 1. For example, the tidal interaction of a hot Jupiter on a 1
d orbit around a slowly rotating solar-type star has a tidal period of
0.5 d, but the convective eddies at the base of the convection zone
have turnover timescales of order 20 d. Based on our results, this
implies a significant reduction in the effective viscosity. As stars
evolve, their convective velocities and length-scales evolve, leading
to large changes in turbulent viscosities predicted by MLT. Here
we apply our results to predict planetary orbital decay around an
evolving solar-mass star.

To apply our results, we must adopt an appropriate fit for vg.
We choose to fit the points in Fig. 5 which provide the maximum
estimate of the dissipation (here we ignore any possible amplitude
dependence for w/w, 2 1), such that we define

5 (el <1072,
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u™ js the convective velocity and I™! is the mixing length, and

we = ymit / /Mt \which are obtained in stellar models computed with
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Figure 9. Top: Contours of logy Qéq resulting from dissipation of the
correct equilibrium tide in the convective envelope of a 1 M, star (with initial
metallicity 0.02) as a function of age and tidal period based on applying vEr.
Bottom: inspiral time 7, as a function of orbital period resulting from this
mechanism, for a 1My planet in circular orbit about a slowly rotating 1 Mg
star at various ages prior to the red giant phase (Pro = 100 d for all curves,
which may be relevant for later ages).

MESA (Paxton et al. 2011, 2013, 2015, 2018, 2019). For the pur-
poses of this crude application (and in the absence of compressible
simulations), we have simply replaced d with /™ and uI™ with
u™!t and calculated these at each radius in the convection zone. To
apply this in a stellar model we calculate the correct equilibrium
tide in convective envelopes (Terquem et al. 1998; Ogilvie 2014),
and then compute the dissipation integral following the procedure
outlined in® Barker (2020). The result is then converted into a tidal
quality factor Q¢q, which is an inverse measure of the dissipation
(e.g. Ogilvie 2014) (see Barker 2020 for further details).

We show Qéq computed using vprT in models of a 1M star
(computed with an initial metallicity 0.02) in the top panel of Fig. 9
as function of tidal period Pygqe = 27/w and age (in yrs). This shows
that during the main sequence, solar-mass stars have Qéq ~ 1010
for tidal periods of order 1 day, though Qéq is smaller during pre-

main sequence phases (ages prior to approximately 107 yr) and as

5 See also Zahn (1989) and Remus et al. (2012) for a similar approach using
the conventional equilibrium tide, which is strictly invalid in convection
zones. This predicts more efficient dissipation than our model by a factor of
2-3 for the same vt
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the star evolves off the main sequence (ages approaching 100 yr),
indicating more efficient dissipation during these phases.

The resulting orbital decay rate for a (circularly orbiting) short-
period planet of mass M, around a slowly rotating star of mass M
and radius R can be computed from

10

3 3
) 3 den

14)

Q4 5

dlna 97 ﬂ M
M M+ Mp 5
orb

where a = (G(M + Mp)P(z)rb/(4712))l/3 is the semi-major axis,
Py is the orbital period (assumed to be much shorter than the
stellar spin period Prot), and den = 27r\/R3/ GM is the dynami-
cal timescale. We note that the relevant tidal frequency, assuming
Porp < Prot is w = 41/ Py, and that the high-frequency regime is
found to be the relevant one for short orbital periods (at all stages in

stellar evolution). As aresult Vg o Pgrb, implying that Qéq o P;rlb’

so that the right hand side of Eq. 14 is proportional to >, indicat-
ing accelerating inspiral. The corresponding timescale for orbital
decay of a 1 M hot Jupiter is

10

—1 10
1 (dIna Mp\ (Pop \ 3
R —— ~ 2 — 1
fa 5( dr ) SOGyr(M,)( 1d) (1)

which we have evaluated in a stellar model similar to the current
Sun (assuming Prot = 20 d).

We show similar estimates for 7, as a function of orbital pe-
riod P, computed numerically for a 1M star for a range of ages,
in the bottom panel of Fig. 9. We have assumed Pyt = 100 d for
all ages for the purposes of this figure, since the curves shown are
unaffected by rotation except for the latest ages when the star is
expected to rotate so slowly. This figure, and the estimate in Eq. 15,
indicates that convective damping of equilibrium tides plays a neg-
ligible role for planetary orbital decay around main sequence stars,
even assuming the most optimistic fit for vgiT consistent with our
simulations. This is because of the strong reduction in the effective
viscosity with the quadratic scaling law. On the other hand, for later
evolutionary stages as the star begins to evolve onto the red giant
phase, this mechanism becomes more efficient, primarily because
the stellar radius becomes much larger. This mechanism thus pre-
dicts the destruction of many short-period planets during the later
stages in the evolution of solar-mass stars. (We have omitted figures
showing even later evolutionary stages for clarity, but planets out to
much wider orbits can be rapidly destroyed by this mechanism.)

Our results using vt (with @ = 5 at low frequencies) is found
to predict more efficient dissipation by approximately a factor of
15, and therefore shorter tidal evolutionary timescales by this fac-
tor, than the usual assumption @ = 1/3 that is usually assumed when
applying the Goldreich & Nicholson (1977) reduction (e.g. Ogilvie
& Lin 2007). We note that an enhancement in « is apparently re-
quired to explain the results of Hansen (2012), though they employ
the linear reduction law, and thus their model predicts much more
efficient dissipation at high frequencies. However, we caution that
the application here of our results in Fig. 5, based on Boussinesq
simulations, is very crude. In addition, our simulations find a scatter
at high frequencies of approximately an order of magnitude depend-
ing on tidal frequency, so the precise results of our application are
probably uncertain to within at least such a factor.
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6 CONCLUSIONS

The interaction between large-scale equilibrium (non-wavelike)
tidal flows and turbulent convection is thought to be an important
mechanism of tidal dissipation in giant planets and stars. However,
it is probably the most uncertain tidal mechanism, making it difficult
to make robust predictions for the resulting spin-orbit evolution in
astrophysical systems. In particular, it is thought that the effective
viscosity mediating the interaction between the tidal flow and con-
vection depends strongly on the tidal frequency, and its efficiency is
expected to be greatly reduced when the tidal frequency is larger than
the relevant convective frequency (Zahn 1966; Goldreich & Nichol-
son 1977; Goodman & Oh 1997). However, the correct frequency
scaling that should be applied in the high frequency regime has been
a matter of much controversy, with the original work of Zahn (1966)
proposing vg ~ w™! when w > w,, and Goldreich & Nicholson
(1977) later proposing vg ~ w2 instead. It is essential to resolve
this issue, and to determine the correct frequency-dependence of the
effective viscosity, before we can apply this mechanism to make ro-
bust predictions for tidal evolution in planetary systems and binary
stars.

We have presented the results from an extensive parameter
survey of numerical simulations designed to explore the interaction
between large-scale equilibrium tidal flows and convection within
a star or giant planet. We have used Boussinesq hydrodynamical
simulations of a local Cartesian patch of convective fluid, which is
modelled within the well-studied Rayleigh-Bénard system, to which
we impose a large-scale tidal-like shear flow as a “background
flow". Our analysis of these simulations has primarily focused on
the evaluation of the effective viscosity which arises as a result
of the interaction between the convection and this tidal-like flow.
We have presented an in-depth study into the relationship between
the frequency spectrum of both the energy and the Reynolds stress
in the convection and the frequency-dependence of the effective
viscosity. This parameter survey is a direct extension of Paper I, and
is guided by and builds upon the results therein, as well as those
of Penev et al. (2009); Ogilvie & Lesur (2012) and Vidal & Barker
(2020). In particular, we have explored a wider range of parameters
than Paper I, to explore the dependence of the effective viscosity on
tidal frequency and amplitude, as well as the Rayleigh number and
domain size.

We have determined that the effective viscosity governing the
interaction between tidal flows and convection exhibits three dif-
ferent regimes depending on the ratio of the tidal and convective
frequencies (as shown in e.g. Fig. 5). We refer to these as the low
frequency, intermediate frequency and high frequency regimes. Our
main results are as follows, where we also highlight which of the
three regimes each statement applies to:

1. (low frequency regime) For very low tidal frequencies, the
effective viscosity becomes frequency-independent. The transition
into this regime occurs at w/we < 1072, which is a much lower fre-
quency than has been predicted (Zahn 1966; Goldreich & Nicholson
1977) or observed in simulations to date (Paper I). Previous work in-
stead expected or observed the transition to occur at approximately
the convective frequency. This frequency-independent regime co-
incides with the commonly-adopted constant tidal time-lag model
(e.g. Darwin 1880; Mignard 1980; Hut 1981; Eggleton et al. 1998),
which our results have shown is only valid for a limited range of
very low tidal frequencies w/we < 1072. The constant time-lag
model is therefore not appropriate for modelling tidal interactions
except for such low frequencies, which are usually not relevant in
astrophysical applications.

2. (low frequency regime) We find this mechanism to be consid-
erably more efficient than has been previously proposed at very low
frequencies. In particular, we have determined that vg ~ au}"d,
where® a ~ 5. This result appears to be independent of Rayleigh
number, suggesting that we might be able to extrapolate this to as-
trophysical parameter values. Previous work has adopted a naive
mixing-length picture based on the analogy with kinetic theory,
which instead gives @ = 1/3 (e.g Zahn 1989; Ogilvie & Lin 2007)
if d corresponds with the usual mixing length. In our Boussinesq
model d is the most natural length scale to identify with the mixing
length, but compressible models are needed before we can be fully
confident of the appropriate value of «.

3. (intermediate regime) We have discovered a new regime with
a different frequency scaling vg o« w03, which occurs in the range
1072 < w/we < 1 -5 (depending on tidal amplitude), which we
refer to as the intermediate-frequency regime. This regime is ob-
served for all Rayleigh numbers considered, suggesting that it might
be a robust feature of the interaction between tides and convection.
To the best of our knowledge, this regime has never previously been
predicted or reported. A similar intermediate regime, but with a
different power law of —1 was however observed for spherical con-
vection in Vidal & Barker (2020) for 1 < w/w¢ < 5. The existence
of such an intermediate regime here and in Vidal & Barker (2020)
may explain the previous disagreement between Paper [ and Ogilvie
& Lesur (2012) compared with Penev et al. (2009). This new regime
may be relevant in many astrophysical applications where the con-
stant time-lag model was previously applied.

4. (low/intermediate regime) The frequency scaling of the effec-
tive viscosity, in both the low and intermediate frequency regimes,
appears to follow the corresponding slope of the frequency spectrum
of the kinetic energy (and also the Reynolds stress) when w/w, < 1
(see also Vidal & Barker 2020). This is shown in Fig. 7. In these
regimes, the agreement of the slope of the eddy viscosity points
with both the energy and Reynolds stress curves is robust, but the
constants of proportionality could depend on the Rayleigh number,
the Prandtl number and the tidal amplitude (though the dependence
on the latter has been found to be weak). In principle, this could be
determined by performing a more extensive parameter survey for
larger R for frequencies that lie within the intermediate regime. This
would be a challenging task however, since simulations with large R
are computationally costly, and we have only been able to robustly
find the intermediate regime for vg in simulations with R < 500.

5. (high frequency regime) For w 2 w., we provide strong ev-
idence clearly demonstrating that the effective viscosity follows
VE o« w2, in agreement with prior simulations (Ogilvie & Lesur
2012; Braviner 2015; Duguid et al. 2019; Vidal & Barker 2020) and
theoretical expectations (Goldreich & Nicholson 1977; Goldman
2008; Ogilvie & Lesur 2012; Duguid et al. 2019). This mecha-
nism is therefore much less efficient for high frequency tidal forcing
than would be predicted by adopting the less drastic frequency-
reduction of Zahn (1966). One implication is that this mechanism is
unlikely to cause appreciable orbital decay for hot Jupiters orbiting
main-sequence stars (for which dynamical tide mechanisms such as
internal gravity wave damping are probably much more important).

6. (high frequency regime) Despite our simulations being in
agreement with Goldreich & Nicholson (1977) in finding vg o« w2
in the high frequency regime, our results do not support their phys-
ical explanation. This is most clearly evident from our observation

6 We remind the reader that this is strictly different from the usual mixing

“« 9

length “a” parameter, see footnote 3.

MNRAS 000, 1-18 (2020)



that it is the energetically-dominant modes of the convection which
contribute the most to the effective viscosity. In fact, we do not ob-
serve any significant contribution from the “resonant modes" in the
spatial spectrum (see Fig. 8), which were predicted by Goldreich &
Nicholson (1977) to provide the dominant contribution. However,
we do observe resonant behaviour in the frequency spectrum of the
kinetic energy, particularly when the shear is in the high frequency
regime. In the absence of a simple mechanism to explain this scal-
ing, the asymptotic analysis in Ogilvie & Lesur (2012), which we
extended in Paper I, does however provide a mathematical predic-
tion for this behaviour.

Despite much progress having being made in recent years on
this problem there is still much work to do to understand the physics
of the interaction between tidal flows and convection. Paper I and
this paper performed Boussinesq simulations, which effectively lim-
its them to small domains relative to a pressure scale height, but
convection in stars can occur over many scale heights so that com-
pressible effects could be important. We propose that simulations
to investigate anelastic convection, which would build upon Penev
et al. (2009) by exploring a much wider range of parameters, and
in particular tidal frequencies, would be of great interest. These
simulations would be able to make a more quantitative comparison
with mixing-length theory. In addition, since all stars and planets
rotate, it is important to study the effects of convection in this prob-
lem. It is known that sufficiently rapid rotation acts to constrain
convection (Stevenson 1979; Barker et al. 2014; Currie et al. 2020),
which probably affects the effective viscosity (Mathis et al. 2016).
The consequences of the inclusion of rotation, and its effects on the
frequency spectrum of kinetic energy, have not yet been explored
numerically.
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Figure A1. The same as Fig. 2 but with the spectra scaled by (&/w,.)? in order to highlight the short inertial range. The inertial range for the R = 1000 case
is approximately (3, 6) while it is vanishingly small for R = 50.

R Lx(=Ly) uy™s uy™ u;™ Nx=Ny N; E,
2 2 5.44 0 5.44 32 32 29.6
2 4 3.64 7.2 4.29 64 32 44.4
2 8 8.01 343 4.64 64 32 52.6
2 12 5.19 5.59 4.11 128 64 38.7
2 16 5.55 5.33 4.07 256 64 383
2 24 5.47 5.5 4.05 512 64 38.6
2 32 5.54 5.45 4.05 512 64 39.1
100 2 47.67 51.11 64.32 64 128 4637
100 4 61.01 59.81 48.98 64 128 4919
100 8 56.99 58.37 48.61 128 128 45274
100 12 58.49 58.03 48.11 192 128  4589.9
100 16 58.18 58.49 47.52 256 128  4570.2
100 24 58.29 58.8 47.71 384 128 4591
100 32 58.63 58.68 47.71 512 128  4604.4
1000 2 148.94  146.66 178.74 128 192 38783
1000 4 166.22  173.82 14543 192 192 39643
1000 8 164.96 16422  144.64 256 192 37302
1000 12 165.81  167.59 143.7 384 192 37937
1000 16 167.66  165.68  143.29 512 192 37963

Table Al. Table listing the time-averaged RMS velocity components u;™ : i € {x,y, z}, and the horizontal Nx = Ny and vertical N resolutions, for each
R and domain size. We evaluate the energy per unit area E; in each case. This table is associated with the un-sheared cases of convection reported in Fig. 2.
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