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Abstract: We present the first study to measure the dissociative photochemistry of 2-thiouracil (2-TU),

an important nucleobase analogue with applications in molecular biology and pharmacology. Laser

photodissociation spectroscopy is applied to the deprotonated and protonated forms of 2-TU, which

are produced in the gas-phase using electrospray ionization mass spectrometry. Our results show

that the deprotonated form of 2-thiouracil ([2-TU-H]−) decays predominantly by electron ejection

and hence concomitant production of the [2-TU-H]· free-radical species, following photoexcitation

across the UVA-UVC region. Thiocyanate (SCN−) and a m/z 93 fragment ion are also observed

as photodecay products of [2-TU-H]− but at very low intensities. Photoexcitation of protonated

2-thiouracil ([2-TU·H]+) across the same UVA-UVC spectral region produces the m/z 96 cationic

fragment as the major photofragment. This ion corresponds to ejection of an HS· radical from the

precursor ion and is determined to be a product of direct excited state decay. Fragment ions associated

with decay of the hot ground state (i.e., the ions we would expect to observe if 2-thiouracil was behaving

like UV-dissipating uracil) are observed as much more minor products. This behaviour is consistent

with enhanced intersystem crossing to triplet excited states compared to internal conversion back to

the ground state. These are the first experiments to probe the effect of protonation/deprotonation

on thionucleobase photochemistry, and hence explore the effect of pH at a molecular level on their

photophysical properties.

Keywords: 2-thiouracil; free-radicals; non-native nucleobase; excited states; phototherapy

1. Introduction

The canonical nucleobases of DNA and RNA are renowned for their ability to dissipate harmful

UV, primarily via ultrafast excited-state relaxation to the ground state, either directly or indirectly

through excited singlet states [1–6]. Thiobases represent a class of structurally modified nucleobases

where an oxygen atom of the carbonyl group is substituted by a sulphur atom. These molecules display

dramatically different relaxation dynamics compared to their canonical nucleobase analogues [7–12].

Molecules such as 4-thiothymine and 2-thioguanine possess excited states that evolve by intersystem

crossing (ISC) on sub picosecond timescales resulting in nearly unity triplet yields [7–11]. The ensuing

triplet state constitutes a highly reactive molecule, which by itself or by generating singlet oxygen [9,11],

can damage biomolecules within the cell [13,14]. Hence these molecules are of considerable current

interest in phototherapeutic applications [9,15–17].

Given the growing application of thionucleobases, there has been considerable interest in

characterizing their fundamental photophysics. Time-resolved experiments have primarily been
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conducted in solution using transient absorption spectroscopy [8–11,18–25]. Gas-phase studies using

time-resolved photoionization techniques have provided complementary insight into the intrinsic

decay dynamics [19,20], as well as a straightforward comparison against theoretically derived potential

energy surfaces [19,26–31].

In this work, we explore the intrinsic (i.e., gas-phase) photochemistry of 2-thiolated uracil (2-TU)

(Scheme 1). In particular, we aim to characterise the effect of protonation and deprotonation on the

excited states and photoproducts of 2-TU by studying the isolated deprotonated ([2-TU-H]−) and

protonated ([2-TU·H]+) ions via laser-interfaced mass spectrometry (LIMS) [32–35]. These are the first

experiments to directly measure the dissociative photochemistry of a thionucleobase. They are also the

first to probe the effect of protonation/deprotonation on a thionucleobase photochemistry, and hence

explore the effect of pH at a molecular level on 2-TU photophysical properties. The experiments are

important in the context of the use of 2-TU both as a photodynamic therapy agent and biochemical

labelling agent since local biochemical environments can display variable pH.
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Scheme 1. Schematic diagram of uracil (U) and 2-thiouracil (2-TU) with selected atom labels.

The electronic properties of neutral 2-thiouracil (2-TU) have been the subject of a number of recent

theoretical and experimental studies [20,25,30,36–38]. Crespo-Hernández and co-workers have applied

femtosecond broadband transient absorption spectroscopy in aqueous and acetonitrile solutions, while

Ullrich and co-workers used time resolved photoelectron spectroscopy to characterise the gaseous

excited state dynamics. Complementary theoretical calculations have been conducted by Gonzalez and

co-workers [29,30]. The consensus to emerge from this work is that the main excited-state relaxation

pathway following initial excitation to the S2 state is S2 → S1 → T3 → T1, with S2 →S1 →T1 occurring

as a minor pathway [30]. Very recently, experimental and computational evidence has been published

providing evidence for the existence of two minima within the T1 state [25]. Work has also been

conducted on the negative ions of 2-TU [39,40]. These studies are motivated by the fact that ionizing

radiation can initiate DNA strand breaks via the formation of transient negative ions [41,42].

2. Results

2.1. Geometric Structures and Time-Dependent Density Functional Theory (TDDFT) Calculations [2-TU-H]−

and [2-TU·H]+

Scheme 2 displays the lowest-energy tautomers of [2-TU-H]− calculated at B3LYP/6-311++G(2d,2p)

level. Relative energies for these tautomers are displayed in Table 1. Rotational isomers are grouped

together, using small case alphabetical labels (e.g., D3a and D3b). The D1 tautomer corresponding to

removal of the N1 proton lies substantially lower in energy than the higher-energy tautomers. It will

therefore be the only tautomer produced following electrospray in methanol solvent [43]. In solution, this

pattern is repeated, so that the D1 tautomer is again predicted to dominate. Vertical detachment energies

(VDEs) were calculated for the [2-TU-H]− isomers, with the value for the D1 isomer predicted to be 3.82 eV.

This value can be compared to the experimental value for deprotonated uracil of 2.5 eV [44].
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Scheme 2. Low-energy tautomers of deprotonated 2-thiouracil ([2-TU-H]−) obtained at the

B3LYP/6-311++G(2d,2p) level of theory.

Scheme 3 displays the five lowest-energy calculated tautomers of [2-TU·H]+, which are in good

agreement with the previous results of Nei et al. [45]. Rotational isomers are again grouped together,

using small case alphabetical labels (i.e., P1a–P1d). The lowest-energy gaseous tautomers, P1a and P1b,

correspond to a pair of cis and trans enol-enol rotamers, with other tautomers lying at significantly

higher energy. The lowest-energy enol-keto tautomer, P2, is predicted to lie 20.25 kJ mol−1 higher in

energy than P1a. We therefore expect that P1a will dominate the experimental ion ensemble following

electrospray, with some P1b also being present.
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Scheme 3. Low-energy tautomers of protonated 2-thiouracil ([2-TU·H]+) obtained at the

B3LYP/6-311++G(2d,2p) level of theory.

Table 1. Calculated relative energies and % Boltzmann populations of the lowest-energy tautomers

of [2-TU-H]− and [2-TU·H]+, calculated at the B3LYP/6-311++G(2d,2p) level. Vertical detachment

energies (VDEs) are also presented for the [2-TU-H]− anions.

Ion Tautomer
Relative Energy (kJ mol−1)

a,b
% Boltzmann Population

b,c VDE

[2-TU-H]−

D1 0.0 (0.0) 99.9 (99.8) 3.82

D2 45.9 (15.3) 0 (<0.1) 3.66

D3a 101 (58.9) 0 (<0.1) 2.91

D3b 74.6 (49.5) 0 (<0.1) 3.00

D4a 58.2 (51.7) 0 (<0.1) 3.93

D4b 56.5 (51.5) 0 (<0.1) 2.54

[2-TU·H]+

P1a 0.0 (0.0) 93.9 (35.9)

P1b 6.81 (1.32) 6.01 (21.1)

P1c 17.6 (8.10) 0.077 (1.37)

P1d 26.8 (9.55) 0.003 (0.76)

P2 20.2 (-0.32) 0.026 (40.9)

a Zero-point corrected energies. b Values in parenthesis are calculated in methanol. c Determined at 293 K.
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TDDFT calculations were conducted to aid the assignment of the excited-state spectra presented

below, with the calculated excitation spectra for the lowest-energy tautomers of [2-TU-H]− (D1) and

[2-TU·H]+ (P1a) displayed in Figure 1. The calculated TDDFT excitation spectra for all tautomers,

transitions energies, and assignments of the bright transitions (≥0.005 oscillator strength) are included in

the Supplementary Material (Section S1). For the sets of rotational isomers (e.g., P1a-P1d of [2-TU·H]+,

and D3a and D3b of [2-TU-H]−), the TDDFT spectra are very similar, and would be indistinguishable

at our experimental resolution.

The TDDFT calculations predict that the protonated and deprotonated forms of 2-TU will display

dramatically different absorption profiles, with [2-TU-H]− absorbing strongly through the UVA, with

the primary absorption of [2-TU·H]+ occurring at significantly higher energies.
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negative ion well. Dipole-bound excited states, which are common in negative ion systems, are 
challenging in general for ab initio calculations, and their accurate calculation requires the use of 
diffuse functionals centred on the dipole-bound orbital [46–48]. In addition, any electronic excitations 
that appear above the electron detachment threshold of an anionic species will correspond to 
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Figure 1. Calculated time-dependent density functional theory (TDDFT) excitation energies

(B3LYP/6-311++G(2d,2p)) for (a) the D1 tautomer of [2-TU-H]−, (b) the P1a tautomer of [2-TU·H]+, and

(c) the P2 tautomer of [2-TU·H]+. Oscillator strengths (Osc.) of individual transitions ≥ 0.005 are shown

by vertical bars, while the full line spectrum is a convolution of the calculated spectral transitions with

a Gaussian function (0.25 eV FWHM).

We note that the TDDFT calculations may not accurately predict the spectra of the [2-TU-H]−

negative ion well. Dipole-bound excited states, which are common in negative ion systems, are

challenging in general for ab initio calculations, and their accurate calculation requires the use of

diffuse functionals centred on the dipole-bound orbital [46–48]. In addition, any electronic excitations

that appear above the electron detachment threshold of an anionic species will correspond to resonance

states [49,50]. The accurate theoretical prediction of such states is beyond the scope of the current

work, however the TDDFT calculations presented here have been shown to provide a useful guide in

interpreting similar experimental results [51–53].
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2.2. Deprotonated 2-Thiouracil

2.2.1. Gas-Phase Absorption Spectrum of Deprotonated 2-Thiouracil

Figure 2 displays the gas-phase absorption (photodepletion) spectrum of [2-TU-H]− measured

over the range 3.2–5.3 eV. The spectrum has an absorption onset at 3.2 eV with continuous absorption

through to 5.2 eV. A high-intensity absorption band, labelled (I), is evident between 3.2 to 4.2 eV,

peaking at λmax = 3.7 eV. This band lies just below the calculated VDE of the lowest-energy D1 tautomer

(3.82 eV). From the relative energies presented in Table 1, only the D1 tautomer is expected to be present

following electrospray in methanol. This feature is followed by a lower-intensity, broad absorption (II)

from 4.2 to 5.2 eV. The overall profile of the [2-TU-H]− gas-phase absorption spectrum is similar to

that of other negatively charged molecules and clusters we studied previously. It can be primarily

described as a near-threshold dipole-bound excited state (band I) followed by a higher-energy region

where electron-detachment dominates (band II) [43]. However, this picture can be complicated by the

presence of electronic transitions of the chromophore, which may be evident superimposed on top of

these electron detachment features [33,54].
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The calculated TDDFT spectrum of [2-TU-H]− (Figure 1a) predicts that [2-TU-H]− has two main

electronic transitions which peak at 3.8 and 4.8 eV. However, these absorptions are not evident in our

gaseous experimental spectrum presented in Figure 2, probably due to the dominance of electron

detachment (Section S2). In previous anionic systems we studied, these excited states have been more

clearly visible in the photofragment production spectra [44,55,56]. We therefore turn to inspecting the

photofragmentation channels of [2-TU-H]− to further characterise the excited states and photochemistry.

2.2.2. Photofragmentation of Deprotonated 2-Thiouracil

Figure 3 displays the photofragment difference (laser on–laser off) mass spectrum of [2-TU-H]−

photoexcited at 3.6 eV, close to the band I maximum.
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[2-TU-H]− produces two photofragments, m/z 58 and 93, with the m/z 58 photofragment being

more intense. These ionic photofragments have low intensities compared to the parent ion depletion.

Both are produced weakly across band I of the photodepletion spectrum, and with negligible intensity

across the band II region. This indicates that across the UV, [2-TU-H]− decays predominantly by

electron detachment with associated production of the [2-TU-H]· radical (Equation (1)). The m/z = 58

photofragment (Equation (2)) is assigned to thiocyanate (SCN−). We note that this ion has been observed

in low-energy dissociative electron attachment to 2-TU, as well as in collisional activated decomposition

of 2-thiouridine [39]. While SCN− was observed in higher-energy collisional dissociation (HCD) of

[2-TU-H]−, the m/z = 93 ion was not (Section S3). This indicates that the m/z 93 ion (Equation (3)) is a

solely photochemical product.

[2-TU-H]− + hv→ [2-TU-H]· + e− (1)

→SCN− + C3H3NO (2)

→m/z 93 + H2S (3)

Table 2 lists the photofragments and corresponding neutral fragments of [2-TU-H]−. We note

that there are two possible structures of C3H3NO (Section S4). One of these is acrylamide, a potent

neurotoxin [57], while the other is a potentially harmful free radical species. Further computational

results on the observed fragments are presented in the Supplementary Material (Section S4).
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The photofragment production spectra are displayed in Figure 4b,c and are presented with the

gas-phase absorption spectrum for comparison. While SCN− is produced through band I, the full-width

half maximum for this feature is 0.31 eV, which is narrower than that of the band I feature (0.43 eV).

Indeed, comparison of the spectra presented in Figure 4 reveals that SCN− is produced only through

the lower energy region of band I. It is interesting to note that the SCN− production spectrum appears

to be broadened on the high-energy side of the peak, possibly due to unresolved vibrational features.

This is reminiscent of near-threshold excitation of I−·CH3I, where the I− photofragment production

spectrum contained a vibrational progression in the C-I stretch, originating in the intermediate transient

negative ion [58].

Molecules 2020, 25, x FOR PEER REVIEW 7 of 17 

 

The photofragment production spectra are displayed in Figure 4b,c and are presented with the 
gas-phase absorption spectrum for comparison. While SCN− is produced through band I, the full-
width half maximum for this feature is 0.31 eV, which is narrower than that of the band I feature (0.43 
eV). Indeed, comparison of the spectra presented in Figure 4 reveals that SCN− is produced only 
through the lower energy region of band I. It is interesting to note that the SCN− production spectrum 
appears to be broadened on the high-energy side of the peak, possibly due to unresolved vibrational 
features. This is reminiscent of near-threshold excitation of I−·CH3I, where the I− photofragment 
production spectrum contained a vibrational progression in the C-I stretch, originating in the 
intermediate transient negative ion [58]. 

0.0

1.5

Ph
ot

of
ra

ge
m

en
t (

A
rb

.)

b)

0

25

Ph
ot

od
ep

le
tio

n 
(A

rb
.) a)

360 320 280 240
Wavelength (nm)

3.2 3.6 4.0 4.4 4.8 5.2
0.0

0.1

c)

Photon Energy (eV)  
Figure 4. (a) Gas-phase absorption (photodepletion) spectrum of [2-TU-H]−, (b) photofragment action 
spectrum of SCN− (m/z 58), and (c) photofragment production spectrum of m/z 93 from 3.2–5.3 eV 
(234–390 nm). The arrow included in (a) indicates the calculated VDE of the lowest-energy tautomer. 
The solid line is a five-point adjacent average of the data points. 

The production profile of the m/z 93 fragment is very similar to that of the m/z 58 fragment, 
although it is produced at ~10× lower intensity. Some non-zero production of m/z 93 is visible in the 
region between 4.6–5.2 eV, the area where the second bright transition of [2-TU-H]− is predicted to 
occur (Section 2.2.1). Indeed, there is also very low-level production of m/z 58 in this region. The 
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(234–390 nm). The arrow included in (a) indicates the calculated VDE of the lowest-energy tautomer.
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The production profile of the m/z 93 fragment is very similar to that of the m/z 58 fragment,

although it is produced at ~10× lower intensity. Some non-zero production of m/z 93 is visible in the

region between 4.6–5.2 eV, the area where the second bright transition of [2-TU-H]− is predicted to

occur (Section 2.2.1). Indeed, there is also very low-level production of m/z 58 in this region. The

nature of the excited states and photofragmentation pathways of [2-TU-H]− will be discussed further

in Section 3.1.
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2.3. Protonated 2-Thiouracil [2-TU·H]+

2.3.1. Gas-Phase and Solution-Phase Absorption Spectra of [2-TU·H]+

Figure 5 displays the gas-phase absorption (photodepletion) spectrum of [2-TU·H]+ across the UV

region. The spectrum displays two resolved bands, which are labelled I and II, with λmax at 4.68 and

5.3 eV, respectively.

Molecules 2020, 25, x FOR PEER REVIEW 8 of 17 

 

2.3.1. Gas-Phase and Solution-Phase Absorption Spectra of [2-TU·H]+ 

Figure 5 displays the gas-phase absorption (photodepletion) spectrum of [2-TU·H]+ across the 
UV region. The spectrum displays two resolved bands, which are labelled I and II, with λmax at 4.68 
and 5.3 eV, respectively. 

0

90

Ph
ot

od
ep

le
tio

n 
(A

rb
.)

I
II

320 280 240
Wavelength (nm)

3.6 4.0 4.4 4.8 5.2 5.6
Photon Energy (eV)  

Figure 5. Gas-phase absorption (photodepletion) spectrum of [2-TU·H]+ across the range 3.6–5.8 eV 
(344–214 nm). The solid line is a five-point adjacent average of data points. 

It is instructive to compare the gas-phase absorption spectrum of [2-TU·H]+ with that of 
protonated uracil, which has been studied at low resolution by Pedersen et al. [59] and at high 
resolution by Berdakin et al. [60] In both studies, protonated uracil displayed a spectrum that 
consisted of two bands, a weaker intensity band between 260 and 317 nm and a stronger intensity 
band at higher energies from 227–256 nm. These bands were assigned to the presence of two isomers, 
an enol-keto tautomer for the weaker band and an enol-enol tautomer for the stronger band. This 
spectral pattern is remarkably similar to the spectral profile of [2-TU·H]+ observed here, allowing us 
to assign band I to the P2 tautomer, and band II to P1 tautomers. Although our calculations did not 
predict that the P2 tautomer would be present in the gas-phase, it is known that relative tautomer 
energies for this type of system can be unreliable. Indeed, there is direct evidence from the IRMPD 
study of Nei et al. on [2-TU·H]+ that an enol-keto tautomer such as P2 is present in the gas-phase 
following electrospray ionisation [45]. It is also important to note that in previous studies where 
electrospray has been used to transfer similar molecular ions (e.g., protonated nicotinamide) from the 
solution into the gas-phase, higher-energy tautomers have been observed, possibly due to the kinetics 
of the electrospray process [35]. Similar effects may therefore occur for the 2-TU system. 

We next turn to inspecting the photofragment action spectra to further probe the nature of the 
two bands evident in gas-phase absorption spectrum of [2-TU·H]+. 

2.3.2. Photofragmentation of Protonated 2-Thiouracil 

Photofragment mass spectra of [2-TU·H]+ were obtained at 4.6 and 5.2 eV close to the λmax of 
bands I and II (Section S5). Table 3 provides a list of the most intense photofragments, along with 
proposed structures and accompanying neutral fragments. The m/z 96 photofragment, which 
corresponds to loss of an SH radical, is the most intense photofragment in both bands I and II. Other 
photofragments observed with significant intensities in both bands are m/z 128 (H atom loss), m/z 112 
(NH3 loss), and m/z 70 (HNCS loss). The m/z 68 and m/z 79 photofragments were not observed in the 
band I region (Section S5) but were seen in the higher-energy band II region (Section S5), although 
with very low intensities.  

HCD (Higher-Energy Collisional Dissociation) was performed on [2-TU·H]+ to explore the 
thermal fragmentation pathways of the electronic ground state, with the results compiled in Table 3. 
HCD fragmentation of [2-TU·H]+ produces the m/z 112 (NH3 loss) and m/z 70 (HSCN loss) ions as the 
dominant products at moderate collision energies which should correspond to internal ion energies 

Figure 5. Gas-phase absorption (photodepletion) spectrum of [2-TU·H]+ across the range 3.6–5.8 eV

(344–214 nm). The solid line is a five-point adjacent average of data points.

It is instructive to compare the gas-phase absorption spectrum of [2-TU·H]+with that of protonated

uracil, which has been studied at low resolution by Pedersen et al. [59] and at high resolution by

Berdakin et al. [60] In both studies, protonated uracil displayed a spectrum that consisted of two bands,

a weaker intensity band between 260 and 317 nm and a stronger intensity band at higher energies from

227–256 nm. These bands were assigned to the presence of two isomers, an enol-keto tautomer for the

weaker band and an enol-enol tautomer for the stronger band. This spectral pattern is remarkably

similar to the spectral profile of [2-TU·H]+ observed here, allowing us to assign band I to the P2

tautomer, and band II to P1 tautomers. Although our calculations did not predict that the P2 tautomer

would be present in the gas-phase, it is known that relative tautomer energies for this type of system

can be unreliable. Indeed, there is direct evidence from the IRMPD study of Nei et al. on [2-TU·H]+

that an enol-keto tautomer such as P2 is present in the gas-phase following electrospray ionisation [45].

It is also important to note that in previous studies where electrospray has been used to transfer similar

molecular ions (e.g., protonated nicotinamide) from the solution into the gas-phase, higher-energy

tautomers have been observed, possibly due to the kinetics of the electrospray process [35]. Similar

effects may therefore occur for the 2-TU system.

We next turn to inspecting the photofragment action spectra to further probe the nature of the two

bands evident in gas-phase absorption spectrum of [2-TU·H]+.

2.3.2. Photofragmentation of Protonated 2-Thiouracil

Photofragment mass spectra of [2-TU·H]+ were obtained at 4.6 and 5.2 eV close to the λmax

of bands I and II (Section S5). Table 3 provides a list of the most intense photofragments, along

with proposed structures and accompanying neutral fragments. The m/z 96 photofragment, which

corresponds to loss of an SH radical, is the most intense photofragment in both bands I and II. Other

photofragments observed with significant intensities in both bands are m/z 128 (H atom loss), m/z 112

(NH3 loss), and m/z 70 (HNCS loss). The m/z 68 and m/z 79 photofragments were not observed in the

band I region (Section S5) but were seen in the higher-energy band II region (Section S5), although

with very low intensities.
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HCD (Higher-Energy Collisional Dissociation) was performed on [2-TU·H]+ to explore the thermal

fragmentation pathways of the electronic ground state, with the results compiled in Table 3. HCD

fragmentation of [2-TU·H]+ produces the m/z 112 (NH3 loss) and m/z 70 (HSCN loss) ions as the

dominant products at moderate collision energies which should correspond to internal ion energies

close to the photon energies employed in this study [54]. These product ions are in line with those

observed for CID of protonated uracil, where loss of NH3 dominates, and loss of HNCO is seen as a

more minor product ion [59–61]. For protonated uracil, loss of H2O is also observed although we do

not observe the equivalent loss of H2S for [2-TU·H]+. Notably, the major photofragment, m/z 96 (SH

loss), was not seen in the HCD results (Section S3). Further computational results on the observed

fragments are presented in the Supplementary Material (Section S4).

Table 3. Assignment of the fragmentation channels of [2-TU·H]+ (m/z 129) observed upon HCD

collisional excitation and laser excitation at 4.6 and 5.2 eV a,b,c.

Photofragment
m/z

Proposed
Structure

Neutral or
Radical Loss

HCD a Photofragment
Intensity at 4.6 eV b,c

Photofragment
Intensity at 5.2 eV b,c

128
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intensity ion at high HCD energies but was not observed as a photofragment.

To gain more insight into the photofragment production dynamics, it is useful to inspect the

photofragment production spectra. These are presented in Figure 6, along with the gas-phase absorption

spectrum for comparison.
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Figure 6b shows the production spectrum for m/z 96 (SH loss), the most intense fragment across

the entire scanned region, which displays a profile that is very similar to the gas-phase absorption

spectrum (Figure 6a). The second most intense photofragment is m/z 128 (H loss), which displays

the action spectrum displayed in Figure 6c. As for the m/z 96 photofragment, m/z 128 peaks strongly

across the band II region (λmax = 5.3 eV), although its intensity is significantly reduced across band I.

Figure 6d presents the production spectrum for the m/z 70 photofragment (HNCS loss). This spectrum

is very like that of m/z 96, although an additional region of production is also visible in the low-energy

region between 3.8–4.2 eV. It is notable that the m/z difference between m/z 128 (Figure 6c) and m/z

70 (Figure 6d) is 58, which corresponds to the SCN unit. It may be that m/z 128 has a propensity to
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fragment into m/z 58 over the low-energy region. Indeed, m/z 128 is observed to fragment into lower

mass channels at higher HCD energies. Finally, the spectrum for the m/z 112 photofragment is shown

in Figure 6e. This is similar to the m/z 70 fragment spectrum (Figure 6d), although the relatively lower

intensity of the fragment at higher energies may reflect the fact that it fragments more readily than the

other fragments at higher internal energies.

2.3.3. Comparison of Photofragmentation and HCD Fragmentation of [2-TU·H]+

When the photofragments observed match the fragments obtained by thermal dissociation of

the ground-electronic state as in HCD, the situation is described as “statistical decay”. In contrast, if

dissociation occurs directly from the excited state without the involvement of a conical intersection

to return the system to a near-starting point geometry, “non-statistical” decay occurs [62]. In

non-statistical decay, the photofragments obtained will be notably different in their identities and relative

intensities from the ground electronic states fragments obtained from HCD thermal dissociation. Our

measurements on [2-TU·H]+ show a striking difference in the relative intensities of the photofragments

compared to the HCD fragments. In the region of band I, the photofragments display relative intensities

of the order m/z 70 > m/z 128 > m/z 112, while in band II region, the order changes to m/z 128 > m/z 70 >

m/z 112. These relative intensities compare to the HCD relative intensities of m/z 112 > m/z 70 > m/z

128 in the HCD fragments (Section S2). These differences in intensity, particularly given that m/z 96,

a purely photochemical fragment, is the major photofragment, indicate that non-statistical decay is

dominant. The observation of such non-statistical decay for the isolated, gas-phase ion, is consistent

with the photophysical behaviour of 2-TU in solution [36].

3. Further Discussion

3.1. Deprotonated 2-Thiouracil

As discussed above, the gas-phase absorption spectrum of [2-TU-H]− is characterised by two

regions which we labelled above as band I and band II. Band I was linked to the existence of a

dipole-bound excited state, in the region of the electron detachment threshold. Dipole-bound excited

states can decay with the formation of either intact dipole-bound anions, or valence-bound anions

(either intact or the products of dissociative electron attachment) [58,63]. For [2-TU-H]−, SCN− is

produced as a photofragment primarily in the lower-energy part of band I. This fragment has been

observed in low-energy electron impact studies on 2-thiouracil [39], suggesting that the initially formed

dipole-bound excited state of [2-TU-H]− decays via formation of a temporary negative ion, which

produces SCN− as the end ionic fragment through a similar molecular process as 2-TU.

The difference in the widths of the SCN− production spectrum versus the width of band I in

the photodepletion spectrum is intriguing. One explanation would be that the dipole-bound excited

state lies just below an electronic transition of [2-TU-H]−. This transition would then lie within the

free-electron continuum as it is above the VDE (3.82 eV), and can therefore decay via electron detachment,

leading to photodetachment rather than photofragmentation. Indeed, the TDDFT calculations predict

that [2-TU-H]− displays an electronic absorption at 3.8 eV, in line with this interpretation.

Band II lies fully within the electron detachment continuum and is therefore expected to correspond

largely to direct electron detachment. However, some absorption is likely to be associated with the

π-π* transition predicted by the TDDFT calculations at 4.73 eV (Section S6). This excitation is clearly

visible in the m/z 93 photofragment action spectrum shown in Figure 4c, indicating that the m/z 93

photofragment is produced through direct decay of the excited state accessed in this region.

The pattern of photofragment action spectra observed here for the m/z 58 and m/z 93 photofragments

is reminiscent of behaviour we observed recently in studies of iodide-nucleobase complexes [55,56,64].

These complexes similarly display a dipole-bound excited state in the vicinity of the VDE, which

decays with production of the respective valence anion produced upon low-energy electron attachment

to the nucleobase. At higher energies, a nucleobase-localized electronic transition occurs, which decays
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primarily with production of a second photofragment. Although two distinctive photofragments

would be expected to be produced by these two very different excited states, we observed that both

photofragments are produced in the regions of both excited states. This phenomenon appears to

be unique to negative ions, and likely reflects coupling of the two excited states via the electron

detachment continuum [65,66].

The dominance of electron detachment following photoexcitation of [2-TU-H]− across the UV and

hence, free radical production, leads to questions as to whether similar decay pathways occur in the

condensed phase. Future work would be useful to directly explore this point.

3.2. Protonated 2-Thiouracil [2-TU·H]+

While the gas-phase absorption spectrum of protonated 2-TU is very similar to that of protonated

uracil, its photofragmentation pathways are dramatically different. [U·H]+ decays with production

of the statistical fragments observed in thermal decay of the ground-state system while [2-TU·H]+

photodecays primarily via ejection of HS·. This is true for both the band I and band II regions,

corresponding to the enol-enol and enol-keto tautomers. Thus, it appears that the introduction of

the S atom on moving from U to 2-TU perturbs the excited state surfaces of both 2-TU tautomers

so that access to conical intersections facilitating ultrafast decay to the respective electronic ground

states is prohibited. This behaviour in the protonated system appears to closely mimic that of neutral

thiouracil [20].

Inspection of the major bright transition for the P1a tautomer of [2-TU·H]+ at ~5.2 eV reveals

that this π→ π* transition corresponds to a reduction of electron density around the sulphur atom

(Section S6), promoting C-S photochemical bond fission. The appearance of m/z 128 (H atom loss) as

a photochemical fragment is also notable, as photoinduced H loss is a common decay channel for

gaseous nucleobases. A similar change in electron density for the band I transition is also predicted by

the TDDFT calculations of the P2 tautomer.

4. Materials and Methods

The gaseous ion absorption and photofragment spectra of [2-TU-H]− and [2-TU·H]+were recorded

in vacuo using laser-photodissociation action spectroscopy. UV photodissociation experiments were

conducted in an AmaZon quadrupole ion-trap mass spectrometer (Bruker, Billerica, MA, USA) modified

for laser experiments as described previously [43,67]. UV photons were produced by an Nd:YAG (10

Hz, Surelite, Amplitude Laser Group, San Jose, CA, USA) pumped OPO (Horizon, Amplitude Laser

Group, San Jose, CA, USA) laser, giving ~1 mJ across the range 390–234 nm (3.2–5.3 eV) and 214–344

nm (3.6–5.7 eV) for deprotonated and protonated 2-TU, respectively, using a 2 nm laser step size.

2-Thiouracil (99%) was purchased from Acros Organics (Loughborough, UK) and used without

further purification. Methanol solutions (1 × 10−6 mol dm−3) of protonated and deprotonated 2-TU

were produced by addition of a drop of trifluoroacetic acid or 2 mL of ammonium hydroxide (30%),

respectively. The solutions were introduced into the mass spectrometer by electrospray ionisation (ESI)

using a nebulizing gas pressure of 9 and 13 psi, an injection rate of 0.25 and 0.35 mL h−1, a drying gas

flow rate of 8 and 3 L min−1, and run in positive and negative ion mode at capillary temperatures of

110 ◦C and 140 ◦C, respectively. Photofragmentation experiments were run with an ion accumulation

of 100 ms with a fragmentation time of 100 ms (one laser pulse interacts with each ion packet), thereby

limiting multiphoton processes. UV excited gaseous ions can fragment following excitation and

produce a gas-phase absorption spectrum by photodepletion [67–69] for systems where fluorescence

is negligible [70]. Photodepletion (PD) and photofragment production (PF) were calculated using

Equations (4) and (5), respectively:

Photodepletion intensity =
ln(

IntOFF
IntON

)

λ× P
(4)
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Photofragmentation production =
(

IntFRAG
IntOFF

)

λ× P
(5)

where IntON and IntOFF are the intensities of the parent ion signals with and without irradiation,

respectively, and IntFrag is the ion intensity of each individual photofragment at a particular wavelength.

The PD and PF intensities were taken from an average of three runs at each wavelength studied.

Fragment ions with m/z < 50 fall outside the mass window of our ion trap and thus are not detectable

in our mass spectrometer.

Higher-energy collisional dissociation (HCD) experiments were performed in an Orbitrap

Fusion Tribrid mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) to acquire a wider

fragmentation profile for the ground electronic states, as described previously [54,71,72]. In these

experiments, the following settings were employed: spray voltage, 3600 (−4000) V; sweep gas flow

rate, 1 arb.; sheath gas flow rate, 10 arb.; aux gas flow rate, 5 arb.; ion-transfer tube temperature, 275

(325) ◦C; vaporizer temperature, 350 ◦C.

Density functional theory calculations were performed at the B3LYP/6-311++G(2d, 2p) level

of theory using Gaussian 09 on a range of tautomers of [2-TU-H]− and [2-TU·H]+ [73]. Frequency

calculations were performed to ensure that the optimized structures correspond to true energy minima.

Time-dependent density functional theory (TDDFT) calculations (50 states) were performed to calculate

the gaseous excited state spectra, with implicit methanol solvent being used to obtain the corresponding

solution-phase spectra.

5. Conclusions

Laser photodissociation spectroscopy of the deprotonated and protonated forms of the non-natural

nucleobase, 2-TU, was performed in the gas-phase for the first time. The gas-phase absorption

(photodepletion) spectra of [2-TU-H]− and [2-TU·H]+ are highly distinctive. Whereas the gaseous

absorption spectrum of [2-TU-H]− displays features that can be attributed to the propensity of the

negative ion to photodetach above its electron-detachment threshold, the corresponding spectrum of

[2-TU·H]+ more closely resembles the ions’ solution-phase absorption spectrum [36]. The photodecay

pathways of the protonated and deprotonated ions are also highly distinctive, with the deprotonated

system producing only a small number of very low intensity fragments whereas the protonated system

decays with extensive fragmentation.

Previous studies on the photophysics of thiouracil compared to uracil have found that thiolation

perturbs the ability of the nucleobase to dissipate harmful UV excitation. Theoretical studies have

shown that this occurs due to the initially populated bright S2 state decaying into the T1 state [29,30].

Similar photophysics appears to be present for protonated thiouracil, since the major photoproducts

correspond to radical species that are indicative of dissociative triplet state decay. While the behaviour

of protonated 2-TU mirrors that of neutral TU [36], our study is the first where the dissociative

photoproducts have been identified. Knowledge of the identity of these photoproducts is important for

assessing the suitability of thiouracil as a biochemical probe, as well as understanding its mechanistic

behaviour as a photopharmaceutical.

Supplementary Materials: The following are available online, Section S1: Time-dependent density functional
theory data of all tautomers of deprotonated and protonated 2-thiouracil; Section S2: Electron detachment
spectrum of deprotonated thiouracil; Section S3: Higher collisional dissociation of deprotonated and protonated
2-thiouracil, Section S4: Optimized fragments production energies relative energies to parent ion energy; Section
S5: Photofragment difference (laser on–laser off) mass spectra of [2-TU H] + excited at (a) 4.6 eV (269 nm) and 5.2
eV (238 nm); Section S6: Molecular orbital transitions in deprotonated and protonated 2-thiouracil.
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