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Abstract—We consider nonadaptive group testing where each
item is placed in a constant number of tests. The tests are chosen
uniformly at random with replacement, so the testing matrix has
(almost) constant column weights. We show that performance
is improved compared to Bernoulli designs, where each item
is placed in each test independently with a fixed probability.
In particular, we show that the rate of the practical COMP
detection algorithm is increased by 31% in all sparsity regimes. In
dense cases, this beats the best possible algorithm with Bernoulli
tests, and in sparse cases is the best proven performance of
any practical algorithm. We also give an algorithm-independent
upper bound for the constant column weight case; for dense cases
this is again a 31% increase over the analogous Bernoulli result.

I. INTRODUCTION

The group testing problem, introduced by Dorfman [7], is

described as follows. Suppose we have a number of items,

some of which are defective, and carry out a series of tests

on subsets of items (‘pools’). In the standard noiseless model

we consider here, the result of a test is positive if the pool

contains at least one defective item, and is negative otherwise.

The task is to detect which items are defective using as few

tests as possible, using only the list of testing pools and the

outcomes of the corresponding tests.

We let N denote the total number of items, let K denote

the number of defective items, and focus on the regime K =
o(N). We suppose that the set K of defective items is chosen

uniformly at random from the
(
N
K

)
possible defective sets.

Finding the true defective set requires us to learn log2
(
N
K

)

bits of information. If an algorithm uses T tests, then, follow-

ing [5], we can consider the number of bits of information

learned per test log2
(
N
K

)
/T as the rate of the algorithm, and

consider the capacity as the supremum of all rates that can be

achieved by any algorithm. We consider performance in the

regime where the number of defectives scales as K = Θ(Nθ)
for some density parameter θ ∈ (0, 1).

In the adaptive case – where we choose successive testing

pools using the outcomes of previous tests – Hwang’s general-

ized binary splitting algorithm [9] shows that the capacity is 1
for all θ ∈ (0, 1) [5]. In this paper, we consider the nonadaptive

case, where the testing pools are chosen in advance.

It will be useful to list the testing pools in a binary matrix

X ∈ {0, 1}T×N , where xti = 1 denotes that item i is included

in test t, with xti = 0 otherwise. Hence, the rows of the matrix

correspond to tests, and the columns correspond to items.

We observe the outcomes y = (yt) ∈ {0, 1}T . A positive

outcome yt = 1 occurs if there exists a defective item in that

test; that is, if for some i ∈ K we have xti = 1. A negative

outcome yt = 0 occurs otherwise.

As described in [8], it appears to be difficult to design a

matrix with order-optimal performance using combinatorial

constructions. Hence, a great deal of recent work on non-

adaptive group testing has considered random design matrices,

with a particular focus on Bernoulli random designs, in which

each item is placed in each test independently with a given

probability; see for example [1]–[4], [6], [14], [15]. The

capacity for Bernoulli nonadaptive testing is

C(θ) = max
ν>0

min

{
νe−ν

ln 2

1− θ

θ
, h(e−ν)

}
, (1)

in particular yielding a capacity of 1 for θ ≤ 1/3. The

achievability part of this result was given by Scarlett and

Cevher [14], and the converse by Aldridge [1].

This paper shows that improvements are possible with a

different class of test designs, where each item is placed in

a fixed number L of tests, with the tests chosen uniformly

at random with replacement. That is, independently within

each column of X, L random entries are selected uniformly at

random with replacement and set to 1. We refer to these as

‘constant column weight’ designs – although strictly speaking,

since the sampling is with replacement, some columns will

have weight slightly less than L. The results of this paper

could also be derived by sampling without replacement, thus

yielding strictly constant column weights, with each item

in exactly L tests, but we find that considering replacement

is more convenient and leads to shorter proofs. It will be

convenient to parametrise L = νT/K, and we will later see

that ν = ln 2 ≈ 0.693 optimises our bounds for all θ. This

choice of ν gives a 50 : 50 chance of tests being positive

or negative, in contrast to Bernoulli testing with θ > 1/3,

where the optimal procedure has on average more positive

than negative tests.

The main result of this paper (Theorem 1) shows that

with a constant column weight design, a simple and practical

algorithm called COMP [6] achieves a rate of 0.693(1 − θ).
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Fig. 1. Graph showing rates and bounds for group testing algorithms with
Bernoulli designs and constant column weight designs.

When used with a Bernoulli design, COMP has maximum

rate 0.531(1− θ), so we achieve a rate increase of 30.6% for

all θ. Further, COMP with a constant column weight design

outperforms any algorithm used with a Bernoulli design for

θ > 0.766, and gives the best proven rate for a practical

algorithm for θ < 0.234 (beating a bound on Bernoulli designs

with the DD algorithm [3]). These rates are shown in Fig. 1.

In addition, we provide an algorithm-independent converse

(Theorem 2); that is, an upper bound on the rate that can be

achieved by any detection algorithm with a constant column

weight design. We conjecture that, as in [1], this converse is

sharp and is achieved by the SSS algorithm.

We also give empirical evidence that, for a variety of algo-

rithms, constant column weight designs improve on Bernoulli

designs in the finite blocklength regime (see Fig. 2).

The idea of using constant column weight matrix designs

is not a new one. The key contribution of this paper is to

rigorously analyse the performance of such designs, and to

show that they can out-perform Bernoulli designs. We briefly

mention some previous works that used constant column

weight (and other related) designs.

Mézard et al. [13], consider randomized designs with both

fixed row and column weights, and with fixed column weights

only. It is noted therein that such designs can beat Bernoulli

designs; however, they note that the analysis relies on a ‘short-

loops’ assumption that is shown to be rigorous only for θ >
5/6, and in fact shown to be invalid for small θ. In contrast, we

present analysis techniques that are rigorous for all θ ∈ (0, 1).
Kautz and Singleton [11] observe that matrices correspond-

ing to constant weight codes with a high minimum distance

perform well in group testing. However, controlling the mini-

mum distance is known to be a stringent requirement.

Wadayama [16] analyses constant row and column weight

designs in the K = cN regime, and demonstrates close-to-

optimal asymptotic performance for certain ratios of parameter

sizes.

Chan et al. [6] consider designs with constant row-weights

only (like here, sampling with replacement) and find no

improvement over Bernoulli designs.

Fig. 2. Empirical performance results in the cases N = 500, K = 10,
and N = 2000, K = 100, for a variety of algorithms with constant column
weight and Bernoulli designs. Each point represents 1000 experiments.

The rest of this paper is organised as follows. Section II

demonstrates the empirical performance of the designs and

algorithms discussed in this paper. Section III introduces some

necessary results on the classical ‘coupon collector’ problem.

Section IV defines the COMP algorithm, and proves our

main theorem on the maximum rate for COMP with constant

column weight designs (Theorem 1). Section V defines the

SSS algorithm and proves an algorithm-independent upper

bound for constant column weight designs.

II. SIMULATIONS

Fig. 2 shows empirical performance results in an illustrative

smaller, sparser case (N = 500, K = 10 = N0.371), and

an illustrative larger denser case (N = 2000, K = 100 =
N0.606). In the first case, we show the COMP and SSS

algorithms studied here, and the practical Definite Defectives

(DD) algorithm [3]. In the second case, SSS is impractical, so

we use the Sequential COMP (SCOMP) approximation [3].

Note that all algorithms perform better under constant column

weight designs, and the simple DD algorithm with a constant

column weight design usually outperforms more complicated

algorithms with a Bernoulli design. We also plot the ‘counting



bound’ universal converse (see [5], [10]), which shows that

for any design (adaptive or nonadaptive), any algorithm has

a success probability bounded above by 2T /
(
N
K

)
. In the first

case of Fig. 2 the constant column weight SSS algorithm has

empirical performance close to this universal upper bound.

III. COUPON COLLECTOR RESULTS

Recall the coupon collector problem, where uniformly ran-

dom selections, with replacement, are made from a population

of T different coupons. After making c selections, the collector

has collected some (random) number W of distinct coupons.

Clearly W can be as large as c if all c selections are different,

but it can be less if there are some ‘repeated’ coupons. The

following results will be useful later.

Lemma 1: Consider a population of T coupons. A collector

makes c selections, and finds she has W (c) distinct coupons.

1) We have

EW (c) =

(
1−

(
1−

1

T

)c)
T, (2)

and further, if c = αT for some α ∈ (0, 1), then

EW (αT ) ∼ (1− e−α)T

as T → ∞ (where here and subsequently ∼ denotes

equality up to a multiplicative 1 + o(1) term).

2) Again when c = αT , we have concentration of W about

its mean, in that for any ǫ > 0,

P
(∣∣W (αT )− (1− e−α)T

∣∣ ≥ ǫT
)
≤ 2 exp

(
−
ǫ2T

α

)
,

for T sufficiently large.

Proof: For part 1, by linearity of expectation, we have

EW (c) =

T∑

j=1

P(coupon j in first c selections)

=

T∑

j=1

(
1−

(
1−

1

T

)c)

=

(
1−

(
1−

1

T

)c)
T,

as desired. The asymptotic form follows immediately.

For part 2, we use McDiarmid’s inequality [12], which

characterizes the concentration of functions of independent

random variables when the bounded difference property is

satisfied. Write Y1, Y2, . . . , Yc for the labels of the selected

coupons, and W (c) = f(Y1, Y2, . . . , Yc) for the number

of distinct coupons. Note that here we have the bounded

difference property, in that
∣∣f(Y1, . . . , Yj , . . . , Yc)− f(Y1, . . . , Ŷj , . . . , Yc)

∣∣ ≤ 1

for any j, Y1, . . . , Yc, and Ŷj , since the largest difference we

can make is swapping a distinct coupon Yj for a non-distinct

one Ŷj , or vice versa. McDiarmid’s inequality [12] gives that

P
(∣∣f(Y1, . . . , Yc)− Ef(Y1, . . . , Yc)

∣∣ ≥ δ
)
≤ 2 exp

(
−
2δ2

c

)
.

Setting δ = ǫT and c = αT gives the desired result; we

crudely remove the factor of 2 from the exponent to account

for the fact that we are considering deviations from the

asymptotic mean instead of the true mean.

IV. COMP

The COMP algorithm is due to Chan et al. [6]. It is based

on the observation that any item in a negative test is definitely

non-defective; COMP then declares all remaining items to be

defective. Hence, COMP succeeds if and only if each of the

N −K non-defectives appears in some negative test.

Chan et al. [6] show that COMP with Bernoulli tests

succeeds with T > (1 + ǫ)eK lnN tests, for a rate of

(1/e ln 2)(1 − θ) ≈ 0.531(1 − θ), and Aldridge [1] showed

that COMP can do no better than this with Bernoulli tests.

The following theorem reveals that constant weight columns

improve the achievable rate by COMP.

Theorem 1: Consider group testing with a constant column

weight design and the COMP algorithm. Write

T ∗
COMP =

1

ln 2
K log2 N.

Then, for any ǫ > 0, with T ≥ (1 + ǫ)T ∗
COMP tests, the error

probability can be made arbitrarily small for N sufficiently

large, while with T ≤ (1−ǫ)T ∗
COMP tests, the error probability

is bounded away from 0. Hence, the maximum achievable rate

is ln 2 (1− θ) ≈ 0.693(1− θ).
Note that this shows that COMP with a constant column

weight design outperforms any algorithm with a Bernoulli

design for large θ, since it beats the rate in (1) for θ >
1/(e(ln 2)2) ≈ 0.766. Further, COMP improves the region

where ‘practical’ algorithms work, in that it beats the best-

known rate of a practical algorithm, previously given by the

DD algorithm [3], for θ < 1− 1/(e ln 2)2 ≈ 0.234.

Proof: We start by following [3, Remark 18]. Recall that

we write L = νT/K for the weight of each column. We also

write M for the number of positive tests. We know that COMP

succeeds if and only if every non-defective item appears in a

negative test. The probability that a given non-defective item

appears in a negative test is 1 minus the probability it appears

only in positive tests, which, conditional on M , is 1−(M/T )L.

Note that since our design has independent columns, the events

that particular non-defective items appear in a negative test are

conditionally independent given the list of positive tests; this

also holds for Bernoulli designs, but not for constant row-and-

column designs as studied by Wadayama [16].

Hence, given the number of positive tests, COMP has

P(success | M) =

(
1−

(
M

T

)L
)N−K

. (3)

We start with achievability. For any m∗, we have

P(success) = P(M < m∗)P(success | M < m∗)

+ P(M ≥ m∗)P(success | M ≥ m∗)

≥ P(M ≥ m∗)P(success | M = m∗),



since the success probability (3) is decreasing in M .

The number of positive tests M can be thought of as the

number of distinct coupons collected from a population of

T (all tests) by KL coupons: L for each column in a total

of K columns corresponding to defective items. Hence, by

Lemma 1, we have concentration of M about its mean EM =
(1− e−ν)T . Hence, setting m∗ = (1− e−ν − ǫ)T , we have,

for N sufficiently large,

P(success) ≥ (1− ǫ)P
(
success | M = (1− e−ν − ǫ)T

)

= (1− ǫ)

(
1−

(
(1− e−ν − ǫ)T

T

)L
)N−K

= (1− ǫ)
(
1−

(
1− e−ν − ǫ

)νT/K
)N−K

.

It is easy to check by differentiating that (1− e−ν − ǫ)ν is

maximised at e−ν = (1 − ǫ)/2, which approaches ν = ln 2
for small ǫ. We therefore set ν = ln 2, yielding

P(success)

≥ (1− ǫ)

(
1−

(
1

2
− ǫ

)(ln 2)T/K
)N−K

≥ (1− ǫ)

(
1− (N −K)

(
1

2
− ǫ

)(ln 2)T/K
)

= (1− ǫ)

(
1− exp

(
ln 2

K
T ln(1/2− ǫ) + ln(N −K)

))
.

We see that the success probability can be made arbitrarily

close to 1 by choosing ǫ sufficiently small, provided that

T ≥ −(1 + ǫ)
K ln(N −K)

ln 2 ln(1/2− ǫ)
.

The achievability result follows on noting that

−
ln(N −K)

ln(1/2− ǫ)
→ −

lnN

ln(1/2)
= log2 N

as N → ∞ and ǫ → 0, since K = o(N).
We now turn to the converse. By a similar argument to the

above, for any m∗, we have

P(success) = P(M < m∗)P(success | M < m∗)

+ P(M ≥ m∗)P(success | M ≥ m∗)

≤ P(success | M = m∗) + P(M ≥ m∗). (4)

We now pick m∗ = (1− e−ν + ǫ)T . By the concentration in

Lemma 1, this gives that for any ǫ and for N sufficiently large

we have P(M ≥ m∗) ≤ ǫ. It remains to bound the first term

of (4) by expanding out (1− (1− e−ν + ǫ)L)N−K one term

further, using the inclusion–exclusion formula, then bounding

as before. We omit full details due to space constraints.

V. ALGORITHM-INDEPENDENT CONVERSE

In this section, we give an upper bound on the rate of

group testing with constant weight columns that holds for any

detection algorithm and any choice of L.

The proof, which is based on the capacity converse for

Bernoulli testing [1], depends on analysis of a particular

algorithm called SSS, which was studied in detail by Aldridge,

Baldassini and Johnson [3]. The SSS algorithm declares as its

estimate of K the smallest satisfying set (if a unique such set

exists). A set L ⊆ {1, 2, . . . , N} is satisfying for the design

X and outcomes y if using design X with true defective set L
would indeed give outcomes y; in other words, the estimate

L ‘satisfies’ the observations. The SSS algorithm chooses the

satisfying set L that minimises |L|, if a unique such L exists,

and declares an error (say) otherwise.

Theorem 2: Consider group testing with a constant column

weight design and any detection algorithm. Write

T ∗ = max

{
K log2

N

K
,

1

ln 2
K log2 K

}
. (5)

Then, for any ǫ > 0, with T ≤ (1− ǫ)T ∗ the error probability

is bounded away from 0.

Hence, using a constant weight column design, the capacity

is bounded above by

min

{
1, ln 2

1− θ

θ

}
≈ min

{
1, 0.693

1− θ

θ

}
.

Proof: We follow Aldridge’s proof of a similar result for

Bernoulli testing [1]. As shown there, it suffices to bound the

error probabilities of the COMP and SSS algorithms. We have

bounded the rate of COMP in Theorem 1, and it easy to see

that the COMP bound satisfies this theorem, since

1

ln 2
K log2 N ≥ T ∗,

where T ∗ is as in (5). Hence, it suffices to bound the error

probability of the SSS algorithm, which we do below.

The first term in the maximum in (5) is the counting bound,

which holds for arbitrary designs [5]. It remains to show the

second term.

Following [3], the error probability of SSS is bounded by

P(error) ≥

k∑

j=1

(−1)j+1
∑

|J |=j

P(AJ )

≥
∑

|J |=1

P(AJ )−
∑

|J |=2

P(AJ ),

where AJ is the event that none of the T tests includes a

defective item from J ⊆ K.

In coupon collector terms, AJ is the event that the jL
coupons of defective items from J only hit the tests already

hit by the (K − j)L coupons of the other defective items.

Given SJ , this number of ‘already hit’ tests, the probability

that the other jL coupons only hit these tests is (SJ /T )jL.

Hence, we have, conditional on the SJ s, that

P(error | {SJ }) ≥
∑

|J |=1

(
SJ

T

)jL

−
∑

|J |=2

(
SJ

T

)jL

. (6)

We again parametrise L as L = νT/K for some (arbitrary)

ν > 0. From Lemma 1, the number of tests SJ already hit



is exponentially concentrated about its mean, which behaves

as ESJ ∼ (1 − e−ν(1−j/K))T . Further, for j = 1, 2, this

simplifies to ESJ ∼ (1− e−ν)T .

We shall condition on the SJ being suitably close to their

means for |J | = 1, 2. Specifically, we define the event

B =

{
SJ ≥ (1− e−ν − ǫ)T for all |J | = 1

SJ ≤ (1− e−ν + ǫ)T for all |J | = 2

}
.

Then by Lemma 1 and the union bound,

P(B) ≥ 1−

(
K +

(
K

2

))
2 exp

(
−
ǫ2KT

ν

)
≥ 1− ǫ

for T sufficiently large.

Using a similar argument to Section IV, we have

P(error) = P(Bc)P(error | Bc) + P(B)P(error | B)

≥ P(B)P(error | B)

≥ (1− ǫ)P(error | B)

for N sufficiently large.

Combining the definition of the event B with (6), we have

P(error | B)

≥
∑

|J |=1

(
E(SJ | B)

T

)jL

−
∑

|J |=2

(
E(SJ | B)

T

)jL

≥
∑

|J |=1

(
(1− e−ν − ǫ)T

T

)jL

−
∑

|J |=2

(
(1− e−ν + ǫ)T

T

)jL

= K(1− e−ν − ǫ)L −
1

2
K2(1− e−ν + ǫ)2L

= K(1− e−ν − ǫ)νT/K −
1

2
K2(1− e−ν + ǫ)2νT/K

= K(1− e−ν − ǫ)νT/K

(
1−

K

2

(
(1− e−ν + ǫ)2

1− e−ν − ǫ

)νT/K
)
.

For ǫ sufficiently small, this is, like before, minimized

arbitrarily close to ν = ln 2. Also for ǫ sufficiently small,

(1− e−ν + ǫ)2

1− e−ν − ǫ

is arbitrarily close to 1− e−ν . Hence, using ν = ln 2 + o(1),
we have, as ǫ → 0,

P(error | B) ≥
(
1− o(1)

)
K(1− e− ln 2)(ln 2)T/K

×

(
1−

1

2
K
(
1− e− ln 2

)(ln 2)T/K
)
,

where we have absorbed all o(1)s into the first term. But

K(1− e− ln 2)(ln 2)T/K = K

(
1

2

)(ln 2)T/K

= 2 log
2
K−(ln 2)T/K ,

and since the error probability is decreasing in T , we have for

T ≤ (1− ǫ)
1

ln 2
K log2 K.

that the error probability for SSS is bounded away from 0.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that constant column weight matrix designs,

instead of Bernoulli designs, can improve the rate that can be

proved for the simple, yet order optimal, COMP algorithm.

Further, we have shown an algorithm-independent converse,

giving an upper bound on the rate which can be achieved

by any algorithm under this design. We conjecture that this

converse is sharp, in the sense that this performance can

asymptotically be achieved by the SSS algorithm, and even

by the simpler DD algorithm for certain parameter values.

We hope to adapt the techniques of [3], [14] to resolve this

conjecture in future work.
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