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Abstract The growing size of software models poses significant scalability
challenges. Amongst these challenges is the execution time of queries and
transformations. In many cases, model management programs are (or can
be) expressed as chains and combinations of core fundamental operations.
Most of these operations are pure functions, making them amenable to
parallelisation, lazy evaluation and short-circuiting. In this paper we show
how all three of these optimisations can be combined in the context of
Epsilon: an OCL-inspired family of model management languages. We
compare our solutions with both interpreted and compiled OCL as well as
hand-written Java code. Our experiments show a significant improvement
in the performance of queries, especially on large models.

Keywords Epsilon; Scalability; OCL, Query performance.

1 Introduction

Modern software systems are often required to process an ever-increasing volume of
complex data with more stringent throughput and latency requirements. Although
model-driven engineering helps to curtail the complexity of systems, the performance
of many popular modelling tools leaves much to be desired. This is particularly
problematic since larger projects are arguably likely to benefit the most from a model-
driven approach. Scalability is a notable challenge with model-driven engineering [1],
and a multi-faceted one too [2].

Model management workflows often involve a variety of tasks such as validation,
comparison, model-to-model and model-to-text transformations. Despite their dif-
ferences, these tasks typically use a common set of queries and transformations on
collections of model elements. With very large models (in the order of millions of
elements and gigabytes in size), these operations can incur a significant performance
cost, making overall tasks slow and less productive. Furthermore, even the most com-
plex queries on collections of data (model elements) can be expressed using a relatively
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small set of simpler operations. The Object Constraint Language (OCL) is one of the
most well-known and frequently used languages for querying and validating models.
As a functional and declarative language, OCL offers a useful set of operations on
collections, including operations involving predicate logic.

In this paper, we demonstrate how declarative collection operations can be im-
plemented in a data-parallel manner, with up to linear improvements in execution
times with the number of cores. Given the diminishing generational improvements in
single-thread performance due to physical and technical constraints, combined with
the increasing number of cores in virtually all computing devices, the case for parallel
processing of large data sets on modern computers is clear. We also show how lazy
evaluation and short-circuiting can be combined with parallelism to provide further
performance benefits. Unfortunately however, the OCL specification in its current
form [3] is “far from perfect” [9], making desirable performance optimisations diffi-
cult without substantial effort from tool developers.

This work builds on [6], which introduces parallel variants of several collection
querying operations with revised performance evaluation experiments and the ad-
dition of lazy execution, with an emphasis on the benefits relative to the current
specification and implementations of OCL.

The remainder of the paper is organised as follows. Section 2 briefly outlines the
limitations of OCL and motivations for this work. Section 3 demonstrates parallel
execution algorithms for first-order operations. Section 4 proposes more advanced
optimisations which combine parallel execution and lazy evaluation. Section 5 pro-
vides a brief overview of our testing methodology and performance metrics. Section
6 reviews pertinent work on optimising queries and iteration operations. Section 7
concludes the paper and suggests extensions for future developments.

2 Motivation and OCL limitations

OCL is a commonly used query and expression language in model management pro-
grams. Although it was designed to enrich metamodels with invariants (validation
constraints) which can only be expressed programmatically, it is often used outside of
pure model validation for consistency. Being an OMG standard, the language has a
mature specification and history with convenient syntax and semantics for users and
developers of modelling tools. Amongst its most desirable properties is the lack of
side-effects and mutability. OCL is a functional language which enables reasoning and
analysis. Functional languages are also inherently parallelisable, as we shall demon-
strate shortly. However one controversial aspect of OCL is its exception-handling
semantics. In object-oriented languages such as Java, a significant part of the lan-
guage constructs and specification are dedicated to dealing with unexpected execution
paths with various causes. However unless such exceptions are explicitly handled in
the program, the default behaviour is to keep propagating the exception until even-
tually the program halts. By contrast, OCL deals with exceptions in a functional
manner by having exceptions be values of expressions, just as null is a value for a
reference in object-oriented languages. That is, if an exception occurs for whatever
reason during execution of an expression, the result is “Invalid”.

As noted by Willink [9], the specification unfortunately precludes some optimisa-
tions which would enhance the efficiency of collection-based operations. Most notably,
this includes the inability to perform short-circuiting because all errors in OCL must
be caught and propagated as Invalid. This means that if for example the last element
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in a collection is null and the predicate of a first-order operation dereferences the
element, even though the last element may never be reached under short-circuiting
evaluation the specification requires that all elements be evaluated / checked for valid-
ity. Furthermore, the specification forbids lazy evaluations of chained operations, and
mutability. However as Willink claims, the underlying implementation need not be
purposely wasteful so long as the observable end result (from the user’s perspective)
is consistent with the specification.

To demonstrate these shortcomings, let us consider a simple query. Suppose we
have a transportation model of a city and we want to know whether there are any
cars of a given brand registered after a particular year. One way to write this in OCL
is shown in Listing 1.

1 Car.allInstances()

2 ->select(c | c.year > 2017)

3 ->collect(c | c.brand)

4 ->exists(b | b = ’BMW’)

Listing 1 – Inefficient chained query

In a typical OCL execution engine, the following sequence of evaluations would
occur: All instances of Car elements are retrieved from the model (line 1). The
predicate of select is applied to each and every element, returning a new collection
containing the subset of elements satisfying the criteria (line 2). The transformation
function passed to collect is then applied for every element in the subset return by
select, and the results are added to a new collection (line 3). Finally, every element of
this new collection is iterated through with the predicate of exists being applied to it
(line 4). If any elements satisfy this predicate, the result flag is set to true. However
if execution of the predicate on any element fails, the result is set to Invalid. The
result is returned once all elements have been evaluated.

This is a very inefficient algorithm for expressing this query, even though from
the user’s perspective it is intuitive to write. A much more optimal representation is
shown in Listing 2, which not only requires a single iteration but also avoids creating
intermediate collections as well as partial short-circuiting of the expression, since OCL
permits short-circuiting of Boolean values and expressions.

1 Car.allInstances()->exists(c | c.year > 2017 and c.brand = ’BMW’)

Listing 2 – Optimised query

Even though Listing 2 is significantly more efficient, it can be further optimised.
Firstly, it is not necessary to retrieve all instances of the Car type into memory
before evaluating the exists, but rather iterating through them as and when required.
Secondly, if the OCL specification was less strict about propagation of Invalid then
exists could stop executing once a match (i.e. an element which satisfies the predicate
criteria) has been found. Finally, the execution of exists need not happen sequentially,
as there are no dependencies between iterations and elements used in the operation.

In this paper, we demonstrate how it is possible not only to execute declarative
operations on collection types in parallel, but also how to combine parallelism with
laziness and short-circuiting. Furthermore, we show how it is possible to make the
query in Listing 1 have the same order of complexity as the more optimised version in
Listing 2 as a result of laziness and short-circuiting, whilst still taking advantage of
multiple processor cores. However in order to do this, we must first free ourselves from
the constraints imposed by the OCL specification. We therefore use the OCL-inspired
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Epsilon Object Language (EOL) for our implementation. Given the similarities be-
tween OCL and EOL, we use EOL and OCL interchangeably in the rest of the paper.
We use OCL syntax due to its familiarity (which is also valid in EOL).

3 Parallel Execution in Epsilon

Epsilon is an open-source Eclipse project1 and family of languages which allows users
to perform model management tasks on a wide variety of modelling formats and tech-
nologies. All task-specific languages build on top of a common interpreted OCL-like
imperative language – the Epsilon Object Language (EOL) [4]. The language can
be thought of as a more Java-like OCL, since it supports imperative constructs such
as while loops, if-else, switch statements and mutable, dynamically typed variables.
Users can define their own operations, including extending the functionality of ex-
isting types, and also work with Java types and invoke methods, since Epsilon is
implemented in Java and uses reflection to execute expressions. Advanced features
include the ability to cache the result of invoking user-defined operations to avoid
re-computation, and extended properties which allow individual objects / model ele-
ments to have arbitrary additional values associated with them.

3.1 Concurrent execution engine

In our previous work [5], we identified a number of challenges in supporting multi-
threaded execution in Epsilon. Unsurprisingly, the main difficulties come from shared
mutable state due to e.g. global variables and advanced features such as cached
operation and extended properties. To avoid creating a subset of Epsilon with limited
support for imperative features, we tackled such issues directly whilst maintaining
the behavioural semantics of the language (akin to the sequential implementation
where possible). As a representative example, we describe our solution to variable
declarations.

Variables are stored in a FrameStack and are disposed when they are no longer
in scope. However when executing an expression from a different thread, declared
variables should only be accessible by the executing thread. To avoid synchronization,
we use thread-local frame stacks. A ThreadLocal2 is a data structure used in serial
thread confinement where every thread has its own copy of an object. Each thread-
local framestack has a reference to the parent framestack; which is used by the main
thread. This is so that if a global variable is referenced, then we can still access
its value. However if the global variable reference is mutated, the results are non-
deterministic. Thus users can write imperative code if desired so long as they do not
mutate global state. Although mutability is not supported in OCL, variables are still
declared in the body of operations and invariants, even if they are implicit (e.g. as
iterator parameters).

Another thread-local data structure is the execution trace, which is mainly used
for traceability purposes in the event of an exception. For instance, if the user tries
to invoke a non-existent variable or operation, tries to navigate a null property or
explicitly throws an error message, a Java-like stack trace is presented with the cause
and exact line and column numbers where the error occurred along with the preced-
ing calls. When such errors occur under multi-threaded execution, all threads stop
execution and control returns to the main thread which then reports the stack trace.

1 www.eclipse.org/epsilon/ 2 docs.oracle.com/javase/8/docs/api/java/lang/ThreadLocal.html
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For executing jobs in parallel, we use an extension of ThreadPoolExecutor3 with,
by default, the number of threads being equal to the number of logical processors
available to the JVM. The ThreadPoolExecutor has a queue which allows to submit
jobs in the (form of code blocks, i.e. Runnable or Callable) and automatically maps
jobs to threads. Since we rely on ThreadLocal data structures, we use a fixed size
pool with infinite life span for the threads so that they are not disposed or recreated.
We also use a custom ThreadFactory to name our threads for ease of identification
and to define an exception handler for uncaught exceptions. The executor is re-used
throughout the program for simplicity and efficiency, and is generally suitable for
CPU-bound data processing. There is no (soft) limit to the number of jobs which can
be enqueued for processing.

3.2 Parallel first-order operations

OCL offers declarative operations which provide a convenient way to express simple
queries and transformations in a functional style using lambda expressions requiring
little more than a predicate as a parameter which is then applied to each element.
The operations are ideal candidates for concurrent execution without synchronization
because they satisfy key properties: they do not mutate global state and apply the
same, potentially expensive expression(s) over a (potentially) large source of data.

In our previous work [6] we demonstrated parallel execution algorithms for almost
all declarative operations in OCL / Epsilon, including select, reject, any, exists, forAll
one, none, collect, mapBy and sortBy. In all cases, we were able to achieve a level
of parallelism directly proportional to the number of elements by applying the func-
tion expression (in most cases, a predicate) over each element independently. This
data-parallel approach is implemented by creating a job for each model element and
submitting it to a custom thread pool executor. A job is a function which evaluates
the user-defined lambda expression over a given element. If we take the collect oper-
ation (which transforms each element to a different type, e.g. by deriving a property
from it) as a representative example, the parallel implementation can be described by
Listing parallelCollect.

1 <IN, OUT> Collection<OUT> collect(Collection<IN> source,

2 Function<IN, OUT> mapper) throws EolRuntimeException {

3

4 var resultsCol = new ArrayList<OUT>(source.size());

5 var jobFutures = new ArrayList<Future<Object>>(source.size());

6 EolExecutorService executor = context.getExecutor();

7 for (IN element : source) {

8 jobFutures.add(executor.submit(() -> mapper.apply(element)));

9 }

10 for (Future<OUT> futureRes : jobFutures) {

11 resultsCol.add(futureRes.get());

12 }

13 return resultsCol;

14 }

Listing 3 – Simplified parallelCollect execution algorithm

Note that we submit the jobs in encounter order (lines 7–9). Upon submission, a
Future4 (also known as a Promise) is immediately returned, which is a wrapper of the

3 docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadPoolExecutor.html
4 docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
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job’s result. Once all jobs have been submitted, we then loop through all of the Futures
(lines 10–12) and attempt to retrieve their values. Since we must eventually wait for
all results, it does not matter when we block – whenever a result is available, it will
be published to the Future and be immediately retrievable. Moreover, by gathering
the results in order of submission and adding them to the resulting collection (line
11), we can guarantee ordering which is equivalent to the sequential implementation,
even though the computations completed in a non-deterministic order.

Non-short-circuiting operations such as collect and select are significantly simpler
to implement than short-circuiting ones in parallel. To illustrate, let us take the
example of any, which will return any item in the source collection which matches the
given predicate. A sequential implementation is relatively straightforward, as shown
by Listing 4.

1 <T> T any(Collection<T> source, Predicate<T> predicate) {

2 for (T element : source)

3 if (predicate.test(element))

4 return element;

5 return null;

6 }

Listing 4 – Simplified sequential any execution algorithm

In a multi-threaded execution environment, we do not have the luxury of simply
returning an element once it has been found without manually stopping other threads
to prevent unnecessary computation. The fundamental challenge is that after all jobs
have been submitted, we do not know which will finish first and so it is the responsi-
bility of each job to notify the main thread when the result has been found. This also
means we have to block the main thread waiting for a condition to be signalled and
then retrieve the result object. Further complicating matters are exceptions which
may occur during execution of any jobs, which also requires stopping all computations
and reporting the cause.

Our solution uses an ExecutionStatus object as the centrepiece for coordinating
short-circuited concurrent tasks. The idea is that we start a separate thread to wait
for all jobs to complete by attempting to retrieve values from the Futures, just as we
saw with parallelCollect. The main thread then waits on the ExecutionStatus, waiting
for it to be notified. The notification can come from either a job in which a result has
been found, or from the waiting thread once all jobs have completed. If a job signals
completion, it does so by setting the result object property on the ExecutionStatus.
When the main thread is awoken and a result is present, it then loops through all
submitted jobs (Futures) and attempts to cancel them. The result is then returned.
A similar strategy is followed in the event of an exception, though instead of setting
the result property on the ExecutionStatus, we set the exception instead which can
then be retrieved and reported by the main thread.

A simplified implementation of parallelAny is shown in Listing 5. However un-
like with non-short-circuiting operations, we cannot guarantee a consistent result, al-
though the OCL 2.4 specification does not require any to be deterministic. Whereas
the sequential implementation would always return the first element which matches
the predicate criteria, the parallel implementation may return any.

1 <T> T any(Collection<T> source, Predicate<T> predicate) {

2 EolExecutorService executor = context.getExecutor();

3 var jobs = new ArrayList<Future<Optional<T>>>(source.size());
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4 for (T element : source) {

5 Runnable job = () -> { try {

6 if (predicate.test(element)) {

7 executor.getExecutionStatus().completeWithResult(element);

8 }

9 } catch (Exception ex) {

10 executor.getExecutionStatus().completeExceptionally(ex);

11 }}

12 jobs.add(executor.submit(job));

13 }

14 return executor.completeShortCircuit(jobs);

15 }

Listing 5 – Simplified parallelAny execution algorithm

A basic implementation of short-circuiting asynchronous jobs is shown in Listing 6.
The main idea is to have one thread wait for the jobs to complete (and stop waiting
once a terminal condition, such as a result or exception, is met) whilst the main thread
blocks, waiting for the terminal condition (i.e. for all jobs to finish, or an early result,
or an exception). An early result (short-circuiting) is signalled from one of the jobs,
e.g. in line 7 of Lisitng 5.

1 <T> T completeShortCircuit(Collection<Future<T>> jobs) throws Exception {

2 if (jobs.isEmpty()) return null;

3 ConcurrentExecutionStatus status = getExecutionStatus();

4

5 Thread compWait = new Thread(() -> {

6 try {

7 for (Future<T> future : jobs) {

8 if (status.isInProgress())

9 future.get();

10 else return;

11 }

12 status.completeSuccessfully();

13 }

14 catch (ExecutionException ex) {

15 status.completeExceptionally(ex);

16 }

17 catch (CancellationException | InterruptedException ice) {

18 // This means we finished early (short-circuit)

19 }

20 assert !status.isInProgress();

21 });

22 compWait.start();

23

24 boolean success = status.waitForCompletion();

25 compWait.interrupt();

26

27 if (!success) {

28 shutdownNow();

29 throw status.getException();

30 }

31 else for (Future<T> future : jobs) {

32 future.cancel(true);

33 }
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34

35 return status.getResult();

36 }

Listing 6 – Simplified short-circuiting algorithm in EolExecutorService

3.2.1 Delegation

The remaining predicate first-order operations can be implemented by delegation. For
example exists delegates to any, forAll can be expressed as a negated exists with a
negated predicate (proof by contradiction), reject as select with a negated predicate.
The sortBy operation is an extension of collect with a decorator pattern applied
for sorting properties, where comparison is normalised to binary operations between
integers. This latter part can be trivially parallelised.

3.3 Nested Parallelism

When we initially designed the concurrent engine for Epsilon, we used ThreadLocals
under the assumption that a given thread would only execute a single job at a time.
Although this seems like a reasonable approach which simplifies programming and
provides good performance, it does come with the limitation that there can be no
nested parallelism – that is, parallel jobs being spawned inside other parallel jobs. This
is because a ThreadLocal’s data is, by definition, bound to a particular thread. When
there is a single execution context and a single thread pool (say with n threads), this
presents no issues. However suppose that a parallel job is spawned from within another
parallel job. This then requires n2 number of ThreadLocals (and of course, threads),
each with appropriate scoping. Note that the same threads cannot be re-used because
then each ThreadLocal would contain data (stack trace, variables etc.) from different
scopes of execution, leading to non-deterministic behaviour. Performance would also
be heavily reduced as there would be too many threads created, which can slow
down the system or at worse result in the JVM crashing. Memory usage would also
increase exponentially. Although it is possible to partially circumvent this by using
“job-local” as opposed to thread-local data structures, the book-keeping overhead,
complexity and loss of performance and stability means on balance it makes much
more sense to disallow nested parallelism at any level.

It is for this reason, as well as the lack of guarantees about the user’s code being
side-effect-free, that we cannot simply replace sequential first-order operations with
their parallel variants. Instead, we have three variants for each operation. Consider
select as an example:

• parallelSelect – uses the parallel implementation

• sequentialSelect – uses the sequential implementation

• select – delegates to parallelSelect if it is not being invoked from a parallel
operation and to sequentialSelect otherwise.

Therefore the default automatically chooses the appropriate one. However the user
can also explicitly specify which implementation they want if they desire. Explicit
nested parallelism will throw an exception. Detecting nested parallelism can be done
in a number of ways (for example, checking the name of the current Thread) but we
found the most reliable approach is to have a flag in the execution context when a
parallel task is started.
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4 Optimised Operations

We have shown how commonly used operations on collections can be parallelised
due to their inherently functional nature. Less obvious is how such operations can
be further optimised not by increasing throughput / evaluations per second, but
avoiding unnecessary evaluations in the first place. More advanced optimisations
require knowledge of the program’s intent and the context in which the operations
are applied, rather than studying each operation in isolation. Inevitably this requires
static analysis which although is common – even extremely advanced – in development
environments such as IntelliJ IDEA and Visual Studio for mainstream programming
languages, cannot be directly reused in more specialised cases such as Epsilon’s model
management languages. The fact that such task-specific languages are bespoke and
interpreted means they require purpose-built static analysis frameworks.

4.1 count

Take for example a query of the form collection–>select(predicate)–>size(). Clearly
this cannot be short-circuited or evaluated lazily with any benefit, however it can be
optimised. Notice that immediately after size() returns, the collection which has been
built is thrown away. The evaluation of select essentially spent much time and memory
building a collection consisting of a subset of the original elements, only to discover
how many elements satisfy a given criteria. Instead, we propose a count operation
which does not require building an intermediate collection. Even though this requires
a mutable counter which is incremented when a matching element is found, a lock-free
parallel implementation is possible by using an AtomicInteger5, which can perform
compare-and-swap (CAS) operations atomically using direct memory access. Since
no caching occurs, there is no need for synchronization and updates are immediately
visible to all threads. Listing 7 shows a parallel implementation for this operation.

1 <T> Integer count(Collection<T> source, Predicate<T> predicate) {

2 EolExecutorService executor = context.getExecutor();

3 AtomicInteger result = new AtomicInteger(0);

4 for (T element : source) {

5 executor.execute(() -> {

6 if (predicate.test(element)) {

7 result.incrementAndGet();

8 }

9 });

10 }

11 executor.awaitCompletion();

12 return result.get();

13 }

Listing 7 – Simplified algorithm for parallelCount operation

4.2 nMatch

In some cases non-short-circuiting operations such as select can be expressed as short-
circuiting ones by looking just one or two expressions ahead. To demonstrate this, we
devised an nMatch operation which, in addition to a predicate as the filtering criteria

5 docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicInteger.html
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also takes an integer parameter n, and returns a Boolean. There are three possible
semantics for this operation where the result is true (and false otherwise): if at least,
at most or exactly n elements satisfy the predicate. This operation can therefore be
used to rewrite expressions of the form collection–>select(predicate)–>size() = n as
collection–>nMatch(predicate, n).

Similarly, for checking whether at least n elements meet the criteria, collection–
>select(predicate)–>size() >= n can be re-written as collection–>atLeastNMatch(predicate,
n). These semantics enable the operation to be used as a delegate implementation
for any with n >= 0 and forAll with n = source–>size(). To see why this is short-
circuiting, consider the logic in Listing 8:

1 boolean shouldShortCircuit(int sourceSize, int targetMatches,

2 int currentMatches, int currentIndex, MatchMode mode) {

3 if (

4 (mode != MAXIMUM && sourceSize < targetMatches) ||

5 (currentMatches > targetMatches) ||

6 (mode == MINIMUM && currentMatches == targetMatches) ||

7 (sourceSize - currentIndex) < (targetMatches - currentMatches)

8 ) return true;

9 else return false;

10 }

11 boolean determineResult(int currentMatches,

12 int targetMatches, MatchMode mode) {

13 switch (mode) {

14 case EXACT: return currentMatches == targetMatches;

15 case MINIMUM: return currentMatches >= targetMatches;

16 case MAXIMUM: return currentMatches <= targetMatches;

17 default: return false;

18 }

19 }

Listing 8 – Short-circuiting logic for nMatch operation

The first condition (line 4) is checked before beginning execution since if the num-
ber of elements is less than the desired number of matches, the result is automatically
false. The second condition (line 5) checks whether we have exceeded the required
number of matches which would result in the operation returning false if the mode
is to match exactly or at most n elements. The third condition (line 6) is to short-
circuit in the event that the minimum number of matches has been met if that is the
desired semantics. The last condition (line 7) is a comparison between the number
of remaining elements and the number of remaining matches. This is to ensure that
subsequent evaluations can still change the result. For example, if n=10 and so far
we have matched 5 elements but there are only 4 elements remaining, then even if the
predicate is satisfied for all remaining elements the result would still be false, since
(5+4=9) < 10.

The nMatch operation is slightly easier to parallelise than any because we do not
need a container for the resulting element. However we do need two mutable counters:
one for the number of elements evaluated and another for the number of elements for
which the predicate is satisfied. Again we can use AtomicInteger to achieve this, as
shown in Listing 9.

1 <T> T nMatch(Collection<T> source, Predicate<T> predicate,

2 int n, MatchMode mode) throws Exception {
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3

4 EolExecutorService executor = context.getExecutor();

5 AtomicInteger currentMatches = new AtomicInteger(0);

6 AtomicInteger evaluated = new AtomicInteger(0);

7 int ssize = source.size();

8 var jobs = new ArrayList<Future<Void>(ssize);

9 for (T element : source) {

10 jobs.add(executor.submit(() -> {

11 int c = predicate.test(element) ?

12 currentMatches.incrementAndGet() :

13 currentMatches.get();

14 int e = evaluated.incrementAndGet();

15 if (shouldShortCircuit(ssize, n, c, e)) {

16 executor.getExecutionStatus().completeSuccessfully();

17 }

18 return null;

19 }));

20 }

21 executor.completeShortCircuit(jobs);

22 return determineResult(currentMatches.get(), n);

23 }

Listing 9 – Simplified parallelNMatch execution algorithm

4.3 Parallel and Lazy evaluation with Streams

It is possible to effectively eliminate unnecessary expression evaluations without static
analysis when queries and transformations are chained. Take the query in Listing 1
as an example. Although the query in Listing 2 is more efficient and concise, it is easy
to imagine that in more complex cases such a refactoring can become less readable
and unnatural to write. Furthermore, chained queries may be easier to debug by, for
example, adding print statements to the end of each expression6.

Fortunately there is an elegant solution to optimising such queries by treating the
data source as a stream – an abstract pipeline of computation. Instead of evaluating
the operations eagerly at every stage in the pipeline before moving on to the next, a
Stream would instead fuse the operations and compose a single query, so that each
element is evaluated across the entire pipeline before moving on to the next element.
In the Listing 1 example, the first element would go through select, if it matches the
predicate it then gets passed to collect, and finally to exists, where if the predicate is
satisfied, then the computation terminates and no further evaluations occur.

Even more fortunate is that such a processing model was introduced as a major
feature of Java 8. Conveniently, since Epsilon is written in Java and uses reflection,
it is possible to leverage such capabilities directly from Epsilon code. Although it
is possible to obtain a Stream from a Collection without additional work, the main
challenge with supporting Streams in EOL is transforming user-defined lambda ex-
pressions into compatible Java functional interfaces to be passed as parameters to
stream operations. This essentially requires the engine to discover the required inter-
face parameter(s) for the invoked operation and implement the interface(s) at runtime
with the user-supplied EOL expression. This is achieved through the use of a Proxy7.

6 In Epsilon, calling .println() on any object returns the object for convenience
7 docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html
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One notable challenge with this approach is that the functional interfaces in Java
do not allow throwing checked exceptions, so to maintain an easily traceable error
reporting stack trace, we extended these interfaces to allow for throwing checked ex-
ceptions. Of course there is no way to force the Streams API to invoke the method
which throws a checked exception, so the default implementation calls the checked
variant and wraps the checked exception as an unchecked one and throws it, where
the root cause can then be later retrieved.

1 Car.allInstances()->parallelStream()

2 ->filter(c | c.year > 2017)

3 ->map(c | c.brand)

4 ->anyMatch(b | b = ’BMW’);

Listing 10 – Lazy and parallel chained query

The query in Listing 1 can be expressed using Streams as shown in Listing 10,
and is computationally equivalent to the query in Listing 2 (ignoring the overhead of
invoking streams from Epsilon). Furthermore, it is trivial to parallelise by invoking
the parallel() method on the Stream, which then uses the common Fork-Join thread
pool, using as many threads as there are cores available to the JVM and a work-
stealing scheduling algorithm. Since we have already addressed concurrency issues
which may arise, there are no further issues faced by executing in parallel streams
compared to our bespoke parallel first-order operations. It is possible to altogether
replace collections with streams and only materialise them where required, and to
map the stream operations to their OCL-named equivalents, however for compatibility
purposes we do not do this in Epsilon. However an OCL implementation could use
Streams internally and map the existing operations to those provided by the Stream
API.

Perhaps the most notable benefit of supporting Streams for direct use in Epsilon
programs is that they need not necessarily operate on a finite collection. All streams
are derived from a Spliterator8, which is essentially an iterator that can be recursively
divided into other iterators and reports various characteristics such as immutability,
ordering, distinctness and whether the number of elements is known. Since Epsilon
by design is not tied to any modelling technology and its languages are decoupled
from the underlying model implementations, one could develop a model driver which
returns a lazy collection when invoking allInstances() or getAllOfKind(). A notable
example is the JDBC driver for Epsilon [8].

The reason for maintaining a bespoke implementation of query operations as op-
posed to using streams under the hood is to maintain compatibility with user’s ex-
pectations. This includes eager evaluation and also guarantees ordering of results in
the case of parallelSelect and parallelCollect. A custom implementation is also more
flexible and extensible, and allows us to support operations which are not available
in the Streams API (such as nMatch).

5 Evaluation

In this section, we evaluate our parallel solutions for both correctness and perfor-
mance. Resources for our experiments can be found on GitHub9.

8 docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html 9 github.com/epsilonlabs/parallel-erl
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5.1 Correctness

Epsilon has a thorough test suite consisting of thousands of automated tests. We
extended these with a thorough series of tests for each first-order operation, including
equivalence testing between parallel and sequential variants. To perform the bulk of
our tests in a declarative manner, we used EUnit [11] – a JUnit-style testing framework
for Epsilon. This allows us to declare each test as an operation and perform assertions
on the results obtained from applying a given first-order operation on some test data.
We try to test all reasonable boundaries where it makes sense, and achieved 100%
code coverage for all of the operations (both sequential and parallel variants). We
also perform more advanced tests for the parallel variants such as testing the scoping
of global variables and operations, nested operations and ensuring nested parallelism
can be detected as well as exception handling semantics. We also test for equivalence
between parallel streams and our bespoke parallel first-order operations, and also test
the Stream (and by extension, the conversion from Epsilon lambdas to Java functional
interfaces) functionality independently with EUnit tests.

5.2 Performance

Due to the large combination of factors which constitute a benchmark (model size,
query / script, implementation strategy, number of threads etc.) we mostly try to
demonstrate the efficiency of various implementations of the same query. The query
is quite complex and uses a mixture of short-circuiting and non-short-circuiting op-
erations, however our benchmark is focused on evaluating the performance of the
outer-most operation, which is the select operation. We chose this because it is
one of the most widely-used operations, and to make the comparison with OCL fair
since it is not short-circuiting. We compare many implementation which all pro-
duce the same output. These include parallel and sequential variants of EOL’s select,
the Stream-equivalent filter (both sequential and parallel variants), compiled and
interpreted OCL. Since our query is of the form select(...)–>size(), we also bench-
mark the count and parallelCount variants. To assess the overhead of using Java
Streams from Epsilon, we also wrote the benchmark query in Java using streams
(both parallel and sequential). It should be noted that the Stream version in both
Java and EOL uses the more optimal count terminal operation as opposed to col-
lect(Collectors.toList()).size(). For our OCL implementation, we define the query as
an operation and invoke it via the Eclipse OCL Pivot API.

The context for our query is the Internet Movie Database (IMDb) metamodel
which basically consists of two top-level model element types: Movies and Actors,
where each Movie has a reference to its Actors and similarly each Actor has a reference
to all the Movies they have starred in. We used models ranging in size from 100 000
elements to over 3.53 million elements. The query attempts to find the number of
actors whose co-actors have featured in at least three of the same movies.

For our experiments, we used the latest interim version of Epsilon, Eclipse Mod-
elling Framework 2.15 and Eclipse OCL 6.7.0. We ran each experiment five times
in separate JVM invocations, and took the mean average time in milliseconds. As
expected, there were no outliers in any of the runs. We exclude the time taken for
parsing the model, which on average took approximately 40 seconds for the largest
model and 26 seconds for 2.5 million elements. For our parallel variants, we used as
many threads as logical cores in the system. The test environment for our experiments
was as follows:
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AMD Ryzen Threadripper 1950X @ 3.6 GHz (in “Creator Mode”) 16-core / 32-
thread CPU, 32(4x8) GB DDR4-3003 MHz RAM, Fedora 29 OS (Linux kernel 4.20),
OpenJDK 11.0.2, JVM options: “-XX:MaxGCPauseMillis=730 -XX:+UseNUMA -
XX:MaxRAMPercentage=90 -Xms768m”

Table 1 – Benchmark results for query with 2.5 million model elements

Implementation Exec. Time (ms) Speedup

Interpreted OCL 4 296 853 –
Compiled OCL 4 309 659 0.997

Sequential EOL (select) 2 556 609 1.681
Parallel EOL (parallelSelect) 203 094 21.16

Sequential EOL (count) 2 577 140 1.667
Parallel EOL (parallelCount) 205 732 20.89

Sequential EOL (filter) 3 349 400 1.283
Parallel EOL (parallelFilter) 293 619 14.63

Java (filter) 133 350 32.22
Java (parallelFilter) 17 677 243.1

Table 2 – Thread scalability for parallel EOL parallelSelect query with 2.5 million model

elements

Threads Exec. Time (ms) Speedup Efficiency

1 2 507 820 – 1.00
2 1 305 142 1.921 0.96
4 679 137 3.693 0.92
8 389 400 6.440 0.81
16 223 433 11.22 0.7
32 203 094 12.35 0.39

Table 3 – Model scalability for parallel EOL with 32 threads parallelSelect compared to

interpreted OCL

Model Elements Exec. Time (ms) Speedup

100K 9 589 16.71
500K 40 964 18.22
1M 84 285 18.87
2M 165 650 20.19

3.53M 286 408 30.38

Table 1 compares the relative performance of EOL, OCL and Java Streams for
a model with 2.5 million elements (approximately 221 MB in size)10. There are a
number of surprising results on display. Firstly, Epsilon outperforms OCL by a sig-
nificant margin even without multi-threading. This makes the gains from parallelism
look more spectacular than the reality, since if we compare the speedup of parallel
EOL to sequential EOL, we would observe a performance increase of 12.6x as op-
posed to 20.9x when comparing to interpreted OCL. Secondly, it is unexpected that
compiled OCL performs slightly worse than interpreted. However we should note
that where interpreted OCL uses a query defined in a “CompleteOCL” document,

10 Speedup is relative to Interpreted OCL
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Table 4 – Model scalability for parallel EOL with 4 threads parallelSelect compared to se-

quential EOL

Model Elements Exec. Time (ms) Speedup

100K 26 663 4.459
500K 135 721 3.566
1M 279 093 4.358
2M 575 720 4.320

3.53M 1 000 528 3.754

the compiled version uses a genmodel where the query is embedded in the metamodel
as “OCLinEcore”. Nevertheless, we expected compiled OCL to be significantly faster
than Epsilon, but this is not the case and requires investigation that is beyond the
scope of this paper. We also see that in this instance, there are no performance ben-
efits from using the count operation, at least with this configuration. Furthermore,
the overhead of using Java Streams in EOL sees the count operation outperforming
its Stream equivalent by 1.3x.

Unsurprisingly, a hand-written version of the query using Java Streams in native
Java outperforms all other implementations, though by an unexpectedly huge margin.
In particular, we see that parallel stream is over 243x faster than interpreted OCL,
though it is only 7.54 times faster than sequential stream. However it is worth noting
that parallel stream in EOL is 11.45x faster than sequential stream. We see that the
overhead of using Streams in EOL relative to Java is quite large: over 25x in the
sequential case though only 16.1x in parallel. Perhaps the overhead of interpreting
Epsilon AST scales well in parallel whereas in pure Java this overhead is not present,
leaving less potential performance gains on the table.

Table 2 demonstrates how well our parallel variant of the select operation scales
with more threads. We see a consistent drop-off of 11% in efficiency (that is, the
speedup divided by number of threads) when moving from 4 to 8 and 8 to 16 threads.
The large decrease from 16 to 32 threads can be explained by the lack of physical
cores, indicating that the workload is indeed CPU-intensive. Our experience with
using Hyper-Threaded Intel processors is that more significant gains are achievable
with simultaneous multi-threading, however it is most likely a symptom of memory
access / bandwidth bottleneck. It’s also interesting to note that the overhead for using
the parallel operation and concurrent execution engine with only a single thread is
very low, given the parallel implementation provides 98% of the performance of the
sequential variant.

Table 3 shows the performance delta between our parallel select query in EOL and
its equivalent in interpreted OCL across a range of model sizes from 100 000 elements
to over 3.5 million. We see that there is quite a drastic difference in speedup between
the largest and smallest model and, as expected, the performance improvements are
amplified with larger models. However even in the smallest case we observe a 16.7x
performance improvement. Even if we account for Epsilon’s inherent speed advantage
compared to OCL in this particular benchmark, the gains are still significant.

Although we did not measure memory usage programmatically due to inconsis-
tencies caused by garbage collection, we did observe that compiled OCL consumed
significantly more memory than Epsilon. Perhaps this is also related to lack of
improvements over interpreted OCL. When benchmarking compiled OCL with the
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largest model in our sample, we consistently encountered OutOfMemoryError due to
insufficient heap space, despite the VM having access to over 28 GB memory. This
is especially alarming considering that the model is “only” 329 MB in its serialized
form.

Table 4 compares the scalability of parallel EOL with 4 threads to sequential
EOL for the select query. Unexpectedly, we observe better-than-linear performance
improvement three of the models. It is difficult to interpret any fundamental reason
for this based on the implementation algorithm and the query, however the remarkable
consistency in speedup for the 1 million and 2 million element models shows this is
not an anomaly, at least within our experiments. The complex architecture of our
CPU could partially explain such gains due to its cache structure and the fact that it’s
essentially four quad-core modules in a single chip, however in previous experiments we
have also observed better-than-linear speedups when using 4 threads with a different
CPU. The results in Table 2 and Table 4 seem to imply that four threads provides
the peak balance between speedup and efficiency.

Overall, the results suggest that our parallel implementation of the select operation
scales with the number of cores and that the performance gains are amplified by
increasing model size. We also see that Epsilon significantly outperforms OCL even
without parallelisation. This can probably be explained by the lack of short-circuiting
operations in OCL, since we make use of these in our query. When combining the
efficiency from short-circuited evaluation and parallelisation, the benefits become clear
as shown by the last row in Table 3: a 30-fold reduction in execution time. This is
especially relevant when the absolute execution times are in the order of hours, not
seconds. In this example, a query which took over 2 hours and 25 minutes with OCL is
reduced to 4 minutes and 46 seconds. This is without even considering the gains from
a non-interpreted implementation, which can potentially further reduce the execution
time from minutes to seconds. The large gap in performance between interpreted
OCL and an equivalent hand-written Java query perhaps gives an indication of the
potential scope for improvements.

6 Related work

Optimisation of model management programs – particularly model queries and col-
lection operations – is an active research topic which has received increasing attention
in recent years. Generally, solutions can be categorised as either being incremental,
lazy, parallel or a combination. Although incrementality has traditionally received the
most attention in the modelling community (especially in model-to-model transforma-
tions), more researchers are turning to lazy evaluation since, as with incrementality,
avoids unnecessary evaluations without the complex book-keeping and memory over-
head of partial execution. There is also an increasing trend in translating queries
written in modelling languages such as OCL into the native language of the under-
lying data source. However parallel execution is still relatively novel and the least
explored optimisation solution in the modelling community, despite the mature sup-
port and libraries for concurrent and parallel programming in the languages used to
implement most modelling tools.
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6.1 Parallel streams

The Java standard library provides streams [10], which are an abstract processing
pipeline over a fixed or infinite data stream, as discussed in Section 4.2. Streams can
also execute in parallel, though the output is unordered in that case. Parallel streams
internally use a divide-and-conquer approach, delegating Java’s fork-join processing
framework. The key to making this possible is the ability to split the data source, and
perhaps more fundamentally, assuming that none of the operations have side-effects
or rely on mutable global state.

Furthermore, the iterator-based nature of streams means that the entire operation
chain can be evaluated on individual elements, enabling lazy evaluation [12]. That is,
instead of requiring the intermediate results of e.g. a filter (select in OCL) operation
be pooled into a collection only to be filtered again, the operations themselves can be
fused to provide short-circuiting behaviour.

6.2 LINQ and Task Parallel Library

The .NET platform offers a similar declarative style of data processing to Java Streams
with its Language-INtegrated Query (LINQ) [13]. This provides an SQL-like querying
syntax built directly into a language such as C#, allowing developers to express
queries in a unified and object-oriented manner irrespective of the data model without
resorting to languages which are specific to the modelling technology (e.g. XQuery
for XML or SQL for relational databases). There is also a parallel execution engine
for LINQ (PLINQ), which can be enabled in a similar manner to parallel Streams in
Java. Parallelism is centred around the ParallelEnumerable class. .NET also offers the
Task Parallel Library [14], which can be used to execute for loops in a data-parallel
manner. Since all first-order collection operations used a for loop, this library could
be used to implement parallel variants provided that there are no side-effects (OCL
would be a good candidate, for example).

6.3 Lazy OCL

On the topic of lazy evaluation of expressions on collections, Tisi et al. (2015) propose
an iterator-based approach in [16]. The basic premise of their work is to treat OCL
collections in a similar manner to Java Streams, such that operations on collections
are evaluated only when required by a subsequent computation. This is achieved by
returning an iterator which evaluates the desired expression on each element when
it is iterated over; which may be in a chain of other operations. The authors also
apply this lazy approach to the allInstances() operation, which retrieves all elements
of the target type. Since this is often the source collection on which further operations
are invoked, it enables a lazy evaluation strategy to be applied in the entire chain of
computation rather than only the intermediate operations.

Willink (2017) [9] proposes a novel way to implement OCL collections which over-
comes the limitations associated with an intuitive, one-to-one implementation of OCL
collections using Java types. He shows that although OCL collections require ineffi-
cient properties such as immutability, eager evaluation and lack of short-circuiting,
it is possible to get around these by using a custom data structure consisting of a
HashMap and ArrayList to represent all four collection types with improvement in
execution time an memory consumption in some cases. He also notes that other opti-
misations, such as element selection, can be performed in constant time thanks to the
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use of a HashMap as opposed to linear time which is the norm for the usual traversal
algorithm.

6.4 Formal parallelism

In [17], Vajk et al. (2011) take a more formal approach to parallel execution of OCL
expressions. Using the well-established Communicating Sequential Processes (CSP)
model of concurrency, the authors provide a mapping between OCL expressions and
CSP processes, focusing on binary expressions for task parallelism and iterators for
data parallelism. The CSP is then compiled to C# code. However they do not
provide a complete library of parallel operations, instead relying on the most general
first-order operation – iterate – to implement and evaluate their approach.

6.5 Suboptimal Code Detection

Wei and Kolovos (2014) [7] present a model-based static analysis framework for Ep-
silon. They build on this framework with a pattern matcher that is able to detect
computationally expensive EOL expressions which can be refactored to be more ef-
ficient, with recommendations to the user. Examples of suboptimal code include
unnecessary calls to allInstances() when reverse navigation is possible, chained select
(where the expressions can be combined with logical AND), select on Sets (which can
be short-circuited with any), and replacing select(...)–>size() > 0 with exists. Such
capabilities can be used to also detect uses of select(...)–>size() where our count(...)
operation could be used, or select(...)–>size() followed by an integer expression with
nMatch.

6.6 Efficient database queries

The work of Kolovos et al (2013) [8] on supporting SQL databases as a modelling
technology in Epsilon demonstrates the importance of optimisations not just in the
implementation of operations in isolation, but also in how data is retrieved from the
source. The JDBC driver for Epsilon transforms queries on collections of model el-
ement types (including allInstances()) into SQL queries which are lazily evaluated.
Each operation internally builds an SQL query and returns a lazy collection, allowing
for further operations to be composed before executing the query. Unlike the Java
Streams approach however, the returned results can be materialised by invoking a
specific method. Daniel et al (2018) [15] present the Mogwäı tool, which transforms
OCL query expressions into Gremlin; a generic NoSQL database querying language.
This shifts the burden of executing the query to the underlying database technology,
which can inevitably perform more optimisations since the engine and query expres-
sion are specified at the appropriate level rather than being limited by the semantics
of the OCL specification, for example. Ultimately, these works show that optimising
around the data source is vital for efficient queries, both in temporal and spatial costs.

6.7 Incrementality

Jouault and Beaudoux (2015) [18] devised a bidirectional incremental implementation
for OCL operations which avoids unnecessary re-computations of OCL expressions.
The premise is that given a source collection and a result (possibly another collection),
it is possible to propagate changes in either direction in a manner which only applies
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expressions of intermediate operations on the changed elements. This is achieved using
“boxes” (containers with references to immutable values) and listeners. However this
complicates the use of operations since there are many variants with various semantics
for change propagation.

7 Conclusions and future work

In this paper, we have demonstrated several optimisations which can be made to the
evaluation of OCL collection operations. We have shown that if the specification is
revised, it is possible to combine lazy evaluation, short-circuiting and parallel exe-
cution to improve performance as well as to avoid penalising users for suboptimal
expressions of queries. We have shown that non-short-circuiting operations can be
executed in parallel whilst maintaining ordering, and that short-circuiting operations
can be executed in parallel without full evaluation whilst still maintaining exception
handling semantics. The performance gains in terms of execution times from parallel
execution and short-circuiting alone are drastic: we observed a 30-fold speedup on a
16-core machine when comparing our solution to interpreted OCL for a large model.

Future work could build on these optimisations by leveraging advanced static anal-
ysis capabilities to replace suboptimal expressions. Our implementation requires that
users explicitly invoke lazy and/or parallel variants of first-order operations. With
sufficiently advanced static analysis, it would be possible to automatically detect cases
where parallelism and laziness can be applied and perform the substitution transpar-
ently. Finally, to reduce memory consumption and unnecessary loading of models in
memory, iterator-based model drivers are needed. Implementations should consider
interfacing with models by using Spliterators which can be used by the Stream API
to efficiently chain parallel and lazy operations.
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