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ABSTRACT 10 

High strength construction materials are now attractive owing to their economic and architectural 11 

advantages. The higher the material strength, the smaller member size is required. Ultra-high strength 12 

concrete (UHSC) encased columns are being developed for the erection of high-rise buildings due to their 13 

higher load bearing capacity and smaller cross section size compared to normal strength concrete encased 14 

columns. When the UHSC is subject to elevated temperature, explosive fire-induced spalling is more 15 

often observed than in normal strength concrete. The consequence of spalling could cause serious life loss 16 

and damage to the close key infrastructure. Spalling is mostly due to the UHSC increased density, lower 17 

permeability and brittleness. Most of the previous studies show that polypropylene fibres have been found 18 

effective in preventing fire spalling. The aim of this experimental study is to discover the minimum 19 

polypropylene fibre dosage to control the fire spalling of steel fibre reinforced concrete of 115-135 MPa 20 

strength. The experimental study was carried out on 15 concrete specimens with different parameters and 21 

two fibre-reinforced concrete encased columns exposed to ISO 834 fire. The study indicates that a 22 

polypropylene fibre dosage of 1.365 kg/m3 can prevent the 115-135 MPa ultra-high strength concrete 23 

from explosive fire spalling. This polypropylene fibre dosage is lower than that proposed in Eurocode 2, 24 

which is 2 kg/m3. The proposed lower polypropylene fibre dosage can potentially bring sustainability (use 25 

less polypropylene fibres that are made of crude oil) and economy, as well as improve constructability by 26 

improving the workability of fresh concrete. It is also found steel fibres may relieve the fire spalling but 27 
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not adequate to prevent spalling. Moreover, there is no significant effect of the size and inner temperature 28 

of the centre of the concrete specimen on spalling. 29 

 30 

Keywords: Ultra-High Strength Concrete; Fire; Polypropylene Fibre; Fire Spalling; Steel Fibre 31 

Reinforced Concrete. 32 

 33 

1. Introduction 34 

In recent years, Ultra-High Strength Concrete (UHSC) can be manufactured by more and more 35 

concrete plants due to the increasing availabilities of a variety of additives such as silica fume [1-4] and 36 

water reducing admixture [5-7]. The wider availability of UHSC has triggered the developed UHSC 37 

encased steel composite columns for high-rise buildings, due to their higher load bearing capacity and 38 

smaller cross section size compared to normal strength concrete encased columns [8-11]. Fig. 1 displays 39 

the practical case and typical cross section of concrete encased columns. However, UHSC exhibits more 40 

brittle behaviour comparing with normal strength concrete (NSC), which results in low resistance to crack 41 

propagation. Numerous tests [12-14] have found that the use of steel fibres could significantly improve 42 

the ductility of concrete and prevent cracking at ambient temperature. Therefore, steel fibre reinforced 43 

UHSC is proposed for the concrete encased steel composite columns in this study. 44 

When concrete is exposed to elevated temperatures, physical and chemical changes, such as 45 

vaporization of water and C-S-H dehydration have been observed [15-17], which then reduce the 46 

durability and strength of concrete. Concrete also experiences explosive fire-induced spalling when 47 

exposed to rapid heating, like a fire [18-25]. Explosive fire-induced spalling is defined as the violent 48 

expulsion of shards from the hot surface of concrete as the temperature increases rapidly, which may 49 

cause more casualties and damage to the surrounding environment. Recent tests [26, 27] have shown that 50 

the post-fire residual compressive strength and post-fire residual aggregate-mortar bonding strength of 51 

high strength concrete are higher than those of NSC if explosive spalling does not occur. Besides, the fire 52 

spalling risk increases as the concrete strength increases, and so UHSC is particularly vulnerable to fire 53 

spalling. It is most owing to increased density, lower permeability and brittleness in fire conditions 54 

[22-24]. Low water-cement (w/c) ratio and silica fume, which are essential for UHSC, lead to lower 55 

permeability of UHSC compared with NSC. Kalifa et al. [22] indicated that as a consequence of lower 56 

permeability, higher pore pressure, leading to fire spalling, is attributed to the large difference in the 57 



thermodynamic conditions reached in the concrete. Experimental studies [24] have shown that the 58 

explosive spalling of high strength concrete is affected by various factors, including heating rate, type of 59 

aggregate, dimension of samples, reinforcement arrangement, moisture content and concrete density.  60 

There are two most mentioned theories on the mechanism of fire spalling [21, 22, 25, 28, 29]. One is 61 

related to the thermo-mechanical process (thermal stresses theory), which induces spalling owing to the 62 

high thermal stress between the heated surface and the moisture clog, where the pores are saturated by 63 

condensed vapour. A steep thermal gradient develops since the temperature at the moisture clog is close to 64 

100 °C and the surface temperature increases rapidly, which induces high thermal stresses. The other one 65 

is related to the thermo-hydral process (pore pressure theory), which is associated with the vaporization 66 

and pores. The high rate of vaporization in the moisture clog, as well as the thermal dilation of vapour and 67 

air due to heating, induces higher pore pressure. Concrete spalling would finally occur if the pore pressure 68 

exceeds the tensile strength of the concrete. However, Li at al. [23] measured the pore pressure of 69 

ultra-high-performance concrete with silica fume. It was found that the maximum pore pressure is much 70 

lower than the tensile strength of the concrete, indicating that tensile strength may not be an adequate 71 

reasonable failure criterion for explosive spalling. One possible reason was put forward that spalling is 72 

generated by a step pressure difference, causing the collapse of the concrete matrix between the pores. 73 

Heo et al. [25] drew a conclusion that the spalling mechanism of high strength concrete could be 74 

explained using either the thermal stresses theory, pore pressure theory or a combination of both. Besides, 75 

Liu et al. [30] presented a new perspective that there were three types of fire-induced concrete spalling 76 

depending on the mechanisms, comprising thermo-hygral, thermo-mechanical and thermo-chemical 77 

spalling. However, there is neither full agreement on the spalling mechanism, nor fully accepted 78 

predictive modelling of explosive fire spalling. 79 

Adding polypropylene (PP) fibres to UHSC mixes is the most accepted method to improve their 80 

permeability at high temperature and to reduce the fire spalling risk. The dense pore structure of UHSC 81 

would make the flow of vapour more difficult than that of NSC and accelerate the pore pressure rise in 82 

fire. PP fibre’s melting point is low, which is 170 ℃ in general. At high temperature, the PP fibres would 83 

melt, so that the vapour can evacuate through the connected porous network [25, 31]. Suhaendi et al. [32, 84 

33] reported that fibres of longer lengths are more efficient in fire spalling control than those of shorter 85 

lengths, due to the effect that long fibres are beneficial to bridge the isolated pores. However, conflicting 86 

result was shown in other studies [34, 35]. Based on tests on small size specimens, Heo et al. [25] 87 



proposed a model for calculating the optimum fibre length, but further research is needed on the effect of 88 

specimen size. The Eurocode 2 [36] recommends that more than 2 kg/m3 (0.22% by volume) of 89 

polypropylene fibres should be added to the concrete of grades C80/95 to C90/105. Xiong et al. [37] 90 

investigated UHSC with different PP fibre dosages in fire. The test results indicated that 0.91 kg/m3 PP 91 

fibres is effective in preventing the fire spalling of UHSC of strength over 150 MPa heated to 800 °C at 92 

different heating rates (5 °C/min and 30 °C/min). However, the optimum dosage of PP fibre for UHSC of 93 

115-135 MPa has not been well studied. 94 

The effect of steel fibres on the fire spalling of concrete is also under discussion. Kodur et al. [24, 38] 95 

carried out fire resistance experiments on five types of reinforced concrete columns, and the results 96 

showed that the use of steel fibres could reduce fire spalling and improve the fire resistance of high 97 

strength concrete columns. However, Bei et al. [39, 40] reached a different conclusion, which is that steel 98 

fibre can only delay the fire spalling time of UHSC under rapid heating, but not prevent fire spalling. It 99 

may be attributed to the significantly degraded bond strength between the steel fibre and concrete matrix 100 

with increasing temperature, according to Abdallah [41]. The combined use of PP and steel fibres was 101 

also investigated [23, 42], and Li [23] demonstrated that the PP and steel fibre blends could prevent 102 

explosive spalling as the strain incompatibility between the steel fibres and concrete matrix enhances the 103 

connectivity of the PP fibre tunnels. 104 

Although many researchers [23, 37, 52] have focused on the PP fibre dosage against explosive spalling, 105 

it is critical that the spalling test results could vary depending on other effective parameters. Appendix A 106 

shows the spalling test results in previous studies considering the effect of specimen dimension, 28-day 107 

compressive strength, aggregate type, w/b and fibre dosages. It could be found that PP fibres show the 108 

significant effect on reducing the explosive spalling. The w/b of UHSCs is in a range of 0.11 ~ 0.22, 109 

which is so low that the risk of spalling significantly increases as comparing with NSC. There is no 110 

control group in Appendix A, which shows so many factors can affect the risk of UHSC spalling. Against 111 

such background, the present study focused on the UHSC with basalt aggregate in the range of cubic 112 

strength from 115 MPa to 135 MPa. The test results can provide additional information on the UHSC 113 

spalling. 114 

This study aims to study the fire spalling behaviour of steel fibre reinforced UHSC with PP fibres of a 115 

cubic strength of 115-135 MPa and to determine the optimum PP fibre dosage to prevent explosive fire 116 

spalling. The paper focuses on the fire spalling test of UHSC. The effect of steel fibre on spalling 117 



resistance has also been investigated. In addition, two UHSC encased columns were tested at high 118 

temperature to validate the reliability of the proposed dosage of PP fibres for fire spalling control on 119 

structural member level. The fresh properties and porosity of UHSC with different w/b and fibre contents 120 

were also measured. 121 

 122 

2. Experiments on UHSC 123 

2.1 Materials and mix design 124 

The UHSC mix consists of P·  Type 52.5 Onoda cement, river sand, 5-15 mm basalt aggregate, 125 

superplasticizer, polypropylene fibres and steel fibres. The PP and steel fibres are shown in Fig. 2 and 126 

their properties are listed in Table 1. The main ingredient of the superplasticizer is polycarboxylic acid. 127 

Two UHSC mixes were adopted, as listed in Table 2. Two water/binder (w/b) ratios, 0.15 and 0.18, 128 

were adopted. The specimens were cast and stored for 24 hours in the laboratory environment before 129 

demoulding. They were then demoulded, labelled and cured in 98% relative humidity at 20 °C for 27 130 

days. The 28-day cube compressive strength of concrete were measured from 100�100�100 mm cubes. 131 

The strengths of the plain UHSC mixes were tested and listed in Table 2. For each case, three tests were 132 

repeated. The average values are 117 MPa for Mix I (w/b = 0.18) and 134 MPa for Mix II (w/b = 0.15). 133 

 134 

2.2 Fresh properties 135 

The key aim of the fresh property tests was to evaluate the workability of the UHSC [43]. The fresh 136 

concrete properties were tested according to relevant standards for self-compacting concrete [43-45]. The 137 

slump-flow and T500 time were measured by slump-flow tests to assess the concrete’s flowability and its 138 

flow rate in the absence of obstructions, as shown in Fig. 3(a). J-ring tests were conducted to investigate 139 

the flowability and passing ability of concrete, as presented in Fig. 3(b). L-box tests were carried out to 140 

assess the passing ability of concrete, flowing through tight openings including spaces between 141 

reinforcing bars and other obstructions without segregation or blocking, as shown in Fig. 3(c).  142 

In the slump-flow tests, the largest diameter of the flow spread and the diameter at the perpendicular 143 

direction were measured. The mean value of these two measurements was recorded as S in Table 3 to the 144 

nearest 10 mm. it is found that the higher the value of S is, the larger the concrete ability is to fill the 145 

formwork. T500 is the recorded time (to the accuracy of 1 s) when the flow spread reaches 500 mm. A 146 

lower T500 indicates a greater fluidity or smaller workability loss. Similar to the slump-flow tests, in the 147 



J-ring tests, the largest diameter of the flow spread, and the diameter at the perpendicular direction were 148 

measured. Their average was recorded as SJ in Table 3 to the nearest 1 mm. The passing ability PA in 149 

Table 3 is given by: 150 

                                     (1) 151 

In the L-box tests, when the concrete movement ceased, the depth of concrete left behind the gate was 152 

measured as H1, and the depth of concrete passed through the gate was measured as H2. The passing 153 

ability is represented as H2 /H1. A lower PA or higher H2 /H1 value indicates a better passing ability. 154 

Haddadou et al. [43] suggest that H2 /H1 ranging from 0.8-1.0 is acceptable for self-compacting concrete. 155 

Table 3 shows the fresh properties of UHSC. To sum up, the slump flow diameter of all concretes were 156 

in the range of 450-750 mm; the slump flow time was in the range of 5-14 s; the PA values of the J-ring 157 

tests were in the range of 20-70 mm and the H2 /H1 ratios of the L-box tests was in the range of 0-0.92. 158 

Plain UHSC of w/b = 0.18 shows a greater filling ability than that of w/b = 0.15 due to higher S. This 159 

indicates that the w/b ratio is critical for the flowability of UHSC. The addition of fibres can significantly 160 

decrease the filling and passing abilities of UHSC. Comparing the results of Samples 1-4 in Table 3, it 161 

can be found that the flowability decreases with an increase in steel fibre dosage. The effect of PP fibres 162 

on flowability is similar to that of steel fibres, by comparing Samples 5, 9, 10 and 11. The S value of 163 

Sample 6 with steel fibre dosage of 39.25 kg/m3 (0.5% by volume) was 620 mm; this value dropped to 164 

510 mm for Sample 11 with PP fibre dosage of 2 kg/m3 (0.22% by volume). The H2 /H1 ratio of Sample 6 165 

is 0.85; this ratio dropped to 0.25 for Sample 11. This implies that PP fibres have more impact on the 166 

flowability compared to steel fibres of the same dosage (by volume). In addition, Sample 13 was difficult 167 

to mix; its S value was 450 mm and so T500 could not be measured; its PA value was 70 mm and the H2 168 

/H1 ratio was 0, confirming the very low flowability of the mix, which might result from the excessive 169 

dosage of fibres. For constructionability, this paper recommends not to add more than 78.5 kg/m3 steel 170 

fibres (1% by volume) and more than 2 kg/m3 PP fibres (0.22% by volume) to UHSC at the same time. 171 

 172 

2.3 Porosity 173 

Mercury intrusion porosimetry tests were carried out to measure the porosity, which might affect the 174 

occurrence of fire spalling [39, 46, 52, 57]. The MIP tests were performed on 10�10�10 mm cubes 175 

J
PA= S - S



using Poremaster GT-60 to measure the porosity of plain UHSC with different w/b. The MIP test 176 

specimens were cut from bigger UHSC specimens of different w/b. 177 

Fig. 4 shows the MIP results of plain UHSC with two w/b ratios at ambient temperature. The 178 

cumulative intrusion volumes of these two UHSC mixes follow the same increasing trend, as shown in 179 

Fig. 4, indicating that the microstructures of the two mixes are similar. The porosity of each UHSC was 180 

calculated automatically by Poremaster GT-60. The porosity of the UHSC mix of w/b = 0.18 is 4.25%, 181 

and that of the UHSC mix of w/b = 0.15 is 2.34%, implying that the mix of lower w/b ratio might have a 182 

denser microstructure compared to the mix of high w/b ratio. The effect of porosity on the fire spalling 183 

behaviour is discussed in Section 2.5.4. 184 

 185 

2.4 Fire spalling tests 186 

In this paper, PP fibre dosages of 0 kg/m3, 0.91 kg/m3, 1.183 kg/m3, 1.365 kg/m3, 2 kg/m3, 2.73 kg/m3 187 

and 4.55 kg/m3 were used, and the dosages of steel fibre adopted were 0 kg/m3, 11.775 kg/m3, 23.55 188 

kg/m3 and 78.5 kg/m3 in the fire spalling tests. Two specimen sizes, Ø300�300 mm cylinders and Ø100189 

�200 mm cylinders, were adopted to study the specimen size effect. Table 4 summarizes the details of 190 

the UHSC specimens of the fire spalling tests. 191 

The spalling tests began on the 28th day after casting. All tests were completed within 3 days. Fire 192 

spalling tests on 15 UHSC specimens were conducted using a gas furnace. The heat apparatus was a 193 

split-tube furnace with a three-zone (top, middle and bottom) configuration and a side view window. A 194 

type K thermocouple was mounted at the centre of each zone to ensure the temperature distribution within 195 

the furnace is uniform. Fig. 5 shows the internal dimension of the furnace. The furnace could heat up to 196 

1250 °C following ISO834 fire. The specimens were heated in the gas furnace one by one. In order to 197 

protect the furnace from the explosive spalling of concrete, a steel cage as shown in Fig. 6 was employed. 198 

A thermocouple was embedded in the centre of each specimen to measure its inner temperature. After 199 

each fire test, the cylinder sample was wrapped by a piece of graph paper to copy the spalling profile via 200 

pencil rubbing. 201 

Many researchers have investigated the effect of heating regime on fire spalling. Fellcetti [47] studied 202 

the spalling damage of UHSC heated at a slow rate of 1 °C/min. Li [23] tested fibre-reinforced UHSC at 203 

the rate of 2 °C/min, and Durrani [48] explored the spalling behaviour of high strength concrete heated 204 

rapidly at 30-90 °C/min. Bei et al. [39] suddenly put the UHSC specimen into the preheated furnace with 205 



1000 °C. However, the increase rate of temperature as mentioned above cannot follow the ISO834 206 

standard fire in which most of members always experience as fire test operated. 207 

Thus, the ISO 834 [49] standard fire curve was employed in the fire spalling tests of this research for 208 

standardisation. Fig. 7 shows the comparison between the temperature-time relationship of ISO 834 and 209 

that measured in the furnace without specimens. The good agreement of them indicates that the furnace 210 

could simulate the heating rate of ISO 834. 211 

In addition to the heating regime, the loading is also a critical factor to affect the fire spalling. A 212 

general opinion is that the probability and severity of spalling increase with compressive loading 213 

increasing. Boström et al. [50] studied the effect of loading level on the fire spalling by pre-loading a 214 

compressive force on the specimens in fire. The results showed that the probability as well as the severity 215 

of spalling is much greater than that of specimens without load. Hence he suggested that the compressive 216 

load should be taken into account during the concrete spalling test. Compared to most tests on concrete 217 

specimens without loading, although Ali [51] reported that the increase of loading level did not improve 218 

the possibility of concrete spalling, most previous tests on columns considered the effect of the loads on 219 

explosive spalling [51-54]. 220 

In this paper, all cylinder specimens heated without loading investigated the effect of fibre dosage and 221 

size on UHSC spalling, and then, the fire tests of full scale UHSC encased columns were carried out to 222 

explore the effect of loading on UHSC spalling. 223 

 224 

2.5 Test results and discussions 225 

Table 5 shows the results of the spalling tests. The 28-day cube compressive strengths of the 226 

specimens are also listed, which are between 115 MPa and 135 MPa, all falling into the targeted range. 227 

 228 

2.5.1 Failure modes 229 

The failure modes of the specimens are shown in Figs. 8, 9 and 10. Due to the fully enclosed furnace, 230 

the colour change of the specimens during the heating time could not be observed. Most specimens 231 

showed the similar colour of greyish white after exposed to elevated temperatures, except the collapsed.  232 

In order to describe the magnitude of fire spalling, visual evaluation classified specimens as having 233 

‘slight damage’, ‘moderate damage’, ‘great damage’, ‘intensive damage’ and ‘collapse’ after the tests 234 

[55]. The spalling depth ds and spalling area ratio δs, were obtained. The maximum spalling depth was 235 



measured as the vertical distance from the heated surface before spalling to the deepest spalled surface. 236 

The spalling area ratio δs is the ratio between the spalled area As and the total heated surface area A: 237 

                                      (2) 238 

Fig. 8 shows the failure modes of UHSC1 to UHSC5 with w/b of 0.18 and different fibre dosages. The 239 

UHSC specimen with 0.91 kg/m3 PP fibres shows few cracks on the top of the specimen, classified as 240 

‘slight damage’, as shown in Fig. 8(a). It indicates that the 0.91 kg/m3 (0.1% by volume) PP fibre dosage 241 

is likely to be close to the critical dosage which could control spalling. There is almost no damage in 242 

UHSC with PP fibres as shown in Figs. 8(b), (c) and (d). Their spalling depths and spalling area ratios 243 

are all zero. Specimen UHSC5 without PP fibre spalled so intensively that it collapsed and only debris as 244 

shown in Fig. 8(e) was left. This spalling was very explosive and with very loud sounds. 245 

The failure modes of the series of tests on the UHSC6 to UHSC12 with w/b ratio of 0.15 are shown in 246 

Fig. 9. There is almost no damage in UHSC6 with 2.73 kg/m3 PP fibres and 11.775 kg/m3 steel fibres, 247 

UHSC7 with 4.55 kg/m3 PP fibres and 11.775 kg/m3 steel fibres and UHSC8 with 2 kg/m3 PP fibres and 248 

no steel fibre as shown in Figs. 9(a), (b) and (c), respectively. Their spalling depths and spalling area 249 

ratios are all zero. Fig. 9(d) shows the intensive damage in UHSC9 with no PP fibre and 78.5 kg/m3 steel 250 

fibres. Its spalling depth is 47 mm, and the spalling area ratio is 63%. This indicates that the PP fibre is 251 

the main contributor of spalling mitigation, not the steel fibre. Figs. 9(e), (f) and (g) show the failure 252 

modes of UHSC with PP fibre dosage lower than 2 kg/m3. The spalling depth of UHSC10 with 0.91 253 

kg/m3 PP fibres is 38 mm, and its spalling area ratio is 28%. The spalling depth of UHSC11 with 1.183 254 

kg/m3 PP fibres drops to 24 mm, and the spalling area ratio drops to 9%. This indicates that the effect of 255 

PP fibre on spalling mitigation depends on the dosage. There is almost no damage in UHSC12 with 1.365 256 

kg/m3 PP fibres as shown in Fig. 9(g). This dosage is lower than that of 2 kg/m3 recommended in EC2 257 

[36]. 258 

Fig. 10 shows the failure modes of UHSC13 to UHSC15 with w/b of 0.15 and smaller size to 259 

investigate the effect of size. Compared to UHSC10, the spalling depth of UHSC13 with the same fibre 260 

dosage drops to 13 mm, and its spalling area ratio is 28%. Similarly, compared to UHSC11, the spalling 261 

depth of UHSC14 with the same fibre dosage drops to 6 mm, but its spalling area ratio increases to 18%. 262 

There is almost no damage in UHSC15 with 1.365 kg/m3 PP fibres as shown in Fig. 10(c). It further 263 

proves that 1.365 kg/m3 PP fibres is an adequate dosage to prevent spalling. 264 

S
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 265 

2.5.2 Temperature analysis 266 

Fig. 11 shows the development of temperatures over time at the centres (centroid of the cross section at 267 

mid height) of typical specimens. The specimens of relatively lower PP fibre dosage (up to 1.365 kg/m3) 268 

were tested first. The test durations were initially set as 120 minutes. None of those specimens spalled. It 269 

was expected that the remaining specimens (of PP fibre dosage >1.365 kg/m3) would bear even less 270 

spalling risk. Therefore, the durations of the following tests were shortened to 60 minutes. On a separate 271 

note, explosive spalling occurs within 30 mins of heating in most cases. Therefore, either 60 mins or 120 272 

mins of heating are adequate and should not affect the comparability of the test results. 273 

After around 50 minutes of heating, the temperature at the centre of UHSC5 suddenly rose to close to 274 

the furnace temperature, due to the exposure of thermal couple when explosive spalling occurred. Except 275 

UHSC5, the heating rates within the other specimens illustrated in Fig.11 are similar to each other. 276 

However, there was almost no spalling in UHSC2, UHSC7 and UHSC12, whereas there was moderate 277 

spalling in UHSC10 and UHSC11. This indicates that there is no obvious relationship between the inner 278 

temperature of concrete and spalling. 279 

 280 

2.5.3 The effects of specimen size 281 

Two specimen sizes have been adopted for specimens of the same water binder ratio (0.15) and of the 282 

same set of fibre dosages, as shown in Table 4. Specimens UHSC10, UHSC11 and UHSC12 are of 300 283 

mm diameter and 300 mm height; UHSC13, UHSC14 and UHSC15 are of 100 mm diameter and 200 mm 284 

height. Among UHSC10-15, all specimens of PP fibre dosage lower than 1.365 kg/m3 experienced 285 

moderate spalling. However, the spalling magnitude of the smaller specimens seemed to be less than 286 

those of the bigger specimens, see Figs. 9(e), (f) vs. Figs. 10(a), (b). The spalling depth of UHSC13 287 

decreased down to 46.4% comparing with that of UHSC10 using the same fibre dosage, and the spalling 288 

area ratios of them were the same. Similarly, the spalling depth of UHSC14 reduced down to 25% 289 

comparing with that of UHSC11, and the spalling area ratio of UHSC14 was twice of that of UHSC11.  290 

There is no crack on the outer surfaces of specimens with 1.365 kg/m3 PP fibres after heating. For both 291 

specimen sizes, the PP fibre dosage of 1.365 kg/m3 (0.15% by volume) was effective in mitigating the 292 

explosive spalling under the testing condition described previously. 293 

 294 



2.5.4 The effects of porosity 295 

Zegardło et al. [56] stated that the porous structure of ceramic aggregate may facilitate the water 296 

vapor’s diffusion from cement paste into the interior of aggregate’s grain, which reduces the likelihood of 297 

fire spalling occurrence. Rossino et al. [57] studied the heat-induced microstructural changes of 298 

high-performance concrete and confirmed that the total porosity plays an important role in moisture 299 

transport and vaporization. Mindeguia et al. [58] reported that the effect of PP fibre on reducing the fire 300 

spalling of NSC with 40 MPa was governed by the increase of permeability of the exposed concrete, that 301 

is both porosity and pore connectivity. In present study the porosity test rather than permeability test was 302 

measured due to limited performance of instrument. Further study should be carried out to explain the 303 

effect of pore connectivity on UHSC spalling. 304 

As mentioned in Section 2.3, the representative porosity of the UHSC mix of w/b = 0.18 (UHSC1-5) is 305 

4.25%, and that of the UHSC mix of w/b=0.15 (the rest of the specimens) is 2.34%. Fig. 12 shows the 306 

28-day cubic compressive strength against porosity. Generally, the concrete with lower porosity has 307 

higher compressive strength. The porosity is greater than 10%, whereas the 28-day cubic compressive 308 

strength is smaller than 60 MPa. When the porosity of the high strength concrete (HSC) is smaller than 309 

6%, the compressive strength of it tends to exceed 100 MPa. Thus, the UHSC specimens in this study 310 

also have the quite low porosity comparing with the HSC and NSC. 311 

The range of porosities varied in this study is small given the nature of UHSC, likely explaining the 312 

little influence of porosity on fire spalling occurrence. In addition, it should be reasonable to assume that 313 

the moisture contents of the specimens of the same w/c ratio are similar given that the specimens are 314 

cured and stored in the same condition ( in 98% relative humidity at 20 °C) according to EN 206-1:2000. 315 

Figs. 8(e) and 9(d) show the spalling of UHSC with no PP fibre, respectively. This indicates that the 316 

porosities of UHSC covered by this study did not make a difference to the spalling under the testing 317 

conditions. Taking into account the low porosity of all UHSC, it could be concluded that the effect of 318 

porosity without considering pore connectivity is limited. However, explosive spalling is prevented due to 319 

the addition of PP fibres to both base mixes, producing the connected porous network after the melting 320 

and degradation of them. Previous studies [25, 31-35, 46, 57] support this opinion as well. Further study 321 

is needed to measure the post-heating porosity of UHSC with PP fibres. 322 

 323 

2.5.5 The effects of PP fibres 324 



It is clear from both this and previous research, PP fibre is effective in reducing the fire spalling risk. 325 

However, it is wasteful and costly, as well as reduces the workability of fresh concrete to use too much 326 

PP fibres. Therefore, this study also aims to determine the optimum dosage of PP fibre for 115-135 MPa 327 

concrete. 328 

Figs. 8, 9 and 10 show the failure modes of UHSC specimens with PP fibre dosages ranging from 0.91 329 

kg/m3 to 4.55 kg/m3. Moderate spalling was observed from the specimens of PP fibre dosages lower than 330 

1.365 kg/m3, as shown in Figs. 8(a), 8(e), 9(d), 9(e), 9(f), 10(a) and 10(b). With PP fibre dosages equal 331 

to or larger than 1.365 kg/m3, no spalling was observed. For the specimens tested under the testing 332 

condition described in this paper, 1.365 kg/m3 seems to be the optimal PP fibre dosage for preventing fire 333 

spalling. Therefore, this paper recommends a PP fibre dosage of 1.365 kg/m3 (0.15% by volume) as the 334 

optimum dosage to prevent the explosive fire spalling of UHSC, less than the dosage recommended in 335 

EC2 [36]. 336 

Similar studies of the effect of PP fibre dosage on fire spalling were carried out. Li et al. [23] found 337 

that ultra-high-performance concrete with 3 kg/m3 PP fibres by volume did not spall. Xiong and Liew [37] 338 

investigated UHSC with different PP fibre dosages in fire. The test results indicated that 0.1% PP fibres is 339 

effective to prevent spalling of the UHSC of strength over 150 MPa under high temperature up to 800 °C 340 

regardless of heating rate. However, previous studies [25, 32-35, 37�50] also indicated that the optimal 341 

fibre dosages resulted from such experimental parametric studies could vary depending on the concrete 342 

mix, specimen size/shape, heating regime, loading, etc. Further study is still needed to quantify their 343 

influences on the optimal PP fibre dosages. 344 

 345 

2.5.6 The effects of steel fibres 346 

UHSC is brittle and steel fibres have been used to improve its ambient temperature ductility [12-14]. 347 

The effect of steel fibre on fire spalling is still unclear; the published results give pretty diverse views [24, 348 

38-40]. In this paper, UHSC9 (w/b = 0.15 and steel fibre dosage = 78.5 kg/m3) was designed to explore 349 

this further. Moderate spalling was observed, as shown in Fig. 9(d), indicating that the steel fibres 350 

adopted in this study were not as effective as PP fibres in terms of fire spalling mitigation. Similar 351 

conclusions were drawn by Bei et al. [39, 40]. However, it was interesting that the addition of steel fibres 352 

delayed the initial spalling time and the spalling was less explosive compared to the specimens without 353 

steel fibres. It is speculated that the steel fibres might have improved the tensile strength of the concrete 354 



matrix to some extent, which delays the occurrence of fire spalling but is not adequate to completely 355 

mitigate spalling. 356 

 357 

3. Experiments on fibre-reinforced UHSC encased columns 358 

Fire resistance behaviour of concrete encased columns is often considered to be sufficient because the 359 

steel is insulated by the concrete cover effectively. However, the explosive spalling of columns could 360 

reduce or completely remove the concrete cover, causing the significant weakness of the fire performance 361 

of encased columns due to the mechanical properties decreasing. Thus, the risk of spalling should be 362 

investigate as the UHSC using 0.15% PP fibre was applied in the encased columns under load. 363 

Zhou et al. [60] experimentally studied the performance of concrete-encased steel tube columns in fire. 364 

The concrete encasement experienced explosive spalling subject to 60MPa uniaxial compressive stresses 365 

which was the same as the compressive strength of concrete. The authors believed that the spalling was 366 

caused by differential thermal stresses, which is agreed by Herzt [61]. 367 

The previous sections focus on the testing of UHSC on the material level. It is also necessary to extend 368 

the study to structural member level. Parameters like loading conditions and reinforcement, which are not 369 

considered during the material level testing, are considered in this section. Two fibre-reinforced UHSC 370 

(FRUHSC) encased columns with different slenderness were tested subject to ISO 834. These tests aim to 371 

study the spalling behaviour of FRUHSC encased columns at large scale and to validate the optimal PP 372 

fibres dosage proposed in Section 2.5.5. 373 

 374 

3.1 Specimens and materials 375 

Fig. 13 shows the preparation of the columns, which are 1400 mm and 2500 mm in length, respectively. 376 

An end plate (20 mm thick) is welded to each end of the specimen. The longitudinal reinforcement bars 377 

are of 12 mm diameter. The stirrups are of 8mm diameter, at 80 mm spacing along the column height. 378 

The details of the specimens are shown in Fig. 14 and Table 6. The reinforcements are designed 379 

according to the Eurocodes [62, 63]. The concrete mix is of 0.15 w/b, 39.25 kg/m3 steel fibre dosage (0.5% 380 

by volume) and 1.365 kg/m3 PP fibre dosage (0.15% by volume). The adoption of steel fibres in this 381 

study is not particularly to study their effectiveness in fire spalling mitigation. Since steel fibres are 382 

commonly used in UHSC for ambient temperature ductility, the motive is to assess the behaviour of 383 

UHSC columns with steel fibres in fire. The specimens were cast as shown in Fig. 13(c). After the 384 



concrete encasement, the specimens were watered on a regular basis for proper curing so as to prevent the 385 

shrinkage cracking of concrete. To protect the furnace against spalled debris, the specimens were covered 386 

with stainless steel meshes made of 1 mm diameter wires and 20 mm spacing during the spalling tests. 387 

Table 6 lists the geometric and material properties of the specimens, where fc is the 28-day cubic 388 

compressive strength of FRUHSC. fss, fsl and fst are the yield strengths of the steel section, longitudinal 389 

reinforcements and stirrups, respectively. Ess, Esl and Est are their elastic moduli. 390 

According to EC4 [62], the calculated ambient-temperature ultimate load Nu of FRUHSC1 is 8865.3 391 

kN and that of FRUHSC2 is 9163.2 kN. To reflect the fire limited state design load, load ratios (applied 392 

load P0 during testing divided by the ambient temperature capacity Nu,) of 0.38 and 0.56 were adopted for 393 

FRUHSC1 and FRUHSC2, respectively. Therefore, the applied load P0 during fire testing was 3368.8 kN 394 

and 5131.4 kN for FRUHSC1 and FRUHSC2, respectively.  395 

 396 

3.2 Test setup and procedure 397 

Both specimens were loaded monotonically by a 10,000 kN pressure testing machine under 398 

displacement control. The heated length of the 2500 mm long column is 2100 mm, and that of the 1400 399 

mm long column is 1000 mm. Pin-ended connections were adopted at both ends of each column to allow 400 

end rotation, as shown in Fig. 15. 401 

The compressive load was applied in a displacement-controlled manner. Preloading, up to 20% of the 402 

calculated ambient temperature ultimate load, was applied to eliminate any equipment deformation. Prior 403 

to heating, the specimens were loaded at a rate of 200 kN/min until the targeted test load was reached. 404 

The specimens were heated following the ISO 834 standard fire [49]. The applied axial load remained 405 

constant during the test. The test was terminated when the displacement rate at the end of the column 406 

reached 3�column length/1000 mm/min proposed by reference [65]. 407 

 408 

3.3 Test results and discussions 409 

Figs. 16 and 17 show the failures of the two FRUHSC columns. As expected, overall buckling was the 410 

dominant failure mode of both specimens. This agrees with previous finding [55] that concrete encased 411 

concrete-filled steel tube columns with slenderness ratio of 22 would likely experience global buckling 412 

failure under compression in fire. At failure, the concrete crushed suddenly with a loud sound at the 413 

concave side, as shown in Figs. 16(b) and 17(b). Visible transverse cracks were observed at the convex 414 



side of the columns as shown in Figs. 16(d) and 17(d). The failure mode is similar to that of the high 415 

strength concrete encased steel composite columns at ambient temperature [8]. It is attributed to the steel 416 

fibre, which improves the ductility of UHSC. None of the two columns experienced fire spalling, 417 

confirming that the proposed 1.365 kg/m3 PP fibre dosage is also effective in mitigating the fire spalling 418 

of the tested large scale columns subject to the described testing conditions. 419 

 420 

4. Conclusions 421 

This paper presents an experimental investigation of the explosive spalling of UHSC and FRUHSC 422 

encased columns subject to ISO 834 standard fire. A total of fifteen fire spalling tests were conducted on 423 

115-135 MPa UHSC, focusing on the effects of w/b, specimen size, porosity, PP fibres and steel fibres. 424 

Two large scale FRUHSC encased columns were also tested under simultaneous heating and loading. The 425 

following conclusions could be drawn based on the findings of this study: 426 

(1) It is proposed that 1.365 kg/m3 (0.15% by volume) is the optimal PP fibre dosage to prevent 115-135 427 

MPa UHSC from explosive spalling, which is lower than the dosage recommended in EC2. Steel 428 

fibres could only reduce the intensity of the explosive fire spalling, but not prevent it. 429 

(2) Given that the porosity of UHSC is generally low, the porosity of the 115-135 MPa UHSC does not 430 

have a significant influence on the fire spalling behaviour of UHSC. There is no distinct relationship 431 

between the inner concrete temperature and the occurrence of fire spalling. As the cylinder specimen 432 

with PP fibre dosages above 1.365 kg/m3 scales up from Ø100 mm × 200 mm to Ø300 mm × 300 433 

mm, the increase in specimen size did not influence the fire spalling or cracking behaviour. 434 

(3) The large scale column specimens, which were cased with the FRUHSC proposed by this study, 435 

displayed no explosive spalling under axial load exposed to ISO834 fire. It confirmed the 436 

effectiveness of 1.365 kg/m3 PP fibre in fire spalling mitigation at structural element level. The steel 437 

fibre dosage of 78.5 kg/m3 can efficiently improve the ductility of the FRUHSC column specimens in 438 

fire. 439 

(4) In terms of workability, 1.365 kg/m3 PP fibres combined with 78.5 kg/m3 steel fibres are suitable for 440 

the casting of the large scale columns. 441 
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Fig. 1 Practical case and typical cross section of concrete encased columns 

 

 

 

 

  
(a) PP fibre (b) Steel fibre 

Fig. 2 PP and steel fibres 

 

 

 

 

   
(a) Slump-flow test (b) J-ring test (c) L-box test 

Fig. 3 The measurements of the fresh properties of concrete 

 



 

 
Fig. 4 Cumulative intrusion volume of plain UHSC with different w/b 

 

 

 

       
Fig. 5 Gas furnace 

 

 

 

 
Fig. 6 Protective steel cage 
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Fig. 7 Temperature-time curve of ISO 834 and furnace without specimen 

 

 

     
(a) UHSC1 (b) UHSC2 (c) UHSC3 (d) UHSC4 (e) UHSC5 

Fig. 8 Failure modes of UHSC specimens with w/b of 0.18 (Ø300�300 mm) 
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Fig. 9 Failure modes of UHSC specimens with w/b of 0.15 (Ø300�300 mm) 
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(a) UHSC13 (b) UHSC14 (c) UHSC15 

Fig. 10 Failure modes of UHSC specimens with w/b of 0.15 (Ø100�200 mm) 

 

 
Fig. 11 Inner concrete temperature as a function of heating time 

 

 

Fig. 12 28-day cubic compressive strength against porosity 
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(b) Formwork 

erection 

(c) Concrete 

casting 

(d) Specimen 

completion 

Fig. 13 Preparation of FRUHSC encased column specimen 
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 (a) The details of the 1400 mm long 

specimen 

(b) Cross-section A-A 

 
(c) The details of the 2500 mm long specimen 

Fig. 14 The schematic of FRUHSC encased columns 
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(a) Side 1 (b) Side 2 (c) Side 3 (d) Side 4 

Fig. 16 The failure of FRUHSC encased column, 1400 mm in length 

 

 

 

 

 

 

 

    
(a) Side 1 (b) Side 2 (c) Side 3 (d) Side 4 

Fig. 17 The failure of FRUHSC encased column, 2500 mm in length 
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Table 1 Fibre properties 

Type Density 
(kg/m3) 

Melting point  
(℃) 

Diameter 
(µm) 

Length 
(mm) 

Cross-sectional shape 

PP fibre 910 170 18 16 Circular 
Steel fibre 7850 1535 230 14 Circular 

 

 

 

 

Table 2 UHSC mix designs and 28-day compressive strengths 

Series w/b Cement 
(kg/m3) 

Silica 
fume (kg/m3) 

Water  
(kg/m3) 

Sand 
(kg/m3) 

Coarse 
aggregate 
(kg/m3) 

Superplasticizer 
(kg/m3) 

28-day cube 
strength* 
(MPa) 

I 0.18 810 90 162 588 882 18 117(3.42) 
II 0.15 821 91 137 593 890 18 134(1.71) 
* Standard deviation is presented in the parenthesis after the average value from three specimens 

 

 

 

 

 

Table 3 Fresh property tests on UHSC 

Sample 
No. 

w/b Steel fibre 
(kg/m3) 

PP fibre 
(kg/m3) 

S 

(mm) 
T500 
(s) 

PA 

(mm) 
H2/H1 Observation 

1 0.18 0 0 750 5 22 0.92 Slight segregation 
2 39.25 0 720 5 25 0.90 Slight segregation 
3 78.5 0 680 7 31 0.85 Slight segregation 
4 117.75 0 670 9 32 0.74 Slight segregation 
5 0.15 0 0 640 8 20 0.87 No segregation 
6 39.25 0 620 9 25 0.85 No segregation 
7 78.5 0 590 12 29 0.64 No segregation 
8 117.75 0 520 15 38 0.43 No segregation 
9 0 0.91 600 8 24 0.82 No segregation 
10 0 1.365 560 10 30 0.58 No segregation 
11 0 2 510 13 37 0.25 No segregation 
12 39.25 1.365 520 14 40 0.2 No segregation 
13 78.5 2 450 / 70 0 Significantly reduced 

flowability 

 

 

 

 

 



Table 4 A summary of the UHSC specimens for the fire spalling tests 

Specimen ID w/b Dimension  
(mm) 

PP fibre   Steel fibre   
(kg/m3) 
by mass 

(%) 
by volume 

 (kg/m3) 
by mass 

(%) 
by volume 

UHSC1 0.18 Ø300�300 0.91 0.1  0 0 
UHSC2 2 0.22  0 0 
UHSC3 1.365 0.15  11.775 0.15 
UHSC4 1.365 0.15  23.55 0.3 
UHSC5 0 0  0 0 
UHSC6 0.15 Ø300�300 2.73 0.3  11.775 0.15 
UHSC7 4.55 0.5  11.775 0.15 
UHSC8 2 0.22  0 0 
UHSC9 0 0  78.5 1 
UHSC10 0.91 0.1  0 0 
UHSC11 1.183 0.13  0 0 
UHSC12 1.365 0.15  0 0 
UHSC13 0.15 Ø100�200 0.91 0.1  0 0 
UHSC14 1.183 0.13  0 0 
UHSC15 1.365 0.15  0 0 

 

 

 

 

 

 

Table 5 Spalling test results and compressive strength 

Specimen 
ID 

PP fibre   Steel fibre   Compressive 
strength  
(MPa) 

Spalling 
magnitude 

Spalling 
depth 
ds (mm) 

Spalling 
area ratio δs 

(%) 
(kg/m3) 
by mass 

(%) 
by volume 

 (kg/m3) 
by mass 

(%) 
by volume 

UHSC1 0.91 0.1  0 0 116.4 Slight 0 0 
UHSC2 2 0.22  0 0 118.0 No 0 0 
UHSC3 1.365 0.15  11.775 0.15 122.3 No 0 0 
UHSC4 1.365 0.15  23.55 0.3 127.6 No 0 0 
UHSC5 0 0  0 0 117.8 Collapse N.A.* N.A. 
UHSC6 2.73 0.3  11.775 0.15 142.6 No 0 0 
UHSC7 4.55 0.5  11.775 0.15 136.5 No 0 0 
UHSC8 2 0.22  0 0 134.2 No 0 0 
UHSC9 0 0  78.5 1 134.5 Intensive 47 63 
UHSC10 0.91 0.1  0 0 122.5 Intensive 38 28 
UHSC11 1.183 0.13  0 0 133.4 Great 24 9 
UHSC12 1.365 0.15  0 0 130.1 No 0 0 
UHSC13 0.91 0.1  0 0 122.5 Moderate 13 18 
UHSC14 1.183 0.13  0 0 133.4 Moderate 6 14 
UHSC15 1.365 0.15  0 0 130.1 No 0 0 
* N.A. notes that measurements could not be performed due to the severe condition of the specimens 

 

 

 

 



Table 6 The geometric and material properties of the columns 

Specimen FRUHSC1 FRUHSC2 
Geometric properties Section size (mm×mm) 300×300 300×300 
 Steel profile (height×width×web 

thickness×flange thickness in mm) 
200×200×8×12 200×200×8×12 

 Length L (mm) 1400 2500 
 Heated length Le (mm) 1000 2100 
 Slenderness ratio l=2√3L/H 16.2 28.9 
 Link space (mm) 80 80 
 Steel area ratio As/A 7.9% 7.9% 
Material properties fc (MPa) 126.8 129.3 
 fss (MPa) 379.6 379.6 
 fsl (MPa) 523.9 523.9 
 fst (MPa) 489.8 489.8 
 Ess (GPa) 204.4 204.4 
 Esl (GPa) 192.3 192.3 
 Est (GPa) 244.0 244.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A. 

Table A.1. Summary of the spalling test results of UHSC in previous studies 

Source Dimension  

(mm) 

28-day 

compressive 
strength (MPa) 

Aggregate w/b PP fibre 

(kg/m3) 

Steel fibre 

(kg/m3) 

Spalling 

magnitude 

Spalling 

depth  
(mm) 

Spalling 

area  
(%) 

Weight 

loss  
(%) 

Failure  

mode 

Li et al. [23] 50 50×50 149.6 

River sand 

(No coarse 

aggregate) 

0.22 0 0 Intensive <5 10-150 /* 

 

Li et al. [23] 50 50×50 159.7 

River sand 

(No coarse 

aggregate) 

0.22 3 0 No 0 0 / 

 

Li et al. [23] 50 50×50 172.1 

River sand 

(No coarse 

aggregate) 

0.22 0 196.3 Intensive <5 10-150 / 

 

Li et al. [23] 50 50×50 154.8 

River sand 

(No coarse 

aggregate) 

0.22 3 196.3 No 0 0 / 

 

Xiong and Liew 

[37] 
Ø100 200 155.8 

Bauxite  

(No coarse 

aggregate) 

0.076A 4.55 39.25 No / / / / 

Xiong and Liew 
[37] 

Ø100 200 163 
Bauxite  
(No coarse 

aggregate) 

0.076 0 0 Collapse / / / / 

Xiong and Liew 

[37] 
Ø100 200 172 

Bauxite  

(No coarse 

aggregate) 

0.076 0.91 0 No / / / / 

Xiong and Liew 

[37] 
Ø100 200 151 

Bauxite  

(No coarse 

aggregate) 

0.076 2.275 0 No / / / / 

Xiong and Liew 

[37] 
Ø100 200 147 

Bauxite  

(No coarse 

aggregate) 

0.076 4.55 0 No / / / / 

Lee et al. [52] 300 300×450 129.1 Granite 0.11 3.458 39.25 Slight 4.1 1.9 10 / 

Lee et al. [52] 300 300×450 135.2 Granite 0.11 3.458 39.25 Moderate 6.1 19.4 9.5 / 

Lee et al. [52] 300 300×450 129.1 Granite 0.11 4.004 39.25 Intensive 30.9 54.7 9.4 / 

Lee et al. [52] 300 300×450 144.4 Granite 0.11 4.55 39.25 Moderate 10 18.6 8.3 / 



Table A.1. (Continued) 

Source Dimension  

(mm) 

28-day 

compressive 

strength (MPa) 

Aggregate w/b PP fibre 

(kg/m3) 

Steel fibre 

(kg/m3) 

Spalling 

magnitude 

Spalling 

depth  

(mm) 

Spalling 

area  

(%) 

Weight 

loss  

(%) 

Failure  

mode 

Lee et al. [52] 300 300×450 121.2 Granite 0.11 4.55 39.25 No 0 0 8.8 / 

Lee et al. [52] 300 300×450 124 Granite 0.11 5.46 39.25 Slight 2 2.4 9.2 / 

Lee et al. [52] 300 300×450 188.3 EAF slag 0.11 3.458 39.25 Intensive 75.6 92 25.6 

 

Lee et al. [52] 300 300×450 148.6 Granite 0.11 3.458 78.5 Slight 4 2.8 5.5 / 

Lee et al. [52] 300 300×450 177.2 EAF slag 0.11 4.55 39.25 Intensive 39.7 54.6 16.8 / 

Lee et al. [52] 300 300×450 167.6 EAF slag 0.11 4.55 39.25 Intensive 22.3 58.6 16 / 

Lee et al. [52] 300 300×450 186.5 Granite 0.125 0 0 Collapse N.A.** N.A. 100 / 

Lee et al. [52] 300 300×450 175 Granite 0.125 3.64 0 Collapse N.A. N.A. N.A. / 

Lee et al. [52] 300 300×450 167.8 Granite 0.125 5.46 0 Collapse N.A. N.A. N.A. / 

Lee et al. [52] 300 300×450 193.1 Granite 0.125 0 39.25 Collapse N.A. N.A. 77.9 

 

Liang et al. [64] 50 50×50 112.4 

Quartz sand 

(No coarse 

aggregate) 

0.16 0 0 Collapse / / N.A. 

 

Liang et al. [64] 50 50×50 187.5 

Quartz sand 

(No coarse 

aggregate) 

0.16 0 157 Collapse / / N.A. 

 

Liang et al. [64] 50 50×50 125.5 

Quartz sand 

(No coarse 

aggregate) 

0.16 18.2 0 Moderate / / 9 

 

Liang et al. [64] 50 50×50 162.1 

Quartz sand 

(No coarse 

aggregate) 

0.16 18.2 78.5 Slight / / 8 

 

 



Table A.1. (Continued) 

Source Dimension  

(mm) 

28-day 

compressive 

strength (MPa) 

Aggregate w/b PP fibre 

(kg/m3) 

Steel fibre 

(kg/m3) 

Spalling 

magnitude 

Spalling 

depth  

(mm) 

Spalling 

area  

(%) 

Weight 

loss  

(%) 

Failure  

mode 

Liang et al. [64] 50 50×50 90 
Steel slag  
(No coarse 

aggregate) 

0.16 0 0 Collapse / / N.A. 

 

Liang et al. [64] 50 50×50 162.8 

Steel slag  

(No coarse 
aggregate) 

0.16 18.2 78.5 Slight / / 7.5 

 

A 0.076 is the value of water/commercial concrete product 

* / notes that no test or photograph is shown in the paper 

** N.A. notes that measurements could not be performed due to the severe condition of the specimens 

 


