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ACTION OF THE MAPPING CLASS GROUP ON
CHARACTER VARIETIES AND HIGGS BUNDLES

OSCAR GARCIA-PRADA AND GRAEME WILKIN

ABSTRACT. We consider the action of a finite subgroup of the mapping class group
Mod(S) of an oriented compact surface S of genus g > 2 on the moduli space R(S,G) of
representations of 71 (.S) in a connected semisimple real Lie group G. Kerckhofl’s solution
of the Nielsen realization problem ensures the existence of an element J in the Teichmiiller
space of S for which I" can be realised as a subgroup of the group of automorphisms of
X = (S,J) which are holomorphic or antiholomorphic. We identify the fixed points
of the action of T' on R(S,G) in terms of G-Higgs bundles on X equipped with a cer-
tain twisted I'-equivariant structure, where the twisting involves abelian and non-abelian
group cohomology simultaneously. These, in turn, correspond to certain representations
of the orbifold fundamental group. When the kernel of the isotropy representation of the
maximal compact subgroup of G is trivial, the fixed points can be described in terms of
familiar objects on Y = X/T'F, where I'" C T is the maximal subgroup of " consisting of
holomorphic automorphisms of X. If I' = I'" one obtains actual I-equivariant G-Higgs
bundles on X, which in turn correspond with parabolic Higgs bundles on Y = X/T" (this
generalizes work of Nasatyr & Steer for G = SL(2,R) and Boden, Andersen & Grove and
Furuta & Steer for G = SU(n)). If on the other hand T' has antiholomorphic automor-
phisms, the objects on Y = X/I'T correspond with pseudoreal parabolic Higgs bundles.
This is a generalization in the parabolic setup of the pseudoreal Higgs bundles studied by
the first author in collaboration with Biswas & Hurtubise.

1. INTRODUCTION

Let S be a compact oriented surface of genus greater than one, and G be a real connected
semisimple Lie group. Consider the moduli space of representations or character variety
R(S,G) defined as the space of reductive representations of the fundamental group of S
in G modulo conjugation by elements of G. These are very important varieties that play
a central role in geometry, topology, higher Teichmiiller theory and theoretical physics
(see [16] for a survey). A fundamental problem is that of understanding the action of the
mapping class group or modular group of the surface Mod(S) in R(S,G). In this paper,
we consider the action of a finite subgroup I' of Mod(S) and give a description of the
fixed-point subvariety.

A crucial step in our study is provided by a theorem of Kerckhoff solving the Nielsen
realization problem [24|. This theorem proves the existence of a complex structure J on
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2 OSCAR GARCIA-PRADA AND GRAEME WILKIN

S, such that, if X := (S5, J) is the corresponding Riemann surface, I is a subgroup of the
group of automorphisms of X which are holomorphic or antiholomorphic. We can then
use holomorphic methods, and in particular the theory of G-Higgs bundles over X. To
define a G-Higgs bundle, we consider a maximal compact subgroup H C G, and a Cartan
decomposition g = h & m. A G-Higgs bundle is a pair (FE, ¢) consisting of a H®-bundle E,
where HC is the complexification of H, and a holomorphic section ¢ of E(m%) @ K, where
E(m®) is the bundle associated to the complexification of the isotropy representation of
H in m, and K is the canonical line bundle of X. The non-abelian Hodge correspondence
establishes a homeomorphism between R(S,G) and the moduli space of polystable G-
bundles over X = (S,J) for any complex structure J on S. Now, if J is the complex
structure given by Kerckhoff’s theorem, using the non-abelian Hodge correspondence one
can show that the action of an element of v € I on R(S, &) coincides with the natural
action of 7 on M(X, G) via pull-back, if v is holomorphic, or the combination of this with
the conjugation defined by the reduction of the H®-bundle to H defined by the solution
to the Hitchin equations, if « is antiholomorphic. Our problem becomes then that of
analysing the fixed points M (X, G)" for this action.

The fixed-point subvariety M (X, G)' is described in terms of G-Higgs bundles equipped
with a certain twisted I'-equivariant structure, where the twisting involves a compact
conjugation 7 of H® and a group 2-cocycle c € Z2(T', Z'), where Z' is a T-invariant subgroup
of the centre of H® and v € T" acts on 2z € Z’ trivially if  is holomorphic and by 7(z) if
7 is antiholomorphic. We refer to this as a (I, 7, ¢)-equivariant structure. These twisted
[-equivariant structures generalise at the same time genuine ['-equivariant structures when
I' consists entirely of holomorphic automorphisms of X, as well as twisted real structures
(referred also as pseudoreal structures in the literature) when I is the group generated by
an antiholomorphic involution of X (see [7, 8, 9]). When Z’ is contained in the kernel of the
isotropy representation and I' is a subgroup of the group of holomorphic automorphisms
of X, these are lifts of true I'-equivariant structures on the associated G/Z’-Higgs bundles.

Assuming that T' is not a group generated by an antiholomorphic involution of X (as
mentioned above, this case is treated in |7, 8, 9]), it is well-known that there is only a
finite number of points x € X for which the isotropy subgroups I', C I' for the action of
" on X are different from the trivial subgroup {1}, and '}, the subgroup of ', consisting
of holomorphic automorphisms, is a cyclic group. At such points, a (I', 7, ¢)-equivariant
structure defines an element o, in the c,-twisted character variety of I'y in H®, where
ce € Z%(T'y,7") is the restriction of ¢ to I',. Here v € I', acts trivially on HC if 7 is
holomorphic and by 7 if v is antiholomorphic. Fixing the cocycle ¢ and the elements o,
at the points with T, # {1}, we define the moduli space of (I, 7, ¢)-equivariant G-Higgs
bundles with fixed o,. Our main result is Theorem 4.5, where we show that the moduli
spaces of (I, 7, ¢)-equivariant G-Higgs bundles are in the fixed-point locus M (X, G)', and
more over, a smooth point in M (X, G)'' corresponds to a point in a moduli space of (T, 7, ¢)-
equivariant GG-Higgs bundles for some 2-cocycle ¢. In fact it is only the cohomology class
of ¢ which is relevant in the parametrization of fixed points. Using Theorem 4.5 and a
twisted equivariant version of the non-abelian Hodge correspondence (Theorem 6.1), we
describe in Theorem 6.2 the fix-point locus R(S, G)' in terms of representations of the
orbifold fundamental group for the action of I' on S.
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When I" consists entirely of holomorphic automorphisms of X, generalising a well-known
result for vector bundles [26, 15, 28, 5, 2, 1], and principal bundles [38, 3|, we establish
in Theorem 5.1 a correspondence between I'-equivariant (that is, without twisting) G-
Higgs bundles over X and parabolic G-Higgs bundles over Y := X/I". The weights of the
parabolic structure are determined by the elements o, defined by the equivariant structure,
which in this case are simply elements in the character variety Hom(I',, H®)/H® of T,.. In
particular, if Z’ is contained in the kernel of the isotropy representation there is a map from
the moduli space of G-Higgs bundles over X to the moduli space of G/Z’-Higgs bundles
and hence a map from the moduli space of (T, ¢)-equivariant G-Higgs bundles over X (here
there is no twisting by 7) to the moduli space of parabolic G/Z’-Higgs bundles over Y.
In this situation, using the non-abelian Hodge correspondence between parabolic G-Higgs
bundles and representations of the fundamental group of a punctured surface, proved in
[4], we relate in Theorem 6.3 the representations of the orbifold fundamental group for the
action of I" on S to the representations of the fundamental group of S/T" with punctures
at the points corresponding to the elements of S with non-trivial isotropy subgroup.

If we allow I" to contain antiholomorphic automorphisms, and I'* is the subgroup of T’
consisting of holomorphic automorphisms, we consider the Riemann surface Y := X/TI'".
On this surface there is a residual antiholomorphic action of Z/2 = I'/T'". Now, if the
restriction of ¢ to T't is trivial, (T, 7, ¢)-equivariant G-Higgs bundles on X are in corre-
spondence with a pseudoreal parabolic G-Higgs bundles on Y as described in [11]. This is
a generalization in the parabolic set-up of the notion of pseudoreal Higgs bundle studied
in (8, 7, 6]. Again, using the non-abelian Hodge correspondence in [4], we relate in Theo-
rem 6.4 the representations of the orbifold fundamental group for the action of I on S to
the representations of the Z/2-orbifold fundamental group of S/T't with punctures at the
points corresponding to the elements of S with non-trivial isotropy subgroup.

The more general (I, 7, ¢)-equivariant objects on X, correspond to twisted parabolic
objects on Y := X/T't in a more involved way, and will be treated in a separate paper.

In the process of writing up this paper, we came across the recent related work [33, 39,
20).
Acknowledgements. We wish to thank Steve Kerckhoff, Jochen Heinloth and Peter
Gothen for useful discussions, and NUS (Singapore), CMI (Chennai), Bernoulli Center
(Lausanne) and ICMAT (Madrid) for hospitality and support. We also want to thank the
referee for the comments and suggestions.

2. MODULI SPACE OF REPRESENTATIONS AND THE MAPPING CLASS GROUP

In this section S is an oriented smooth compact surface of genus g > 2.

2.1. Moduli space of representations. Let G be a connected real reductive Lie group.
By a representation of 7 (S) in G we mean a homomorphism p: 7 (S) — G. The set of
all such homomorphisms, denoted Hom(m(S), G), is an analytic variety, which is algebraic
if G is algebraic. The group G acts on Hom(7(5), G) by conjugation:

(g-p)(7) = gp(1)g~"
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for g € G, p € Hom(m(S),G) and v € m(5). If we restrict the action to the subspace
Hom™ (m,(S), g) consisting of reductive representations, the orbit space is Hausdorff. By a
reductive representation we mean one that, composed with the adjoint representation in
the Lie algebra of GG, decomposes as a sum of irreducible representations. If GG is algebraic
this is equivalent to the Zariski closure of the image of m(S) in G being a reductive
group. (When G is compact every representation is reductive). The moduli space of
representations or character variety of 71(S) in G is defined to be the orbit space

R(S,G) = Hom™ (m(9),G)/G.

It has the structure of an analytic variety (see e.g. [18]) which is algebraic if G is algebraic
(see e.g. [30]) and is real if G is real or complex if G is complex. If G is complex then
R(S,G) can also be expressed as the GIT quotient

R(S,G) = Hom(m(S), G) / G.

Let p: m(S) — G be a representation of m1(S) in G. Let Zg(p) be the centralizer in G
of p(m1(5)). We say that p is irreducible if and only if it is reductive and Zg(p) = Z(G),
where Z(G) is the centre of G.

2.2. The mapping class group. The mapping class group or modular group of S
is defined as

Mod(S) = m Diff(.5),
where Diff(S) is the group of diffeomorphisms of S. We also consider the subgroup
Mod™(S) = m Diff " (.9),

where Diff " (9) is the subgroup of Diff(S) consisting of orientation-preserving diffeomor-
phisms. We have an exact sequence

(2.1) 1 — Mod™(S) — Mod(S) — Z/2 — 1.

By the Dehn—Nielsen—Baer theorem, Mod(.S) is isomorphic to Out(m(.5)), the group of
outer automorphisms of m(5), and hence acts in the obvious way on R(S, G).

Let I' € Mod(S) be a finite subgroup. The main goal of this paper is to investigate the
fixed points R(S,G)''. A crucial step to do this is provided by Kerckhoff’s solution of the
Nielsen realization problem [24]. To explain this, let .J be an element in the Teichmiiller
space of S and X = (5,J) be the corresponding Riemann surface. Denote by Aut(X)
the group consisting of automorphisms of S which are holomorphic or antiholomorphic
with respect to J. If Aut™(X) is the subgroup of Aut(X) consisting of holomorphic
automorphisms of X, there is an exact sequence

(2.2) 1 — Aut™(X) = Aut(X) — Z/2 — 1.

Theorem 2.1. Let I' C Mod(S) be a finite subgroup. There exists an element J in
the Teichmiiller space of S such that T' C Aut(X), where X = (S,J). In particular, if
' C Mod™(S), one has T' C Aut*(X). Moreover, if X is not hyperelliptic, T' = Aut*(X)
if T'C Mod™(S), and T = Aut(X) if T is not contained in Mod™ (S) and I't # {1}.
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Remark 2.2. This had been proved by Nielsen [29] for cyclic groups and by Fenchel [14]
for solvable groups. Thanks to Theorem 2.1 the problem of studying the action of I' on
R (S, G) can be reduced to studying the action of I' on the moduli space of G-Higgs bundles
on X.

2.3. Moduli space of G-Higgs bundles. Here X is a compact Riemann surface and G
is a connected real reductive Lie group. We fix a maximal compact subgroup H of G. The
Lie algebra g of GG is equipped with an involution € that gives the Cartan decomposition
g = b+ m, where b is the Lie algebra of H. We fix a metric B in g with respect to
which the Cartan decomposition is orthogonal. This metric is positive definite on m and
negative definite on h. We have [m,m] C b, [m, h] C m. From the isotropy representation
H — Aut(m), we obtain the representation ¢ : H® — Aut(m®). When G is semisimple we
take B to be the Killing form. In this case B and a choice of a maximal compact subgroup
H determine a Cartan decomposition (see [25] for details).

A G-Higgs bundle on X consists of a holomorphic principal H®-bundle E together
with a holomorphic section p € H(X, E(m®) @ K), where F(m®) is the associated vector
bundle with fibre m® via the complexified isotropy representation, and K is the canonical
line bundle of X.

If G is compact, H = G and m = 0. A G-Higgs bundle is hence simply a holomorphic
principal G®bundle. If G = H®, where now H is a compact Lie group, H is a maximal
compact subgroup of G, and m = ih. In this case, a G-Higgs bundle is a principal H®-
bundle together with a section p € HY(X, F(h%) ® K) = H(X, E(g) ® K), where E(g) is
the adjoint bundle. This is the original definition for complex Lie groups given by Hitchin
in [22].

There is a notion of stability for G-Higgs bundles (see [17]). To explain this we consider
the parabolic subgroups of H® defined for s € ih as

(2.3) P,={g€ H® : e"ge™™ is bounded as t — oo}.
A Levi subgroup of P, is given by L, = {g € H® : Ad(g)(s) = s},. Their Lie algebras are
given by

ps ={Y € b® : Ad(e”)Y is bounded as t — oo},

,={Y eh® : ad(Y)(s) = [Y,s] = 0}.

We consider the subspaces

m, = {Y €m® : 1(")Y is bounded as t — oo}
m? ={Y em® : 1(e")Y =Y for every t}.

One has that m, is invariant under the action of P; and m? is invariant under the action
of L.

An element s € ih defines a character y, of ps since (s, [ps, ps]) = 0. Conversely, by
the isomorphism (ps/[ps, ps])” = 37, where 37, is the centre of the Levi subalgebra I, a
character x of p; is given by an element in 37 , which gives, via the invariant metric, an
element of s, € 37, C ih. When p, C p, , we say that x is an antidominant character of
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p. When p, = p,, we say that x is a strictly antidominant character. Note that for s € ib,
Xs is a strictly antidominant character of pj.

Let now (E, ¢) be a G-Higgs bundle over X, and let s € ih. Let Ps be defined as above.
For 0 € T'(E(H®/P,)) a reduction of the structure group of E from H® to P,, we define
the degree relative to ¢ and s, or equivalently to o and y, in terms of the curvature of
connections using Chern—Weil theory. For this, define H, = H N L, and b, = h N[,
Then H, is a maximal compact subgroup of L, so the inclusions Hy C Ly is a homotopy
equivalence. Since the inclusion Ly C P; is also a homotopy equivalence, given a reduction
o of the structure group of E to P one can further restrict the structure group of E to
H; in a unique way up to homotopy. Denote by E! the resulting H, principal bundle.
Consider now a connection A on E! and let Fy € Q*(X, E!(h,) be its curvature. Then
Xs(Fa) is a 2-form on X with values in iR, and

i

(2.4) deg(E)(0, ) = —— /X a(F).

27
We define the subalgebra h,q as follows. Consider the decomposition h = 3 + [b, b],
where 3 is the centre of h, and the isotropy representation ad = ad : h — End(m). Let
3’ = ker(ad);) and take 3” such that 3 = 3’ + 3”. Define the subalgebra h.q := 3" + [b, b].

The subindex ad denotes that we have taken away the part of the centre 3 acting trivially
via the isotropy representation ad.

Definition 2.3. We say that a G-Higgs bundle (E, ) is:

semistable if for any s € ib and any holomorphic reduction o € T'(E(H/Py)) such
that p € H*(X, E,(ms) ® K), we have that deg(E)(o,s) > 0;

stable if for any s € ib.q and any holomorphic reduction o € T'(E(H®/P,)) such that
v € H' (X, E,(m,) ® K), we have that deg(E)(c,s) > 0;

polystable if it is semistable and for any s € ibh.q and any holomorphic reduction
o € D(E(H®/P,)) such that ¢ € HY(X,E,(m,) ® K) and deg(F)(0,s) = 0, there is a
holomorphic reduction of the structure group o, € I'(E,(Ps/Ls)) to a Levi subgroup Ly
such that ¢ € H'(X, E,, (m?) ® K) C H'(X, E,(m;) @ K).

We define the moduli space of polystable G-Higgs bundles M(X,G) as the set
of isomorphism classes of polystable G-Higgs bundles on X. A GIT construction of this
space has been given by Schmitt [34].

The notion of stability emerges from the study of the Hitchin equations. The equivalence
between the existence of solutions to these equations and the polystability of Higgs bundles
is given by the following (see [17]).

Theorem 2.4. Let (E,p) be a G-Higgs bundle over a Riemann surface X. Then (E, )
is polystable if and only if there exists a reduction h of the structure group of E from H®
to H, such that

(2.5) F, = o, ()] =0

where 7, : QY(E(m®)) — QOY(E(mT)) is the combination of the anti-holomorphic invo-
lution in E(m®) defined by the compact real form at each point determined by h and the
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congugation of 1-forms, and F}, is the curvature of the unique H-connection compatible
with the holomorphic structure of E.

A G-Higgs bundle (E, ) is said to be simple if Aut(E,¢) = Z(H®) N ker(:) where
Z(H®) the centre of HC. A G-Higgs bundle (E, ) is said to be infinitesimally simple if
the infinitesimal automorphism space aut(E, ¢) is isomorphic to H°(X, E(ker d. N Z(H%))
where Z(hC) denotes the Lie algebra of Z(HC).

Thus a G-Higgs bundle is (infinitesimally) simple if its (infinitesimal) automorphism
group is as small as possible. It is clear that a simple G-Higgs bundle is infinitesimally
simple. If G is complex then ¢ is the adjoint representation and (F, ) is simple (resp.
infinitesimally simple) if Aut(E, @) = Z(G) (resp. aut(E, ) = Z(g)).

The basic link between representations of m1(S) and Higgs bundles is given by the non-
abelian Hodge correspondence due to Hitchin, Donaldson, Simpson, Corlette and
others (see [17| and references there).

Theorem 2.5. Let S be a compact surface and X = (S, J) be the Riemann surface de-
fined by any complex structure J on S. Let G be a real connected semisimple Lie group.
There is a homeomorphism R(S,G) =, M(X,G), where the image of the irreducible
representations is the subspace of stable and simple G-Higgs bundles.

A key step to go from a polystable G-Higgs bundle (F, ¢) over X to a representation p
of m(S) in G is given by the relation

(2.6) V =35 — (08) + ¢ — (),

where V is the flat connection corresponding to p, O is the Dolbeault operator of E and
T, is provided by the solution to the Hitchin equations in Theorem 2.4. The converse
construction is provided by the Donaldson-Corlette theorem on the existence of harmonic
metrics on a reductive flat bundle given in [13, 12].

Remark 2.6. Theorem 2.5 can also be extended to (non-connected) reductive groups. The
presence of a continuous centre in G requires replacing the fundamental group of S by its
universal central extension.

From Theorems 2.1 and 2.5 we conclude the following.

Proposition 2.7. Let I' C Mod(S) be a finite subgroup and T = T'N\ Mod™(S). Let J
be a complex structure given by Kerckhoff’s theorem and X = (S, J) be the corresponding
Riemann surface. Under the non-abelian Hodge correspondence R(S,G) = M(X, G) given
by Theorem 2.5, the action of I' on R(S,G) coincides with the following action of T' on
M(X,G):

(V*E,v*p) if yeTlt
(V(E), v () if v T+

where T3, is given by Theorem 2.4, T(E) == E x,, (H®) and 1,() is as in Theorem 2.4.
We thus have that for this action R(S,G)' and M(X,G)' are in bijective correspondence.
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Proof. Given any v € I' C Mod(S), Kerckhoff’s theorem [24, Thm. 5| guarantees a unique
diffeomorphism f in the isotopy class of v such that f*J = Jif vy € 't or f*J = —J if
v ¢ T't. The action of v on R(S, G) is defined by v - [p] = [f*p] = [p o f.], which induces
an action on the space of equivalence classes of flat connections given by v - [V] = [f*V]
ifyeTtory-[V]=[-f*V]ifyv¢T". To find the induced action of v on M(X,G) via
Theorem 2.5 (which is well-defined since f*J = £.J) we recall that the flat connection V
associated to a polystable G-Higgs bundle (E, ¢) is given by (2.6), and observe that 77,(J)
is the Dolbeault operator of 7,(E). Thus proving the statement. O

3. TWISTED EQUIVARIANT STRUCTURES ON PRINCIPAL BUNDLES AND ASSOCIATED
VECTOR BUNDLES

In this section X is a compact Riemann surface of genus bigger than one, I' C Aut(X),
G is a connected complex reductive Lie group, and 7 is a conjugation of G' (not necessarily
the compact conjugation). We will write I' = 't UT~, where I'* is the subgroup of T'
consisting of holomorphic automorphisms and I'™ is the coset consisting of antiholomorphic
automorphisms.

3.1. Twisted equivariant structures on a principal bundle. Let Z := Z(G) be the
centre of G. Consider the action of 7 on Z and let Z’ C Z be a subgroup invariant under
this action. Consider the action of I" on Z’ given by

(3.1) =47 if yerr

T(z) if yel .

Let ¢c € Z%(T', Z') be a 2-cocycle for this action. This is a map c¢: ' x I' — Z’ satisfying

the cocycle condition
!N

(7', 7") (v, 7Y") = (7,77 )e(v, 7).

These objects emerge in the study of “lifts” to G of non-abelian 1-cocycles in Z'(T', G/Z")
for the action of T" on G given by ¢” = ¢ if v is holomorphic and g7 = 7(g) if ~ is anti-
holomorphic. In particular, if I' = I'", the action of I on G is trivial and Z(I',G/Z') =
Hom(I',G/Z"), that is the 1-cocycles are simply representations of I' in G/Z".

Let E be a holomorphic G-bundle over X. Let ¢ € Z2(T', Z'). A (T, 1, c)-equivariant
structure on FE (or simply twisted I'-equivariant structure if there is no need to
specify 7 and ¢) consists of a collection of maps 7 : E — E covering 7 : X — X for every
v € I', satistying

~ ~(e)g and v holomorphic if yel't
(eg) =
~v(e)T(g) and 7 antiholomorphic if v &'~

7Y = (v, )V
and Idx = Idg. This imposes the condition ¢(y,1) = 1 for every v € T'.

When ¢ is the trivial cocycle 1 we will refer to a (I, 7, 1)-equivariant structure as a
(T, 7)-equivariant structure or a 7-twisted I'-equivariant structure. If T' = ' we take 7
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to be the identity and we refer to a (I, 1, ¢)-equivariant structure as a (I, ¢)-equivariant
structure. If, moreover ¢ = 1, then we obtain a genuine I'-equivariant structure on F.

Let Aut(E) be the group of holomorphic automorphisms of E covering the identity of
X, and let Autr,(E) be the group of bijective maps f : E — E defined by

(3.2) fleg) = f(e)g and f holomorphic if f covers yeI't

f(e)7(g) and f antiholomorphic if f covers v € I'".

There is an exact sequence

(3.3) 1 — Aut(F) — Autr,(E) — T

A (T, 7, ¢)-equivariant structure on E is simply a twisted representation I' — Autr . (E)
with cocycle ¢, that is a map o : I' — Autr . (F) such that

o(vY') = c(v,7)o(y)a ().

This is clear since, if E’ is the G/Z’-principal bundle associated to E via the projection
G — G/Z', a (I',1,c)-equivariant structure on E defines a (I", 7)-equivariant structure on
E’, and we have an exact sequence

1 — 7' — Autr . (F) — Autr,(E') — 1.

Two twisted I'-equivariant structures on £ for the same 7 and for two cocycles ¢ and
¢’ define the same (I", 7)-equivariant structure on E’ if and only if there exists a function
f: G — Z' such that the corresponding twisted representations o and o’ of I' in Autr ,(E)
are related by o’ = fo, and

(3.4) () = )T ) ey, A).

This defines a natural equivalence relation in the set of (I, 7, ¢)-equivariant structures on
E, whose equivalence classes are parametrised by the cohomology group H*(T', Z').

Remark 3.1. Of course if Z' = Z, G/Z' = Ad(G) and E' = P(E) := E/Z.

There is an alternative way of thinking of a (I, 7, ¢)-equivariant structure as a T-twisted
equivariant structure on F for the action of a larger group. Namely, the 2-cocycle ¢ defines
an extension of groups

1272 -T.—-1T —1.

Two cocycles are cohomologous if and only if the corresponding extensions are equivalent,
i.e. equivalence classes of extensions of I' by Z’ with the action of I' on Z’ given by 3.1 are
parametrised by HZ(T', Z").

We have the following.

Proposition 3.2. (I, 7, ¢)-equivariant structures on E are in bijection with central (', T)-
equivariant structures on E, where I'. acts on X and on Z' via the projection I'. — T", and
by central we mean that the action of Z' in the kernel of the extension above is the natural
action of Z' on E.
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Proof. It follows from group representation theory (see [31] for example) that a twisted
representation I' — Autr ,(E) with cocycle ¢ is equivalent to a representation p : I'; —
Autr,_ . (E) fitting in the following commutative diagram, where p is the induced represen-
tation

0 > 7 > I, —_— r — 1
| /| |
1 A > Autr, ,(E) —— Autp.(E') —— L
This completes the proof. O

Recall that a G-bundle E is said to be simple if Aut(£) = Z. We have the following.

Proposition 3.3. Let E be a simple G-bundle over X such that
(3.5) o v*E for every v € T'"
vr(E)  for every v €.

Then E admits a (T, T, c)-equivariant structure with ¢ € Z*(T', Z).

Proof. Condition (3.5) implies the existence of an exact sequence
1 = Aut(F) —» Autr(E) - T' — L.
Now, since E is simple Aut(E) = Z and hence we have an extension
1= Z— Autr.(E) - T — L

This extension is determined by a cocycle ¢ € Z2(T', Z), which is precisely the obstruction to
having a (I', 7)-equivariant structure on F, i.e. a homomorphism I' — Autr ,(£) splitting
the exact sequence. However we have a twisted homomorphism of I' in Autr,(E) with
cocycle ¢, that is, a (I, 7, ¢)-equivariant structure. O

3.2. Isotropy subgroups associated to a (I',7,c)-equivariant structure. We will
assume that I'" # {1}. The case I'" = {1} has been extensively studied in [7, 8, 9] and
corresponds to the study of twisted real structures on F.

Let x € X, and
[,:={yel" : yx) ==z}
be the corresponding isotropy subgroup. Let & ={z € X : ', # {1}}.

The following is well-known (see [28| for example).
Proposition 3.4. (1) & consists of a finite number of points {z1,...,x,.} C X.
(2) For each x; € 2, Ty, is cyclic.

Let ¢, € Z%*(T',,Z') be the restriction of ¢ to I, (note that the action of ', on Z’ is
trivial since I', C I'"). Define the ¢,-twisted character variety of I', in G as the set

R., (T'y,G) := Hom,. (T, G)/G,
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where
Home, (T, G) := {0 : e = G | 0(77) = cx(7,7)0 (7)o (7))},
and two elements 0,0’ € Hom,, (I';, G) are equivalent under the action of G if

o'(7) = g to(y)g for some g€ G.

Proposition 3.5. A (I, 7, ¢)-equivariant structure on a G-bundle m : E — X defines for
every x € & an element 0, € R, (I'y, G).

Proof. For each x € & and e € E such that 7(e) = z, a straightforward computation
shows that the map o, : ', — G given by

(3.6) F(e) = eoo()
defines an element in Hom,, (I',, G). Moreover, if ¢’ € 7~!(x), with ¢’ = eg for g € G, then
oo () = g to.(7)g, proving the assertion. ]

Remark 3.6. The composition of o, with the projection G — G/Z’, defines a homomor-
phism p. : T, — G/Z'. Of course, c¢ restricted to I'" is trivial, i.e., if the restriction of
the action of I' to I'" defines a genuine I'*-equivariant structure on E, then o, itself is a
homomorphism, and o, is an element of the character variety R(I';, G) := Hom([',, G)/G.

The following is clear.

Proposition 3.7. Let ¢ and ¢ be 2-cocycles in Z*(I', Z"). Let 0, € R.,(I'y,G) and o), €
Re (I'y,G) be corresponding classes. Then the projections of o, and o, in R(I'y,G/Z")
coincide.

The next result shows that the I' action defines a bijection between spaces of twisted
representations of isotropy groups over points in X related by the action of T'.

Proposition 3.8. (1)The action of I' on X induces an action of I' (and in particular of
I't) on .

(2) Let 2 = 2/Tt. If x and 2’ are in the same class in 2 there is an isomorphism
R.,(I'z,G) = R, ,(I'y, G) (as pointed sets) under which o, and o, are in correspondence.
This isomorphism induces a canonical isomorphism R(I',,G/Z') = R(L'y, G/Z').

(3) If two pointsy,y’ € 2 are in correspondence under the residual action of Z/2 = T /T
on 2, then R.,(I'y,G) and R, ,(I'yr, G) are in a bijective correspondence given by o, +— Ty
for any representatives x,x' € P of y,y € 2 respectively.

Proof. Statement (1) follows from the fact that two points on X connected by the action
of T" must have conjugate isotropy subgroups. To prove (2), if two points z, 2’ € & are in
the same class in 2, then there exists 7o € I'" such that 2’ = v - and so I'yy = vl L
Let 4 denote the lift of vy to Autr+(FE), where Autr+(E) is the preimage of 't in the
exact sequence (3.3). Given any e, in the fibre F,, let e,y := jo(e,). For any v € T', let
7' = Y77, ' be the corresponding element of Iy and let ¥ and 7' = 4,77, ' denote the
respective lifts to Autp(£). Using (3.6) we have

Y(es) = €z0¢,(7y) and :V/(e:v’) = €/ 0ec,, (7/)-
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Therefore
€' Oe,, () =7 (ex) = '~70'~7'?0_1(€x’> = YoV (€x) = Y0€20c, (V) = €x10c, ()

AN -1\ __ :
and so o._,(v") = 0., (W07 ) = e, (7). Therefore we see that o, determines o, , and
vice versa, and so the same is true for o, and o,.

Therefore, a choice of vy such that ' = 7y -  determines a bijection R, (I'y,G) —
R, ,(Iy,G) sending o — o’ with o’(7) := o(y5 'v'7), and this bijection maps o, to o

An element ¢ € Hom,, (I';, @) descends to a homomorphism ¢ : I'y, — G/Z’. The
bijection o — ¢’ defined above induces a map o — & defined by

7'(7') = (7 "7 0)-

Given any other choice v, such that ',y = 4T, !, we have v17,* € ' and so (since &
is a homomorphism) for any 7" € ', we have

F(n ') = (105 (% Y105 ()
Therefore the conjugacy class of ¢’ in R(I'y,, G/Z") is well-defined and independent of the
choice of vy such that Ty = vy "

(3) follows from a straightforward computation.
O

Remark 3.9. Note that if in (3) y € 2 is a fixed point under the residual action of Z/2
then the twisted representation ¢, must lie in the real group G”.

3.3. Twisted I'-equivariant structures on associated vector bundles. Let now V'
be a rank n holomorphic complex vector bundle over X. Let 7y be a conjugation on the
fibre V of V. Consider the action of I' on C* given by

(3.7) D if yel™

z if yel.
Given a cocycle ¢ € Z*(T',C*) for this action, similarly as for G-bundles one can define

a (I', 7y, ¢)-equivariant structure on V' as a c-twisted representation of I' in Autr ,(V),
where Autr (V) is defined in a similar fashion to the G-bundle case.

Now, let E be a principal G-bundle and p : G — GL(V) a representation of G in a
complex vector space V. Consider the associated vector bundle V' := E(V). Let 7 and
Ty be conjugations of G and V, respectively Let ¢ € Z2(I', Z') and ¢, € Z*(I',C*) be the
cocycle induced by p|z : 7' — C* = Z(GL(V)). If p is compatible with the conjugations
7 and 7y, then there is a homomorphism Autr,(E) — Autr,,(V), and it is clear that
a (I, 7, ¢)-equivariant structure on E defines a (I', 7y, ¢,)-equivariant structure on V. In
particular if Z’ C ker p, then ¢, is trivial and hence we obtain (I', 7y)-equivariant structure
on V. If moreover I' = I'"", this is a genuine I'-equivariant structure on V.

4. TWISTED EQUIVARIANT STRUCTURES ON HIGGS BUNDLES

In this section X is a compact Riemann surface of genus bigger than one, I' is a subgroup
of Aut(X), the group of holomorphic or antiholomorphic automorphisms of X, and G
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is a connected real reductive Lie group. As in Section 2.3, we fix a maximal compact
subgroup H of GG. The Lie algebra g of GG is equipped with an involution 6 that gives the
Cartan decomposition g = h @& m, where b is the Lie algebra of H. We choose a complex
conjugation 7 of H®, and a conjugation 7,,c of m®, such that the isotropy representation
v+ H® — Aut(m®) is compatible with 7 and 7,c. This is the case if for example G is
a real form of a complex reductive group G¢ and we choose a complex conjugation 7 of
G® commuting with the Cartan involution of G extended to G®. The conjugation 7 and
Tmc induced by 7 satisfy the compatibility condition with «. As proved by Cartan, we
can always choose a compact conjugation 7 commuting with the Cartan involution. This
is the choice which is relevant in connection to the study of I' on the moduli space of
representations R(S, G).

4.1. Twisted I'-equivariant structures on G-Higgs bundles. Let (F, ¢) be a G-Higgs
bundle over X. We will define now twisted I'-equivariant structures on (£, ¢). To do this,
let Z = Z(H®), and let Z' C Z be a subgroup invariant under the action of 7. Choose a 2-
cocycle c € Z%(T', Z'). Recall from Section 3.3, that this defines a 2-cocycle ¢, € Z*(T',C*),
via the isotropy representation ¢ : H® — GL(m®).

If the HC-bundle E is equipped with a (T, 7, ¢)-equivariant structure, from Section 3.3,
the vector bundle F(m®) inherits a (I, Tye, ¢,)-equivariant structure. On the other hand,
the canonical bundle K over X has a natural (I, 7¢)-equivariant structure induced by
the action of I' on X. We conclude then that the bundle F(m®) @ K has a (', e, ¢,)-
equivariant structure (where we are omitting 7¢ in the notation). In fact, we will abuse
notation, and use 7 to refer to both 7 and 7,c in the sequel.

A (T, 7, c)-equivariant structure on (FE,p) is a (I', 7, ¢)-equivariant structure on F,
such that for every v € I' the following diagram commutes:

EmS) oK -5 EmS)eK

T o
X e X
where 7 is the collection of maps defining the (I, 7, ¢, )-equivariant structure on EF(m®) ® K

defined above.

The notion of stability for G-Higgs bundles given in Section 2.3 (see [17]) can be extended
in a natural way to G-Higgs bundles equipped with twisted equivariant structures. This is
done in a similar way to that in the study of pseudoreal Higgs bundles [8, 6]. To explain
this, we consider the adjoint bundle of groups associated to the H®-bundle E. This is
defined as Ad(E) = E x yc H®, where H® acts on E x H® by

(e,9)-h = (eh,h™*gh) for h,g€ H® and e€ E.
We define now for v € I' a map 749 : E x H® — E x H® given by

(4.1) (e, 9) = (3(e),7(g)) for y€T,e€ E and g€ HT,
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where, recall

g if velt
(9) =
T(g) if yeI.

Proposition 4.1. The maps {74},cr define a T-equivariant structure on Ad(FE).

Proof. First we have to check that the maps (4.1) descend to Ad(FE). Let e € E and
g,h € H®. We have

7 (eh, 7 gh) = (3(eh), v (h™"gh)) = (F(e)y(h), v(h) " (g)(R)),
but (Y(e)y(h),v(h)~'v(g)y(h)) is equivalent to (Y(e),v(g)) via the action of y(h), and we
thus have well-defined maps 744 : Ad(F) — Ad(E).

Since the action of the centre of H® by inner automorphisms on HC is trivial, the
2-cocycle ¢ has no effect, and one checks that
—~ Ad Ad~Ad

W=
O

As studied in [8, 6], the main change in the definition of stability for a G-Higgs bundle
equipped with a twisted equivariant structure, in relation to the usual stability condition
for the underlying G-Higgs bundle given in Section 2.3, is that we must consider only
holomorphic reductions Ep, C E of E from H® to P, such that

(4.2) YA (Ad(Ep,)) = Ad(Ep,) for every v €T

To define the moduli space of twisted I'-equivariant GG-Higgs bundles, we fix the cocycle
¢ € ZX(T',Z') and the elements o; € R., (s, H®) for every point z; € & defined by
Proposition 3.5. We will need at some point the projection of o; in R(T',,, H/Z") that we
will denote by [o;]. Let 0 = (01, ,0,). We define M(X,G,I',7,¢) to be the moduli
space of polystable (I', 7, ¢)-equivariant G-Higgs bundles. An analytic construction
of these spaces can be given using slices. The subvariety of M(X,G,T, 7, ¢) with fixed

classes o will be denoted by M(X,G, T, 7,¢,0).

We will assume now that the conjugation 7 of H® commutes with the compact conju-
gation of H® defining a maximal compact subgroup H C H®, in other words, that H is
invariant under 7, This is indeed a condition satisfied in connection to our application to
the study of fixed points in the moduli space of representations of the fundamental group
of the surface in G. Under this assumption we have the following.

Proposition 4.2. Let E be a HC-bundle over X equipped with a (T, T, ¢)-equivariant struc-
ture, where ¢ € Z2(I',Z"), and let H C H® be a mazimal compact subgroup preserved by
7, so that Z' C H. Then the twisted equivariant structure on E induces a group action of
[' on the space of reductions of structure group of E to H.

Proof. Note that since 7 preserves H, the action of I' on H® induces an action of I' on
M := H®/H. So we have actions of H® and I on M satisfying that

(4.3) v (gm) =(g)(y-m) for ye€T, g€ H® and m € M := H®/H.
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Recall that a reduction of structure group of £ to H is a section of E (M), the M-bundle
associated to E via the natural action of H® on M := H®/H on the left. Such a section is
equivalent to a HC-antiequivariant map ¢ : E — M, i.e., ¥(eg) = g 11 (e), for e € E and
g € H®. For such a map 1, and v € I, define a map - : E — M given by

(v-¥)(e) :==~""-9(F(e)),

where 7 is given by the (I', 7, ¢)-equivariant structure on E. We need to check first that
7 - is H®-antiequivariant.

(v-)eg) =771 (F(eg) =7 v (F(e)v(g) =71 - (v(9)"w(A(e)))-

But from (4.3), we deduce that

T (g HvEE) =97 (v (R(e) = g (v - ¥)(e)),

proving the antiequivariance of v-1. To check that this defines an action of I' on the space
of sections of F(M), we consider for v,7 € T

(W) -)e) = () ww?'(e)g
= ()" (G (e)ely, 7))
(V) (e, ) T (e))-

But, since Z' C H, the action of ¢(vy,~")~! is trivial, and we see that
() =7"(v-1),

completing the proof. O

Given a (I', 7, ¢)-equivariant G-Higgs bundle (E, ¢) such that Z' C H and H is invariant
by 7, by Proposition 4.2 we can consider the action of I' on the space of metrics on F,
that is on the space of sections of E(H®/H). The analysis done for the Hitchin-Kobayashi
correspondence given in Section 2.3 can be extended to this equivariant situation to prove
the following (see [8, 6]).

Theorem 4.3. Let (E, ) be a G-Higgs bundle over a Riemann surface X equipped with
a (T, 7,c)-equivariant structure, with cocycle ¢ € Z*(T',Z"), where Z' C H, and H 1is
invariant by 7. Then (E, v) is polystable as a (I, 7, ¢)-equivariant Higgs bundle if and only
if there exists a T'-invariant reduction h of the structure group of E from HC to H, such
that

(4.4) Fy = [, m(p)] = 0.
From Theorems 4.3 and 2.4 we conclude the following.

Proposition 4.4. Let Z' C ZN H and c € Z*(T', Z'), and assume that H is invariant by
7. Then the forgetful map defines a morphism M(X,G,T,7,¢,0) = M(X,G).
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4.2. T'-action on the moduli space of G-Higgs bundles. Consider the action of I' on
the moduli space of G-Higgs bundles M (X, G) given by the rule:

(V" E,7"¢) if yeI*

(v 7(E),v*1(p)) if v ¢

7'<E790) =

We have the following.

Theorem 4.5. Let Z' C ZNH and assume that H is invariant by 7. Let ./\7(X, G,I',71,¢,0)
be the image of the morphism in Proposition 4.4. Then

(1) If ¢ and ¢ are cohomologous cocycles in Z*(T', Z")

—~ —

M(X, G, T,1,¢,0) = M(X,G,T,7,¢,0).

(2) For any Z' C Z, any o, and any cocycle ¢ € Z*(T', Z")

M(X,G,T,7,¢c,0) C M(X,G)".

(3) Let M (X,G) C M(X,G) be the subvariety of G-Higgs bundles which are stable
and simple and let Z' = Z Nkert, then

M(X,G) c U M(X,G,F,T,c,a).

[JeH2(T,2"),0:]0;]€R(Ta, ,HC/Z")

Proof. To prove (1), we consider the function f : G — Z’ such that ¢ and ¢ are related
by (3.4). This function defines an automorphism of a G-Higgs bundle (E, ¢) which sends
the twisted equivariant structure with cocycle ¢ and isotropy ¢ to a twisted equivariant
structure with cocycle ¢ and isotropy o’. The proof of (2) follows immediately from the
definition of twisted equivariant structure. The proof of (3) follows a similar argument
to that of Proposition 3.3: The condition (F,¢) = (v*E,v*¢) if v € I'T or (E,p) =
(v*7(E),v*1(¢p) if v € T~ implies the existence of an exact sequence

1 — Aut(E, p) = Autr . (E, ) = T =1,

where Aut(FE, ) is the group of automorphisms of (Aut(E, ) covering the identity and
and Autr,(E, ) is the subgroup of Autr,(E) defined by 3.2 defined by elements which
send p to p if y € ' and ¢ to 7(p) if y €T~

Since we are assuming that (E, ) is simple Aut(F, ¢) = Z' = Z N ker: and hence we
have an extension

1= 2" = Autr,(E,p) > T — 1.

This extension defines a cocycle ¢ € Z2(T',Z’'), and a c-twisted homomorphism I' —
Autr(E, ¢) with cocycle ¢, i.e., a (I, 7, ¢)-equivariant structure on (E, ). It follows from
(1) that the union should run over [c] € HX(T', Z') and [o;] € R(T,,, H®/Z'), where, recall
that [0;] is the projection of o; in R(T,,, H®/Z'). O
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5. EQUIVARIANT STRUCTURES AND PARABOLIC HIGGS BUNDLES

As in the previous section, let X be a compact Riemann surface, let I' C Aut(X) be a
finite subgroup. We will assume here that ' =T'". let Y := X/T" and 7y : X — Y be the
associated ramified covering map. The set of points & C X maps by 7y to aset .¥ C Y.
In this section we establish a correspondence between ['-equivariant G-Higgs bundles over
X and parabolic G-Higgs bundles over Y with parabolic points .. This extends the well-
known correspondences for vector bundles |26, 15, 28, 5, 2, 1], and principal bundles [38, 3].
In particular this implies that if Z/ = Z Nker: and a G-Higgs bundle (E, ¢) is equipped
with a (T, ¢)-equivariant structure with ¢ € Z*(T, Z’), then (E',¢) with E' := E/Z' is a
G' = G/Z'-Higgs bundle with a I'-equivariant structure and hence is in correspondence
with a parabolic G'-Higgs bundle over Y. It would be very interesting to give a parabolic
description of the twisted equivariant structure on (E, ¢).

5.1. Parabolic G-Higgs bundles. In this section Y is a compact Riemann surface, and
G is a connected real reductive Lie group. We keep the same notation as in the previous
sections for a maximal compact subgroup, isotropy representation, etc.

Let T' C H be a Cartan subgroup, and t be its Lie algebra. We consider a Weyl alcove
o/ C t (see [4]). Recall that if W is the Weyl group we have

o/ =T/W = Conj(H),

where Conj(H) is the set of conjugacy classes of H. Note that in contrast to the definition
of alcove in [4], here o/ may contain some walls so that it is a fundamental domain for the
action of the affine Weyl group.

Let . = {y1,...,ys} be a finite set of distinct points of Y and D = y; + - - - 4+ y5 be the
corresponding effective divisor.

An element o € /—1.47 defines a parabolic subgroup of P, C H® given by (2.3). Fix
for every point y; € . an element «; € v/—147, and denote a = (ay, -+ , ay).

A parabolic G-Higgs bundle over (Y,.¥) with weights « is a pair (E, ¢) consisting
of a holomorphic H®-bundle E over Y equipped with a reduction of E,, to P,, and ¢ is a
holomorphic section of PE(m®) ® K (D)), where PE(m®) is the sheaf of parabolic sections
of E(m®) (see [4] for details). There are notions of stability, semistability and polystability
similar to the ones we have already seen in previous sections ([4]).

To define a moduli space one has to fix for every point y; € .¥ the projection .Z,; of
the residue of ¢ in m{, /L,,, where m) and L,, are defined as in Section 2.3. Denote
£ =4, - ,%). Wedefine MY, .7,G,a, %) to be the moduli space of parabolic
G-Higgs bundles on (Y,.”) with weights o = (a3, -+ ,a,) and residues ¥ =
(L, L),

5.2. I'-equivariant Higgs bundles and parabolic Higgs bundles. In this section we
describe the correspondence between parabolic G-Higgs bundles on Y and I'-equivariant
G-Higgs bundles on X. For holomorphic vector bundles over a compact Riemann surface,
this correspondence originated in [15] and was generalised to higher dimensions in [5]. The
extension to Higgs vector bundles was carried out in [28]|, and for holomorphic principal
bundles this correspondence is contained in [38] and [3].
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First we begin with the data of a compact Riemann surface X and a finite subgroup
[' C Aut(X) consisting entirely of holomorphic automorphisms. Applying the smoothing
process of [10, Sec. 2| to the orbifold X/I" determines a compact Riemann surface Y
and a holomorphic map my : X — Y such that I' is the group of deck transformations
of the ramified cover m. Let {z,...,x,} denote the ramification points of 7 and let
D =y, +--- 4y, denote the branch divisor. Each ramification point x; has a non-trivial
isotropy group denoted I'y, C I' which is cyclic of order N;. Let N = |I'| denote the order
of the ramified cover my : X — Y.

Let E — X be a principal H® bundle, and choose a lift of I' to the group of C*
automorphisms of E. Via this lift, each isotropy group I'y, = Zy; acts on the fibre F,
which determines a representation o; € R(T',,, H®) (note that since we are considering
equivariant rather than twisted equivariant bundles then the cocycle ¢ € Z*(T,Z') is
trivial).

Let 4, € Conj(H) denote the conjugacy class of the generator v,, of I';,, which is
determined by the representation ¢;. Under the bijection between Conj(H) and a Weyl
alcove .27 of H (see [4]) we thus have that each conjugacy class @, corresponds to a weight
a; € v/—14/. Since IT'z;| = Nj then e?™iNie = id € HC. In the following we will always
choose the weights a; in the interior of the Weyl alcove /—1.47.

Given a branch point y € Y and two points x, 2’ € 7~!(y), there is a deck transformation
v € I" such that 2’ = ~-x, and the lift of v to the group of automorphisms of F determines a
map on the fibres v : E, — E,,. Moreover, the isotropy groups are conjugate Iy = v,y
and so the conjugacy classes %, and %, are equal, and hence so are the weights in /—1.27
associated to these classes.

Now consider a ['-equivariant Higgs structure on F, i.e. a holomorphic structure on F
together with a Higgs field ¢ such that (F, ) is preserved by the action of I'. For each
ramification point z;, choose a small neighbourhood U; such that the bundle is trivial
Ely, = U; X HEC and the I'action is trivial

27i

27

(51> e - (279) = (€N7jZ7e2m'aj ’ g)

(as explained in [38], the existence of this trivialisation follows from the equivariant Oka
principle of [19]). We now show that after gauging by 2% on each trivialisation for
j = 1,...,r then the Higgs pair (E,¢) descends to a parabolic Higgs bundle on the
quotient (X \ &)/I', where the weight at the branch point 7(x;) is a;. This is known for
holomorphic vector bundles (cf. [15], [5]) and holomorphic principal bundles (cf. [38], [3]),
and so to describe the correspondence for Higgs bundles it only remains to describe the
residue of the Higgs field at each branch point in Y, which is a local computation on each
neighbourhood U;. This was worked out for Higgs vector bundles in 28], however this has
not appeared in the literature for general G-Higgs bundles and so we include the details
below.

Locally, the Higgs field on F has the form p(z) = f(z)dz, where f(z) : U; — m® is
holomorphic. The action of Ad :rie; decomposes m® into eigenspaces

m® = @mg
B
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where mg denotes the eigenspace with eigenvalue e*#. Note that each N;3 is an integer
since e*Ni% = id, and since a; is in the interior of the Weyl alcove then each eigenvalue
is strictly less than one. Let f = @5 fs be the corresponding decomposition of f. Since
each fgz is holomorphic then we can write it as a power series
o
fo(z) = a2
k=0

2mi
with a? taking values in m&. The induced action of e™ on ¢ is given by
k 3 ¥

2w

2mi 2mi 2mi
e™i - p(z) = Ad 2rie, <f <e Nj Z)) elNidz.
Therefore, the action on the component ¢z = fzdz is

27i 2mik 2771(k+1)

eNijf/B QWZ,BZak sz e sz_zak 271'15 de

If ¢ is invariant under the action of Zy, = I';; then we see that a’,f # 0 implies that
k= N;jl — N;8 — 1 for some ¢ € Z. Therefore

—Nﬁzjmaf@,zwlz 2 ldz i B<0

_NﬁZ€1aN£N,B 2Nty o< B <]

fo(z)dz =

where the two distinct cases come from the requirement that fs is holomorphic and hence
the power series has non-negative powers of z. To simplify the notation, we will use b =
a]ﬂvj (—NB-1 in the sequel. On the punctured disk U; \ {0}, apply the meromorphic gauge
transformation g(z) = 2% = eNi®il8= (note that this is well-defined on the punctured
neighbourhood Uj \ {z;} since ¢*™"i% = id). We have g(z) - 0(2) = >, 9(2) - fa(2)dz

where
o 1B Nt ,~14 if 0
o(2) - fol2)dz — Yoo byt 2 de if 8 <
S b 2NNy o< B <]

Therefore, after applying the meromorphic gauge transformation g(z), the residue of g(z) -
fs(2) is zero if B> 0 and equal to b} if B < 0. Now let V = 7(U;) C Y and note that (5.1)
implies that 7 : U; — V is given by z — 2i. Then w = 27 satisfies w™'dw = N;z71dz
and so ¢(z) - fz(z) can be written as a function of w, i.e. it descends to the quotient

(Uj ~ Az 1)/ Ta,

> Wt Lwldw ifB<0
02 Fol2) = fyw) = 4 =0T ’
Yo b w gpdw  if0< B <1

Therefore the I'-invariant Higgs bundle (F, ) on X defines a parabolic Higgs bundle
(E',¢') on Y with Higgs field ¢’ € I' (PE/(m®) ® K(D)). In particular, the residue of
the Higgs field ¢'(w) = f'(w)dw is P4 b which is nilpotent and so the projection to
m), /L, is zero.
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Therefore the I'-equivariant Higgs bundle (£, ¢) on X with isotropy representations o
corresponding to weights «; € /—1A in the interior of the Weyl alcove determines a
parabolic Higgs bundle (E’, ¢’) on Y with parabolic points {y1,...,ys} = 7({z1,..., 2. }),
conjugacy classes (5;(%_) = @, determined by «a; and a parabolic Higgs field with nilpo-
tent residues. Moreover, gauge equivalent I'-equivariant Higgs bundles on X descend to
parabolic gauge-equivalent parabolic Higgs bundles on Y.

Conversely, given a parabolic G-Higgs bundle (E’, ¢’) on Y with nilpotent residues at
each parabolic point, as above let V' be a neighbourhood of a branch point y such that the
bundle is trivial over V \ {y} with weight a; € v/—1A such that e2™"i% = id. Since the
residues are nilpotent then the Higgs field ¢’ € T’ (PE’ mS oK (D)) has the form

S dwlwldw if <0

fa(w) =
Z;iocfwedw ifo<p<1

N,

After pulling back by the ramified covering map z +— 2% = w, the Higgs field ¢(z) =

f(2)dz upstairs has the form

SR NNz e i B <0

> o C?ZNje N;2Ni7ldz f0< B <1

fs(z) =

Applying the gauge transformation g(z) = 27i% (once again, e*™"i% = id implies that

this is well-defined on the punctured neighbourhood U; \ {z;}) gives us

pNiBS X NN e i B <0

2N 2N NN e 0 < B < 1

9(2) - fs(2) =

and the same argument as before shows that this is holomorphic and invariant under the
action of Zy, determined by a; € /—1A. Therefore the parabolic Higgs bundle on Y
determines a I'-equivariant Higgs bundle on X.

Now that we have established the correspondence, it only remains to show that the
notions of stability, semistability and polystability are also in correspondence. In the
case of holomorphic principal bundles, the results of [38, Sec. 2.2| show that, via the
correspondence described above, a stable I'-equivariant bundle upstairs on X corresponds
to a stable parabolic bundle on Y. Moreover, the degree of any parabolic reduction of
structure group on £ — X is related to the parabolic degree of a parabolic reduction of
structure group on E' — Y by a factor of ﬁ

For Higgs bundles, the only modification is to restrict to reductions of structure group
which are compatible with the Higgs field as described in [4, Sec. 3.2]. For the Higgs
bundle (E,¢) over X, given s € y/—1h and a I'-invariant holomorphic reduction n €
QY(E(H®/P;)) such that ¢ € H(X, E,(ms) ® K), the [-invariance of the Higgs field ¢
implies that the induced reduction of structure group on the parabolic bundle (£, ¢’)
over Y \ . is compatible with the Higgs field, i.e. ¢'ly , € H'(Y N\ .7, E;(m,) ® K).
Conversely, a reduction of structure group on the parabolic bundle (E’, ') over Y \ &
which is compatible with the Higgs field ¢ lifts to a reduction of (E, @) over X compatible
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. . e . ‘F‘
(cf. [38, Sec. 2.3]) then the notion of I'-equivariant Higgs stability (resp. semistability and
polystability) upstairs on X corresponds to the notion of parabolic Higgs stability (resp.
semistability and polystability) downstairs on Y.

with . Since the degree on X is related to the parabolic degree on Y by a factor of

Therefore we have proved the following bijection of moduli spaces.

Theorem 5.1. The correspondence described above defines a bijection
M(X,G,Tid,0) - M(Y,”,G,a,0).

5.3. T-Twisted ['-equivariant structures and pseudoreal parabolic Higgs bundles.
In this section we assume that I' contains antiholomorphic automorphisms I' contains
antiholomorphic automorphisms of X, that is, I' is given by an extension

1—-T" =T —-2Z/2—1

defined by (2.2). We also assume that the (I, 7, ¢)-equivariant structures on the G-Higgs
bundles over X are such that the restriction of the cocycle ¢ to I't is trivial. In this situation
¢ defines a cocycle ¢ € Z%(Z/2,Z') where the action of Z/2 = I'/T" is the one induced
by (3.1). The cocycle ¢ defines a pseudoreal structure on the parabolic G-Higgs bundle
on Y := X/T'" constructed in the previous section. Pseudoreal structures of parabolic
G-Higgs bundles are studied in [11], generalising the theory of pseudoreal G-Higgs bundles
is well-understood [8, 7, 6]. One thus has a correspondence similar to the one in Theorem
5.1 also in this situation.

6. TWISTED EQUIVARIANT STRUCTURES AND REPRESENTATIONS

In this section, S is an oriented smooth compact surface of genus g > 2, X is a Riemann
surface, whose underlying smooth surface is S. The Lie group G is a real form of a complex
semisimple Lie group GC, and 7 is a conjugation of G® defining a compact real form of
G, and preserving G. Finally, I is a subgroup of Aut(X).

6.1. Twisted equivariant Higgs bundles and the orbifold fundamental group.
Exploiting Proposition 2.7 and Theorem 4.5, we will give an interpretation of the fix-point
locus R(S,G)' in terms of representations of the I'-orbifold fundamental group (S, T) of
S (see [8], for example, for a definition). This group fits into a short exact sequence

1 = m((S) »m(S,T)—-T—1.

Let ¢ € Z2(T', Z) be a 2-cocycle, where Z is the centre of G. Recall that I' acts on G as
g'=gifyeTt and g” =7(g) if y € I, for g € G, inducing an action on Z. Let also
S Id if yeI't

T ifyel .

We consider a group G = é(F,T, c), whose set is G x I'; and the group structure is
defined by

(91,m) - (92,72) = (177 (92)c(v1,72)5 1172),
for g1,9, € G and y1,7, € T'.
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Let R(S,G, T, T, c) be the set of G-conjugacy classes of representations p : m (S5,I") — C/J\,
which extend reductive representations p : m(S) — G, making the following diagram
commutative

0 —— m(S) —— m(S,T) s T s 1
|
] — & — G s I > 1.

We will denote by 7%(5, G,T',7,¢) the image of R(S,G,T',7,¢) in R(S,G), for the map
given by sending p to p.

Following the arguments in [8] (see also |7, 6]), we can extend the non-abelian Hodge
correspondence to the twisted equivariant case and prove the following.

Theorem 6.1. Under the non-abelian Hodge correspondence given by Theorem 2.5 one
has the homeomorphism

R(S,G,T,1,c) =, M(X, G, T, 7,¢).

Fixing the elements o; at the points x; € & to define the moduli space M (X, G, T, 7,¢,0)
with 0 = (01, -+, 0,), corresponds to fixing a cyclic element for the image under the repre-
sentation of a loop around the point ;. The moduli space corresponding to M (X, G, T, 7, ¢, o)

will be denoted by R(S,G, I, T, ¢, o), and its image in R(S,G) by R(S,G,T',1,¢,0).
As a corollary of Theorems 4.5 and 6.1 we have the following.
Theorem 6.2. (1) For any cocycle c € Z*(T', Z)
R(S,G.T,7,¢) C R(S,G).
(2) Let R.(S,G) C R(S,G) be the subvariety of irreducible representations, then
RS, c |J R(SG.TI 7).

e H2(I,2)

6.2. The orbifold fundamental group and punctured surfaces. Assume now, as in
Section 5.2, that I' = I'" and that the cocycle ¢ is trivial. Let . be the set of points in
S/T" corresponding to the points &2 C S (see Section 5.2). Then, combining Theorems 5.1
and 6.1 with the non-abelian Hodge correspondence for punctured surfaces, proved in [4],
we have the following.

Theorem 6.3. There is a bijection between R(S,G,T',7,¢ = 1,0) and R(S/T \ ., Q)
with conjugacy classes around the points in .7 determined by o.

We now assume, as in Section 5.3, that [' contains antiholomorphic automorphisms
and that the restriction of the cocycle ¢ to I'" is trivial. As mentioned in Section 5.3,
in this situation ¢ defines a cocycle ¢ € Z2(Z/2,Z) where the action of Z/2 = T'/T*
is the one induced by (3.1). We can then consider the Z/2-orbifold fundamental group
m (S/TT N #,Z/2) for the residual action of Z/2 = T'/T" on S/T'", which fits in a short
exact sequence

1 - m(S/TTNS) = m(S/TT NS 2)2) - Z)2 — 1.



ACTION OF THE MAPPING CLASS GROUP ON CHARACTER VARIETIES AND HIGGS BUNDLES23

Here . is the set of points S/T'" corresponding to the set & C S.
We define the group G = @(T, ¢), whose set is G x Z/2, and the group structure is
defined by
(g1,€1) - (92, €2) = (917" (g2)cle1, €2), erez),
for g1,90 € G and ey, e5 € Z/2. Here 7°* =1d if ; = 1 and 7 = 7 if e; = —1. Define
R(S/TT N7, G, T,¢)

as the set G-conjugacy classes of homomorphisms p : 7 (S/TT N %, Z/2) — G extending
homomorphisms p : m(S/T'"T \ ) — G, with p reductive, and making the the following
diagram commutative

0 — m((S/TTNY) — m(S/IT N, Z)2) Z]2 > 1
| d o
1 — G — G > 7,2 1.

From the discussion in Section 5.3 we conclude the following.

Theorem 6.4. There is a bijection between the moduli spaces R(S,G,T',7,¢,0) and R(S/TT~
<, G, 1,c) with conjugacy classes around the points in . determined by o.
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