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Shaping of melting and dissolving solids
under natural convection

Samuel S. Pegler1 and Megan S. Davies Wykes2

1School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
2Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

How quickly does an ice cube melt or a lump of sugar dissolve? We address the open
problem of the shapes of solids left to melt or dissolve in an ambient fluid driven by
stable natural convection. The theory forms a convective form of a Stefan problem
in which the evolution is controlled by a two-way coupling between the shape of the
body and stable convection along its surface. A new model describing the evolution of
such bodies in two-dimensional or axisymmetric geometries is developed and analysed
using a combination of numerical and analytical methods. We reveal that different initial
conditions lead to different evolving shapes and descent rates controlled by the interaction
between the shape and flow. For the cases of initially linear surfaces (wedges or cones),
the model admits similarity solutions in which the tip descends from its initial position
as t4/5. It is determined that the evolving shape always forms a parabola sufficiently
near the tip which and approaches the initial shape sufficiently far below the tip. For the
asymptotic limit of steeply inclined bodies, we establish a general two-tiered asymptotic
structure comprising a broad 4/3-power intermediate near-tip region connected to a
deeper parabolic region at the finest scale. The model results apply universally for any
given relationship between density, viscosity, diffusivity and concentration, including two-
component convection. New laboratory experiments involving the dissolution of cones of
sugar candy in water are found to collapse systematically onto our theoretically predicted
shapes and descent rates with no adjustable parameters.

1. Introduction

The melting and dissolution of solids plays a key role in shaping the natural world
(Ristroph 2018). Examples include the melting of icebergs (e.g. Huppert & Turner 1978),
the melting of glacier fronts and ice shelves (e.g. Epstein & Cheung 1983; Dutrieux et al.

2014; Hewitt 2020), the shaping of river beds and caves (Meakin & Jamtveit 2010), the
shaping of rock spires (such as the remarkable stone forests of Madagascar), and the
melting of sea ice (McPhee 2008). Everyday examples include the melting of ice cubes
in air or water, the dissolution of lumps of sugar in tea and the melting of candles.
While there are numerous applications and many decades of research on boundary layers
formed from gravitationally stable free convection (Bejan 2013; Schlichting & Gersten
2017), a theory accounting for the interplay between shape evolution by melting or
dissolution and buoyancy-driven boundary-layer dynamics has yet to be developed and
explored. In all problems involving melting or dissolving boundaries in fluid flow, there
is an interesting theoretical question as to what are the fundamental shapes that arise
through the interplay between the fluid dynamics and the evolving boundary. Across
the scope of this paper and a forthcoming paper (Pegler & Davies Wykes 2020), we
will address this question, deriving a new model framework and exploring its predictions
for various initial shapes. To this end, we develop a model that couples the melting or
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dissolution of bodies to a flow driven by gravitationally stable free convection, solve the
model equations to identify the shape evolutions, and test the model predictions in the
laboratory. The analysis reveals fundamental intrinsic scales, self-similar evolutions, and
regime transitions. The results ultimately provide a basis for addressing theoretically the
questions of the shape assumed by bodies melting or dissolving under buoyancy.
The question of the shape assumed by a dissolving body was posed and considered

experimentally by Nakouzi et al. (2015). In this study, the authors allowed vertical
cylinders of solid glucose immersed in a water-filled tank to dissolve without an externally
imposed flow. On the basis of their experimental observations, it was proposed that the tip
assumes a paraboloidal shape as it descends, and that this may represent a fundamental
shape for dissolving bodies under free convection. To date, no theoretical explanation
for these observations, nor predictions for the descent rate and shapes of such dissolving
bodies have been provided.
The analysis of stable free convection at heated, cooled or dissolving surfaces has

an extensive literature for situations where the boundary remains fixed. The regime is
characterised by a thin buoyancy-driven flow in which the driving force depends on the
local slope of the underlying solid surface, whilst being generated by the thermal or
solutal diffusion at the interface. Theoretical analysis of natural-convective boundary
layers along fixed boundaries began with the case of fluids of constant properties and a
body of uniform inclination (Ostrach 1953; Merk & Prins 1953). Subsequent studies of
the underlying boundary-layer equations have in particular considered the effects of large
mass-transfer rates (Acrivos 1960a, 1962), non-Newtonian flow (Acrivos 1960b), small
inertia (Kuiken 1968), ambient stratification (Huppert & Turner 1980), two-component
compositional convection (Josberger & Martin 1981; Carey & Gebhart 1982; Wells &
Worster 2011), and reversing buoyancy (Carey et al. 1980). These studies essentially
determine instantaneous snapshots of melt rate around a fixed shape, and neglect the
evolution of shape caused by the melting or dissolution of the body. The new element we
consider is to allow the boundary to evolve, with the aim to present the first theoretical
predictions able to explain the general shape, asymptotic structure and descent rates of
dissolving bodies immersed in a quiescent ambient. The result of the new coupling we
consider is to introduce a full two-way interplay between the control of the buoyancy
force by the local slope and the control of the evolution of local slope by the dissolution
or melting profile of the boundary layer. The interplay is found to produce a rich problem
in regard to the shapes that arise as objects melt or dissolve into their environment.
A related problem is the melting of a fully suspended sphere of wax in hot water

(Mcleod et al. 1996). The experiments conducted in this study illustrated different melt
characteristics over the overside and underside of the melting body of wax. The overside
was found to develop a gravitationally stable melt film that flows over the solid body
of wax. The underside was instead found to form a gravitationally unstable region of
convection, producing a curtain of molten wax threads. The overside instead retains a
smooth shape that melts relatively slower than the underside. By approximating both the
upper and lower regions of the wax as hemispheres of different radii each with uniform
melt rates, and using a thin-layer model for the melt film, the authors determine scalings
for the melt rates of the upper and lower regions. The experiments illustrated a variation
of the shape of the overside in melt rate with polar angle, whilst the theoretical scaling
developed did not allow for evolution away from a hemisphere. For the underside, a
uniform melt rate associated with the gravitationally unstable convection was proposed.
Davies Wykes et al. (2018) have more recently considered this situation experimentally
for a general variety of initial shapes resulting from dissolution of candy in water. A model
of uniform and constant dissolution rate over the lower interface was shown to explain
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the shape evolutions of the gravitationally unstable underside of the dissolving bodies
for a variety of initial shapes. In contrast, the top half of the object dissolves more slowly
and forms a smooth surface that dissolves with a spatially non-uniform distribution.
We anticipate this regime to be analogous to that observed by Nakouzi et al. (2015). A
corresponding theory to describe the evolving boundary and resulting change in shape
has remained undeveloped.
The theoretical and experimental analysis of the shapes arising under dissolution,

melting or erosion of bodies in fluid flow has to date considered cases of forced convection,
where a body is fixed in an imposed cross-flow and buoyancy is negligible (Ristroph et al.

2012; Moore et al. 2013; Huang et al. 2015; Moore 2017). The experiments of Ristroph
et al. (2012) found that an eroding sphere or vertical cylinder fixed in a maintained
horizontal cross-flow form a roughly triangular self-similar shape. By coupling a potential
outer flow to an inner viscous sublayer, Moore et al. (2013) gave a theoretical explanation
of this shape as having constant shear over the front surface. A detailed examination
of the shapes arising near the tip of a body allowing also for the cases of melting or
dissolution was provided by Moore (2017), illustrating the development of specific power-
law shapes for the tip in these various situations. For forced convection, the rate of
melting, dissolution or erosion is coupled to the evolution of the surface through its
effect as a boundary condition on the outer potential flow which, in turn, controls the
erosion or dissolution rate through a viscous or thermal sublayer. As we will show, the
problem of melting and dissolution under free convection produces a mathematically
different problem that includes an inherent dependence of the driving buoyancy force on
the local slope within the boundary-layer equations themselves.
We divide our study into two papers. This first paper develops our model in both two-

dimensional and axisymmetric geometries, analyses the evolution of shapes resulting from
a body initialised with intersecting linear surfaces (two intersecting planes in the two-
dimensional case or a cone in the axisymmetric case), and presents our laboratory study
of dissolving cones. The forthcoming paper (Pegler & Davies Wykes 2020) investigates
more general shape evolutions and explores distinct new themes of regime transitions,
the control of tip sharpening (or blunting), and the role of internal thermal conduction
within melting bodies.
The present paper is divided as follows. Section 2 develops our theoretical model

describing dissolving and melting bodies, discusses the underlying assumptions, and
derives the form of the general tip shape. Section 3 considers the preliminary two-
dimensional example in which the initial shape of the body is given by two intersecting
planes. The analysis reveals similarity solutions describing the evolution of the shape
in these cases and provides asymptotic solutions for the descent rate in the limits of
small and steep slopes. A modified axisymmetric analogue of the model is developed and
analysed in the case of initially conic bodies in section 4. Section 5 presents our laboratory
study of initially conic solid candy bodies dissolving in water. We end in section 6 by
discussing the limitations, generality and applicability of the results and summarising
our conclusions.

2. Theoretical development

We begin by developing a general model for melting or dissolving bodies under stable
natural convection. Melting and dissolving bodies can be modelled using a system of
equations that are fundamentally the same, but which differ in underlying physical
processes. For dissolution (e.g. candy in water), the boundary recedes in response to
mass loss through molecular diffusion into the solvent. For melting (e.g. ice in water),
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Figure 1. (a) Schematic illustrating the general configuration and notation for a body dissolving
under gravitationally stable natural convection. Two coordinate systems are illustrated: (x, z)
is fixed, while (s, y) represents a curvilinear coordinate system in which s is the arc length of
the solid surface from the tip and y is the normal distance from the boundary. Panels (b) and
(c) illustrate two different limits of the general model (2.16): the shallow limit, where the slope
hx ≪ 1, and the steep limit, where hx ≫ 1, respectively.

the material instead undergoes a phase change induced by thermal conduction. In either
case, the recession speed of the boundary is proportional to the net rate of molecular or
thermal diffusion transported from or to the interface, respectively (the Stefan condition
in the thermal context). In the case of a dissolving solid, diffusion is typically negligible
within the interior of the solid itself, and hence the recession speed of the boundary is
proportional to the flux of solute into the ambient fluid. In the context of a melting body,
thermal conduction can, in principle, be important within the body. In this case, a melting
body can either first equilibrate to the melt temperature, or proceed to melt with a thin
conductive boundary layer under the interface; either of these cases produces an effective
proportionality between exterior heat flux and recession rate (the conditions producing
these distinct situations will be clarified as part of the forthcoming paper; Pegler &
Davies Wykes 2020). With these caveats noted, we henceforth adopt the notation and
terminology applicable for dissolving bodies.

We consider first the case of two-dimensional bodies. Let x and z denote the horizontal
and vertical coordinates in the laboratory frame, respectively. Suppose that the solid has
density ρs with surface z = h(x, t) and is immersed in a quiescent, incompressible fluid of
density ρ∞ in its pure form, as illustrated in figure 1. The dissolution of the solid forms
a solutal boundary layer along the exterior of the solid driven by buoyancy (natural
convection). Let ρ(x, y, t) denote the density of the fluid, and let C(x, z, t) denote the
normalised concentration of solute in the fluid, defined by

C(x, z, t) ≡ ρ(x, y, t)− ρ∞
ρs − ρ∞

. (2.1)
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The value C = 1 represents pure solid (ρ = ρs) and C = 0 represents pure ambient fluid
(ρ = ρ∞). At the interface between the solid and the fluid, we impose

C(x, h, t) ≡ Ci = Csat, (2.2)

where Ci is the interfacial concentration, which is assumed to equal the concentration
of the solution at saturation, denoted Csat. For an aqueous sucrose solution at 25 ◦C,
the saturation concentration is Csat ≈ 0.68 (Mohos 2010). The value of Csat is less
than unity because solvation requires a minimum concentration of water. The saturation
concentration Csat depends on temperature, and thus may change if the latent heat
generated by dissolution is sufficiently large (thereby requiring simultaneous solutions for
both the temperature and concentration fields, rather than only the concentration). By
deriving a theoretical prediction for the temperature generated by this effect (appendix
A), we estimate the temperature increase to be at most ≈ 0.8 K for candy dissolving
in water, resulting in a negligible change in Csat of less than 0.2%. A discussion of the
effect of interface temperature on interface concentration is provided in Wells & Worster
(2011). Such two-component effects can in fact be incorporated directly into our model
for shape evolution developed below. Nonetheless, we will neglect temperature effects for
now for the purpose of simplifying our exposition.

The shape evolution is controlled by spatial and temporal variations in the rate of
dissolution within the solutal boundary layer. To describe the boundary-layer flow, we
use the curvilinear coordinate system (s, y), where s is the arc length along the surface
z = h(x, t) measured from the tip h0(t) ≡ h(0, t), and y is the perpendicular outward
distance from the surface, as shown in figure 1(a). The flux of concentration (per unit
width) perpendicular to the solid boundary is, in accordance with Fick’s law,

q(s, t) = −κi
∂C

∂y

∣

∣

∣

∣

y=0

, (2.3)

where κi is the diffusivity of the fully saturated solution at the boundary. Let V (s, t)
denote the unknown speed at which the surface recedes in the direction of its normal.
The speed of recession can be related to the flux (2.3) via the solute-conservation equation

V (s, t) = Rq(s, t) = −Rκi
∂C

∂y

∣

∣

∣

∣

y=0

, (2.4)

where R ≡ ρi/[ρs(1−Ci)] is a dimensionless conversion factor between concentration flux
and boundary migration speed, and we have assumed here a linear relationship between
mass and volume fraction. Here, we have also neglected flux in concentration in the solid
interior, which could be more important in the context of melting bodies. Because the
surface moves inwards, we write the vectorial form of the surface velocity as

V = −V n, where n =
ez − hxex
√

1 + h2x
(2.5a,b)

is the outward normal to the surface, ex and ez are the unit vectors in the horizontal
and vertical directions, and the x subscript in hx denotes partial differentiation, ∂h/∂x.
Since the solid migrates with the velocity V , it follows that

(

∂

∂t
+ V · ∇

)

[z − h(x, t)] = 0. (2.6)
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On simplification and use of (2.5a, b), we obtain the interface evolution equation

∂h

∂t
= V ·

(

ez − ex
∂h

∂x

)

= − ∂s

∂x
V, (2.7)

where sx =
√

1 + h2x. Substituting (2.4) into (2.7), we obtain the evolution equation

∂h

∂t
= −Rq ∂s

∂x
= Rκi

∂s

∂x

∂C

∂y

∣

∣

∣

∣

y=0

, (2.8)

providing an equation for the rate of vertical descent of the solid boundary in terms of
the dissolution pattern. Thus, to develop a closed model, it remains to relate the normal
gradient ∂C/∂y along the surface to the shape profile h(x, t).
Let u and v define the components of fluid velocity in the s (tangential) and y

(normal) directions, respectively. In modelling the boundary-layer flow, we assume that
the curvature of the interface is sufficiently small and that the flow is quasi-steady
on the timescale of evolution of the free boundary (the criteria for these assumptions
will be detailed in section 2.3). The equations describing steady free-convective laminar
boundary layers read (Ostrach 1953)

∂u

∂s
+
∂v

∂y
= 0, (2.9)

ρ

(

u
∂u

∂s
+ v

∂u

∂y

)

=
∂

∂y

(

µ
∂u

∂y

)

+∆ρsg sin[α(s, t)]C, (2.10)

u
∂C

∂s
+ v

∂C

∂y
=

∂

∂y

(

κ
∂C

∂y

)

, (2.11)

where α(s, t) is the angle of the slope to the horizontal (the angle α is shown red in figure
1), and ∆ρs ≡ ρs − ρ∞. Equations (2.9)–(2.11) represent the conservation of total fluid
mass, momentum and solute mass, respectively.
We allow here for general dependences of viscosity µ(C), diffusivity κ(C) and density

ρ(C) on the concentration C. For many fluids, including rock candy dissolving in water,
the viscosity of the solution µ(C) can vary by many orders of magnitude (for a solution
of rock candy, µ will vary by at least two orders of magnitude; Quintas et al. 2006).
Since viscosity and molecular diffusion are related approximately inversely in accordance
with the Stokes-Einstein relation, κ ∝ µ−1 (e.g. Mohos 2010; Price et al. 2016), order-
of-magnitude variations in molecular diffusivity κ(C) will also apply. Fortunately, these
complications can all be encapsulated concisely within a single parameter.
The boundary-layer system (2.9)–(2.11) is fifth order and hence requires five boundary

conditions. One is provided by the Dirichlet condition on the interface concentration (2.2).
Further conditions are provided by the no-slip condition and normal-velocity condition
at the migrating solid boundary given by

u = 0, v = (ρs/ρi)V, on y = 0, (2.12a,b)

respectively (e.g. Wells &Worster 2011). The normal velocity condition (2.12b) represents
the sum of two contributions: ([(ρs − ρi)/ρi]V + V ) = (ρs/ρi)V . The first is the speed
accounting for the net sourcing of fluid caused by the density difference between the
solid and the adjacent solution. The second contribution accounts for the fact that y = 0
is moving inwards at velocity V , and thus V must be added to account for this frame
change. Finally, we impose

C → 0, u→ 0 as y → ∞, (2.13a,b)
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completing the set of conditions needed to close the boundary-layer system.

For any given surface profile h(x, t), the system (2.9)–(2.13) forms a parabolic
boundary-value problem for C(s, y, t). Once C is known, the normal gradient ∂C/∂y
on y = 0 can be evaluated and the surface descent rate ∂h/∂t determined using
(2.8). The surface can then be evolved in time and the process repeated. The coupled
model (2.8)–(2.13) generalises models of natural convection along dissolving or melting
boundaries (Schlichting & Gersten 2017) to incorporate the two-way coupling between
boundary-layer dynamics and the evolution of the boundary. Conversely, the model
forms a variation of classical (purely diffusive) Stefan problems in which the migration
of a melting or solidifying boundary is modelled using conductive transport processes
(Stefan 1891; Jaeger & Carslaw 1959) to assume instead that the shape evolution is
driven by the buoyancy-driven convection along the exterior of the body.

2.1. Analytical reduction for large Schmidt number

For general situations in which all terms in the momentum equation (2.10) contribute,
one could consider the boundary-layer system (2.9)–(2.13) alongside (2.8). However, we
note that if the Schmidt number Sc ≡ µ/ρκ is sufficiently large, a major simplification of
the boundary-layer system (2.9)–(2.13) is available that allows a single integro-differential
hyperbolic equation describing the evolution of h(x, t) to be developed. We consider this
situation first as an inroad for clearly demonstrating many of the simplified scalings,
properties and self-similar forms underlying dissolving shapes. The effects of reinstating
inertia are discussed in section 6.

Convective boundary-layers described by (2.9)–(2.13) will generally involve both a
viscous sublayer, in which viscous stresses become important, and a diffusive sublayer in
which the transfer of solute is localised. The relative size of the viscous sublayer compared
to the solutal layer is characterised by the Schmidt number Sc ≡ ν/κ. If Sc ≫ 1, the
viscous sublayer is considerably larger than the solutal layer, such that the solutal layer
forms an inner sublayer inside the viscous sublayer. Exterior to the viscous sublayer
lies an inertial outer region in which the transition to the far-field stagnancy condition
(2.13) occurs. More specifically, for the purpose of determining the solutal flux along
the boundary, it is sufficient to consider just the viscous sublayer subject to a matching
condition of zero stress on its far-field, a system we review in appendix C. As shown
by Kuiken (1968), the neglect of inertia in the solutal region introduces an error of less
than 20% in the predicted flux for all Sc > 1, implying that even order-unity values of
Sc are well approximated by the Sc→ ∞ limit. Since the Schmidt number is comprised
purely of material parameters, and is independent of the shape of the body, for example,
it is straightforward to evaluate for a given configuration. For example, Sc ≈ 2 × 103

(dilute) to 8×106 (saturated) using the kinematic viscosity and diffusivity for dilute and
saturated solutions of sucrose in water, respectively, and hence Sc≫ 1 is firmly satisfied
in this context.

The analytical reduction that arises for Sc → ∞ is based on a transformation
of the boundary-layer subsystem describing the viscous sublayer that eliminates the
interface slope (Acrivos 1960a), leaving a transformed boundary-layer subsystem that is
independent of the surface profile (the transformed system is equivalent to the similarity
system describing free convection along a vertical wall, for example). By considering
the similarity solution to the transformed system and then recasting the system back
in terms of the original variables, one obtains the dissolution profile along an arbitrary
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two-dimensional shape as

q(s, t) = −κi
∂C

∂y

∣

∣

∣

∣

y=0

=
D sin[α(s, t)]1/3

(∫ s

0
sin[α(s, t)]1/3 ds

)1/4
, (2.14)

where D ≡ γκiCi(∆ρsgCi/κ∞µ∞)1/4 is a constant material parameter, µ∞ and κ∞
are the viscosity and diffusivity of the solvent, and γ is a dimensionless number. The
result above is derived by Acrivos (1960a), and a step-by-step review of the derivation
is provided in appendix C. As discussed in the appendix, the dimensionless prefactor γ
depends on the material properties of the fluid and solid under consideration, including
any dependences of µ, κ and ρ on the concentration C, as any two-component temperature
effects. The presence of sinα in the numerator of (2.14) implies that a larger along-
slope component of buoyancy drives faster convective transport locally and hence more
efficient dissolution. The integral in the denominator is a ‘memory term’ representing the
total dissolution between the tip and the position s. The increase of this integral with
s represents the insulating effect of solute accumulation, which reduces the dissolution
rate as the boundary layer grows downstream.
Using (2.14), the recession rate of the boundary can be determined as

V (s, t) = Rq =
A sin[α(s, t)]1/3

(∫ s

0
sin[α(s, t)]1/3 ds

)1/4
, (2.15)

where A ≡ RD ≡ γRκiCi(∆ρsgCi/κ∞µ∞)1/4. The parameter A represents all effects
on dissolution associated with the material properties of the fluid and the solid, and
is referred to herein as the convective strength. This is distinct from the effects of
shape, which are controlled by the terms in expression (2.15) depending on α(s, t). In
particular, the number A encapsulates, via γ, the full functional dependences of viscosity
µ, diffusivity κ and density ρ on the concentration C. The parameter A could, in principle,
be determined by measuring the functions of µ(C), κ(C) and ρ(C) for the fluid of interest
and solving the similarity system (C5)–(C 6) for γ and, in turn, A. Alternatively, one
could measure A empirically for a given system of interest using a ‘one off’ observation
of an instantaneous recession rate, circumventing the need to measure µ(C), κ(C) and
ρ(C) explicitly and solving (C 5)–(C 6). This direct empirical method of inferring A will be
discussed further in section 5. For a vertical wall (for which α = π/2 and s = −z), (2.15)
reduces to V = A(−z)−1/4, giving the (−z)−1/4 dissolution profile along a wall of constant
inclination (e.g. Ostrach 1953). The convective strength A can thus be interpreted as the
prefactor to (−z)−1/4 that would apply in an expression for the instantaneous recession
speed along a vertical wall for the fluid-solid configuration under consideration. In this
case, the recession speed at the top of the vertical wall (z = 0) is, at least instantaneously,
infinite. However, once the evolution of the boundary is also incorporated into the model
(see below), the shape at z = 0 would be instantaneously smoothed in such a way as to
produce a finite recession speed for all subsequent times.
Using (2.15), we couple the recession speed V (s, t) fully to the profile h(x, t) via (2.7).

Substituting (2.15) into the solute conservation equation (2.7) and noting that sinα =
hx/sx and ds = sx dx, we obtain the shape evolution equation

ht =
−A

∣

∣hxs
2
x

∣

∣

1/3

(
∫ x

0

∣

∣hxs
2
x

∣

∣

1/3
dx

)1/4
, sx =

√

1 + h2x. (2.16)

This result yields an independent partial integro-differential equation describing the
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evolution of the dissolving solid interface h(x, t). The equation shows that the evolution
of a dissolving or melting boundary in free convection is governed by a hyperbolic system
relating the descent rate ht to the slope hx. The numerator represents a dependence of the
descent rate on the local value of the slope hx, showing that the dissolution rate increases
with the local slope. The integral in the denominator represents a global dependence of
the descent rate at a position x on all the values of hx between the tip and the position x.
This contribution represents the insulating effect of concentration accumulation between
the tip and the position x.

2.2. Tip shape and its relation to instantaneous descent rate

Before solving (2.16), we first note several implied properties of the local tip shape
and its relationship to the instantaneous rate of tip descent. To seek the admissible tip
shapes, we try a power-law h ∝ xa, where a > 1 is a constant, in (2.16) and take the
near-tip limit x→ 0. We find that (2.16) then simplifies to

ht ∝ x(a−2)/4 (x→ 0). (2.17)

The rate of tip descent ht is therefore finite if and only if the tip is parabolic, a = 2.
Otherwise, the tip would move infinitely quickly (a < 2) or remain stationary (a > 2).
The tip will therefore assume a parabola as it descends at a finite, non-zero speed. This
provides a theoretical answer to the question posed by Nakouzi et al. (2015) on whether
the shapes of buoyancy-driven descending tips converge to a universal shape, and explains
the emergence of a paraboloidal shape indicated by their experimental observations. It
should be noted, however, that the parabola only applies close to the tip. The precise
asymptotic meaning of how close, and an identification of the different shapes that arise
exterior to the parabolic region, will be determined in our later analyses. Indeed, the
parabolic region can be so small in the case of steep bodies that an entirely different
near-tip shape is more representative. Previous theoretical work on forced convection
has found that the local shape of a tip dissolving, melting or eroding in a fluid flow
is that which produces a boundary layer with a locally smooth recession rate (Ristroph
et al. 2012; Moore et al. 2013; Huang et al. 2015; Moore 2017). We note that the parabola
is the unique shape that satisfies the property of a locally uniform recession rate under
stable natural convection in the limit hx → 0 (this property is shown by the expression
for q in (C 9) given in appendix C).
The implied parabolic profile near the tip can be written

h ∼ h0(t)− 1
2S(t)x

2 (x→ 0), (2.18)

where S(t) = |hxx(0, t)| is the tip curvature or sharpness. Substituting the implied slope
hx = −S(t)x into (2.16), we determine the general law relating tip speed to tip sharpness,

dh0
dt

= −A
(

4

3
S(t)

)1/4

. (2.19)

Sharper tips thus descend faster, at a rate directly proportional to the convective strength
A and the 1/4-power of the tip curvature S(t).

2.3. Assumptions underlying the boundary-layer model

A foundational assumption of the boundary-layer model of (2.9)–(2.11) is that the
curvature of the interface is sufficiently small and the boundary-layer sufficiently thin
that δhss ≪ 1, where δ is the boundary layer thickness. In this limit, the derivatives
with respect to y, i.e. the normal shear stress and normal diffusion, yield the dominant



10

contributions to the diffusive and viscous-stress terms, as assumed in (2.10) and (2.11).
This approximation is strongly satisfied in our laboratory experiments, for example,
where the boundary layer thickness in the laminar regime is small enough to not be visible
(figure 14) and is estimated to be less than 1 mm. A further underlying assumption is
that the boundary-layer remains laminar and attached to the surface. This aspect will
be discussed further in section 6.
The system (2.9)–(2.11) is underlain by two further assumptions relating to assumed

quasi-steadiness of the flow and the form of the buoyancy force. The first of these arises
from the neglect of the time derivatives in (2.10) and (2.11) on the basis that the speed
of recession of the surface is much slower than the adjustment time scale of the boundary
layer. As an example, the typical speed of the interface in our experiments is ∼ 1
cm hour−1, while the boundary-layer flow rate is ∼ 1 cm s−1, indicating that quasi-
steadiness is strongly satisfied. To provide an explicit non-dimensional index to assess
the satisfaction of quasi-steadiness and the relative importance of ambient convection
during the dissolution of the body, we define a dimensionless number

Γ ≡ V/u, (2.20)

representing the ratio of the recession speed to the rate of convective transport. If
Γ ≪ 1 across the majority of the shape, the boundary layer will adjust effectively
instantaneously to the solution of the steady boundary-layer equations (2.9)–(2.11).
If instead Γ = O(1), the boundary-layer flow will evolve on the same time scale as
the interface. In this case, a generalisation of the boundary-layer equations (2.9)–(2.11)
to include time dependence could be considered. If Γ ≫ 1, the interface will recede
considerably faster than the boundary-layer flow. In this limit, convection is negligible
and the melt rate is controlled by time-dependent diffusion in the manner of a classical
(purely diffusive) Stefan problem. Values of Γ ≪ 1 apply for sufficiently large bodies.
To show this, we consider the value of Γ for two illustrative examples. For these
estimates, we use the scalings for the boundary-layer velocity u given in section C.1.
For the case of a parabolic shape, (2.19) yields the scaling V ∼ AS1/4 and (C 9) yields
u ∼ κ∞(SG∗)

1/2x, where G∗ = ∆ρsgCi/κ∞µ∞. Substituting these expressions into
(2.20), we obtain Γ ∼ l1/x, where l1 ≡ (R4/SG∗)

1/4 is an intrinsic length scale. Thus,
there is a location l1 such that the recession speed is faster than the flow for x . l1 and
the recession speed is slower than the flow for x & l1. Therefore, if l/l1 ≫ 1 where l is
the horizontal length scale of the body, the shape evolution is predominantly controlled
by the quasi-steady equations. Our laboratory experiments presented in section 5 form
a steep body with approximately linear surfaces. To evaluate Γ for this case, we note
that (2.15) yields the scaling V ∼ A|z|−1/4 and (C 10) yields u ∼ κ∞(G∗|z|)1/2, such
that Γ ∼ (l2/|z|)3/4, where l2 ≡ (R4/G∗)

1/3 = (A2/κ2iG∗)
2/3 is a length scale. This

scale is < 1 µm for our experiments, indicating that quasi-steadiness is strongly satisfied
throughout the majority of the flow.
The form of the buoyancy term on the right-hand side of (2.10) is standard in the

modelling of free convection along vertical and inclined walls (Schlichting & Gersten
2017). However, we wish to allow for shallow slopes, hx ≪ 1, for which the buoyancy
force can also be affected by horizontal gradients in hydrostatic pressure caused by
the stratified density field (Stewartson 1958). By considering a scaling analysis of a
generalised system of boundary-layer equations detailed in appendix B, we discuss the
transition of the flow from a gradient-driven region near the tip, in which gradients in
hydrostatic pressure contribute to driving the flow, to a slope-driven region wherein these
gradients are negligible and the flow is driven dominantly by the along-slope component
of buoyancy, as assumed in (2.10). Assuming a surface boundary of the general power-law
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Figure 2. Numerical solutions to the full model (2.16) subject to the initial condition (3.1).
Panel (a) shows the evolution for the case in which the shape is initialised as two intersecting
planes of slope m = 1. The progression is shown at (scaled) times of At = 0, 1, . . . , 5, illustrating
the rounding of the tip. The initial shape is shown red. Panel (b) shows tip displacement with

time for m = 0.2, 1 and 5, demonstrating the power-law |h0| ∼ (At)4/5 implied by the similarity
scaling of (3.2).

form h ∼ −cnxn, where cn and n are constants, the transition between the gradient and
slope driven regimes is determined to occur over the length scale

L ≡
(

L3
∗c

−5
n

)

1
5n−2 , where L∗ ≡

(

µκ

∆ρsg

)1/3

. (2.21)

The case n = 1 of the above was derived by Stewartson (1958), who also discussed its
interpretation as the scale on which a gradient-driven region applies for x≪ L. Assuming
a representative linear surface, c1 = m, we estimate that L = (2 × 10−5m−5/3) metres
using values representative of our laboratory experiments. The length is ≈1 µm for our
shallowest laboratory experiment (m ≈ 5.8). The gradient-driven region is therefore
indicated to lie very close to the tip. In order for the gradient-driven region to be
appreciable at the laboratory scale (taking L = 1 cm for instance), the slope must be
m . 2×10−3. The gradient-driven regime (Stewartson 1958; Neufeld et al. 2010) therefore
applies only briefly, even for a shallow slope. On this basis, we anticipate that the along-
slope form of buoyancy represented by the model of (2.10) is likely to represent the most
widely applicable regime describing dissolving and melting bodies for appreciable shape
changes at the laboratory scale and larger.

3. Mathematical analysis

Equation (2.16) describes the evolution of dissolving two-dimensional bodies, subject
to specification of any given initial shape h(x, 0) with a single maximum. Across the
scope of this paper and the companion, we will allow for general initial shapes of the
form h(x, 0) ∝ −|x|n, where n > 0. This form encompasses initially rectangular cross-
sectioned surfaces (n = ∞), smooth parabolas (n = 2), wedges (n = 1), and sharp
concave surfaces (e.g. n = 1/2). General values of n will be found to exhibit a variety
of asymptotic transitions between different regimes, owing to the existence of an explicit
time scale in the problem t ∼ AL5/4 representing the time scale for the tip to descend
a distance comparable to the initial size of the body L (Pegler & Davies Wykes 2020).
In the unique case n = 1, no such time-independent length scale exists (to be shown in
section 3.1 below), resulting in similarity solutions that apply for all time. As a stepping
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Shallow

Steep

Figure 3. Similarity solutions describing the shape evolution of a body initially comprised of two
intersecting planes, determined by numerically solving the ordinary integro-differential system
(3.4). Panels (a) and (c) show the solutions for the shallow case m = 0.2 and the steep case
m = 5, respectively. Panel (b) shows the universal relationship between tip-descent prefactor
|f0| which controls the rate of descent of the tip in accordance with (3.5). The asymptotes in
the limits of m → 0 and m → ∞ are shown as a black dotted line and a black dashed line,
respectively, as predicted by the reduced asymptotic models derived in section 4. The locations
of the examples in (a) and (c) are indicated by red circles.

stone, we begin here by analysing these similarity solutions, reserving a consideration of
general n for the forthcoming paper. Thus, we specify the initial condition

h(x, 0) = −m|x|, (3.1)

where m is the initial magnitude of the slopes of the two adjoining planes, forming the
unique dimensionless parameter in the problem.

As a preliminary illustration of the model solutions, we present a selection of direct
numerical solutions of (2.16) subject to (3.1). For this, we applied the second-order
upwind finite-difference scheme detailed in appendix D. A typical progression is shown
in figure 2 for the case m = 1 for increasing times of (At) = 1, 2, . . ., 5, where the initial
shape is shown red. The solution illustrates the progressive rounding of the tip with time
superposed with an approximately uniform global recession rate. The evolution of the tip
h0(t) ≡ h(0, t) is shown for m = 0.2, 1 and 5 in figure 2(b). In each case, the tip descends
in proportion to t4/5 for all time with a prefactor that increases with steepness m. The
steeper case dissolves faster because the larger along-slope component of buoyancy drives
a faster boundary-layer flow. The persistent |h0| ∝ t4/5 power law indicates the existence
of self-similar evolutions arising for every value of the initial slope m.
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3.1. Similarity solutions

We begin by attempting to construct an intrinsic length scale from the two equations
(2.16) and (3.1) using scaling analysis. Depending on whether this length scale must
incorporate time t explicitly, one can assess whether the system is likely to support self-
similar solutions. The initial condition (3.1) yields the direct scaling between horizontal
and vertical length scales, h ∼ x. The governing equation (2.16) yields the further scaling
relationship

x ∼ h ∼ (At)4/5, (3.2a,b)

indicating that the evolution of the body remains invariant on scaling both the vertical
and horizontal dimensions by a factor of (At)4/5. With all the scaling relationships in the
system now applied, we deduce that no intrinsic time-independent length scale can be
constructed. Thus, the system is anticipated to support self-similar evolutions. Since the
system depends on the dimensionless number m in (3.1), different similarity solutions
can be anticipated to arise for each value of m. To explore these solutions, let us recast
the system in terms of the similarity variables motivated by (3.2), namely,

x = (At)4/5ξ, h(x, t) = (At)4/5f(ξ), (3.3)

where ξ is the similarity coordinate and f(ξ) is the shape function. The governing
equation (2.16) and initial condition (3.1) transform to

4

5
(f − ξf ′) =

−|f ′s′2|1/3
(

∫ ξ

0
|f ′s′2|1/3 dξ

)1/4
, f(∞) ∼ −mξ, (3.4a,b)

respectively, where s′ =
√

1 + (f ′)2. The large-ξ asymptotic condition (3.4) arises
from the initial condition (3.1) because the limit t → 0 corresponds to the limit
ξ = (At)−4/5x → ∞ for all x > 0. Physically, this condition applies because the
dissolution rate tends to zero as the boundary layer thickness grows with x. Hence,
the shape asymptotes to its initial shape in the limit x → ∞. The similarity system
above forms an ordinary integro-differential system for f(ξ), giving a different solution
for each value of m.
We solved (3.4a, b) numerically using a shooting method. For a given value of m, we

begin by choosing a trial value of the unknown tip height, f0 ≡ f(0). We then integrate
(3.4a) forwards from this trial value to a large value of ξ, denoted ξ∞. The integration was
conducted using a Runge-Kutta integrator. Since (3.4a) cannot be expressed explicitly
in terms of f ′, we employed the implicit Matlab integrator ode15i. The numerically
predicted value of the gradient f ′(ξ) was then compared with the far-field value −m
required by (3.4b). Depending on whether the value was greater than or lessm, a new trial
value of f0 was formulated. The bisection method was applied until the error |f ′(ξ∞) +
m| < 10−6, for typical values of the integration length taken as ξ∞ > 103m−1.
Our resulting numerical solutions are shown in figure 3. Panels (a) and (c) illustrate

the similarity solution arising for the shallow slope m = 0.2 and the steep slope m = 5,
respectively. The initial shapes are shown as red curves. The self-similar shapes exhibit
rounded tips, with the steeper case retaining a relatively sharper tip that descends faster.
In accordance with the similarity scaling of (3.3), the tip descends according to

h0(t) = f0(At)
4/5, (3.5)

where f0 ≡ f(0) is the tip-descent prefactor. The plot of the tip-descent prefactor |f0| is
shown as a function of m in figure 3. The prefactor |f0| increases with m, consistent with
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Figure 4. The tip-sharpness prefactor Σ defined by (3.6) as a function of the initial slope m,
determined using (3.7). The shallow and steep asymptotic predictions of (3.13) and (3.20b) are
shown by the dotted and dashed black lines, respectively.

steeper shapes receding faster. The power-exponent of f0 switches from 2/5 for small
m to 4/5 for large m, indicating the existence of distinct asymptotic regimes arising for
shallow and steep dissolving bodies.

Before considering these limiting regimes, we consider the tip sharpness predicted by
the self-similar evolutions. In terms of (3.3), the tip sharpness is

S(t) = |hxx| = Σ(At)−4/5, (3.6)

where Σ ≡ |f ′′(0)|, implying that the surfaces blunt progressively as t−4/5. This is
consistent with the blunting exhibited by our numerical solution in figure 2. Surprisingly,
dissolving shapes do not always blunt with time, a result that will be demonstrated in
the companion paper (Pegler & Davies Wykes 2020). It will be shown in particular that
the tips of more general shapes (e.g. initially rectangular or cylindrical objects) instead
sharpen progressively.

Recasting (2.19) in similarity form, we obtain

Σ =
3

4

(

4

5
f0

)4

, (3.7)

which allows us to evaluate Σ automatically in terms of the already determined f0. As
shown in figure 4, the sharpness prefactor increases withm, implying that initially steeper
shapes retain sharper tips. It should be noted that slope and sharpness need not always
increase together, as will be demonstrated in the forthcoming paper.

3.2. The shallow limit

If the slope is small, hx ≪ 1, then the along-slope component of gravity is given to
leading-order directly by the slope of the surface, sinα ≈ −hx. Under this approximation,
the governing equation (2.16) simplifies to

∂h

∂t
≈ −A|hx|1/3
(∫ x

0
|hx|1/3 dx

)1/4
, (3.8)

producing a simplified shallow version of the general theory. In this limit, the similarity
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Figure 5. The universal limiting similarity solution arising for shallow slope (m → 0), obtained
by solving (3.11a, b) numerically (dashed back curve) plotted in terms of the rescaled coordinates
(3.10). Numerical solutions to the full similarity system (3.4a, b) (blue curves) are shown for
m = 1.2, 0.8 and 0.2, illustrating convergence to the shallow theory as m → 0.

system (2.19a, b) reduces to

4

5
(f − ξf ′) =

−|f ′|1/3
(

∫ ξ

0
|f ′|1/3 dξ

)1/4
, f(∞) ∼ −mξ. (3.9a,b)

With the approximation of shallowness applied, it is now possible to eliminate the initial
slope m from the system. To do this, we recast the reduced system above in terms of the
scaled variables

η = m3/5ξ, φ = m−2/5f, (3.10)

equations (3.9a, b) become

4

5
(φ− ηφ′) =

−|φ′|1/3
(∫ η

0
|φ′|1/3 dη

)1/4
, φ(∞) ∼ −η, (3.11a,b)

which has rendered the system free of the only parameter m. The solution to this reduced
system thus yields a universal similarity solution describing the shape of dissolving
shallow bodies. The solution, determined using the same numerical scheme as that used
for the full model, is shown as a dashed black curve in figure 5 alongside a selection of
solutions to the full model (3.4) with decreasing m, illustrating the approach of the full
solutions towards the shallow regime as m → 0. The (scaled) tip prefactor determined
from the numerical solution is φ0 ≈ −1.49. Using (3.10), we determine the tip-descent
prefactor as

|f0| ∼ 1.49m2/5. (3.12)

This result is shown as a dotted black line in figure 3, where it is confirmed to describe
the tip-descent prefactor as m→ 0.

Substituting (3.12) into (3.6), we obtain the prediction for the sharpness prefactor

Σ = 1.50m8/5. (3.13)

The sharpness of tips formed by dissolving shallow bodies therefore scale approximately
as the square of the slope scale m1.6.
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3.3. The steep limit

Let us now consider the converse limit of steep surfaces, hx ≫ 1, given by m → ∞.
In this limit, the along-slope component of gravity acts vertically to leading order with
negligible dependence on the slope, with sinα ≈ 1 and sx ≈ |hx|. In this limit, the
governing equation (2.16) simplifies to

∂h

∂t
=

−A|hx|
(∫ x

0
|hx| dx

)1/4
, (3.14)

forming a steep version of the theory. In this case, the dissolution pattern is given by
V ≈ A[h0(t) − z]−1/4, where h0(t) is the tip position, as derived from (2.15) on setting
α ≈ π/2. Thus, the dissolution pattern does not depend on the slope hx at leading
order. However, a non-trivial time-dependence of the problem is retained in the coupling
between dissolution and the tip position h0(t). To see this explicitly, it is helpful to
recast the evolution equation (3.14) in terms of the horizontal position of the boundary,
x = X(z, t), which yields

∂X

∂t
= −V =

−A
(h0(t)− z)1/4

, where X(h0, t) = 0. (3.15a,b)

Thus, the dissolution pattern evolves in response to descent of the tip h0(t) which is, in
turn, coupled to the surface profile via (3.15b).
The similarity form of (3.14), along with (3.4b), yields the reduced system

4

5
(f − ξf ′) =

−|f ′|
(

∫ ξ

0
|f ′| dξ

)1/4
, f(∞) ∼ −mξ. (3.16a,b)

Recasting these equations in terms of the new set of variables

η = m1/5ξ, φ = m−4/5f, (3.17)

we obtain

4

5
(φ− ηφ′) =

−|φ′|
(∫ η

0
|φ′| dη

)1/4
, φ(∞) ∼ −η. (3.18a,b)

The new system above is independent ofm, implying that there exists a universal limiting
steep solution subject to scaling. This solution can be determined analytically (appendix
E) as

4

5
(−φ0)1/4η =

φ

φ0

∫ φ/φ0

1

χ−2

(χ− 1)1/4
dχ, (3.19)

where φ0 = −
(

5π/8
√
2
)4/5 ≈ −1.300 is the prefactor to the descent position. The

solution (3.19) is plotted in terms of the original similarity coordinates (ξ, f) as a
dashed blue curve in figure 6(a) where, at the scale shown, it effectively overlays the full
numerically determined solution shown as a solid black curve. The implied asymptote
for the descent position and sharpness prefactor (3.6) are therefore

f0 ∼ 1.300m4/5, Σ = 0.878m16/5, (3.20a,b)

respectively. The descent position (3.20a) is shown as a dashed black line in figure 3(b),
and matches the numerically determined prefactor for m → ∞. The result of (3.20b)
implies a rapid near cubic increase of the sharpness with the slope scale m3.2, implying
a particularly rapid increase in tip sharpness with the initial slope.
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Parabolic tip

Inner regin Inner-inner region

Figure 6. The asymptotic structure of the steep similarity solutions, as detailed in section 3.3,
shown for the illustrative steep case m = 5. The plots show, at different scales, the full numerical
solution to (3.4) (black solid curve). In panel (a), the inner solution (3.19) (dashed blue curve)
is compared alongside the full numerical solution at a large scale, illustrating the transition
over a region of O(m−1/5) from an outer region wherein the shape asymptotes towards the
initial profile to a region in which the shape assumes a 4/3-power. In panel (b), the full solution
is compared alongside the solution to the inner-inner (3.24) (red dotted curve). Through this
inner-inner sublayer, the profile transitions from the 4/3-power shape to a parabola on a scale

of O(m−16/5). The variable ∆f(ξ) = f(ξ) − f0 represents the shape of the body zeroed at the
tip, where f0 = f(0). In plotting the inner-inner solution, we have chosen to fix the reference
tip position f0 using the numerically determined solution, in order to show a clear comparison
between the near-tip shape of the inner-inner region and the numerical solution in panel (b).

According to (3.19), the shape near the tip is given by

φ ∼ φ0 −
(

− 3
5φ0η

)4/3
(η → 0), (3.21)

indicating a 4/3-power shape. The result of (3.21) implies infinite tip sharpness (φ′′(0) =
∞) and appears to conflict with the general property derived in section 2.2 that the tip
is parabolic. The discrepancy arises because the assumption of a steep slope (hx ≫ 1)
underlying (3.19) and (3.21) breaks down as η → 0 as the profile transitions to being
locally horizontal. Indeed (3.21) predicts that φ′ → 0 as η → 0, self-contradicting the
assumption that hx ≫ 1 that underlies it. The steep limit m→ ∞ is therefore singular.

3.3.1. Matching to the parabolic tip through an inner non-steep region

To resolve the conflict between (2.18) and (3.21), we consider an asymptotic sublayer
near the tip through which we allow the surface to be non-steep, |hx| ∼ 1. Let η ∼ ε(m)
denote the as-yet-undetermined horizontal extent of this non-steep sublayer. Recasting
the full similarity equation (3.4) in terms of the steep similarity variables (3.17), but now
retaining all the terms, we obtain

4

5
(φ− ηφ′) =

−|φ′(m−2 + φ′2)|1/3
(
∫ η

0

|φ′(m−2 + φ′2)|1/3 dη

)1/4
. (3.22)
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Here, the m−2 terms can be interpreted as the non-steep correction to the steep solution
(3.19), with these terms intervening wherever φ′ . m−1. Neglect of the m−2 terms in
(3.22) indeed recovers (3.18). To determine the size of the non-steep sublayer, we note
that the steep outer (3.21) predicts its own inconsistency once η ∼ m−3 ≡ ε. The relevant
inner-inner coordinate ζ and variable ψ can now be written down as

η = m−3ζ, φ = φ0 +m−4ψ(ζ), (3.23)

where the latter follows on considering where φ′ ∼ m−1. Substituting (3.23) into (3.22)
and neglecting higher-order terms, we obtain the inner-inner equation

4

5
φ0 =

−|ψ′(1 + ψ′2)|1/3
(

∫ ζ

0

|ψ′(1 + ψ′2)|1/3 dζ

)1/4
. (3.24)

The single neglected term in this inner equation compared to the full equation (3.22)
is the ηφ′ term. Thus, the solution undergoes an asymptotic transition from an outer
steep region that is simplified by neglect of the non-steep correction m−2, to an inner
non-steep region that is simplified by neglect of the ηφ′ term.
The solution to the inner (3.24) provides the universal form of a tip matching to a

steep body upstream. The solution to (3.24) for ψ(ζ) was determined numerically using
a modification of our numerical scheme used for (3.4). To illustrate the general asymptotic
structure, we show in figure 6, at two levels of magnification, the full numerical solution
to (3.4) for m = 5 (black solid curve), plotted in terms of the original similarity variables
(ξ, f). In panel (a), the full solution is compared alongside the inner solution (3.16) (blue
dashed curve). In panel (b), the full solution is compared with the inner solution to (3.24)
(red dotted curve). To provide an effective comparison of the near-tip shape in the inner-
inner region in panel (b), we set the height of the tip of the inner-inner solution to coincide
with that of our numerically determined value of f0. The plot shows the switch from the
intermediate 4/3-shape in the inner limit of the inner solution (3.19) to a parabola near
the tip. In terms of the original similarity variables, the size of the non-steep zone at the
tip, derived using (3.23) and (3.17), has equivalent horizontal and vertical dimensions
given by ξ ∼ m−16/5. The 4/3-power intermediate shape (3.21), applicable over the region
m−16/5 ≪ ξ ≪ m−1/5, is a factor of m3 larger than the parabola in ξ ≪ m−16/5.

4. Axisymmetric bodies

The dissolution of axisymmetric bodies is governed by different equations and produces
different similarity solutions. We define the surface of an axisymmetric body by z =
h(r, t), where r is the horizontal distance from the vertical axis of the body. The boundary-
layer equations describing axisymmetric natural convection read (Merk & Prins 1953)

∂(ru)

∂s
+
∂(rv)

∂y
= 0, (4.1)

ρ

(

u
∂u

∂s
+ v

∂u

∂y

)

=
∂

∂y

(

µ
∂u

∂y

)

+∆ρg sin[α(s, t)]C, (4.2)

u
∂C

∂s
+ v

∂C

∂y
=

∂

∂y

(

κ
∂C

∂y

)

, (4.3)
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Steep
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Figure 7. Similarity solutions describing the shape evolution of an initially axisymmetric conic
body, determined by numerically solving the ordinary integro-differential system (4.8). Panels (a)
and (c) show the solutions for the shallow case m = 0.2 and the steep case m = 5, respectively.
Panel (b) shows the general relationship between tip-descent prefactor |f0| and the slope m for
an initially conic body. The asymptotes in the limits of m → 0 and m → ∞ are shown as a
black dotted line and a black dashed line, respectively, as predicted by the reduced asymptotic
models derived in section 4. The locations of the examples in (a) and (c) are indicated by red
circles. The solutions are determined by numerically solving the ordinary integro-differential
system (4.8), forming the axisymmetric analogue of figure 3.

where the coordinate system (s, y) is defined similarly to that used for the two-
dimensional case, with s representing the arc length moving radially along the outside
of the body, and y the normal distance from the surface. The only difference between
these equations and those of (2.9)–(2.11) is the presence of r in (4.1). One interesting
implication is to introduce a new dependence of the boundary-layer system on the
surface profile within the governing boundary-layer system. Even for steep bodies, an
axisymmetric dissolution pattern depends on the shape profile and not only the tip
position, as applied in the two-dimensional case (3.15). The presence of r in (4.1) also
precludes the transformation of Acrivos (1960a) from eliminating the surface profile,
as was required to derive the dissolution pattern (2.15) (appendix C). However, it is
possible to transform the axisymmetric equations first onto a new system (Mangler
1948) that is equivalent in mathematical form to the two-dimensional equations. On
applying these transformations, and then recasting the surface mass diffusion rate back
in terms of the original variables (appendix F), the axisymmetric analogue of (2.14) is
determined as

q =
D(r sinα)1/3

(∫ s

0
(r4 sinα)1/3 ds

)1/4
, (4.4)
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derived in Acrivos (1960b). Compared to its two-dimensional analogue (2.14), this equa-
tion includes new dependences on the radial coordinate r representing the effects of radial
spreading.
Substituting (4.4) into (2.7), we obtain the new asymmetric model for shape evolution

ht =
−A|rhrs2r|1/3

(∫ r

0
|r4hrs2r|1/3 dr

)1/4
, sr =

√

1 + h2r, (4.5)

forming the axisymmetric version of (2.16). The structure of (4.5) is similar to the
two-dimensional equation (2.16), with the exception that it includes new factors of
r representing the effects of radial spreading. These new factors cancel in a scaling
sense, implying that all the fundamental similarity scalings discussed in section 3.1 are
preserved. Indeed, this could have been anticipated since the original introduction of r
in (4.1) did not introduce any new scalings into the problem. Although the presence of r
does not alter the fundamental temporal scales of evolution, it does alter the cross-section
shapes of the evolving body.
Repeating the analysis of the admissible tip shape and tip-descent rate conducted in

section 2.2 for the axisymmetric equation (4.5), we obtain the near-tip (r → 0) asymptotic
shape

h ∼ h0(t)− 1
2S(t)r

2. (4.6)

Thus, the shape of an axisymmetric tip dissolving under buoyancy is paraboloidal.
Moreover, we obtain the axisymmetric tip-descent law

∂h0
∂t

= −A
(

8

3
S(t)

)1/4

. (4.7)

The prefactor to the tip-descent law (4.7) is a factor of 21/4 ≈ 1.2 larger than that of the
corresponding two-dimensional result of (2.17), implying that axisymmetric tips dissolve
approximately 20% faster for the same cross-sectional tip curvature S(t).

To determine the shape functions of the axisymmetric similarity solutions, we recast
(4.5) in terms of the similarity variables, r = (At)4/5ξ and h(r, t) = (At)4/5f(ξ), giving

4

5
(f − ξf ′) =

−|ξf ′s′2|1/3
(

∫ ξ

0
|ξ4f ′s′2|1/3 dξ

)1/4
, f(∞) ∼ −mr, (4.8a,b)

forming the axisymmetric analogue of (3.4). We solve this equation using a modification
of the numerical scheme used for (3.4) to incorporate the new ξ terms. The resulting
shape functions for cones of initial slope m = 0.2 and 5 are shown in figure 7(a, c). The
shapes are qualitatively similar to those found for the two-dimensional solutions shown
in figure 3. The most appreciable difference is the alteration of the descent prefactor |f0|
shown in figure 7(b). The descent prefactor is, across the complete range of m, a near-
universal factor of ≈ 1.16 larger than those of the corresponding two-dimensional values
of |f0| shown in figure 3(b). Axisymmetric bodies thus dissolve approximately 16% faster
for the same slope scale m. The similarity form of the tip-descent law (4.7) is given by

Σ =
3

8

(

4

5
f0

)4

, (4.9)

which is one half the value of the two-dimensional analogue (3.7). Axisymmetric tips are
therefore half as sharp as two-dimensional tips with the same descent prefactor f0.
We develop shallow and steep asymptotic limits as follows. The limit of a shallow
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axisymmetric body (hr ≪ 1) yields

4

5
(f − ξf ′) =

−|ξf ′|1/3
(

∫ ξ

0
|ξ4f ′|1/3 dξ

)1/4
. (4.10)

Following the same rescaling of (3.11), we obtain φ0 ≈ −1.726. The associated asymptote
f = −1.726m2/5 is shown as a dotted line in figure 7(b), and accurately represents the
small-m limit for m < 0.5.
The corresponding similarity equation in the steep limit (hr ≫ 1) is given by

4

5
(f − ξf ′) =

−ξ|f ′|
(

∫ ξ

0
ξ4|f ′| dξ

)1/4
. (4.11)

Unlike the two-dimensional case, the steep axisymmetric model of (4.11) cannot be
integrated analytically. This is a reflection of the fact that the axisymmetric dissolution
pattern depends on the surface profile as a consequence of radial spreading from the tip.
Recasting (4.11) in terms of the scaled variables (3.17) and solving the resulting system
numerically, we obtain the universal steep solution applicable to an axisymmetric body.
The resulting prefactor is φ0 ≈ 1.505 and hence f0 ∼ 1.505m4/5, which is shown as a
dashed black line in figure 7. Trying a power-law solution of the form φ = φ0 + cηa in
(4.11) and taking the limit η → 0, we obtain

φ ∼ φ0 −
(

− 3
5
√
2
φ0η
)4/3

(η → 0), (4.12)

forming the modified axisymmetric analogue of (3.21). Thus, the shape of a steep
axisymmetric body also forms a 4/3-power in the lead-in to the tip with a slightly
modified prefactor. To resolve the transition to a parabolic tip with a finite sharpness
prefactor (3.20), one could construct the same kind of asymptotic framework as was done
in the two-dimensional case in section 3.3.1. The same essential scalings for the size of
the inner non-steep region arise, and thus we omit the analysis here for brevity.

5. Laboratory study

In order to test the predictions of our theoretical model, we conducted a series of
laboratory experiments. For this, we used bodies of solidified sugar (known as rock candy
or boiled sweets) immersed in freshwater, as illustrated schematically in figure 8 and as
a sequence of photographs in figure 9. The experiment was contained in a square-based
tank of length 62.5 cm, width 62.5 cm and height 61 cm. The tank was backlit using LED
light tape. The top of the tank was covered to suppress evaporative cooling. The water
temperature was measured during experiments using an alcohol thermometer inside the
tank. The temperature remained between 23 and 25 ◦C during each experiment.
The candy was made from an 8:3:2 volume mixture of sugar, corn syrup, and water,

and coloured using blue food dye. The mixture was heated to 150 ◦C, representing the
‘hard crack’ temperature at which the solution has crossed the glass transition and will
set as solid candy. The molten candy was then sand cast, using a plastic conic mould
and left to cool and harden.
In order to prevent the candy from moving or rocking over the course of the experiment,

the base of each cone was glued to a plastic dish (10 cm diameter) using silicone sealant.
The dish was rested on a raised stand 12 cm from the base of the tank for the relatively
shorter cones used for experiments A and B, and a piece of PVC to a height of 2.5 cm
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Figure 8. Schematic of our experimental apparatus, as described in section 5. An alcohol
thermometer was used to measure the temperature of the water inside the tank. The top of the
tank was covered to suppress evaporative cooling during experiments. Two stands were used to
raise the candy cone off the floor of the tank: the one illustrated in this figure was 12 cm high
and was used for the relatively shorter cones used for experiments A and B, whereas a stand
of 2.5 cm was used for the relatively taller cones used for experiments C and D. The stand was
used to create a space for the heavy solution to collect at the floor of the tank so that the candy
remains immersed in fresh ambient fluid.

Experiment m A (cm5/4 s−1)

A 5.78 (1.60 ± 0.04) ×10−4

B 10.77 (1.41 ± 0.05) ×10−4

C 12.33 (1.57 ± 0.05) ×10−4

D 17.62 (1.54 ± 0.33) ×10−4

Table 1. The initial slope m and convective strength A for each of our experiments. The bounds
on A represent twice the standard deviation of values of the set of values of A inferred over the
course of each experiment, as described in section 5 and illustrated in figure 10.

for the relatively taller cones used for experiments C and D. This was done in order
to provide a region below the base of the cone where dissolved sugar can collect, thus
suppressing the development of a stratification above the base of the cone that would
change the ambient conditions. The experiment was recorded using a camera facing the
front of the experimental tank with photographs taken at regular intervals of 30 seconds.
The convective strength A was estimated for each experiment by measuring the spatial

pattern of the rate of change of the surface position in the horizontal direction, Vr ≡
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Figure 9. Dissolution of a candy cone at 40-minute intervals, illustrating the descent of the
tip. The images are from experiment C, which had an initial slope of m = 12.3. A scale bar is
provided on the left, indicating descent rates of several cm per hour. A video of this experiment
is included as supplementary information.

|V · ex|. As illustrated for experiment C in figure 10, the profiles of Vr(z, t) collapse
together onto a curve that remains approximately steady in time. For a near-conic surface,
(4.4) predicts a dissolution pattern of the form

Vr = Ac [h0(t)− z]
−1/4

, (5.1)

where Ac satisfies

A =
(

3
7

)1/4
(sinα)

−3/2
Ac, (5.2)

and sinα = m/
√
1 +m2. The experimental value of A is inferred by fitting (5.1) to the

measured dissolution profiles. The resulting curve for experiment C is illustrated by the
black dashed curve in figure 10. The experimental dissolution patterns sampled at regular
time intervals show good agreement with the predicted pattern of (5.1). For each sampled
time, we obtained an empirical estimate of the prefactor Ac and hence the convective
strength A via (5.2). A single value of A for each experiment was evaluated by averaging
the sampled values. A slight variation in the value of A between different experiments
shown in table 1 was likely caused by slight differences in temperature, or an effect of
slight non-axisymmetry caused by some leaning of the cone.

5.1. Experimental results

We performed four experiments spanning initial cone slopes m from 5.8 to 17.6 and
convective strengths A from 1.4× 10−4 to 1.6× 10−4 cm5/4 s−1, as listed in table 1. Due
to small errors in alignment, the cones were angled slightly with respect to gravity (by
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Figure 10. The horizontal velocity of the surface of the candy, Vr, as a function of distance below
the tip (h0(t) − z) for a selection of sampled times over the course of experiment C (coloured
solid curves). The horizontal velocity was evaluated using the formula Vr(z) = ∆r/∆t, where
∆r(z) is the horizontal difference in surface profiles between the profiles at times t and t+∆t,
where ∆t = 5 min. The value of |Vr| is found for both the left and right side of the shape
separately and then averaged. The function (5.1) is fitted to each time with Ac and h0 treated
as fitting coefficients. The dashed line represents the curve produced by the mean value of the
values obtained from the individual sampled times, yielding the values listed in table 1.

< 1 degree). In order to correct for small variations in each experiment in the angle of the
cone with respect to the camera, the images were rotated by a small angle (around a 1
degree) such that the cone is oriented vertically in the frame of each image. A sequence of
images from experiment C are shown in figure 9, illustrating descent rates of a few cm per
hour. Videos of each of the four experiments are included as supplementary information.

The profiles of the solid boundaries were extracted digitally from the experimental
images using a thresholding method of the red channel of the RGB images. The evolution
of the extracted profiles is shown in the left-hand column of figure 11 with each row
representing a different experiment listed in table 1. The profiles are observed to produce
relatively smooth shapes that descend with time. In experiment D, a localised notch in
the side of the candy was found to grow and eventually cause the tip to break off, as
shown in figure 11(d). We believe this phenomenon to be associated with a localised
instability whereby a small notch in the side of the dissolving shape rapidly grows in
response to accelerated dissolution along the underside of the notch. This may be related
to the instability mechanism giving rise to pits on the underside of melting or dissolving
bodies (e.g. Vanier & Tien 1970; Kerr 1994; Mcleod et al. 1996; Sullivan et al. 1996;
Davies Wykes et al. 2018). Despite the emergence of this feature, we have nonetheless
retained this experiment to illustrate the phenomenon, as well as to show that the descent
of the tip is, before the notch extends across the width of the candy, largely unaffected
by its emergence.
Naturally, the initial experimental shapes were not perfect cones. In particular, exper-

iments B and D began with relatively blunted tips. To draw a fairer comparison between
experiments in view of these blunted tips, we chose the reference height z = 0 and time
origin t = 0 such as to be consistent with the assumed initial condition of the similarity
solution. For this, the location of z = 0 was set as the height of the intersection of
two lines fitted to either side of the initial shape, corresponding to the initial position
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Figure 11. Experimental results of dissolving candy cones. Successive rows represent
experiments A–D, as listed in table 1, corresponding to slopes of (a) m = 5.8, (b) m = 10.8, (c)
m = 12.3, and (d) m = 17.6. The left-hand column shows the evolution of the shape extracted
digitally from our recordings. The central column shows the same profiles in a coordinate
system in which the horizontal and vertical dimensions are each rescaled by t4/5. The right-hand
column shows the experimental tip position against time (circles) and the associated theoretical
prediction (5.3) (red solid line), where a time shift has been applied to account for the fact that
the initial shapes are not perfect cones. Insets in the right-hand column show the outlines of the
initial shapes for each experiment, illustrating the varying steepnesses.
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Figure 12. Collapse of the tip position from all four of our experiments onto a universal
curve. The experimental tip positions |h0(t)| (shown as symbols) are normalised by the quantity

|f0|A
4/5, where |f0| = 1.505m4/5, which, according to the theoretical prediction (5.3), should

collapse onto the universal curve t4/5 (shown as a black solid curve). A time shift has been
applied to each experiment to account for the fact that the initial shapes were not perfect cones.
An error estimate was evaluated as twice the error associated with the measurement of A (shown
in table 1). The error range was smaller than the sizes of the symbols, and has thus been omitted.

of the tip that would apply if the initial shapes were perfectly conic. To allow for small
variations between the time that the cones were placed in the tank and the time at which
the first images were taken, the time origin was selected by picking a single measurement
of the tip height h0 for each experiment and requiring that t = (h0/f0)

5/4/A. The time
chosen for this was 30 minutes after each experiment was initialised. Increasing this time
made no appreciable difference to the inferred time origin. The inferred time origins were
2 to 6 minutes before the first image was taken.
As an initial test, we examine whether the experimental shapes collapse onto a self-

similar shape on suitable stretching of the coordinates in terms of our similarity variables
(3.3). According to the theory, the shape evolves as

h(r, t) = (At)4/5f

(

r

(At)4/5

)

, (5.3)

where f(ξ) is a shape function determined theoretically in section 4. Therefore, if the
vertical and horizontal coordinates are both rescaled by t−4/5, the outlines of the body
should collapse to lie on top of one another. To test this collapse, we plotted the outlines
of the experimental shapes with the horizontal and vertical dimensions both scaled by
t4/5. As shown in the central column of figure 11, each outline collapses to excellent
approximation onto a shape that is fixed with respect to the rescaled coordinates. This
confirms the essential self-similarity predicted by the theory.
Next, we present direct comparisons between the theoretical prediction for the tip

evolution h0(t) and the experimental results. The theory of section 4 predicts that the
tip descends according to

h0(t) = f0(At)
4/5 = −1.505m4/5(At)4/5, (5.4)

where, in view of the steepness of our experiments (m > 5.8), we have in the second
equation used the prefactor that applies to the limiting steep theory (3.20a).
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Figure 13. Experimental profiles rescaled into similarity variables, ξ = (At)−4/5r and

f(ξ) = (At)−4/5h(r, t), for each of our experiments A to D. The theoretical prediction (5.3)
is shown as a dashed black curve in each case, with f(ξ) is determined by solving (4.8) using the
value of m relevant to each experiment. There is a generally good collapse of the experiments
onto the theoretically predicted self-similar shape. With the exception of the choice of time
origin, no adjustable parameters were used to formulate this comparison. The initial theoretical
shape is shown by the solid blue lines in each case.

The tip positions of each experiment inferred using the thresholding method are plotted
as functions of time in the right-hand column of figure 11. In each case, we have overlaid
the theoretical prediction of (5.3). Generally excellent agreement is observed. To test the
universal collapse of the solutions, we have plotted each of the tip evolutions together
in figure 12 in forms scaled by |f0|A4/5. According to the theoretical prediction of (5.3),
the curves should, under this rescaling, all collapse onto the universal curve t4/5. An
excellent general collapse of the experiments onto this curve is found. With the exception
of the choice of time origin used to account for the slightly non-conic initial shapes, no
adjustable parameters have been used in this comparison. The agreement indicates that
the general theoretical framework we have derived accurately captures the descent rates
of dissolving bodies. The self-similar shapes predicted by the axisymmetric theory from
section 4 are plotted alongside the collapsed profiles from each experiment A-D in the
respective panels of figure 13. Again, there is an excellent agreement between experiment
and theoretically predicted shapes.
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6. Summary and discussion

We have developed a model describing the dissolution and melting of solid bodies under
free convection that addresses the open question of the shapes formed by dissolving or
melting bodies in the case of gravitationally stable free convection, and validated the
predictions in the laboratory. Analysis of the model produces explicit predictions for
the rates at which melting or dissolving shapes recede. The model development and
demonstration of analytical approaches provides a basis for various generalisations of
the model to understand dissolving shapes in more complicated and naturally occurring
settings, a number of which will be discussed below. Our observed experimental shape
profiles collapse to excellent approximation onto a consistent theoretically derived descent
position and shape, giving confidence in the essential theoretical framework.
The models for both two-dimensional and axisymmetric bodies were derived by cou-

pling the boundary-layer equations describing stable free convection to an evolution
equation for the boundary. In the case of large-Sc number, the model was reduced further
to a single integro-differential equation. Analysis of this equation shows that bodies
comprised of intersecting planes or cones result in similarity solutions that ‘stretch’ in
both the horizontal and vertical dimensions as t4/5 with respect to the initial tip position.
A general relationship between tip sharpness and descent rate was derived, showing that
the tip is always parabolic sufficiently close to the tip and the descent rate is always
proportional to the tip curvature to the one-quarter power.

Differing reduced asymptotic descriptions of shallow (near-horizontal) and steep (near-
vertical) surfaces were derived. For shallow (near-horizontal) dissolving surfaces with
initial slope m, the limiting parabolic tip occupies the region x ≪ m−3/5(At)4/5. In the
limit m → 0, a full asymptotic description of the body surface h(x, t) as a whole was
derived (section 3.2), which is summarised by

(At)−1/5h(x, t) ∼











f0 − 0.75m8/5ξ2 ξ ≪ m−3/5,

m2/5φ(m3/5ξ) ξ = O(m−3/5),

−mξ ξ ≫ m−3/5,

(6.1)

where ξ = (At)−4/5x is a scaled x-position, f0 = −1.49m2/5, and φ is a universal
(parameter-free) function. Shallow bodies thus form a parabolic region that matches to
the initial shape far downstream over a length scale of order m−3/5(At)4/5.

For a steep body (m → ∞), the shape instead forms a more intricate double-decked
boundary layer structure containing both a parabolic and a 4/3-power near-tip region
(section 3.3). The full structure is summarised by

(At)−1/5h(x, t) ∼



































f0 − 0.44m16/5ξ2 ξ ≪ m−16/5,

f0 +m−16/5ψ(m16/5ξ) ξ = O(m−16/5),

f0 − 0.72m16/75ξ4/3 m−16/5 ≪ ξ ≪ m−1/5,

m4/5φ(m1/5ξ) ξ = O(m−1/5),

−mξ ξ ≫ m−1/5,

(6.2)

where f0 = −1.30m4/5, and ψ and φ are universal functions describing the inner-inner
and inner decks, respectively (the function φ here differs from that of (6.1)). The ‘very’
near-tip limit of the inner-inner region, defined by ξ ≪ m−16/5, forms a parabolic shape.
However, within the intermediate region between the inner and the inner-inner, the shape
forms a 4/3 power. The 4/3 region is considerably larger than the parabolic region (it is
a factor of order m3 larger). Thus, while there are two near-tip limits in the case of steep
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Figure 14. Shadowgraph image of dissolving candy cone. (a) A shadowgraph of experiment C
(m = 12.3), (b) a section near the top of the cone, where the boundary layer cannot be seen as
it remains laminar, and (c) shows a section lower down the cone, where intensity fluctuations
suggest that the boundary layer has transitioned to turbulence. The image forms a still from a
supplementary video, which illustrates the unsteadiness of the turbulent region.

bodies, the 4/3-shape applies over a much larger region, though the ultimate shape of
the tip at the finest scale is parabolic.
The model and its predictions apply generally to situations where the viscosity,

diffusivity and density are permitted to vary as any given functions of the concentration
(or temperature in the case of melting). Even for mixtures with order-of-magnitude
variations in fluid properties over the flow domain, the shapes produced are equivalent.
For example, the shape evolution for a melting block of ice is the same as that which
arises for a dissolving body of candy in water, despite the viscosity of the air remaining
approximately constant in the case of an ice cube, but the viscosity of candy solutions
varying by at least two orders of magnitude. The generality stems from a favourable
property of similarity solutions in free convection that allows the effects of concentration-
dependent properties to be encapsulated in the single parameter A. For this reason,
equivalent shapes would even arise for two-component effects of compositional convection
such as a block of ice melting in salty water, and for flows involving the reversal of
buoyancy.
While, as noted above, the results do generalise to fluids with strongly concentration-

dependent viscosity, one can question whether the generalisation applies for non-
Newtonian fluid with a shear-dependent viscosity. The situation may apply, for example,
to the case of a polymer dissolving under free convection into a solution with a different
concentration. It was determined by Acrivos (1960b) that a direct generalisation of the
result of (2.15) can be derived for power-law fluids. Therefore, a generalised form of
the high-Schmidt number reduction of our model of the shape evolution (2.16) could be
straightforwardly developed and analysed using the same techniques considered here. It
can be anticipated that the self-similar shapes and temporal exponents of the descent
rates associated with the similarity solutions would be altered.
The full model of (2.9)–(2.13) allows for the effects of inertia. However, our analysis

focused on the predictions of a reduced model applicable under high Schmidt (or Prandtl)
number, which affords the consideration of a purely viscous inner sublayer. The approx-
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imation of neglecting inertia in fact remains good even for Schmidt numbers of order
unity (Kuiken 1968), with only minor corrections to the thermal or mass transfer rates
(the adjustment from the Sc = ∞ case is just ≈ 20% for Sc = 1, for example). However,
for situations where inertia may be required as a leading-order term in the solutal layer
(e.g. for gases), the expression (2.15) can be anticipated to break down. In considering
this case, we note that retaining the inertial terms introduces one new scaling into the
system that is identical in form to the one already produced by scaling the advective
and diffusive terms in (2.11), namely, u/x ∼ ν/y2. Therefore, all the similarity scalings
we derived from the simplified high-Sc number models of (2.16) or (4.5) will also apply
generally with inertia, i.e. general Sc. While the similarity scalings for tip descent rates
would be preserved (e.g. h0 ∼ t4/5 for initially conic bodies), the introduction of inertia
will alter the evolving shapes. The shapes could be determined by transforming the
full model of (2.9)–(2.13) in terms of the similarity variables. The shape could then be
determined using a one-off solution of the resulting two-variable heat equation in (ξ, y).
Thus, similarity solutions still exist for general Sc, but require the consideration of a
two-variable system in (ξ, y), rather than the purely ordinary system of the form (3.4)
that applies in the large-Sc limit.
An overarching assumption in our analysis is that the boundary layer remains laminar.

If the boundary-layer flow becomes unstable and transitions to turbulence, the rates and
profiles of convective transfer at the interface will differ from what we have assumed. We
were surprised to find that this transition occurs even in the relatively viscous context
of our laboratory experiments, as shown in the shadowgraph of one of our experiments
in figure 14. Panel (c) illustrates the development of a regular pattern of convective rolls
which flow along the surface of the body, characterised by a much thicker boundary-layer
region compared to the laminar region shown in panel (b). Experiments of turbulent
composition free convection of ice melting into ambient salty water (Kerr & McConnochie
2015; McConnochie & Kerr 2018) indicate that the rate of heat or solutal transfer in this
regime becomes independent of the distance moved downstream of the body, but still
depends on the local slope. It is anticipated that an evolution equation analogous to the
kind we have developed (2.16) could be derived to couple a transfer law applicable to
turbulent free convection to the shape evolution and analysed to derive shape evolutions
in this case. The result would likely reveal different shapes and descent laws to those we
have reported here. Recent research has also considered the different turbulent regime of
a plume flowing along the underside of an ice shelf and maintained by a constant source
of buoyancy at the grounding line by an input of relatively fresh subglacial discharge (e.g.
Dallaston et al. 2015; Slater et al. 2017; Hewitt 2020). This regime differs in being driven
by the introduced buoyancy flux as opposed to the cooling by the wall, but similarly
results in the potential for interplay between buoyancy-driven flow and shape evolution.

We speculate that an adaptation of the model could be developed to describe the
evolution of solidifying bodies under free convection. A situation of this kind has been
used to model the growth of icicles (Makkonen 1988; Short et al. 2006; Camporeale
& Ridolfi 2012). In this situation, a thin film introduced at the top of the icicle flows
down along its exterior and freezes at a spatially variable rate controlled by an upwelling
convective boundary layer generated by latent heating (Makkonen 1988). By imposing
a constraint that the shape of the growing icicle remains preserved, Short et al. (2006)
derive a solution that asymptotes to a 4/3-power shape far away from the tip. This
form of shape is interpreted as a far-field asymptote in this case, contrasting with our
prediction of (4.12) that a 4/3-power shape applies in a limit close to the tip. Analysis
of the formation of dendrites in the (non-fluid-mechanical) context of a two-dimensional
solid solidifying into an ambient under thermal diffusion has revealed the development
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of parabolic solutions (Nash & Glicksman 1979; Ivantsov 1985). Similarity with the
parabolic regimes we identity appears to be incidental because the formation of the
parabola in the context of our results is due to an inherent fluid-mechanical property
of free-convective boundary layers that the parabola is the unique shape for which the
boundary layer predicts a locally smooth recession rate. In principle, our model could be
adapted to describe a solidifying body under free convection, and would likely require
additional physics such as surface tension in order to suppress morphological instabilities.

The model we have considered has focused on the case of a purely free-convective
(buoyancy-driven) boundary layer. We have neglected any effect of an externally imposed
flow, i.e. forced convection, which has been investigated by others (Moore et al. 2013;
Moore 2017; Huang et al. 2015). In many naturally occurring problems involving melting
bodies, such as icebergs (e.g. FitzMaurice et al. 2017), it can be anticipated that a
mixture of forced convection and natural convection can both contribute. Our analysis
has addressed one limit of this spectrum. Future theoretical work could consider the
extension to allow for mixed (forced and free) convection, potentially with the two acting
in differing directions on the body (as considered experimentally by Hao & Tao 2001,
2002). For the context of the shaping of rock spires, the buoyancy-driven dissolution
may take the form of a thin-layer flow fed at a constant flux (rainfall) over the surface.
This situation creates a buoyancy-driven gravity current over the surface fed by source
conditions, a case which could be addressed within the analytical framework developed
here.

Finally, we note that the analysis of the theoretical model developed in this paper
has focused on situations where the initial shape is conic or formed by two intersecting
planes. These cases result in special t4/5 similarity solutions for all time. For more general
bodies, a rich variety of regime transitions in the temporal exponents of tip descent rates,
occur. This includes the case of initially rectangular bodies, as is representative of the
initial shape of ice bergs or ice cubes. These broader themes, including the determination
of the intrinsic scales of melting or dissolution of such bodies, will form the focus of our
companion paper (Pegler & Davies Wykes 2020).

The authors thank the directors of the Woods Hole Oceanographic Institute Geophysical
Fluid Dynamics Program in 2019 for supporting us as staff members during this work. We
are grateful to Dr Claudia Cenedese for use the Geophysical Fluid Dynamics Laboratory
to conduct our experiments, to Anders Jensen for helping to set them up, and to Ann
Newbury for use of her kitchen to prepare the candy samples.

Appendix A. Latent heating

As a solid dissolves, chemical energy is transferred to heat energy (or vice versa) as
a consequence of the new chemical arrangement produced by solvation. The result is
an exothermic or endothermic reaction that can produce latent heating or cooling. In
principle, this heating can affect the dynamics by changing the saturation concentration
Csat, buoyancy force and/or viscosity. To check the significance of these effects, we derive
a formula for the maximal temperature change arising from the dissolution. To this end,
we introduce the energy equation for the evolution of temperature,

u
∂T

∂s
+ v

∂T

∂y
=

∂

∂y

(

κT
∂T

∂y

)

, (A 1)
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where κT is the thermal diffusivity. To model the latent heating, we apply the condition

−κT
∂T

∂y
=

Q

cpρl
= Λ

(

−κ∂C
∂y

)

(y = 0), (A 2)

where Q is the flux of heat per unit area produced through latent heating, cp is the
specific heat capacity of the fluid, ρl is the density of the fluid, and Λ is a conversion
factor between temperature flux and concentration flux. In writing the condition above,
we have assumed that all the latent heat is inputted into the fluid, which is consistent
with assuming that the heat has spread and equilibrated laterally through the solid. To
derive the second equality in (A 2) and evaluate Λ, we note first that the heat released per
unit volume of dissolved solid can be evaluated as Hρs/M , where H (J/mol) is the energy
released per unit mol of sugar dissolved, M (g/mol) is the molar mass of sugar, and ρs
is the density of solid sugar. The dissolving surface recedes at the speed V and hence
the heat flux per unit area of the interface is Q = V Hρs/M . Combining this equation
with (2.4) and (A 2), we obtain Λ ≡ H/Mcp(Ci − Cs). For the values corresponding to
sucrose and water, H ≈ 16.9 kJ/mol (Mathlouthi & Reiser 2012), M ≈ 342 g/mol, and
cp ≈ 4.18 J/gK (Haynes 2016), we evaluate the conversion parameter to be Λ ≈ 36 K.
As a check on the self-consistency of assuming that latent heating is negligible, we

derive here an approximation for the wall temperature increase under the assumption
that the flow rate is represented by the streamfunction F (η) predicted by the solutal
system of (C 5)–(C 6). Let T = (CiΛ)ϑ define a dimensionless temperature ϑ. Recasting
(A 1) and (A 2) in terms of (C 4), we obtain

−Fϑ′ = ε−1ϑ′′, ϑ′(0) = εφ′(0), (A 3a,b)

where ε ≡ κ/κT is the inverse of the Lewis number. Values ranging from ε ≈ 10−4 to
10−3 apply to sugar solutions at room temperature (Mohos 2010; Haynes 2016).

For ε → 0, the solutal layer is considerably smaller than the thermal layer. Thus, we
assume that the thermal advection is driven to good approximation by the far-field of the
solutal layer governed by (C 5)–(C 6). Let F ∼ F0+Uη denote the far-field streamfunction
predicted by these equations. For B = 0 and constant µ and κ, F0 ≈ −0.730 and
U ≈ 1.021, for example. The solution to (A 3a) subject to (A 3b) and ϑ(∞) = 0 can then
be determined in the form

ϑ = −φ′(0)
√

πε

2U
exp

(

F 2
0 ε

2U

)

erfc

[

√

Uε

2

(

η +
F0

U

)

]

. (A 4)

Evaluating this expression at the wall, η = 0, retaining only leading-order terms in the
limit ε→ 0, and reverting to the dimensional temperature, we obtain the prediction for
the increase in the wall temperature due to latent heating as

Ts = Ω
√
εCsΛ, (A 5)

where Ω ≡ −φ′(0)
√

π/2U is a dimensionless prefactor determined from the solution to
(C 5)–(C 6). For example, Ω = 0.62 for the case of constant fluid properties and B = 0.
Using values of κ for candy solution ranging from a dilute to a fully saturated solution,
the increase in wall temperature relative to the far field is predicted to be at most
Ts ≈ 0.8 K. This increase has a negligible effect on the saturation concentration Csat

(the change is approximately 0.2%), confirming that the assumption of constant Ci in
(2.2) is reasonable. The density change of water due to thermal expansion from 20 to 20.8
◦C is less than 0.1% of the density change between water and saturated sucrose solution,
indicating that concentration differences provide the dominant control of buoyancy.
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Appendix B. Gradient versus slope control in free convection

This appendix presents a general model of a solutal (or thermal) boundary layer that
can account simultaneously for the along-slope component of buoyancy and horizontal
gradients in hydrostatic pressure. The model thus allows for intermediate situations
arising on mild slopes for which these contributions can both be significant. We use the
model to derive an intrinsic length scale on which a transition between the contributions
occurs. To this end, we write down the generalised boundary-layer system

∂u

∂s
+
∂v

∂y
= 0 (B 1)

ρ

(

u
∂u

∂s
+ v

∂u

∂y

)

= −∂p
∂s

+
∂

∂y

(

µ
∂u

∂y

)

+ ρg sinα (B 2)

∂p

∂y
= −ρg cosα (B 3)

u
∂C

∂s
+ v

∂C

∂y
=

∂

∂y

(

κ
∂C

∂y

)

, (B 4)

where p is pressure, which retains the pressure gradient and gravitational forces in
(B 2), as appear in the full Navier-Stokes equations (Stewartson 1958). The model
above requires the same assumptions of quasi-steadiness and sufficiently low curvature
as underlies the model of (2.9)–(2.11). Using (2.1) to substitute ρ in favour for the
concentration field C in (B 3) and then integrating this equation with respect to a
reference far-field background pressure p = p0 at level z = z0, we obtain the hydrostatic
pressure

p = p0 − ρ0g[y − y0(s)] cosα−∆ρsg cosα

∫ y

y0(s)

C(s, ỹ) dỹ, (B 5)

where y0(s) ≡ z0/ sinα. Since we are only concerned here with the boundary-layer
dynamics, we notationally omit the t dependences of variables in this appendix. On
using (2.1) to substitute for ρ in (B 2) and using (B 5) to substitute for p we obtain, on
simplification, the generalised momentum equation

ρ

(

u
∂u

∂s
+ v

∂u

∂y

)

=
∂

∂y

(

µ
∂u

∂y

)

+∆ρsg

[

(sinα)C + cosα
∂

∂s

∫ y

y0(s)

C(s, ỹ) dỹ

]

, (B 6)

where we have cancelled the terms depending on the background density ρ0 and neglected
terms of order αsy ≪ 1 under the thin-flow assumption. Equation (B 6) contains a new
term compared to (2.10) representing the gradient in weight of fluid columns above
any given position. Flows driven independently by this gradient have been considered
previously in the context of horizontal thermal boundary layers (e.g. Stewartson 1958;
Neufeld et al. 2010) and stratified gravity currents (Pegler et al. 2016).
For non-horizontal substrates, we anticipate the gradient terms to drive the flow in a

region near the top of the dissolving or heated wall (i.e. the tip of a dissolving body), and
transition to a region dominated by the along-slope term sufficiently far downstream. The
first of these regions, referred to as the gradient-driven region, will arise first because the
concentration gradients are relatively large near the origin of the boundary layer, whilst
the along-slope component of gravity is zero. As the aspect ratio of the boundary layer
becomes more slender, along-flow gradients will reduce and the along-slope contribution
to buoyancy will begin to dominate, forming the slope-driven region (see figure 15).
A scaling relationship formed from the two terms comprising the buoyancy force in

(B 6) indicates that these two contributions are comparable if y ∼ xhx. The scaling
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z = h(x, t)

x

Gradient-driven zone

Slope-driven zone

z

x = 0

L

δ

Figure 15. Schematic illustrating the transition between the gradient-driven zone and the
slope-driven zone of a free-convective boundary layer over the length scale L derived in appendix
B, shown for an illustrative parabolic surface (n = 2).

between the viscous and buoyancy forces in (B 6) yields µu ∼ ∆ρgCihxy
2. The further

balance between advection and diffusion in (B 4) yields u ∼ κx/y2. Eliminating u from
these last two scalings, we obtain

µκx ∼ ∆ρghxCiy
4. (B 7)

Using the scaling of y ∼ xhx to eliminate y in (B 7), we obtain

h5xx
3 ∼ νκ

Cig′
≡ L3

∗, (B 8)

where g′ ≡ (∆ρs/ρ)g and ν ≡ µ/ρ. We note in passing that L∗ ≡ (νκ/Cig
′)1/3 is the

unique intrinsic horizontal length scale arising in Rayleigh-Bénard convection giving, up
to a dimensionless prefactor, the wavelength on which convective fingers form at a heated
or cooled boundary (Bejan 2013). It has arisen here because the set of scalings involving
viscous, advective, diffusive and buoyant terms is equivalent. However, a new factor of
hx has emerged here owing to the slope dependence of the buoyancy force.
To allow for a range of surface slopes, we let h = −cnxn, where cn and n are constants.

Substituting the implied scaling hx ∼ cnx
n−1 in (B 8) and rearranging, we obtain

x ∼
(

L3
∗c

−5
n

)

1
5n−2 ≡ L, (B 9)

providing the unique intrinsic length scale emerging from scaling to characterise the
transition between a gradient-driven region and a slope-driven region. The case of (B 9)
for n = 1 has been derived by Stewartson (1958). For sharp concave shapes with n < 2/5,
we anticipate that the transition between along-slope control and gradient control is
reversed, with a similarity solution applying for all time if n = 2/5 (a mathematically
analogous switch arises for gravity currents on topography; Pegler et al. 2013).

Appendix C. Dissolution profiles for arbitrary two-dimensional

bodies under stable free convection

This appendix develops the expression (2.15) describing the dissolution pattern due
to steady natural-convective two-dimensional boundary layer of arbitrary shape at high
Schmidt number. The result has been derived previously by Acrivos (1960a). The review
here is conducted in particular to emphasise the generality of the result in applying
for fluids of general dependences of density, viscosity and diffusivity on concentration,
and to illustrate how these dependences become encapsulated within a single parameter,
referred to as A. Let us define dimensionless forms of the functions relating viscosity and
diffusivity to concentration by

µ = µ∞µ̂(φ), κ = κ∞κ̂(φ), (C 1)
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where µ∞ and κ∞ are the viscosity and diffusivity of the solvent in its pure form (so
that µ̂(0) = 1 and κ̂(0) = 1 without loss of generality), and φ ≡ C/Ci is a normalised
concentration. The inertialess momentum equation (2.10) can then be written

0 =
∂

∂y

(

µ̂(φ)
∂u

∂y

)

+

(

∆ρsgCi

µ∞

)

sin[α(s)]φ, (C 2)

We have here notationally omitted t arguments, as we are concerned here only with
the quasi-steady boundary-layer system. In a high-Sc boundary layer, the flow separates
into an inner low-Re region, in which a balance between viscous stresses and buoyancy
applies in accordance with (C 2), and a much larger outer region, in which the velocity
decays to zero to satisfy (2.13) under a balance between viscous and inertial forces. In
this situation, one can focus on the analysis of the inner region and apply the matching
no-stress condition (Morgan & Warner 1956; Acrivos 1960a,b, 1962; Kuiken 1968),

∂u

∂y
→ 0, as y → ∞. (C 3)

The condition of far-field stagnancy (2.13b) is not imposed on the inertialess inner region,
which is instead satisfied by the inertio-viscous outer region.

Since the flow is incompressible, we introduce the streamfunction ψ(s, y) defined such
that u = ψy and v = −ψs. Let us transform the system given by (2.9), (2.11) and (C 2)
in terms of the new variables (Acrivos 1960a)

η = G(s)1/3
(
∫ s

0

G(s)1/3 ds

)−
1
4
y, F (η) =

1

κ∞

(
∫ s

0

G(s)1/3 ds

)−
3
4
ψ,(C 4a,b)

where G(s) ≡ G∗ sin[α(s)] and G∗ ≡ ∆ρsgCi/κ∞µ∞. The momentum equation (C 2)
and solute transport equation (2.11) become (using primes to denote d/dη)

0 = [µ̂(φ)F ′′]′ + φ, −Fφ′ = [κ̂(φ)φ′]′, (C 5a,b)

respectively. Conditions (2.2), (2.12a, b) and (2.13a) and (C 3) become

φ(0) = 1, F (0) = Bφ′(0), F ′(0) = 0, φ(∞) = 0, F ′′(∞) = 0. (C 6)

where B = (4/3)(κi/κ∞)Ci/(1 − Ci) is a dimensionless parameter. The transformation
has rendered the boundary-layer system entirely free of h(x). The reduced system is
equivalent to the similarity equations describing free convection along a vertical wall
(Ostrach 1953). By recasting the dimensionless solution to (C 5)–(C 6) back in terms
of the original variables, we develop expressions for properties of natural-convective
boundary layers that apply for arbitrary shape profiles h(x). In terms of the transformed
variables, the pattern of the dissolution rate along the boundary (2.3) can be determined
as

q = −κi
∂C

∂y
=

γκiCiG(s)
1/3

[∫ s

0
G(s)1/3 ds

]1/4
=

D(sinα)1/3

[∫ s

0
(sinα)1/3 ds

]1/4
, (C 7)

where D = γκiCiG
1/4
∗ and γ ≡ −φ′(0) is the dimensionless flux of solute mass,

determined by solving (C 5)–(C 6). For example, γ ≈ 0.5027 for the case of constant
properties, µ̂ ≡ κ̂ ≡ 1, and B ≈ 0 (obtained using a shooting method in which
φ(0), F (0) and F ′(0) are imposed using (C 7), and φ′(0) and F ′′(0) are treated as shooting
parameters). On using (C 7) to evaluate q in (2.3), we obtain the required result of (2.15).
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C.1. Scalings for velocity, interface flux and boundary-layer thickness

Here, we develop expressions for the velocity and thickness of the boundary-layer
flow, which are used in sections 2.2 and 2.3. By combining (C 4a, b), one determines the
longitudinal velocity field as

u =
∂ψ

∂y
= κ∞G

1/3

(
∫ s

0

G(s)1/3 ds

)

1
2
ψ′(η) (C 8)

For a shallow body (α ≪ 1), the arc length can be approximated by the horizontal
coordinate, s ≈ x. For the case of a shallow body described by a power-law height profile
h = −cxn, (C 8), (C 7) and (C 4a) yield the scalings for the velocity, solutal flux and
boundary-layer thickness,

u ∼ κ∞(cG∗x
n)1/2, q ∼ Dc1/4x(n−2)/4, δ ∼

(

cG∗x
−(n−2)

)1/4

, (C 9)

respectively. For a general steep body (α ≈ π/2), the corresponding results are

u ∼ κ∞(−G∗z)
1/2, q ∼ D(−z)1/4, δ ∼ G

−1/4
∗ (−z)1/4. (C 10)

Appendix D. Numerical scheme for solving the full model

We solved (2.16) numerically using an explicit second-order upwind finite-difference
scheme. It should be noted that ‘upwind’ refers here to the characteristics of the evolution
equation (2.16), as opposed to the flow itself. To determine the direction of propagation
of the characteristics, we write (2.16) in the canonical form

(

∂

∂t
+ uc

∂

∂x

)

h = 0, where uc ≡ −∂h
∂t

/

∂h

∂x
(D 1a,b)

is the velocity of the characteristics. Since ∂h/∂t < 0 in accordance with (2.16), it
follows that sgn (uc) = sgn (hx) < 0. Thus, the characteristics propagate in the negative
x direction, which is indeed against the flow. This can be understood by noting that
dissolution causes the shape to recede inwards, i.e. the negative x-direction.
Let H denote the initial height of the body, with z = −H denoting the rigid surface

on which it rests. Let xB(t) denote the horizontal position of the base of the dissolving
body, where the vertical extent of the body vanishes,

h(xB(t), t) = −H. (D 2)

Like the tip of the body, the horizontal extent of the base xB(t) will also evolve.
Differentiating (D 2) with respect to time, we obtain the evolution equation fir the base
of the body

ẋB = −∂h
∂t

/

∂h

∂x
at x = xB(t), (D 3)

where the numerator can be determined using (2.16). One approach to model the
evolution of the base of the body numerically would be to recast the system in terms of
the new spatial coordinate X = x/xB(t), and evolve the basal front according to (D 3).
In this method, the numerical domain would correspond precisely to the domain of the
body. Alternatively, one can work with a fixed domain, and simply treat the thickness
exterior to the base of the body as zero, so h = −H for x > xB(t). For this, we let xi
denote a fixed, equally-spaced spatial grid of nodes, where 1 6 i 6 N , with x1 = 0.
Let tn denote the set of temporal nodes. Let hni ≡ h(xi, tn). Within this interpretation,
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xB(t) can be defined numerically as the first node, denoted i = B, at which the vertical
depth of the body, (H + h), is first non-zero as one moves leftwards from the rightmost
node. Numerically, the thickness of the body to the right of this node can simply be
treated as equal to zero (h = −H). According to (2.16), ∂h/∂t = 0 if ∂h/∂x = 0 and
hence the numerical representation of the height variable in the region xB(t) < x < xN
remains uniformly fixed at zero vertical thickness (h = −H). Indeed, this is analogous
to how viscous gravity currents (and similar free-boundary problems) can be represented
numerically on a fixed grid of nodes. Likewise, the domain is separated between a region
containing the current and a region of zero thickness downstream of the nose. In the
present context of our dissolving body, an alternative physical interpretation is that the
region x > xB(t) forms a horizontal surface z = −H of the same material comprising
the dissolving body, and the region x < xB(t) forms a localised protrusion from this
otherwise horizontal surface.
Due to its ease, we apply the method of a fixed numerical domain described above. We

choose the spatial domain [0, xN ] to be at least as large as is necessary to fit our initial
shape, and discretise the time derivative in (2.16) using forwards Euler,

∂h

∂t
=











hn+1
i − hni
δt

+O(δt) (1 6 i 6 N − 1),

0 (i = N).

(D 4)

The rate of change of the final node is here specified as zero, so as to ensure that
the vertical thickness of the body outside its base is prescribed numerically as zero,
as discussed above. As an aside, we note that, since we are only interested in the model
prediction within the domain of the body, x < xB(t), in fact any non-positive prescription
of ∂h/∂t at the final numerical node i = N results in the same prediction inside the body
x < xB(t) where h > −H. This independence applies because once the surface descends
below any given height level, it no longer influences the evolution of the shape above that
level. The spatial derivatives were approximated using a second-order upwind scheme,

∂h

∂x
=















−3hni + 4hni+1 − hni+2

2δx
+O(δx2). (1 6 i 6 N − 2)

−hni + hni+1

δx
+O(δx) (i = N − 1)

(D 5)

As specified here, a first-order discretisation was used for node i = N − 1 only. No
spatial discretisation was necessary at i = N , where h remains fixed in accordance with
(D 4). Second-order spatial discretisation was found to be required in order to yield
good accuracy to long times. Having approximated ∂h/∂x using (D 5), the integral in
(2.16) was evaluated using Simpson’s rule. The accuracy and convergence of the solver
was verified by comparison with the similarity solutions calculated in section 3, showing
convergence with spatial and temporal resolution. For our computations, we used N >

1000 and δt < 10−4.

Appendix E. Analytical solution for the steep similarity solution

This appendix derives the analytical solution to (3.18) given by (3.19). First, we apply
a transformation that switches the dependent and independent variable, defined by ζ =
φ(η), and X(ζ) = η. The transformed form of (3.18) is

4
5 (ζX

′ −X) = (φ0 − ζ)−1/4 (E 1)
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Multiplying by the integrating factor ζ−2 and forming the exact differential, we obtain

4

5

(

ζ−1X
)′

=
ζ−2

(φ0 − ζ)1/4
. (E 2)

On integration subject to the condition X(φ0) = 0, we obtain

4

5
X = ζ

∫ ζ

φ0

ζ−2

(φ0 − ζ)1/4
dζ. (E 3)

Changing the integration variable to χ = ζ/φ0 and reverting to the variables (η, φ), we
obtain (3.19).

Appendix F. Dissolution profiles for axisymmetric bodies

This appendix reviews the development of the expression for the dissolution pattern
created by natural convection along the exterior of an axisymmetric body of arbitrary
shape (4.4) derived previously by Acrivos (1960b). Owing to the presence of r in (4.1),
it should be noted that the transform applied in the two-dimensional case in appendix
C (Acrivos 1960a) fails to eliminate h(r, t) from the system, at least directly. However,
we can first apply a transformation of the axisymmetric boundary-layer equations that
renders them equivalent in mathematical form to the two-dimensional equations (2.9)–
(2.11) (Mangler 1948; Acrivos 1960b).

Let (s, y, u, v, C) denote the axisymmetric variables used in (4.1)–(4.3). Let

s̃ =

∫ s

0

r2 ds, ỹ = ry, ũ = u, ṽ =
1

r

(

v +
yu

rsr

)

, C̃ = C. (F 1)

In terms of these new variables, (4.1)–(4.3) transform to

∂ũ

∂s̃
+
∂ṽ

∂ỹ
= 0, (F 2)

ρ

(

ũ
∂ũ

∂s̃
+ ṽ

∂ũ

∂ỹ

)

=
∂

∂ỹ

(

µ
∂ũ

∂ỹ

)

+
∆ρg sin[α(s, t)]

r2
C̃, (F 3)

ũ
∂C̃

∂s̃
+ ṽ

∂C̃

∂ỹ
=

∂

∂ỹ

(

κ
∂C̃

∂ỹ

)

. (F 4)

These equations are identical to (2.9)–(2.11) except with sinα replaced by r−2 sinα.
Applying the result of appendix C to (4.1)–(4.3) with the r−2 included, we obtain

−κs
∂C̃

∂ỹ
=

D(r−2 sinα)1/3

[∫ s

0
(r−2 sinα)1/3 ds̃

]1/4
, (F 5)

where the coefficient D is defined following (C 7). Recasting (F 5) in terms of the original
variables, with use of ds̃ = r2 ds to transform the integration variable, the mass flux
along the boundary is determined as (Acrivos 1960b)

q = −κs
∂C

∂y
= r

(

−κs
∂C̃

∂ỹ

)

=
D(r sinα)1/3

[∫ s

0
(r4 sinα)1/3 ds

]1/4
. (F 6)

yielding the required relationship (4.4).
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