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ABSTRACT

We use an extended version of the well-established Crepon, Duguet, and
Mairesse model [1998. “Research, Innovation and Productivity: An
Econometric Analysis at the Firm Level.” Economics of Innovation and
New Technology 7 (2): 115–158] to model the relationship between
appropriability mechanisms, innovation, and firm-level productivity. We
enrich this model in three ways: (1) We compare estimates obtained
using a broader definition of innovation spending to those that use R&D
spending. (2) We assume that a firm simultaneously innovates and
chooses among different appropriability methods to protect the
innovation. (3) We estimate the impact of innovation output on firm
productivity conditional on the choice of appropriability mechanism. We
find that firms that innovate and rate formal methods for the protection
of intellectual property highly are more productive than other firms, but
that the same does not hold in the case of informal methods of
protection, except possibly for large firms as opposed to SMEs. We also
find that this result is strongest for firms in the services, trade, and utility
sectors, and negative in the manufacturing sector.
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1. Introduction

Innovation is the engine of long-run growth. However, innovation does not flourish in isolation, but it

is the result of the interactions among firms, policy-makers, and the institutions that shape the

environment where firms innovate. Among the institutions that matter for innovation, the legal

system for the protection of the intellectual property (IP) has a prominent role and unsurprisingly,

its design has been one of the main concerns of the innovation and technology policy across the

world. A welfare-enhancing legal system for the protection of the IP has to balance different require-

ments (Nordhaus 1969). On the one hand, it has to allow inventors to benefit from their investment

by letting them appropriate some of the returns from their inventions. On the other hand, it has to do

so in such a way that the social costs associated with the creation of a (possibly short-term) legal mon-

opoly are minimised while not hindering the diffusion of the newly created knowledge across the

economic system (Levin et al. 1987; Gallini 2002; Kultti, Takalo, and Toikka 2007).

Most of the policy and academic debate around the benefits and the social costs associated with

the existence of a legal system for the protection of a firm’s IP has revolved around patents (Boldrin

and Levine 2013; Moser 2013). In reality, patents are just one of the instruments that the legal system

offers to firms to protect their IP. Other mechanisms for appropriating the returns to knowledge
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assets include formal methods (trademarks, copyrights, and design rights) and informal methods

(secrecy, lead time, confidentiality agreements, and complexity). In fact, survey evidence finds that

firms do not consider patents the most effective appropriation mechanism. In two seminal papers

in this area, Levin et al. (1987) and Cohen, Nelson, and Walsh (2000) find that informal methods

(lead time and secrecy) are considered by US manufacturing firms to be more effective than

patents for the protection of their IP. In addition, Cohen, Nelson, and Walsh (2000) find that

patents are mostly used for strategic reasons. More recent data from the UK Community Innovation

Survey (CIS) show that the share of firms patenting among innovators is around 4% (Hall et al. 2013).

The implication is that any analysis on the relationship among appropriability mechanisms, inno-

vation, and firm-level performance needs to take into account two main issues: (a) formal and infor-

mal appropriability mechanisms are not mutually exclusive and firms can use both at the same time

and (b) the choice of the appropriability mechanisms (be it formal or informal) is correlated with the

type and quality of innovation. Thus, understanding how IP protection can foster innovation and

boost firm performance needs to control for the type of innovations (e.g. product versus process)

as well as their quality where possible.

This paper builds upon the existing literature on the choice of the appropriability mechanisms and

its impact on firm-level innovation and productivity. At the same time, it innovates in two ways: first,

we explicitly model the emphasis firms place on formal and informal appropriability mechanisms and

we test the extent to which this emphasis is correlated with the type of innovation, conditional on

other firm characteristics. Second, we explore the relationship between firm performance and inno-

vation conditional on the firm’s preferred appropriability mechanisms.

Modelling the relationship between firm productivity, innovation, and appropriability mechanisms

presents a set of challenges, especially given the nature of the cross-sectional data available to us.

First, there is the issue of timing. We assume here that the firms that are in the process of developing

new products or new processes simultaneously decide whether to use formal or formal IP methods to

protect the intellectual capital attached to the associated inventions. Following the innovation and

choice of protection mechanism, we observe changes in firm performance due to the innovation

that are mediated by the chosen protection mechanism.

Second, there may be a reverse causality relationship between innovation output and pro-

ductivity; indeed it well may be that more productive firms may opt for formal IP methods (in par-

ticular, patents) as this may, for example, signal its profitability and long-term viability to investors

(e.g. Hottenrott, Hall, and Czarnitzki 2016). We are able to address this issue by using data on inno-

vation and IP methods that are collected prior to the year in which performance (productivity) is

measured, under the assumption that the production of innovation and the choice of the IP

methods precede output temporally. This does not solve the problem of simultaneity induced by per-

manent unobservable differences in innovative capacity and output across firms, but it does mitigate

any bias arising from transitory effects. Given the fact that the panel structure of our data is very

sparse, we cannot do much better than this.

Our analysis is based on a new firm-level data set for the UK that combines information from a

range of different sources. We merge three waves of the UK Community Innovation survey (CIS 3,

4, and 5) to the Annual Respondents Database 2 (ARD2) and the Business Strategy Database

(BSD), which have information on firms’ inputs and outputs. To reduce endogeneity bias in the pro-

duction function, we use productivity data from the year after the innovation and R&D data. That is,

we merge each wave of the CIS with the subsequent period ARD information (i.e. data from CIS 4

pertaining to 2002–2004 are matched to the 2005 ARD, etc.). The resulting data set contains not

only detailed information on firms’ self-reported innovation activities from the UKCIS, but also

measures of firm inputs and outputs that allow estimation of the production function.

Only 40% of our sample of firms is in manufacturing, with the remainder in services, utilities, trade,

and construction. Innovation in these sectors may be quite different from innovation in manufactur-

ing, relying less on R&D and more on the introduction of new IT-based processes. Our data source

provides information on a broader definition of innovation spending of which only about 20% is

R&D spending and we also explore the use of this new variable in our model.
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Empirically, we use an extended version of the well-established Crepon, Duguet and Mairesse

model (1998) (CDM, henceforth) which relates R&D, innovation, and productivity. Our version of

the model is based on the model in Griffith et al. (2006). We enrich this model in several ways. In

the CDM model, R&D is an input to the innovation production process and the knowledge produced

by innovation becomes an input to the production function. Our specification differs from the usual

CDM model in several respects. First, we focus not only on R&D spending but also consider a broader

definition of innovation spending and compare those results to those using R&D only. Second, we

assume that a firm simultaneously innovates and chooses among the different appropriability

methods. Finally, we estimate the impact on firm performance of the innovation output conditional

on the choice of IP method(s).

Our key result is that firms who innovate and rate formal IP highly are more productive than other

firms, but that innovating firms which rate only informal IP highly do not see a productivity gain,

except possibly for larger firms. We also find that this result is strongest for firms in the services,

trade, and utility sectors, and negative in the manufacturing sector, which is puzzling.

The paper is organised in the following way. Section 2 briefly summarises the relevant empirical

literature. Section 3 illustrates the empirical framework we use for our analysis. The structure and the

content of the data sets are presented in Section 4 and in an appendix, while the results are shown in

Sections 5 and 6. Finally, some conclusions are presented in Section 7.

2. Appropriability mechanisms and firm-level performance: a brief survey

In other work, we have provided an extended survey of the economic literature on appropriability

(Hall et al. 2014) and we briefly summarise what is known about appropriability and performance

here. The first and most important fact to note is that in spite of the literature’s emphasis on

patents or more generally on formal mechanisms of IP protection, firms generally prefer informal

mechanisms, although they use both. Large-scale evidence for this point was first reported in

Levin et al. (1987) and Cohen, Nelson, and Walsh (2000). Both papers report results of surveys of

the extent to which firms in different industries chose legal and non-legal methods to secure

returns from innovation and their findings were broadly consistent. In general, patents are not the

most important mechanism to protect a firm’s IP while secrecy and lead time are. However, there

are exceptions, especially for product innovations in some industries such as pharmaceuticals,

medical instruments, specialty chemicals, and machinery parts.

These two seminal papers have been followed by a raft of similar studies which have confirmed

that the preference for informal appropriability mechanisms is not limited to US firms only. Arundel

(2001) focused on the relative effectiveness of patents and secrecy using the CIS I survey for six EU

countries and found that firms systematically regard lead-time and secrecy as more important ways

to protect their IP than patents.1 Laursen and Salter (2005) found that the first mover advantage is the

preferred appropriability mechanism for UK firms, while Amara, Landry, and Traore (2008) confirmed

these findings for Canadian firms from the knowledge intensive business sectors, but they also found

that patents and secrecy tend to be complementary, in line with what has been suggested by other

authors (see, for instance, Howells, James, and Malik 2003).

Why do firms use a variety of appropriability mechanisms? The strength of the legal mechanisms

for the protection of a firm’s IP, the nature of the technology, and the type of knowledge embodied in

the technology all influence the nature of the appropriability regime in an industry (Teece 1986; Hall

et al. 2013). So innovating firms may differ in their choice of the appropriability mechanisms and

these differences may be due to the characteristics of the knowledge embodied in the invention

(for instance, if some of the knowledge attached to an invention is tacit, secrecy may be sufficient

to protect an invention), the type of innovation (process innovation can be protected by secrecy

more easily than product innovation), industry- and firm-level characteristics (size, innovation strat-

egies, etc.). Thanks to the volume of papers which have tried to understand why firms may find

some appropriability mechanisms more effective than others, we now have a fairly good
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understanding of how each of the above factors influences the firms’ choice. For instance, we know

that the size of the firm matters. Arundel (2001) finds that large firms are more likely to patent than

small firms, likely because of the patent application costs some of which can be spread across many

patents.2 Hurmelinna-Laukkanen and Puumalainen (2007) find that there exists a positive relationship

between pursuing short-term value and the use of lead time in a sample of 299 Finnish firms,

suggesting a relationship between business strategy and IP choice. Hanel (2005) also finds that Cana-

dian firms whose strategy focuses on the development of new markets are likely to use formal appro-

priability mechanisms like trademarks (but not patents), but that export strategies are not associated

with the use of intellectual property rights. Involvement in R&D cooperation has been found to

increase the value of patenting because patents help to define the property rights among the

members of the consortium (Cohen, Nelson, and Walsh 2000).3

We also know that the type of industry the firms operates in may influence the choice between

different appropriability mechanisms. Some studies have focused on services (rather than manufac-

turing) and they all suggest that most service firms do not use any IP at all and among those which

do, trademarks and copyrights (i.e. formal appropriability mechanisms) are the most used appropria-

bility mechanisms. Among the informal mechanisms, lock-in of customers, suppliers, and/or workers

is preferred to secrecy (Mairesse and Mohnen 2004; Hipp and Herstatt 2006).

Much empirical work confirms that product innovations are more likely to be patented than

process innovations (e.g. Harabi 1995; Hanel 2005). The type of product (discrete or complex) also

matters. Cohen, Nelson, and Walsh (2000) divide manufacturing industries into industries where pro-

ducts are protected by one or a few patents held by a single firm (discrete) and industries where pro-

ducts involve technologies covered by a large number of patents held by more than one firm

(complex). They suggest that in discrete products industries patents are typically used more often

than secrecy. In contrast, in complex-products industries it is often much easier to invent around

technologies and this reduces the incentive to patent and may lead complex-product firms to rely

on alternative appropriability mechanisms (like lead time, for instance). The stage of development

of an innovation has a bearing on the choice between formal and informal mechanisms – firms

may use secrecy when developing a new technology but then apply for a patent when the new

product is about to be commercialised (Hussinger 2006).

Very little is known about the influence that the preference for secrecy (or informal appropriability

mechanisms, in general) may have on firm performance. A few studies have focused on financial or

innovation performance and have tried to relate them to the firms’ preferences for the different

appropriability mechanisms. Using a data set of German manufacturing firms, Hussinger (2006)

finds a strong positive correlation between patents and sales of new products, whereas there is no

correlation for secrecy. Hanel (2008) focused on profits among Canadian manufacturing firms, mod-

elling the relationship between profits and the choice of the preferred IP mechanism(s) in a two-stage

model where the first stage estimates the propensity of innovative firms to use IP mechanisms and

the second stage estimates the impact of this choice on the profits. The main conclusion is that firms

that use formal appropriability mechanisms increase or maintain their profit. Similarly, Hall et al.

(2013) find that firms’ preference for patents is positively associated with innovative performance

measured as turnover due to innovation although there is little relationship between patenting

and other measures of performance such as employment growth. These findings seem to suggest

that patents are used to protect product innovations which have a direct bearing on profits and

sales while secrecy may be rather used either for process innovation or for early-stage inventions

that will be commercialised later on.

The studies reviewed here focus mainly on manufacturing where formal IP in the form of patents is

traditionally associated with innovation. Services can be different: innovation among service firms

may not be technology-related and there might be no benefit from using formal IP protection.4

So we could potentially observe innovative service firms which are more productive than their

non-innovative counterparts but, at the same time, showing a preference for secrecy. A recent

study by Morikawa (2014) presents some circumstantial evidence suggesting that higher productivity
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among services may be correlated with the preference for informal appropriability mechanisms

(proxied by their trade secret holdings) among innovative Japanese service firms.

In summary, this short survey confirms the importance of the informal as well as formal appropria-

bility mechanisms and their bearing on firm-level productivity and profits. It also identifies some

characteristics of the firms, of the technology and of the industries which are associated with the

choice of the appropriability regime and which we will employ for our empirical analysis.

3. Empirical framework

The empirical framework we employ here is based on the CDMmodel (Crepon, Duguet, and Mairesse

1998). Our model captures the original flavour of the CDM model in that it models the relationship

between R&D, innovation and productivity in a sequential manner. Our innovations to this model are

to include the choice of formal and informal appropriability mechanisms along with innovation

success and to ask how these influence the resulting productivity from innovations. We also exper-

iment with the use of innovation spending rather than R&D spending as an input to innovation, in line

with our use of service sector data as well as manufacturing sector data.

One of the well-established limitations of the CDM model is that it does not identify causal

relationships among the variables but instead describes their correlation, due to the cross-sectional

nature of the data to which it is applied. We have tried to mitigate this in two ways. First, our empirical

model is based on a set of exclusion restrictions which are grounded in economic theory. For

instance, we have assumed that the decision to invest in innovation and the amount invested

depend on the general IP environment in the sector, but that the firm’s own rating of IP is jointly

determined with its innovation success or failure. Second, we have used productivity data in the

year following the last year in each innovation survey, so that the R&D or innovation expenditure

and innovation performance precedes the performance measure, although we are aware that this

is a weak identification strategy and does not fully solve the endogeneity problem.

Our empirical model is formalised in three stages. In Stage 1, we model the firm’s decision to invest

in innovation as well as the intensity of the innovation expenditure. In Stage 2, we model in a sim-

ultaneous fashion the production of innovation and the choice of the appropriability mechanism.

In the third stage, we model the process of exploitation of innovation by estimating an augmented

production function that includes the predicted innovation output, with its impact allowed to vary

with the choices of appropriability mechanisms. We describe each stage in more detail below.

Stage 1: the first two equations model the firm’s decision to invest in innovation and the intensity

of its innovation expenditure using a sample selection model. In the empirical work, we will measure

innovation expenditure either by R&D or total innovation spending.

isi =
1

0

( )
if is∗i = wia+ 1i

. 0

≤ 0

( )
i = 1, . . . ., N, (1)

where is∗ is an unobservable latent variable whose value determines whether the firm invests in inno-

vation, is is an observed indicator which equals zero for firms that do not invest in innovation and one

for innovation-investing firms. w is a vector of variables explaining the investment decision, α is a

vector of parameters to be estimated, and εi is an error term, assumed to be normally distributed.

Conditional on firms investing in innovation, we observe the amount of resources invested in

innovation (isi, measured here as innovation expenditure intensity, the logarithm of the innovation

expenditure per employee):

isii =
zib+ ei if isi = 0

0 if isi = 0

( )
, (2)

where zi is a vector of variables affecting the innovation expenditure intensity, β is the vector of coef-

ficients, and ei is an error term. Assuming that the two error terms are distributed as a bivariate normal
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with zero mean, variances s2
1 = 1 and s2

e , and a correlation coefficient ρ, the system of Equations (1)

and (2) can be estimated as a generalised Tobit model by maximum likelihood estimation.

Stage 2. The second block consists of a set of innovation production functions and the equations

which describe the choices among appropriability mechanisms. We distinguish between two types of

innovation outcomes (product and process innovations) and between formal (patents, design, and

copyrights) and informal (secrecy, confidentiality agreements, complexity, and lead time) appropria-

bility mechanisms. Although ideally we would like to include product and process innovations in the

same model, we found that their fitted values after instrumenting were so highly correlated that it

was difficult to obtain sensible results when both variables were included in an equation.5 Therefore,

we chose to analyse one type of innovation at a time (product or process) due to lack of identifying

power.

We assume that the choice of the appropriability mechanism and the innovation production func-

tions are correlated conditional on their predictor variables and therefore we estimate using a multi-

variate probit model. Formally, the model is specified as a system of three equations:

INNi

IIPi
FIPi

⎛
⎝

⎞
⎠ = F

g1isi∗ + X1
i d1 + d1s + d1t

g2isi∗ + X2
i d1 + d2s + d2t , S

g3isi∗ + X3
i d1 + d3s + d3t

⎛
⎝

⎞
⎠, (3)

where Φ (., Σ) is the multivariate normal distribution, isi* is the predicted value of the innovation

expenditure intensity (controlling to some extent for the fact that the investment in innovation is

endogenous to the production of innovation), the Xs are vectors of variables that affect firms’ propen-

sity to innovate and their choice between formal and informal appropriability mechanisms, and ds
and dt are industry and wave dummies. Each type of innovation output (either new to the firm or

to the market) is proxied by a dummy variable (INN) indicating whether the firm has introduced at

least one product/process innovation in the last three years. The dependent variables of the two

IP equations are also proxied by dummy variables (FIP for the formal IP methods and IIP for the infor-

mal ones): each takes the value of one if the firm rated at least one of the relevant methods as of

medium or high importance to the enterprise.

We estimate (3) simultaneously as a trivariate probit system using the GHK algorithm (Cappellari

and Jenkins 2003), assuming that the three disturbances are correlated. As in Griffith et al. (2006), the

predicted values from the first-stage estimation computed for all firms taking into account the prob-

ability that their innovation expenditure is observed are used to proxy innovation effort in the inno-

vation production function. This approach assumes that a firm that reports no innovation

expenditure may still have some informal expenditure related to innovation that is not reported.

Stage 3. The augmented production function is a standard Cobb–Douglas model where the log-

arithms of labour (l ), capital (k), and purchased goods and services (m) are inputs along with the inno-

vation outputs. We interact the innovation variables with the two dummy variables for formal and

informal IP in order to assess the contribution of IP to the exploitation of innovation. To control

for the potential endogeneity of the innovation output, we use the predicted values from the inno-

vation production functions (INN*) rather than the actual values.6 We also include the usual set of

industry and survey dummies to control for unobserved characteristics that affect the output level.

Formally, the augmented production function is as follows:

yi = a+ bkki + bl li + bmmi

+ p1
̂INN∗

i + p2IIPi + p3FIPi + p4IIPi · ̂INN∗

i

+ p5FIPi · ̂INN∗

i + ds + dr + vi.

(4)
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4. Data and variables

4.1. Data

The data set we have used for our analysis has been constructed by merging several databases com-

piled by the UK Office for National Statistics (ONS) and made available through the SecureLab at the

UK Data Service. The databases are the following: the Business Structure Database, containing basic

information about the firm demographics, the ARD, containing information about firm inputs and

outputs, and the UK CIS (waves 3, 4, 5, 6, and 7) which has information about innovation, R&D,

and the preferred appropriability mechanisms. Appendix A has more details about the data sets

and the merging procedure.

Our resulting data set is an unbalanced panel containing detailed information on firm character-

istics and innovative activities over the 1998–2010 period. However, the main results of the paper

refer to the period 1998–2006, because the IP questions in CIS 6 and 7 were not comparable. In

the later period, firms were asked only about their use of formal IP methods (rather than their impor-

tance), and no questions on informal methods were included.

As this paper is concerned with innovation and IP behaviour, it uses only the sample of firms

surveyed by the CIS; we drop all firms from the integrated data set that have not been sampled in

at least one of the CIS waves. Thus, the BSD and ARD2 are used only to enrich the data set avail-

able from the CIS. Each CIS refers to several years (CIS 3 to 1998–2000, CIS 4 to 2002–2004, CIS 5 to

2004–2006, CIS 6 to 2006–2008, and CIS 7 to 2008–2010) with 2001 being a missing year. We

linked each wave of the CIS with the next period ARD2 (i.e. CIS 4 (2002–2004) firms are

matched to the 2005 ARD2 and so on) in order to reduce simultaneity problems between our inno-

vation, appropriability, and productivity measures. Note that because a new sample of firms is

drawn for each CIS (in principle), there is relatively little overlap among the surveys and the

average number of observations per firm is about 1.3.7 This fact means that panel data estimation

controlling for fixed firm effects is infeasible.

Tables A1 and A2 in the online appendix A (http://eml.berkeley.edu//~bhhall/papers/HallSena_

appendix_Mar15.pdf) give a quick overview of the main characteristics of the basic data set. The inter-

esting feature of these data is that there is not too much variation across the different CIS waves and

this suggests that most of the variation is cross-sectional. There are a total of 68,112 observations in

the combined CIS 3–7 surveys, of which 48,107 match with the ARD. About half of these either were

missing industry, were in the primary industries or in service sectors that were not covered by all the

CIS, or were non-profits or government firms.8 We also lose an additional ∼10,000 observations due

to missing values in some of the key variables, or due to sparse coverage in certain 3-digit industries.

The resulting sample contains 10,850 observations on 7255 firms and the sample for CIS3,4,5 contains

7144 observations on 5,684 firms (or enterprises).

4.2. Variables

In the empirical implementation of the model outlined in Section 2, we have followed the existing

empirical literature on the determinants of the investment in R&D (and in other types of innovation

expenditure) and of the production of innovation in the CDM model.

Stage 1.We assume that the industry-level appropriability environment can influence the amount

of innovation expenditure undertaken by firms (although the firm’s own innovation success affects its

choice of IP directly). This assumption is reasonable as we would expect firms to invest more in R&D

(or any other type of innovation expenditure) if the industry environment is such that they can appro-

priate most of the returns from their investment (Arrow 1962). As in Griffith et al. (2006), the variables

that capture the industry environment with respect to appropriability are defined as binary variables

equal to one if the firm rates any one of the formal (informal) IP methods as of high or medium impor-

tance. They are then averaged over 3-digit industry.
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Additional controls include thefirm’s propensity to export (here proxiedby adummyvariable taking

the value of one if the firms has exports) and whether the firm is foreign-owned. The first variable cap-

tures the notion that exporting firms may be more willing to invest in R&D (or any other innovation

spending) as the competition and the learning effect of exporting should enhance its innovative

effort (Crespi and Zuniga 2012). The second variable controls for the possibility that foreign firms

may bemore innovative (and therefore more willing to spendmore in R&D) than national firms poten-

tially because of their superior management practices and human capital (Griffith 1999; Kumar and

Aggarwal 2005; Girma and Gorg 2007). Additional controls include size (measured by the log of the

number of employees) and age (measured by the log of the age). The expectation is that larger

firms may be more inclined to invest in innovation as it is easier for them to spread the fixed costs

of the investment in innovation than for smaller firms (Cohen and Levin 1989; Cohen and Klepper

1996). Equally, the empirical literature suggests that older firms tend to invest more in R&D than

younger ones because of the need for specialist skills that younger firms may lack (see, for instance,

Zahra, Keil, and Maula 2005), although it is possible that new entrants in technology sectors actually

invest at a higher rate in the hope of future sales. Thus, the age effect can go either way.

We also control whether the firmhas a cooperative arrangementwith another organisation for inno-

vation by introducing a dummy variable taking the value of one for those firms which have a coopera-

tive arrangement. Several authors suggest that collaboration stimulates further innovation investment

by allowing firms to share costs and internalising knowledge spillovers (see Kamien, Oren, and Tauman

1992). We include a set of categorical variables indicating the intensity of use of different information

sources in innovation-related activities (Griffith et al. 2006; Crespi and Zuniga 2012); these take the

value one if information from internal sources/customers/suppliers/competitors/universities was of

high or medium importance. As in Griffith et al. (2006), we introduce demand-pull factors (namely

related to the need to meet regulations and industry standards) in our equations which are proxied

by the share of firms in the 3-digit industry for which meeting regulations or standards were of

high, medium, or low importance for innovation (as opposed to no importance).9

We control for the industry-level perception of barriers to innovation due to either financial con-

straints or uncertain demand for new products. Several papers suggest that financial factors are an

important impediment to R&D spending (Hall 2002; Hall and Lerner 2010).10 Equally, industries

characterised by uncertainty in the new products’ markets are characterised by low levels of R&D

spending.11 The average perception of financial constraints for innovation and constraints due to

market risk (uncertain demand) in the 3-digit industry are each measured as the average of the quali-

tative indicator 0,1,2,3. Finally, we have included 25 dummy variables for the 2-digit industry to which

the firm belongs, and 2 dummy variables for the CIS waves. The excluded industry is automobile man-

ufacturing and the excluded wave is CIS3.

Stage 2. The key independent variable in Stage 2 (and appearing in all the equations of Stage 2) is

the predicted value of the log of the innovation expenditure intensity (derived from the first-stage

estimates). As mentioned in Section 2, this way the model takes into account the fact that the inno-

vation expenditure is endogenous to the production of innovation and firm preferences over appro-

priability mechanisms.

The innovation and appropriability equations share some independent variables with the

equations from Stage 1: size, age, the dummy for cooperation and the dummies for the sources of

information, the survey year, and the two-digit industry. The rationale for including them among

the regressors in the innovation equations is that they may influence innovation success given inno-

vation input. As for the appropriability equations, Arundel (2001) finds that large firms are more likely

to patent than small firms because of the costs associated with the enforcement of patents. Involve-

ment in inter-firm cooperation has also been found to influence the choice of the IP method. Firms

that engage in cooperative arrangements may be interested in using formal IP methods as patents

would help them when bargaining with the other partners of the research consortium (Cohen,

Nelson, and Walsh 2000). Finally, the use of different types of information sources can be associated

with the preference for specific IP methods. For instance, firms which source information from
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universities may be more likely to patent while those which source information from competitors or

suppliers may prefer to use secrecy or lead time to protect their IP.

Consistently with the empirical literature in this area, we also control for the perceived financial

constraints at the firm level (a dummy variable equal to one if the firm reports constraints) and

the perceived demand for innovation (a dummy variable equal to one if the firm considers the

demand for innovation too uncertain) in both the innovation and the appropriability equations.

Financially constrained firms are less likely to produce innovation while at the same time they

may prefer informal IP methods (see Scellato 2007; Hall et al. 2013). Also, firms facing uncertain

demand for innovation may decide to patent because of the real option that patents generate

(Bloom and Van Reenen 2002). We also include two indicators of demand-pull factors for innovation:

whether the firm rated meeting regulations or standards of medium or high importance for inno-

vation (as opposed to no or low importance) and whether environmental concerns were of

medium or high importance for innovation (as opposed to no or low importance).

To help identify the separate equations, we assume that the direction of innovation (i.e. the

reasons for innovating) is related to the type of innovation but not to the preference for formal

and/or informal appropriability methods. Therefore, in the product innovation equation, we

include dummy variables indicating whether innovation was directed towards increasing the

range of products, expanding to new markets or increasing market share, or improving the quality

of products. In the process innovation equation, we include dummy variables indicating whether

innovation was directed towards improving the flexibility of production, increasing capacity, or low-

ering unit costs. We assume also that whether a firm prefers either of the IP methods is related to

whether the innovation is new to the market. Therefore, in the appropriability equations only, we

introduce a dummy variable if the firm’s innovation is new to the firm but not the market. We

exclude the foreign ownership, exports, and the 3-digit industry-level variables from the equations

in Stage 2. Our assumption is that these drive the innovation or R&D decision but do not predict inno-

vation output once we control for the level of spending.

Stage 3. In the production function, output is measured as sales while labour is measured by the

number of employees, capital by the total stock of physical capital, constructed from the investment

series using a 10% depreciation rate, and materials by purchased goods and services. We also include

the predicted value of innovation output from the second stage, the formal and informal IP dummies,

and their interactions with innovation outputs.

Tables A3 and A4 in the appendix give descriptive statistics for all firms in the estimation sample as

well as for the firms with positive R&D spending and the larger set of firms with positive innovation

spending. Table A3 shows the medians and interquartile ranges for the continuous variables and A4

the means for all the dummy variables. The median firm has 305 employees, value added of 9 million

pounds sterling, and a capital stock of 5 million pounds sterling. On average, the firms are 28 years old

and 25% are foreign-owned, but 48% export. Thirty-three per cent of the firms have introduced pro-

ducts new to the firm or market in the past three years (22% new to the market), and 26% have intro-

duced a process innovation during the same period (7% new to the market). Thirty-five per cent rate

some form of formal IP of medium to high importance, whereas 45% rate informal IP of medium to

high importance.

In addition to R&D spending, which has been well studied in the past, this paper also looks at the

broader definition of innovation spending, which includes internal and external R&D, purchase of

new capital equipment for innovation, purchase of external knowledge, and marketing and training

expense associated with the introduction of new products and processes. The total of this spending is

substantially larger than R&D alone, and many more firms have non-zero expenditures. The median

innovation expenditure per employee is 158,000 pounds sterling. The R&D-doing firms are higher on

all the IP and innovation dimensions. They are also large, and have higher non-R&D innovation

expenditure, with a median that is five times the R&D median. When we add the firms that have

other types of innovation expenditure to the R&D-doing firms, the IP and innovation indicators gen-

erally fall, but are still higher than those for firms with no innovation expenditure at all.
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Table A5 gives some information about the composition of innovation spending. By far the largest

share of such spending is for the acquisition of machinery and computer hardware and software,

especially in SMEs and service firms. Internal R&D spending is a relatively small share (less than

20%) of innovation spending, although it is somewhat more important for manufacturing firms.

This confirms the fact that innovation in firms is a much broader concept than innovation associated

with R&D. We expect that process innovation and innovation in services in particular to be associated

with the acquisition of new equipment and software, rather than with R&D per se.

5. Results

We present two versions of our estimates of the CDMmodel, one that uses R&D spending as the inno-

vation input and one using the broader definition of innovation spending that includes R&D, new

capital equipment, and training and marketing associated with innovation. Table 1 shows stage 1

estimates for both the R&D and the innovation models. Tables 2 and 3 show the innovation-IP

equation estimates using R&D as an input; the analogous tables using innovation spending are in

Appendix B. Finally, Tables 4 and 5 show the production function estimates for the two models. In

the next two subsections of the paper, we discuss the results that use R&D as an input first, followed

by those using innovation spending.

5.1. R&D spending

The results from Table 1 show that the choice of a sample selectionmodel with correlated disturbances

is supported by the data. The estimates show that firms which invest in R&D (even though they are not

predicted to) also have higher R&D than predicted. Firms in industries that rate formal appropriability

mechanisms as ofmediumorhigh importance investmore in R&D,with a coefficient that implies adou-

bling of R&Dper employee, even in the presence of two-digit sector dummies. For informal IPmethods,

the coefficient is somewhat lower, but the confidence interval overlapswith that for formal IPmethods.

Looking at the predictor variables, firms that invest in R&D are exporters, and if they export, their

R&D investment rate is about 65% higher. Foreign-owned firms are slightly less likely to invest in R&D,

but when they do, they have a higher R&D investment rate, other things equal. The uses of different

sources of information for innovation are generally positive for investing R&D and R&D intensity, as is

collaboration with other organisations and firms. As we control for two-digit industry, the sector-

specific characteristics generally do not enter, with the exception of the attitudes towards IP protec-

tion, which has a positive impact on R&D intensity.

Table 2 (product) and Table 3 (process) focus on the choice of the IP methods and on the inno-

vation production function. The hypothesis that the type of innovation and the choice of IP

methods are positively correlated conditional on the observables is confirmed by the data, with all

correlations significantly positive, and ranging from 0.04 to 0.55; most are above 0.1.

In general, the results for product and process innovators are quite similar but there are some

important differences. Firms rating some form of IP highly are larger firms with high R&D intensity

and are likely both to rate demand uncertainty large and to consider themselves financially con-

strained. Firms that are imitators (that is, they produce innovations that are new to the firm but

not to the market) rate formal IP of less importance. Where the source of information for innovation

is suppliers or competitors, firms tend to rate the use of formal and informal IP highly. However, when

customers are the main source of information or the source is within group, they are less likely to

consider formal IP mechanisms as important, which is perhaps not surprising, as these entities are

less capable of imitation. More surprising is the fact that firms collaborating for innovation are less

likely to rate formal IP highly.

Turning to the innovation equations (third columns of Tables 2 and 3), we observe that product

innovators have a high predicted R&D intensity from the previous stage of estimation but that

process innovation appears to be less driven by R&D. Larger firms are more likely to innovate, but
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Table 1. Sample selection estimates – investment in R&D or innovation and its intensity.

Dependent variable

Invests in R&D (1/0) Log (R&D/employee) Invests in innovation (1/0) Log (IS/employee) Invests in HW/SW (1/0) Log (HW&SW/employee)

Coefficient
Standard
errors

Marginal
effects

Standard
errors Coefficient

Standard
errors

Marginal
effects

Standard
errors Coefficient

Standard
errors

Marginal
effects

Standard
errors

Log (number of
employees)

0.073 0.013 *** −0.230 0.033 *** 0.024 0.011 * −0.263 0.021 *** 0.003 0.010 −0.266 0.025 ***

Log (firm age in 2011) 0.011 0.056 −0.202 0.108 −0.077 0.051 −0.052 0.072 −0.083 0.047 −0.052 0.087
D (foreign ownership) −0.097 0.046 * 0.320 0.087 *** −0.071 0.043 0.291 0.061 *** −0.126 0.040 ** 0.280 0.077 ***
D (export status) 0.314 0.045 *** 0.651 0.096 *** 0.163 0.042 *** 0.418 0.060 *** 0.104 0.039 ** 0.263 0.073 ***
D (collaborates) 0.415 0.047 *** 0.475 0.091 *** 0.272 0.055 *** 0.393 0.057 *** 0.157 0.046 *** 0.016 0.072
Importance of formal IP in
the 3-digit sector

0.256 0.170 1.050 0.299 *** −0.284 0.165 0.351 0.212 −0.396 0.156 −0.335 0.270

Importance of informal IP
in the 3-digit sector

0.242 0.188 0.637 0.315 * 0.378 0.183 * 0.710 0.231 *** 0.180 0.171 0.978 0.304 **

Perception of market risk
in the 3-digit sector

0.348 0.182 0.017 0.292 0.156 0.175 −0.017 0.212 0.016 0.160 0.011 0.276

Perception of financial
constraints in the 3-digit
sector

−0.290 0.171 −0.256 0.284 −0.218 0.166 0.224 0.198 −0.113 0.154 0.282 0.262

Importance of regulation
& standards in the 3-
digit sector

0.016 0.198 0.427 0.354 0.127 0.197 0.150 0.250 −0.136 0.178 −0.198 0.309

Importance of
environmental, health &
safety regs. in the 3-
digit sector

−0.037 0.186 −0.296 0.347 0.059 0.185 −0.002 0.243 0.412 0.166 * 0.613 0.292

D (within-group
important info source)

1.026 0.059 *** 0.859 0.195 *** 0.790 0.045 *** 0.292 0.077 *** 0.473 0.046 *** −0.009 0.094

D (suppliers’ important
info source)

0.044 0.048 −0.279 0.086 ** 0.493 0.042 *** 0.326 0.060 *** 0.734 0.041 *** 0.560 0.106 ***

D (customers’ important
info source)

0.305 0.056 *** 0.392 0.112 *** 0.401 0.049 *** 0.145 0.068 * 0.180 0.049 *** 0.039 0.080

D (competitors’ important
info source)

−0.072 0.046 0.055 0.081 −0.026 0.048 0.169 0.055 ** −0.023 0.043 0.016 0.066

D (universities’ important
info source)

0.307 0.061 *** 0.410 0.097 *** 0.050 0.074 0.238 0.071 *** 0.080 0.059 −0.063 0.089

Year Dummies 51.8 (0.000)*** 3.2 (0.206) 39.5 (0.000)*** 2.4 (0.295) 49.8 (0.000)*** 0.9 (0.649)
Two-digit sector dummies 101.6 (0.000)*** 181.8 (0.000)*** 34.7 (0.093)* 163.2 (0.000)*** 56.5 (0.000)*** 191.4 (0.000)***
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Correlation of the disturbances in the
two equations

0.349 0.101 ** 0.064 0.043 0.256 0.095 **

Standard error of log R&D per employee
residual

1.637 0.046 *** 1.576 0.019 *** 1.686 0.033 ***

Log likelihood −7097.7 −11696.9 −10479.1
Wald test for model (d.f.) 914.7 (43)*** 1082.7 (43)*** 585.6 (43)***
Observations (non-zero
share)

7144 (30%) 7144 (62%) 7144 (47%)

Notes: Standard errors robust to heteroskedasticity, clustered by enterprise. The method of estimation is maximum likelihood on a generalised Tobit model. *, **, and *** denote significance at the 10%,
5%, and 1% level respectively.
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Table 2. Multivariate Probit estimates of IP choice and product innovation.

Formal IP methods Informal IP methods
Product innovator or

imitator

Coeff. SE Coeff. SE Coeff. SE

Log (predicted R&D per employee) 0.843 0.045 *** 0.638 0.044 *** 0.304 0.046 ***
Log (number of employees) 0.321 0.016 *** 0.229 0.015 *** 0.116 0.015 ***
Log (firm age in 2011) 0.132 0.054 * 0.114 0.053 * −0.057 0.057
D (collaborates) −0.191 0.052 *** −0.026 0.054 0.428 0.053 ***
Firm perception of market risk 0.324 0.043 *** 0.366 0.044 *** 0.172 0.044 ***
Firm perception of fin. Constraints 0.123 0.043 ** 0.293 0.044 *** 0.018 0.044
Firm – impt. of reg. & standards 0.140 0.050 ** 0.121 0.052 * −0.118 0.053 *
Firm – impt. of env., H&S regs. 0.052 0.051 0.160 0.054 ** −0.023 0.054
D (innov. to improve range) 0.704 0.051 ***
D (innov. for new markets) 0.234 0.054 ***
D (innov. for quality improvement) 0.266 0.058 ***
D (within-group impt. info source) −0.234 0.066 *** 0.096 0.064 0.311 0.068 ***
D (suppliers important info source) 0.289 0.047 *** 0.415 0.047 *** 0.123 0.051 *
D (customers impt. info source) −0.127 0.054 * 0.140 0.053 ** 0.139 0.058 *
D (competitors impt. info source) 0.173 0.045 *** 0.130 0.045 ** −0.113 0.047 *
D (universities impt. info source) 0.058 0.064 0.049 0.071 −0.080 0.066
D (imitator) −0.270 0.060 *** −0.266 0.064 ***

Year dummies (2) 65.4 (0.000)*** 80.1 (0.000)*** 1.5 (0.464)
Two-digit sector dummies (25) 298.2 (0.000)*** 105.4 (0.000)*** 52.9 (0.000)***

Wald test for model (d.f.) 5322.1 (125)***
Corr. (formal IP, informal IP) 0.548 0.019 ***
Corr. (formal IP, innovation) 0.197 0.026 ***
Corr. (informal IP, innovation) 0.236 0.026 ***

Notes: 7144 observations on 5684 firms; log likelihood =−8967.1. The method of estimation is maximum likelihood on a trivariate
probit model. Standard errors are clustered around the enterprise. *, **, and *** denote significance at the 10%, 5%, and 1% level
respectively.

Table 3. Multivariate Probit estimates of IP choice and process innovation.

Formal IP methods Informal IP methods
Process innovator or

imitator

Coeff. SE Coeff. SE Coeff. SE

Log (predicted R&D per employee) 0.843 0.045 *** 0.636 0.044 *** 0.100 0.046 *
Log (number of employees) 0.321 0.016 *** 0.228 0.015 *** 0.085 0.016 ***
Log (firm age in 2011) 0.136 0.055 * 0.116 0.053 * 0.015 0.057
D (collaborates) −0.201 0.052 *** −0.038 0.054 0.573 0.052 ***
Firm perception of market risk 0.322 0.043 *** 0.365 0.044 *** 0.119 0.044 **
Firm perception of fin. Constraints 0.121 0.043 ** 0.292 0.044 *** 0.016 0.043
Firm – impt. of reg. & standards 0.144 0.050 ** 0.122 0.052 * −0.183 0.053 ***
Firm – impt. of env., H&S regs. 0.046 0.051 0.157 0.054 ** 0.161 0.054 **
D (innov. to increase flexibility) 0.480 0.055 ***
D (innov. to increase capacity) 0.408 0.053 ***
D (innov. to reduce unit cost) 0.180 0.054 ***
D (within-group impt. info source) −0.240 0.066 *** 0.089 0.064 0.471 0.072 ***
D (suppliers’ important info source) 0.287 0.047 *** 0.413 0.047 *** 0.319 0.051 ***
D (customers’ impt. info source) −0.136 0.055 * 0.129 0.053 * 0.032 0.059
D (competitors’ impt. info source) 0.169 0.045 *** 0.129 0.045 ** −0.109 0.047 *
D (universities’ impt. info source) 0.068 0.064 0.066 0.071 −0.113 0.064
D (imitator) −0.084 0.056 −0.054 0.064

Year dummies (2) 65.4 (0.000)*** 80.1 (0.000)*** 21.1 (0.000)***
Two-digit sector dummies (25) 298.2 (0.000)*** 105.4 (0.000)*** 45.2 (0.000)***

Wald test for model (d.f.) 5115.5 (125)***
Corr. (formal IP, informal IP) 0.547 0.019 ***
Corr. (formal IP, innovation) 0.039 0.024
Corr. (informal IP, innovation) 0.125 0.024 ***

Notes: 7144 observations on 5684 firms; log likelihood =−8959.6. The method of estimation is maximum likelihood on a trivariate
probit model. Standard errors are robust to heteroskedasticity, and clustered on enterprise. *, **, and *** denote significance at
the 10%, 5%, and 1% level respectively.
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innovation does not depend on firm age. Information internal to the firm’s group is rated as impor-

tant for innovation, and information from suppliers is important only for process innovation. It

appears that meeting regulatory requirements or standards reduce the probability of innovation,

and that reducing environmental impacts and improving health and safety increases the probability

of process innovation. This may be because the results of innovative activities directed in this way are

somewhat more predictable.

The estimates of the production function are shown in Table 4, for four types of innovation:

product, process, and new-to-the-market product and process. The coefficients of the usual pro-

duction function inputs (labour, capital, and materials) are as expected, and imply a scale coefficient

slightly greater than unity. Few of the innovation or IP coefficients are individually significant, with the

exception of formal IP in the case of process innovation. However, when the coefficients are com-

bined to identify the interaction of innovation probability with IP preferences, some highly significant

results appear: for product innovation, formal IP coupled with high predicted innovation raises pro-

ductivity by about 12% (15% for new-to-the-market innovation), whereas informal IP coupled with

innovations has essentially no impact. For process innovation, there are similar results, although

the precision is lower, especially for new-to-the-market process innovation. The conclusion is that

innovating firms that rate formal IP as important for protecting their innovations achieve a substantial

gain in the contribution of their innovations to productivity growth.

5.2. Innovation spending

The estimates for the model using innovation spending as an input are presented in Table 1 (stage 1); to

save space, the stage 2 and 3 estimates are in online Appendix B (http://eml.berkeley.edu//~bhhall/papers/

HallSena_appendix_Mar15.pdf) (Tables B1–B3), as they differ little from those for R&D in Tables 2–4.

Table 4. OLS estimates of the production function.

Dependent variable Log (turnover)

Type of innovation Product innovation Process innovation
New-to-market

product innovation
New-to-market

process innovation

Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Log (number of employees) 0.664 0.011 *** 0.664 0.011 *** 0.663 0.011 *** 0.664 0.011 ***
Log (capital) 0.096 0.007 *** 0.097 0.007 *** 0.096 0.007 *** 0.096 0.007 ***
Log (materials) 0.276 0.010 *** 0.277 0.010 *** 0.276 0.010 *** 0.277 0.010 ***
Scale coefficienta 1.036 0.006 *** 1.038 0.006 *** 1.035 0.006 *** 1.037 0.006 ***

Predicted prob. of innovation 0.000 0.050 −0.105 0.056 0.054 0.069 −0.256 0.180
D (formal IP important) * Pred P
of innov.

−0.007 0.038 −0.012 0.034 0.022 0.032 0.013 0.027

D (informal IP important) * Pred
P of innov.

0.028 0.034 0.035 0.032 0.025 0.029 0.030 0.025

D (formal IP important) 0.121 0.066 0.191 0.076 * 0.077 0.075 0.416 0.186 *
D (informal IP important) −0.006 0.070 0.019 0.080 −0.020 0.083 0.088 0.216

Prob. innov. and formal IP 0.114 0.055 ** 0.074 0.068 0.153 0.075 ** 0.173 0.216
Prob. innov. and informal IP 0.022 0.041 −0.051 0.051 0.059 0.054 −0.138 0.157
Prob. Innov. and both 0.136 0.031 *** 0.128 0.029 *** 0.158 0.038 *** 0.291 0.105 ***

F-test for 4 IP variables 3.6 (0.009)*** 6.6 (0.009)*** 2.6 (0.037)** 5.6 (0.009)***
F-test for 2 survey dummies 36.0 (0.000)*** 34.2 (0.000)*** 35.6 (0.000)*** 34.0 (0.000)***
F-test for 25 industry dummies 22.1 (0.000)*** 22.3 (0.000)*** 21.8 (0.000)*** 22.0 (0.000)***
F-test for model (df = 35) 1360.9 (0.000)*** 1357.5 (0.000)*** 1357.7 (0.000)*** 1357.2 (0.000)***
R-squared 0.902 0.902 0.902 0.902
SSR 2572.9 2571.7 2573.4 2572.4
Standard error 0.602 0.602 0.602 0.602

Notes: Standard errors robust to heteroskedasticity, clustered on firm. Shaded coefficients are derived from the estimated coeffi-
cients. 7144 observations on 5684 firms. *, **, and *** denote significance at the 10%, 5%, and 1% level respectively. Shaded
values are estimates computed from the estimated coefficients.

aTest is for the scale coefficient equal to unity.
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Table 5. Estimates of the production function by firm size.

Dependent variable Log (turnover)

Type of innovation Product Process

SMEs Large firms t-Testa SMEs Large firms t-Testa

Log (capital) 0.115 0.009 *** 0.069 0.011 *** 3.24 *** 0.116 0.009 *** 0.069 0.011 *** 3.31 ***
Log (number of employees) 0.705 0.018 *** 0.686 0.016 *** −0.79 0.707 0.018 *** 0.686 0.016 *** −0.87
Log (materials) 0.236 0.012 *** 0.361 0.016 *** 6.25 *** 0.237 0.012 *** 0.362 0.016 *** 6.25 ***

Prob. innovation 0.006 0.074 0.075 0.065 0.70 −0.157 0.081 0.030 0.072 1.73 *
Prob. innov. and formal IP 0.162 0.083 ** 0.111 0.070 −0.47 −0.027 0.109 0.131 0.083 1.15
Prob. innov. and informal IP −0.067 0.057 0.115 0.055 ** 2.30 ** −0.122 0.073 * 0.047 0.065 1.73 *
Prob. innov. and both 0.095 0.048 ** 0.151 0.040 *** 0.90 0.008 0.067 0.148 0.046 *** 1.72 *
F-test for 4 IP variables 2.8 (0.027)** 0.8 (0.554) 3.2 (0.011)** 1.6 (0.184)
SSR 1220.8 1224.5 1220.0 1225.3
Standard error 0.613 0.566 0.613 0.566
Observations (firms) 3285 (3022) 3859 (2831) 3285 (3022) 3859 (2831)

Notes: Standard errors robust to heteroskedasticity, clustered on firm. F-test for difference of product models = 10.5. F-test for difference of process models = 10.4. SMEs are firms with employment less
than 250. *, **, and *** denote significance at the 10%, 5%, and 1% level respectively.

aThe t-test is for the equality of the coefficient between manufacturing and services.
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Table 1 allows us to compare the estimates of a generalised Tobit model for innovation spending

to those for R&D investment alone. Note first that there does not seem to be any correlation between

the unobserved propensity to spend on innovation and its level, conditional on all the firm charac-

teristics in the model, in contrast to the R&D model. Otherwise, the estimated coefficients are similar

with a few exceptions. The most important is the difference in the sector’s formal IP importance,

which has little predictive power for innovation spending intensity and strong predictive power

for R&D. The other significant differences are in the information sources: information from within

the group is a less important predictor of innovation spending, whereas information from suppliers

becomes positive and is a much more important predictor than it is for R&D intensity. Both results

undoubtedly reflect the importance of capital equipment and software spending as a component

of the larger innovation spending variable. Innovation that depends on the acquisition of new hard-

ware and software is less likely to be influenced by the importance of formal IP in the sector, and

more dependent on information from the suppliers of that equipment.

The finding in Appendix B that there are few large differences between instrumenting innovation

outcomes via R&D spending or innovation spending suggests that the choice will probably make little

difference to the predicted innovation probability and that is indeed the case, as is shown in Table B3.

There are essentially no differences in the estimates between Table 4 (which uses the R&D model)

and Table B3 (which uses the innovation spending model). The conclusion is that it makes no differ-

ence to the CDM model whether one uses R&D spending or innovation spending as the innovation

input, even though the two variables are in fact quite different for most firms. The correlation of the

two variables is about 0.35 and approximately half of the firms with innovation expenditures have no

R&D spending. However, it is important to keep in mind that these variables are being instrumented,

which means that what it really says is that the values of R&D and innovation spending predicted by

size, age, industry, exporting, ownership, collaborating, the IP and regulation environment, and

sources of information have the same impact on productivity. It is possible that our instruments

are not sufficiently powerful to see a differential effect, although this is a bit surprising, especially

in the case of process innovation, where we might have expected innovation spending to have

greater impact than R&D.

6. Size and sector

The previous results showed that firms favouring formal IP to protect their innovations have a pro-

ductivity higher by 10–20% for the same set of inputs, but that favouring only informal IP did not

have a similar impact. In this section, we examine how this result varies over firm size and broad

sector. To this end, we divide the sample into two groupings: (1) SMEs, defined as firms with

fewer than 250 employees, and other (large) firms; (2) Manufacturing and Services, including con-

struction, trade, utilities, and business services. The full R&D model was re-estimated for both group-

ings and a summary of the results for the production function is shown in Table 5 (size) and Table 6

(sector).12 Both groupings produced estimates with a slightly better fit than the pooled estimates.

Looking at Table 5, we first note that the IP variables enter productivity jointly significantly only for

the SMEs, but not for the larger firms. However, the earlier results on the importance of formal IP for

productivity in the case of product innovation still holds for SMEs; equally, both informal and formal

IP are important for the productivity of both SMEs and large firms in the case of product innovation.

The most interesting result is that when we split the sample like this, we can see that informal IP pro-

tection is much more important for large firm productivity than for SMEs, which is a somewhat sur-

prising result. It can be rationalised in the light of the theoretical model of Anton and Yao (2004) who

suggest that firms may be inclined to protect very valuable inventions (which may have a potential

large impact on their productivity) with secrecy rather than with patents to avoid the risks of potential

disclosure. That is, although the use of formal IP protection is more prevalent among large firms than

among small firms (Hall et al. 2013), these firms also seem to find informal IP protection somewhat

more useful for increasing their productivity than smaller firms. This may reflect the fact that SMEs
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Table 6. Estimates of the production function by sector.

Dependent variable Log (turnover)

Type of innovation Product Process

Manufacturing Services & other t-Testa Manufacturing Services & other t-Testa

Log (capital) 0.027 0.010 *** 0.134 0.009 *** 7.95 *** 0.028 0.010 *** 0.134 0.010 *** 7.50 ***
Log (number of employees) 0.764 0.016 *** 0.587 0.014 *** 8.33 *** 0.765 0.016 *** 0.587 0.014 *** 8.37 ***
Log (materials) 0.334 0.017 *** 0.266 0.012 *** −3.27 *** 0.333 0.016 *** 0.266 0.012 *** −3.35 ***

Prob. innovation −0.164 0.058 ** 0.117 0.077 2.91 *** −0.297 0.066 *** 0.067 0.086 3.36 ***
Prob. innov. and formal IP −0.086 0.061 0.254 0.096 *** 2.99 *** −0.176 0.073 ** 0.299 0.121 ** 3.36 ***
Prob. innov. and informal IP −0.093 0.047 ** 0.076 0.069 2.02 *** −0.171 0.056 *** 0.042 0.087 2.06 ***
Prob. innov. and both −0.015 0.035 0.213 0.061 *** 3.24 *** −0.050 0.040 0.274 0.080 *** 3.62 ***

F-test for 4 IP variables 2.1 (0.083)* 1.9 (0.111) 3.9 (0.004)*** 2.8 (0.025)**
SSR 711.7 1748.2 708.7 1747.8
Standard error 0.482 0.658 0.481 0.658
Observations (firms) 3091 (2430) 4053 (3272) 3091 (2430) 4053 (3272)

Notes: Standard errors robust to heteroskedasticity, clustered on firm. F-test for difference of product models = 9.2. F-test for difference of process models = 9.4. Services & other includes construction,
trade, and utilities in addition to services. *, **, and *** denote significance at the 10%, 5%, and 1% level respectively.

aThe t-test is for the equality of the coefficient between manufacturing and services.
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have a greater need to access inputs external to the firm and therefore need to protect their knowl-

edge more formally.

Turning to the sector-specific estimates in Table 6, we find first that the importance of formal IP

over informal IP for productivity is supported strongly for the service sector, but much more ambigu-

ously for the manufacturing sector, where informal IP is as important as formal IP and both impacts

are negative. It turns out that this result is due primarily to the fact that a high probability of inno-

vation in that sector is associated with substantially lower measured productivity, regardless of the

firm’s preference for IP protection. Further exploration did not turn up an explanation for this

result. It may be due to the fact that there are longer lags between innovative activity and pro-

ductivity in this sector, or to problems in measuring the inputs to productivity in innovative firms.

7. Conclusions

In this paper, we have explored the estimation of an augmented CDM model that includes firm and

industry ratings of the importance of various forms of IP protection. We modelled the choice of the

appropriability mechanisms simultaneously with innovation success and then included the inter-

action of the choice with innovation in the productivity equation. We also explored the use of inno-

vation spending rather than R&D as an innovation predictor, and took a brief look at the differences

across firm size and sector.

There are a number of key results from this exploration. First, we found that firms who innovated

and rated formal IP highly were more productive than other firms, but that the same did not hold for

informal IP by itself, except possibly for large firms as opposed to SMEs. We also found that this result

was strongest for firms in the services, trade, and utility sectors, and negative in the manufacturing

sector, largely due to the negative impact of predicted innovation probability.

Second, we provide evidence that R&D spending is only a fraction of total innovation spending,

especially when we look beyond the manufacturing sector. However, the predictive power of the

two types of spending for productivity is very similar, at least when we instrument the variables.

Third, we noted that in spite of the previous result, there were significant differences in the

equations that predict R&D and innovation spending. R&D intensity is higher in exporting firms,

those in formal IP sectors, and firms obtaining innovation information from within their group and

from universities, whereas innovation spending is higher when suppliers are an important infor-

mation source. This contrast appears to be one between the traditional technology-intensive

sectors (patenting, exporting, and closer to university science) and innovation in sectors that rely

on the acquisition of hardware and software to upgrade and change their processes.

Our study suffers from a number of limitations. Most importantly, we found that predicted process

and product innovation probabilities were so highly correlated that it is not really possible to tease

out their separate impact in the same productivity equation, and we chose to analyse them separ-

ately to look for differences. We found relatively few differences, with the exception of a clear associ-

ation of process innovation and information from suppliers. Second, the use of an IP importance

rating as a proxy for IP use is somewhat untested, although we know they are related from our

earlier work (Hall et al. 2013). A related problem is that the relationship between IP preferences

and innovation is also rather imprecise, as the preference is based on the general outlook of the

firm and the innovation(s) something that may have happened any time during the previous

three years. That is, we do not have a precise measure of an innovation and the choice of IP for

that innovation, only broad firm-level indicators.

Another limitation of this analysis, which we share with most studies using innovation data, is that

it is conducted at the enterprise level, so that we cannot be sure that the answers to the questions on

methods of IP protection are directly related to the innovation(s) identified by the firm as introduced

during the preceding three years. Thus, our data and our results are likely to contain considerable

noise. In general, this will weaken rather than strengthen the results, especially for the larger firms

that have many activities.
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Nor do we have an indicator of the quality of the innovation. This means that our finding of higher

productivity when innovating firms favour formal IP protection may reflect the fact that firms with

high-quality innovations leading to higher productivity are also those more likely to use formal IP.

The precise interpretation of our result matters, because if the formal IP–productivity relationship

is due to higher quality, there is no implication that firms should shift to using formal IP, whereas

if protecting any type of innovation with formal IP increases productivity, there would be such an

implication. We leave the resolution of this conundrum to future work.

Notes

1. In this survey, over 50% of firms ranked lead time as the most important mechanism to appropriate returns to

their innovation and nearly 17% regarded secrecy as the most important way to protect an innovation. In con-

trast, only about 10% regarded patents as the most effective way to secure returns.

2. Arundel (2001) also states that this result may be counterintuitive as theoretically small firms may find patents

more valuable than large firms as they would help them to enter an industry. Although this is clearly true for

a small subset of small firms (those relying on external financing such as venture capital), it may not be true

for small firms in general.

3. However, Leiponen and Byma (2009) find that small firms cooperating in innovation with competitors prefer lead

time to patents to protect their IP.

4. Clearly this is an evolving area. To the extent that software and business method patenting are available, some

parts of the service sector may indeed benefit from formal IP. In addition, copyright and trademark protection

may be very useful in some services.

5. This is by no means an uncommon finding when using Innovation Survey data (Hall, Lotti, and Mairesse 2012).

6. Due to the lack of independent instruments, we do not use predicted values of the IP variables but instead rely on

the dummies themselves. As in the case of product and process innovation, exploration using interactions of the

two sets of predicted values for these various dummy variables yielded highly insignificant and implausible

results.

7. In fact, the CIS 5 survey was based on the same stratified sample as the CIS 4 survey, so there is slightly more

overlap than implied by drawing a new sample each year.

8. The industries deleted were the two-digit sectors (SIC 2007) 1–9 and 80–99.

9. Note that because we also include two-digit industry dummies in the regressions, the demand-pull effects are

measured relative to the average for the relevant industry.

10. Also, Canepa and Stoneman (2008) report that firms from high-tech industries are more likely to report a project

being abandoned or delayed thanks to financial constraints.

11. See, for instance, Tiwari et al. (2007) for a study of how financial constraints interact with market uncertainties

(among the others) and influence R&D spending.

12. We also estimated the full innovation spending model, but as we saw earlier, it makes little difference for the pro-

ductivity equation which model we use, so we do not show these estimates.
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