

This is a repository copy of A systematic review of the use of the Satiety Quotient.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/163533/

Version: Accepted Version

Article:

Fillon, A, Beaulieu, K orcid.org/0000-0001-8926-6953, Mathieu, ME et al. (4 more authors) (2020) A systematic review of the use of the Satiety Quotient. British Journal of Nutrition. ISSN 0007-1145

https://doi.org/10.1017/s0007114520002457

© The Authors 2020. This article has been published in a revised form in British Journal of Nutrition: https://doi.org/10.1017/S0007114520002457. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A systematic review of the use of the Satiety Quotient

Fillon A^{1,2}, Beaulieu K³, Mathieu ME⁴, Tremblay A⁵, Boirie Y^{6,7,8,9}, Drapeau V⁵, Thivel D^{1,6}.

¹Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont-Ferrand, France

²UGECAM Nutrition Obesity Ambulatory Hospital, Clermont-Ferrand, France ³School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK

⁴School of kinesiology and physical activity sciences, University of Montréal, Montréal, Québec, Canada.

⁵Institute of Nutrition and Functional Foods (INAF), University of Laval, Quebec City, Canada

⁶CRNH-Auvergne, Clermont-Ferrand, France ⁷INRA, UMR 1019, Clermont-Ferrand, France

⁸Department of Human Nutrition, Clermont-Ferrand University Hospital, G. Montpied Hospital, Clermont-Ferrand, France

⁹University Clermont Auvergne, UFR Medicine, Clermont-Ferrand, France

Key words. Satiety Quotient, Appetite, Hunger, Fullness, Energy Intake, Desire to Eat, Prospective Food Consumption

Running head: Use of the Satiety Quotient

This peer-reviewed article has been accepted for publication but not yet copyedited or typeset, and so may be subject to change during the production process. The article is considered published and may be cited using its DOI

10.1017/S0007114520002457

The British Journal of Nutrition is published by Cambridge University Press on behalf of The Nutrition Society

Corresponding Author:

Miss FILLON Alicia

Clermont University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under

Physiological and Pathological Conditions (AME2P), BP 80026, F-63171 Aubière cedex,

France

fillonalicia@gmail.com

Phone and fax/ 0033 4 73 40 76 79

Abstract

The satiating efficiency of food has been increasingly quantified using the Satiety Quotient

(SQ). The SQ integrates both the energy content of food ingested during a meal and the

associated change in appetite sensations. This systematic review examines the available

evidence regarding its methodological use and clinical utility. A literature search was

conducted in 6 databases considering studies from 1900 to April 2020 that used SQ in adults,

adolescents and children. All study designs were included. From the initial 495 references

found, 52 were included. Of the studies included, 33 were acute studies (29 in adults and 4 in

adolescents) and 19 were longitudinal studies in adults. A high methodological heterogeneity

in the application of the SQ was observed between studies. Five main utilizations of the SQ

were identified: its association with i) energy intake; ii) anthropometric variables; iii) energy

expenditure/physical activity; iv) sleep quality and quantity; as well as v) to classify

individuals by their satiety responsiveness (i.e. low and high satiety phenotypes). Altogether,

the studies suggest the SQ as an interesting clinical tool regarding the satiety responsiveness

to a meal and its changes in responses to weight loss in adults. The SQ might be a reliable

clinical indicator in adults when it comes to both obesity prevention and treatment. There is a

need for more standardized use of the SQ in addition to further studies to investigate its

validity in different contexts and populations, especially among children and adolescents.

Prospero number: CRD42019136442.

Abbreviations

BF: Breakfast

BW: Body Weight

EI: Energy Intake

SQ: Satiety Quotient

SQ_{DTE}: Satiety Quotient for desire to eat

SQ_F. Satiety Quotient for fullness

SQ_H: Satiety Quotient for hunger

SQ_{PFC}: Satiety Quotient for prospective food consumption

SQs: Satiety Quotient for satiety

T1D: Type 1 diabetes

T2D: Type 2 diabetes

VAS: Visual analogue scale

Introduction

According to the World Health Organization, 39% of adults were overweight and 13% had obesity in 2016 ⁽¹⁾ with pediatric data being just as concerning with 340 million children from 5 to 19 years old classified with overweight and obesity world-wide ⁽¹⁾. This alarming prevalence of overweight, obesity and their associated metabolic complications call for a better understanding of the mechanisms involved to propose innovative and effective weight loss strategies. Among them, the regulation of energy balance ^(2,3) and the pathways involved in the control of appetite and energy intake (EI) have been of particular interest over the last years ⁽⁴⁾. Both homeostatic and hedonic mechanisms influence the motivation to eat (hunger), meal size (satiation) and post-meal suppression of hunger (satiety) ⁽⁵⁾.

Indeed, a number of objective and subjective methods have been developed for the quantification and evaluation of both food intake (e.g. ad libitum test meals, food diaries) and appetite sensations (e.g. visual analogue scales; VAS). These VAS usually comprise of questions pertaining to hunger "How hungry do you feel?", fullness "How full do you feel?", desire to eat "How strong is your desire to eat?", and prospective food consumption "How much do you think you could eat?", with "not at all" to "extremely" as labelled end points. Integrating both the energy content of food ingested during a meal and the associated change in appetite sensations, Green and collaborators developed a Satiety Quotient (SQ) as an indicator of the satiating efficiency of food ⁽⁶⁾. The SQ is calculated by dividing the change in subjective appetite sensations in response to a meal by the energy content of the meal.

Since its development, there has been an increasing use of the SQ. While initially created as an indicator for the satiating efficiency of a meal or food, the SQ has been associated with food intake ^(7–10) and body weight (BW) and composition ^(9,11,12) or used as a tool to classify individuals by their satiety responsiveness ^(13–15). However, the extent to which the SQ has been applied in research and its scientific and clinical relevance has yet to be examined. Therefore, the aim of this systematic review is to review the available evidence of the different contexts in which the SQ has been utilized in research, the methodologies used to calculate the SQ, and to examine its clinical utility.

Methods

This review is registered in the PROSPERO database as CRD42019136442. The PRISMA guidelines were followed for the preparation of this paper ⁽¹⁶⁾.

Database search

The following electronic bibliographic databases were searched: PubMed, Embase, Scopus, Web of Science, CAB Abstract Core Collection and Google Scholar. The literature search considered studies from year 1900 to April 2020. Keyword searches were performed for "Satiation", "Satiety response", "Appetite", "Hunger", "Humans", "Fullness", "Prospective Food Consumption", "Desire To Eat", "Motivation To Eat" and "Satiety Quotient". The search strategy for each of the databases are detailed in Table 1. The search strategies were developed based on an analysis of the literature and were open-ended according to the nature of each database. The reference lists of the articles included were also examined to complete the search.

Study eligibility

Inclusion criteria. To be included in the review, studies had to use SQ. There was no exclusion criterion for the study design (cross-sectional, observational, longitudinal or interventional), population (no limit for age, weight status and associated complications and both genders were included), meal type (standardized or ad libitum). Published peer-reviewed studies, conference proceedings and posters (when data and design properly described), theses and dissertations were eligible.

Exclusion criteria. When data were presented in a graphical form without mean or standard deviation (SD) indicated, the corresponding author of the work was contacted to obtain complementary data. If the corresponding author did not answer or declined the query, studies were excluded. When the full text was not found and the corresponding author was unreachable or did not respond, the article was excluded.

Study selection. Titles and abstracts of potentially relevant studies were screened in duplicate for inclusion in the review and any discrepancies were collectively discussed by the authors. The same procedure was followed for the full texts. Any disagreement regarding eligibility for inclusion was discussed and a consensus made among co-authors.

Data extraction

For every included study, the following data were extracted: sample size and characteristics (sex, age, BMI), study design and aim, VAS characteristics (specific appetite sensations assessed and timing), meal characteristics, SQ equation and main SQ results.

Risk of Bias

Risk of bias was independently evaluated by two authors (AF, DT) using the Cochrane risk of bias tool ⁽¹⁷⁾. Risk of bias was assessed for: selection bias; performance bias; detection bias; attrition bias; reporting bias. Any discrepancies in bias coding were resolved by a third reviewer. Studies were not excluded on the basis of risk of bias.

Results

The flow diagram presented in Figure 1 illustrates the selection/inclusion/exclusion process. The initial database search identified 1281 studies and 9 additional studies were also identified. Following the removal of duplicate studies, 495 studies were identified. After review of titles and abstracts, 162 studies were excluded and 85 full-text were screened, leaving 52 included studies. Table 2 details the risk of bias analysis. Of the 52 studies included, 33 were acute studies (6-8,11,13-15,18-42) and 19 were longitudinal studies (9,10,12,43-59).

......Figure 1.....

Acute studies

Of the 33 acute studies, 29 were conducted in adults $^{(6-8,11,13-15,18-37,40,43)}$ and 4 in adolescents $^{(38,39,41,42)}$.

Adult acute studies (n=29)

Main aim, population and design

The main aims, populations and used designs are presented in Table 3 and fully detailed in supplementary materials.

Methods

Topics

Of the 29 studies, 90% (n=26) compared SQ in response to a stimulus (meal, exercise, sleep), the remaining studies ^(8,13,14) used SQ to categorize their population (high or low satiety phenotype). Fifty-nine percent of the included studies (n=17) compared the SQ response to meals of different composition. Of these 17 studies, 2 used liquid meals ^(28,33), 14 solid meals

(6,14,15,18,19,21,22,25,27,30,34–37,40) and 1 study compared solid versus liquid meals (32). Of these studies, 3 examined the effect of meals differing in energy content (14,28,33) and 5 studies compared the effect of meals differing in macronutrient composition (6,15,18,19,25). Martini et al. (27) compared the effect of meals differing in fiber and protein, and Au-Yeung (30) compared the effect of different amounts protein intake via konjac glucomannan capsules and one study examined the combined effects of a modification in macronutrients, unsaturated fats, fiber and calcium (40). In a slightly different way, Felix et al. (32) compared the effect of different kinds of rice and Finlayson et al. (35) the effect of different tastes on appetite sensations. Defries et al. (22) compared the different satiating effects of meals made from buckwheat flour or rice flour, while Felix et al. (36) compared the different satiating effects of white rice or brown rice using 4 different types of rice and Kendall et al. (34) the effect of different resistant starch compositions using beverages. Finally, in their study, Bligh et al. (21) investigated the satiating effect of two different types of Paleolithic meals compared to a reference meal.

Three of the studies investigated the influence of sleep on SQ ^(20,29,31): one examined the effect of sleep duration ⁽²⁰⁾, while another examined the timing ⁽³¹⁾ and a last one assessed the influence of the duration, quality and timing of sleep ⁽²⁹⁾. Two of the 28 studies investigated acute medication interventions ^(23,26) and 1 assessed the effect of hormone infusions ⁽²⁴⁾. Among the acute studies, 2 included acute exercise in their protocol and compared appetite sensations after the same exercise performed at different blood glucose levels ⁽⁷⁾ and the other compared different intensities of exercise ⁽³⁷⁾ or different activity related energy expenditure ⁽⁴³⁾. One study investigated the effect of mental work ⁽¹¹⁾, and another compared the appetite sensation response of men and women ⁽⁸⁾. Finally, Drapeau et al. ⁽¹³⁾ characterized the biopsychobehavioural profiles of men with low satiety phenotype at the start of a weight loss intervention.

VAS

Regarding the type of VAS used, 79% (n=23) of acute studies used the pen and paper method $^{(6-8,11,13,14,20,22,24,26-37,40,43)}$, 10% (n=3) used electronic VAS $^{(18,21,23)}$ and 3 studies did not specify the type of scale used $^{(15,19,25)}$. Of the 23 studies using pen and paper scales, 15 used 100-mm scales $^{(6,14,20,22,24,26,27,30-36,43)}$, while 8 used 150-mm scales $^{(7,8,11,13,28,29,37,40)}$. For studies that used electronic VAS, 1 used 100-mm scales $^{(18)}$, one used 60-mm scales $^{(21)}$ and one did not specify the length of the scale used $^{(23)}$. The 3 studies that did not specify the type of scale used also did not specify the length of the scale $^{(15,19,25)}$.

Out of the 29 studies, 28 assessed "Hunger" $^{(6-8,11,13-15,18-26,28-37,40,43)}$, 24 measured "Fullness" $^{(7,8,11,13,14,18,20-31,33,34,36,37,40,43)}$ and 20 investigated "Prospective Food Consumption" $^{(7,8,11,13-15,18,20,22,24,28-31,33,34,36,37,40,43)}$. "Desire to Eat" was assessed in 20 studies $^{(7,8,11,13-15,18,21-23,27-31,34,36,37,40,43)}$ and "Satiety" in 4 studies $^{(18,20,24,27)}$. However, as described below, all appetite sensations measured were not used for the calculation of SQ.

Calculation of SQ

Equations used

Of the 29 acute studies included, 8 used the initial equation proposed by Green et al. (1997) $^{(6,22,24,30,33-35,43)}$: (appetite sensation pre-meal - appetite sensation post meal) / EI of eating episode. This equation was slightly reworked by Drapeau et al. (2007), who used this equation but multiplied the result by 100. Fifteen studies used the equation proposed by Drapeau et al. (7,8,13,14,18-20,25,28,29,31,32,36,37,40). While previous studies have used similar equations, others have calculated the SQ slightly differently. Chapman et al. (26) calculated two SQ: a prandial SQ that considered in its calculation both pre- and post-meal appetite sensations, and a post-prandial SQ only considering post-meal sensations. In their study, Martini et al. (27) calculated three different SO: 1) the same equation as Drapeau et al. using the pre- and post-lunch appetite sensations and energy content of lunch; 2) (appetite sensation before lunch - appetite sensation before snack) /energy content of lunch * 100; and 3) (appetite sensation before lunch – appetite sensation after snack) / (energy content of lunch + snack) * 100. More specifically, Au Yeung et al. used the Green equation for SQ_H, SQ_{DTE} and SQ_{PFC}. For SQ_F, they subtracted fullness post-eating from fullness fasting. Salama et al. (11) also reversed the order of subtraction between appetite sensations contrary to what was done by Drapeau, subtracting pre-meal sensations from post-meal sensations. Two studies did not specify the type of equation used (15,21). Finally, Thomas et al. used an adapted version of the equation proposed by Green and calculated "satiation quotient" per quartile, reflecting the satiety capacity of a food as eaten ((quartile initial hunger - quartile ending hunger rating)/calorie consumed during quartile) (23).

Appetite sensations used

^{31,34,36,37,40,43)} and "Prospective Food Consumption" ^(7,8,11,13,20,24,28–31,34,36,37,40,43). Drapeau et al. also calculated a mean SQ with the SQ results corresponding to the four previous appetite sensations ⁽¹³⁾. In 3 of the acute studies, an SQ for "Satiety" was calculated ^(20,24,27). Hansen et al. ⁽¹⁸⁾ calculated what they named an Appetite Quotient (similar to SQ), based on composite appetite scores (with Hunger, Satiety, Fullness, Prospective Food Consumption and Desire To Eat). Gonzalez et al. ⁽³³⁾ also produced a composite SQ, whose equation is however not detailed. In their work, Hollingworth et al. ⁽¹⁵⁾ did not detail in the publication which appetite sensation was used to calculate the SQ.

Timing of the sensations used

For the SQ calculation, out of the 29 studies, 23 chose to define as "pre-meal sensations" the sensations recorded immediately before the tested meal (7,8,11,13,14,18-20,22,25,27-^{34,36,37,40,43}). The remaining 6 studies assessed pre-lunch sensations 1 hour before the meal ⁽²⁶⁾, 20 minutes before the meal (21) or 5 minutes before the meal (24). Three studies did not specify the timing of the VAS (15,23,35). Two studies also assessed appetite feelings during the meal (23,24). Regarding the use of post-meal appetite sensations for calculating SQ, 8 studies evaluated them up to 60 minutes after the end of food intake (7,8,13,23,28,29,33,37), 5 studies up to 120 minutes after the end of food intake (20,27,32,34,36), 4 up to 180 minutes after the end of food intake (18,22,25,31) and 3 up to 240 minutes after the end of food intake (6,11,40). Hopkins et al. reported appetite sensations every hour after the end of the meal until the next meal (19) while Chapman et al. assessed appetite sensations up to 5 hours after the end of the meal (26). Green et al. measured appetite sensations up to 75 minutes after food intake ⁽⁶⁾, Schmidt et al. reported post-meal appetite sensations up to 25 minutes after the meal (24) and finally, Harrington et al. reported post-meal appetite sensations immediately after the end of the meal (43). The study from Blight et al. reported appetite sensations up to 175 minutes after the start of food intake, while Dalton et al. reported these sensations up to 90 minutes after the start of the meal. The timing of VAS are summarized in detail in Table 3.

Type of meal

Finally, SQ was also calculated in response to different meals. Among the included acute studies, 13 used a standardized fixed meal to calculate SQ ^(7,8,13,21,22,28–30,32–34,36,37), while 3 used an individualized meal based on percentage of energy needs ^(14,31,35) and 6 used an ad libitum meal ^(20,23–26,43). Six studies calculated the SQ on both types of meals: standardized and

ad libitum ^(6,11,18,19,27,40). One study did not specify the type of meal used to calculate the SQ ⁽¹⁵⁾. Table 3 details the different meals used in the included studies.

Acute studies conducted in children and adolescents

Main aim, population and design

The main aims, populations and used designs are presented in Table 4 and fully detailed in supplementary materials.

Methods

Calculation of SQ

Three of the included studies used pen and paper VAS ^(38,39,42), and Kral and collaborators did not specify the type of scale used ⁽⁴¹⁾. In their studies, Thivel et al. and Fillon et al. used 150-mm scales ^(39,42) and Albert et al. et Kral et al. used 100-mm scales ^(38,41). Albert and colleagues ⁽³⁸⁾ assessed "Desire To Eat ", "Hunger", "Fullness", "Anticipated Food Consumption", "Desire for specific food types", "Palatability", "Appreciation" and "Visual appeal". The others assessed "Desire To Eat ", "Hunger", "Fullness" and "Prospective Food Consumption" ^(39,41,42).

Regarding the calculation of SQ, all of the included studies used the equation proposed by Drapeau et al. (2007) (appetite sensation pre-meal - appetite sensation post-meal) / EI of eating episode * 100. While Albert et al. only used the immediate post-meal sensation in the equation ⁽³⁸⁾, the three other studies used a mean of post-meal sensations assessed: immediately post-meal, 30 minutes and 60 minutes post-meal in Thivel et al. et Fillon et al.'s studies ^(39,42), and immediately post-meal and 15 minutes post-meal in Kral et al. ⁽⁴¹⁾.

Although Albert et al. $^{(38)}$ assessed different appetite sensations, they only calculated the SQ_H while the three other studies calculated the SQ for each of the appetite sensations assessed: Desire To Eat , Hunger, Fullness and Satiety $^{(39,41,42)}$. All studies calculated their SQ using an ad libitum lunch meal.

Chronic studies conducted in adults

Main aim, population and design

The main aims, populations and used designs are presented in Table 4 and fully detailed in supplementary materials.

Methods

Topics

Eighty-four percent of the included chronic studies investigated the SQ in response to lifestyle changes (e.g. changing from inactive to active) or physiological modifications (e.g. pre- vs. post-menopause in women) (9,10,44–52,54–57,59) while 3 of these 19 studies used SQ as a tool to classify the population as low and high satiety phenotype (12,53,58).

Two observational studies were included and examined the association between SQ and the change of EI, BW and body composition over time ^(9,10).

Among the included interventional studies, 7 assessed the effect of different dietary prescriptions on SQ ^(12,44–46,55,58,59) while 2 assessed the effect of different physical activity prescriptions on SQ ^(50,57). One study investigated the effect of a prescription combining physical activity and dietary interventions on SQ ⁽⁴⁷⁾. One assessed the effect of weight change on SQ ⁽⁴⁸⁾ and three others more specifically on the effect of different energy restrictions on SQ change ^(53,54,59). Bédard and colleagues investigated the effect of sex on SQ ⁽⁴⁹⁾ and Carbonneau et al. the effect of different nutritional labelling ⁽⁵²⁾. Finally, the effect of probiotic ⁽⁵¹⁾ or pharmaceutical ⁽⁵⁶⁾ compounds on the change of SQ was also tested.

VAS

Fifteen studies used pen and paper VAS ^(9,10,12,45–49,51–54,56,58,59) while the other 4 used electronic VAS. Of the 15 that used the pen and paper method, 6 used 100-mm scales ^(45,46,54,56,58,59) while the others used 150-mm scales ^(9,10,12,47–49,51–53). With regards to electronic VAS, one study used a 7-point scale ⁽⁴⁴⁾, another used a scale ranging from -3 to 3 ⁽⁵⁵⁾ and finally 2 studies did not specify the length of the scales used ^(50,57).

Sixteen of the 19 studies analyzed "Hunger" $^{(9,10,12,45-54,56,57,59)}$ and 15 assessed "Fullness" $^{(9,10,12,47-54,56-59)}$. Thirteen studies investigated "Desire To Eat" $^{(9,10,12,47-51,53,54,56,57,59)}$ and 12 assessed "Prospective Food Consumption" $^{(9,10,12,47-51,53,54,56,59)}$. Two studies used a single scale with "Hunger" and "Fullness" as extremes $^{(44,55)}$.

Calculation of SQ

Equations used

Seventy-four percent of the included studies used the following equation proposed by Drapeau et al. $^{(10,13)}$: (appetite sensation pre-meal - appetite sensation post-meal) / EI of eating episode * $100^{(9,10,12,45,46,48-54,57,59)}$. Buckland et al. used the same equation, but they subtracted post-meal sensation from pre-meal sensation, because they evaluated just "Fullness" $^{(58)}$. Hintze et al. reversed also the order of subtraction between appetite sensations contrary to what was done by Drapeau, subtracting pre-meal sensations from post-meal sensations, for $SQ_F^{(54)}$. Three studies used the same equation without multiplying the result by $100^{(44,47,56)}$ and one study did not clearly specify the equation used $^{(55)}$.

Appetite sensations used

On the 19 chronic studies, 15 calculated $SQ_H^{(9,10,12,45-48,50-54,56,57,59)}$, 14 $SQ_F^{(9,10,12,44,47-49,51-56,58)}$ and 9 $SQ_{DTE}^{(9,10,12,47,48,51,53,54,56)}$ and $SQ_{PFC}^{(9,10,12,47,48,51,53,54,56)}$ (see Table 5).

Timing of the sensations used

More specifically, all studies considered as "pre-meal appetite sensation" the sensations given immediately before the meal. With regard to "post-meal appetite sensation", 5 studies used only the sensations immediately after the meal (45,47–49,52) and 2 studies considered the post-meal sensations as the sensations recorded 30 minutes after the start of ingestion (44,55). Others averaged appetite sensations immediately after eating with appetite sensations 1 hour after eating (57), or every 10 minutes for 1 hour (10,51,53), or every 10 minutes for 1 hour plus 90 minutes and 120 minutes after eating (12). Three studies used the average appetite sensation immediately after eating with the sensations reported every 30 minutes for 3 hours (9,54,59) while Halford et al. (56) and Buckland et al. (58) used the same protocol but with appetite sensation evaluations every hour for 3 hours and not every 30 minutes. Finally, Golloso-Gubat and colleagues (46) used the average of appetite sensation at 15, 30, 45, 60, 90, 120, 150, 180, 240 minutes after the meal to calculate "post-meal appetite sensation". One study (50) indicated that it had integrated in the calculation of the post-meal sensations the

sensations of appetite immediately after the meal as well as sensations assessed periodically between the 2 meals (Table 5).

Type of meal

Out of the 19 included studies, 7 calculated the SQ in response to a standardized fixed meal ^(9,10,12,46,48,51,53) while 5 used an ad libitum meal ^(44,45,47,52,55) with one study using both type of meals ⁽⁵⁶⁾. Six studies ^(49,50,54,57–59) calculated the SQ on an individualized meal based on a percentage of energy needs.

Main Results

By adopting a systematic overview of all the included studies, a large heterogeneity is observed when it comes to the purpose of using SQ. While all details are presented in Tables 3, 4 and 5, five main methodological uses of the SQ can be identified: i) the association between SQ and energy intake (7-9,12,15,18,19,21,22,25,27,32,36,40,44-46,49,54,55,58,59); ii) the association between the SQ and anthropometric variables (8-11,47,48,53,59); iii) the association between SQ and energy expenditure/physical activity (7,14,37,43,50,57); iv) the association between SQ and sleep quality and quantity (20,29,31); v) SQ to classify individuals into low and high satiety phenotypes (13-15,40,53,58).

The following sections presents and categorizes the main results observed in the included studies. While only the main methodological aspects and results related to the use of the SQ are details in this section, the Tables 3, 4 and 5 presents the full details of the included studies.

Association between SQ and energy and macronutrient intake

First, four of the included studies demonstrate that SQ is a predictor of food intake ⁽⁷⁻¹⁰⁾. The systematic analysis of these studies shows that SQ_F ⁽⁸⁻¹⁰⁾, SQ_H ⁽⁷⁾, SQ_{PFC} ⁽⁹⁾ and mean SQ ⁽⁹⁾ predict EI and SQ_F predicts relative EI too (subtracting resting metabolic rate from total energy intake) ⁽⁸⁾. A distinction is made in the studies between objectively measured EI and self-reported EI using food diaries, with SQ_{DTE}, SQ_H, SQ_F ⁽⁷⁾ and SQ_{PFC} ⁽⁹⁾ predicting reported EI only. More specifically, according to these studies, macronutrient intake could be predicted by SQ_F, SQ_{PFC} and mean SQ ⁽⁹⁾ and SQ_F could also predict CHO intake in food diaries ⁽⁹⁾. In

children, Kral et al. suggest that energy density may influence satiety responsiveness and that SQ may predict $IE^{(41)}$.

Association between SQ and anthropometric variables

Five of the included studies show associations between the SQ and anthropometric or body composition variables ^(8,9,11,53,58,59). Concerning BW, we observe that individuals with high satiety phenotype lost more BW than those with a low satiety phenotype ^(12,53,58) and we find the same conclusions regarding waist circumference in women with obesity ⁽⁵⁸⁾. In fact, individuals with a high waist circumference had lower satiating effect determined by the SQ_F ⁽¹¹⁾ and McNeil et al. showed in their 5-year study that changes in SQ was negatively correlated with the change in waist circumference ⁽⁹⁾. With regards to the relationship between SQ and fat mass, Salama et al. found a positive relationship between % fat mass and SQ_F ⁽¹¹⁾. In their longitudinal study, McNeil et al. found a positive correlation between the SQ and fat mass changes (delta) over the entire study, although they found a negative correlation between year 4 and year 5 ⁽⁹⁾.

Association between SQ and energy expenditure/physical activity

Three of the included studies show contradictory associations between SQ and exercise or the level of physical activity ^(25,43,50,57). Some cross-sectional results suggest a decrease in SQ, indicating a lower satiety responsiveness, in lean individuals with high activity-related energy expenditure ⁽⁴³⁾ while others show no effect of habitual physical activity level on SQ in non-obese individuals ⁽²⁵⁾. In individuals with overweight and obesity, a 12-week exercise intervention led to increased satiety responsiveness to a fixed meal ^(50,57).

With regard to studies in children, it can be observed that the timing between exercise and a meal ^(37,43) or the use of an energy replacement strategy ⁽⁹⁾ have no effect on SQ and that no particular association was found with SQ. However, a better satiety responsiveness (higher SQ) was observed when exercise is performed just before a meal vs. a rest condition ⁽⁴³⁾.

SQ to classify individuals into low and high satiety phenotypes

Six of the included studies support the SQ as a reliable tool to phenotype individuals based on their satiety responsiveness ^(12–15,53,58). Indeed, compared to individuals with a high satiety phenotype, individuals with a low satiety phenotype have higher EI, greater cravings for sweet foods, lower craving control, higher disinhibition and fasting Hunger, Desire To Eat and Prospective Food Consumption and exhibit a higher wanting for high-fat food ^(14,15,58).

The behavioral and psychological characteristics of the low satiety phenotype are associated with a greater susceptibility to overconsumption ^(14,15). These results are also corroborated by another study, where Drapeau et al. indicate that the higher increase in cognitive restraint and a lower decrease in disinhibition in response to a weight loss intervention could increase the susceptibility of these individuals to weight gain ⁽⁵³⁾, these results being in agreement with another work from Drapeau et al. showing that SQ negatively correlated with the external locus for Hunger measured by the Three-Factor Eating Questionnaire ⁽¹³⁾. Moreover, Buckland et al. found a weaker control over eating and weight loss program adherence in people with a low satiety phenotype, as well as a lower weight loss compared with people with a high satiety phenotypes⁽⁵⁸⁾.

Discussion

While there has been a growing use of the SQ in clinical studies since its development by Green and colleagues in 1997 ⁽⁶⁾, little attention has been paid regarding its use since then and a high methodological heterogeneity can be observed between studies. A better understanding of the SQ and its clinical implication is of particular interest since, as shown by several studies, by including both pre-meal sensation and the energy content of the meal in its calculation, it seems to provide different information than appetite sensations alone. Indeed, some studies have observed different results for appetite sensations and SQ in response to various stimuli (such as exercise or sleep for instance) ^(31,37). In that context, the present review aimed to systematically analyze the available evidence regarding the scientific and clinical use of the SQ. Fifty-two studies were included after our database search, 33 of them being cross-sectional/acute ^(6-8,11,13-15,18-42) and 19 being longitudinal ^(9,10,12,43-59). The large majority of the included studies enrolled adults participants with only 4 enrolling children and adolescents ^(38,39,41,42).

According to our analysis, acute studies mainly used the SQ to compare the satiating of meals different kinds varying texture (liquid and solid) in $(6,\!14,\!15,\!18,\!19,\!21,\!22,\!25,\!27,\!28,\!30,\!32-\!36,\!40)$ (14,28,33,41)energy content or composition $^{(6,15,18,19,21,25,27,30,34,36,40)}$. Some of these acute investigations also assessed the effect of sleep characteristics (i.e. timing, quality or duration) (20,29,31), exercise (7,37), mental work (11), gender ⁽⁸⁾ or pharmaceuticals ^(23,24,26) on the SQ. Regarding the interventional studies included in our analysis, they mainly used the SQ to evaluate the effect of different dietary and/or exercise interventions (12,44-47,50,51,53-55,57,59) on the SQ. Finally, some studies (acute and chronic) used the SQ to classify individuals as low or high satiety phenotypes (13–15,40,53,58).

Clinical utility and reliability of the SQ

According to the present systematic approach, the use of the SQ might be a reliable predictor of both measured (7-10,58) and reported (7,9,10) energy intake, as well as macronutrient intake (9). Studies effectively highlight higher food consumption with lower satiety responsiveness to a meal (lower SQ) in T1D (7), healthy women (15), men and women with overweight ⁽⁸⁾, premenopausal women ⁽⁹⁾ and women with obesity ^(54,58). This is reinforced by other results demonstrating negative associations between SQ and BW, waist circumference as well as fat mass (9,11,53,58). Importantly, Drapeau et al. (53) found a positive association between SQ and weight loss in response to an energy restriction intervention in men and women with obesity, like Buckland et al. in women with obesity (58). The SQ has been used as a clinical tool to categorize people depending on their level of satiety responsiveness to a standardized fixed meal; a low phenotype characterizing people who report difficulties in appropriately recognizing their appetite sensations before or after a meal ⁽⁸⁾. These results are supplemented by those of Buckland et al., which have shown that people with low satiety phenotype have a weaker control over eating and weight loss program adherence compared to people with high satiety phenotype (58). Moreover, people with low satiety phenotype prefer and consume more of high energy density food than people with high satiety phenotype (58). While most studies use a median split to categorize low and high satiety phenotypes, in a clinical context, a low satiety phenotype might be observed in about 10% of patients with obesity who declare themselves as unable to detect changes in their appetite, report a weak satiety response to a meal and even show an increase in appetite after a meal for some of them (60). Altogether these results suggest that the SQ is an interesting clinical indicator to identify adults at risk of overeating and thus could be used in preventive strategies and weight loss interventions. Moreover, while the literature seems to suggest the SQ and the SQ phenotype as complementary tools to already existing subjective methods (such as the evaluation of disinhibition using the TFEQ), providing additional information regarding the risk of overeating for instance, comparison studies are still missing and should be conducted.

Interestingly, while the SQ has been studied in the context of nutritional manipulations, some studies also examined its relationship and response to physical activity and exercise. According to these studies, moderate physical activity levels in lean individuals and exercise training in individuals with overweight and obesity are associated with a higher SQ, suggesting an improved satiety responsiveness (43,50,57). However, this was not the case in studies measuring SQ at an ad libitum meal in lean individuals with very high physical

activity levels, one of which showing lower SQ ⁽⁴³⁾ and another showing similar SQ ⁽²⁵⁾ than their less active counterparts. Using a different methodology to assess the satiety response to food (preload-test meal protocol), other studies have shown that physically active individuals have better ability to adjust subsequent energy intake following preloads differing in energy content ^(61,62). These results, whether using the SQ or energy compensation following a preload as an indicator of satiety responsiveness, illustrate a relationship between physical activity, food intake and appetite control ⁽⁶³⁾. Here again, it suggests the clinical interest of the SQ as part of multidisciplinary approaches developed to prevent and treat obesity in adults.

According to our systematic approach, only few (n=4 out of 52) studies very recently used the SQ among children and adolescents. Three of them investigated the effect of acute exercise on the subsequent satiating effect of a meal (38,39,42) and the last, the effect of different preload energy density on satiety responsiveness. While two of these studies did not observe any effect of an acute exercise bout on the SQ calculated on the following ad libitum meal (38,42), Fillon et al. found increased SQ for Hunger, Prospective Food Consumption and Desire To Eat after acute moderate intensity exercise in adolescents with obesity (39). Kral and coworkers suggested a beneficial effect of a low energy density preload on satiety responsiveness in children ⁽⁴¹⁾. In addition to the lack of available evidence regarding the use of the SQ in youth, the absence of any validation study in his population must be highlighted. Indeed, it remains unknown whether the SQ is a clinically valid and reliable tool to be used in children and adolescents. Based on the increasing interest in the appetite control of children and adolescents, particularly in those with obesity, our research group recently conducted a methodological study assessing the reproducibility of SQ and its validity as an indicator of body corpulence and composition as well as of EI in adolescents with obesity ⁽⁶⁴⁾. Although SQ_H showed a relatively modest reproducibility, none of the other SQ variables were found reproducible and no association were found with anthropometric variables, body composition or EI ⁽⁶⁴⁾. This clearly calls for caution when interpreting existing results and for further studies developing reliable tools to measure the satiating effect of food in this population.

Methodological considerations

Our systematic analysis reveals a high level of heterogeneity regarding the methods used (equation used, type of meal, timing of the measurements of appetite sensations, etc.). While the SQ has been suggested as reliable and reproducible in adults, especially men with obesity (ICC for the SQ mean of 0.67) (13,14), more studies are needed to assess its validity and reproducibility in various contexts and populations.

While 43 out of the 48 adults studies included $^{(6-14,18-20,22-37,40,43-54,56-59)}$ used the equation initially developed by Green and colleagues (6), others used derived equations (11,23,26,27) or did not specify the equation used (15,21,55). Similarly, as detailed in the tables and results section, the VAS used (e.g. 100 vs. 150 mm) and the timing of the measurements of appetite sensations, with some studies only using the post-meal appetite sensation while others using the mean of the appetite sensations for up to several hours post-meal, vary between studies making any comparisons difficult. Since appetite sensations are dynamic, and postprandial effects might be detected and integrated by individuals at different post-meal intervals, it would be of interest to better examine the best postprandial timing to use when calculating SQ. Importantly, while the SQ has been validated under standardized conditions and mainly using a fixed meal (8,14), 37,5% (n=18) of the included studies used an ad libitum meal to calculate the SO (6,11,18-20,23-27,30,40,43,44,47,52,55,56). Gonzalez and collaborators examined the accuracy of the SQ depending on the energy content of the ingested meal and observed a better reproducibility and reliability of SQ (mean SQ as well as SQ_H, SQ_F, SQ_{PFC}, SQ_S) in response to higher energy content compared to meals of lower energy content (33). Finally, while the validity of the SQ among men (13) and women (14) was suggested, it has been widely used among specific populations such as individuals with diabetes (7,26), premenopausal women ^(9,28), people with different levels of physical activity ⁽²⁵⁾, people with overweight and obesity (8,10,12,13,19,24,26,29,45,47,57,59), and shows a highly variable degree of correlations between studies (as detailed in tables 3 and 5). Once more, this must lead us to interpret these results with caution and calls for more methodological validations.

Conclusion

While the current systematic review suggests the reliability of the SQ in adults and encourages its use as an interesting clinical tool regarding the satiety responsiveness to a meal and its changes in responses to weight loss; we also encourage the adoption of a more standardized use of the SQ as well as the development of additional studies assessing its validity in several contexts and populations, especially among children and adolescents. Further studies should also be conducted to identify the potential biological markers associated with this SQ. Based on the present systematic analysis, we encourage future studies to assess SQ for Hunger, Fullness, Desire To Eat and Prospective Food Consumption after an overnight fast in response to a standardized fixed meal, without intense physical activity, and to consistently use a validated equation (such as the one initially proposed by Drapeau et al. (10,13)). This would allow for more reliable outcomes and better comparisons across studies.

Funding

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Acknowledgements

We would particularly like to thank Mr Denis Arvisais, documentalist at the University of Montreal, who helped us during the collection of the studies. We also thank the Mitacs Globalink grant, who supported this work.

Conflict of Interest

The authors have no conflicts of interest to disclose. The authors have no financial relationships relevant to this article to disclose.

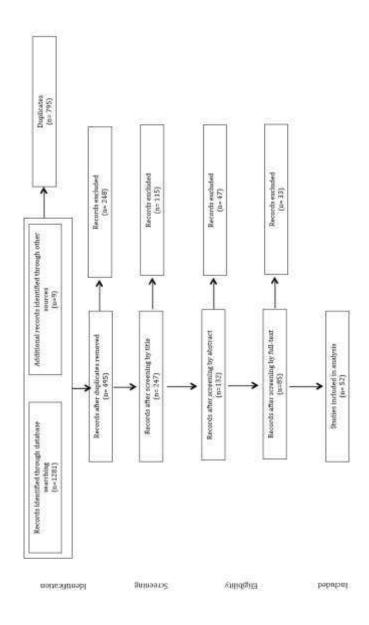
Authorship

AF, DT, VD and AT conceived the idea and conceptualized the review. AF and DT conducted the study selection, data extraction, and methodological quality assessment. AF drafted the initial manuscript. AF, DT, KB and VD contributed to writing the manuscript. All authors read and approved the final manuscript.

References

- Obésité et surpoids. https://www.who.int/fr/news-room/fact-sheets/detail/obesity-andoverweight (accessed March 2019).
- 2. Blundell JE, Gibbons C, Caudwell P, et al. (2015) Appetite control and energy balance: impact of exercise. *Obes. Rev.* **16**, 67–76.
- 3. Hopkins M, Duarte C, Beaulieu K, et al. (2019) Activity energy expenditure is an independent predictor of energy intake in humans. *Int. J. Obes.* 2005.
- 4. Harris RBS (editor) (2017) *Appetite and Food Intake: Central Control*. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis.
- 5. Blundell J & Finlayson G Mechanisms and biomarkers of appetite control. In *Food Texture Food Intake Role Oral Sens. Expo.*, vol. 19(5 Suppl.), Agro Food Industry Hi-Tech, pp. 18–20.
- 6. Green SM, Delargy HJ, Joanes D, et al. (1997) A satiety quotient: a formulation to assess the satiating effect of food. *Appetite* **29**, 291–304.
- 7. Dubé M-C, Tremblay A, Lavoie C, et al. (2013) Effect of exercise on food consumption and appetite sensations in subjects with diabetes. *Appetite* **71**, 403–410.
- 8. Drapeau V, Blundell J, Therrien F, et al. (2005) Appetite sensations as a marker of overall intake. *Br. J. Nutr.* **93**, 273–280.
- 9. McNeil J, Prud'homme D, Strychar I, et al. (2014) Satiety quotient linked to food intake and changes in anthropometry during menopause: a MONET Study. *Climacteric J. Int. Menopause Soc.* **17**, 449–455.
- 10. Drapeau V, King N, Hetherington M, et al. (2007) Appetite sensations and satiety quotient: predictors of energy intake and weight loss. *Appetite* **48**, 159–166.
- 11. Salama M, Drapeau V, Tremblay A, et al. (2016) The impact of a mental work on food preferences, eating behavior traits and satiety efficiency. *Physiol. Behav.* **154**, 191–195.
- 12. Arguin H, Tremblay A, Blundell JE, et al. (2017) Impact of a non-restrictive satiating diet on anthropometrics, satiety responsiveness and eating behaviour traits in obese men displaying a high or a low satiety phenotype. *Br. J. Nutr.* **118**, 750–760.

- 13. Drapeau V, Blundell J, Gallant AR, et al. (2013) Behavioural and metabolic characterisation of the low satiety phenotype. *Appetite* **70**, 67–72.
- 14. Dalton M, Hollingworth S, Blundell J, et al. (2015) Weak Satiety Responsiveness Is a Reliable Trait Associated with Hedonic Risk Factors for Overeating among Women. *Nutrients* 7, 7421–7436.
- 15. Hollingworth S, Dalton M, Blundell J, et al. (2018) Evaluation of the influence of different snack foods on appetite control in the low satiety phenotype. *Appetite* **123**, 458.
- 16. Liberati A, Altman DG, Tetzlaff J, et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *J. Clin. Epidemiol.* **62**, e1–e34.
- 17. Higgins J & Green S (2008) Cochrane handbook for systematic reviews of interventions. .
- 18. Hansen TT, Sjodin A, Ritz C, et al. (2018) Macronutrient manipulations of cheese resulted in lower energy content without compromising its satiating capacity. *J Nutr Sci* **7**, e7.
- 19. Hopkins M, Gibbons C, Caudwell P, et al. (2016) Differing effects of high-fat or high-carbohydrate meals on food hedonics in overweight and obese individuals. *Br J Nutr* **115**, 1875–84.
- 20. Polugrudov A, Popov S, Smirnov V, et al. (2017) Association of social jetlag experienced by young northerners with their appetite after having breakfast. *Biol. Rhythm Res.* **48**, 917–929.
- 21. Bligh HF, Godsland IF, Frost G, et al. (2015) Plant-rich mixed meals based on Palaeolithic diet principles have a dramatic impact on incretin, peptide YY and satiety response, but show little effect on glucose and insulin homeostasis: an acute-effects randomised study. *Br J Nutr* **113**, 574–84.
- 22. Defries DM, Petkau JC, Gregor T, et al. (2017) A randomized, controlled, crossover study of appetite-related sensations after consuming snacks made from buckwheat. *Appl. Physiol. Nutr. Metab.* **43**, 194–202.
- 23. Thomas JM, Dourish CT, Tomlinson JW, et al. (2014) Effects of the 5-HT2C receptor agonist meta- chlorophenylpiperazine on appetite, food intake and emotional processing in healthy volunteers. *Psychopharmacology (Berl.)* **231**, 2449–2459.


- 24. Schmidt JB, Gregersen NT, Pedersen SD, et al. (2014) Effects of PYY3-36 and GLP-1 on energy intake, energy expenditure, and appetite in overweight men. *Am. J. Physiol. Endocrinol. Metab.* **306**, E1248–E1256.
- 25. Beaulieu K, Hopkins M, Blundell J, et al. (2017) Impact of physical activity level and dietary fat content on passive overconsumption of energy in non-obese adults. *Int. J. Behav. Nutr. Phys. Act.* **14**, 14.
- 26. Chapman I, Parker B, Doran S, et al. (2005) Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. *Diabetologia* **48**, 838–848.
- 27. Martini D, Brusamolino A, Del Bo C, et al. (2018) Effect of fiber and protein-enriched pasta formulations on satiety-related sensations and afternoon snacking in Italian healthy female subjects. *Physiol. Behav.* **185**, 61–69.
- 28. Blanchet R, Lemieux S, Couture P, et al. (2011) Effects of neuromedin-β on caloric compensation, eating behaviours and habitual food intake. *Appetite* **57**, 21–27.
- 29. McNeil J, Drapeau V, Gallant AR, et al. (2013) Short sleep duration is associated with a lower mean satiety quotient in overweight and obese men. *Eur. J. Clin. Nutr.* **67**, 1328–1330.
- 30. Au-Yeung F, Jovanovski E, Jenkins AL, et al. (2018) The effects of gelled konjac glucomannan fibre on appetite and energy intake in healthy individuals: a randomised cross-over trial. *Br. J. Nutr.* **119**, 109–116.
- 31. McNeil J, Forest G, Hintze LJ, et al. (2017) The effects of partial sleep restriction and altered sleep timing on appetite and food reward. *Appetite* **109**, 48–56.
- 32. Felix AD, Trinidad TP, Tuano APP, et al. (2013) Short-Term Satiety of Cooked Philippine Rices of Varying Apparent Amy lose Content and Glycemic Index. *Philipp. Agric. Sci.* **96**, 179–186.
- 33. Gonzalez JT, Frampton J & Deighton K (2017) Postprandial suppression of appetite is more reproducible at a group than an individual level: Implications for assessing inter-individual variability. *Appetite* **108**, 375–382.
- 34. Kendall CW, Esfahani A, Sanders LM, et al. (2010) The effect of a pre-load meal containing resistant starch on spontaneousfood intake and glucose and insulin responses. *J. Food Technol.* **8**, 67–73.

- 35. Finlayson G, Bordes I, Griffioen-Roose S, et al. (2011) Susceptibility to Overeating Affects the Impact of Savory or Sweet Drinks on Satiation, Reward, and Food Intake in Nonobese Women—3. *J. Nutr.* **142**, 125–130.
- 36. Felix AD, Tuano APP, Mallillin AC, et al. (2016) Short-term Satiety of Brown Rice and Milled Rice. *Philipp. J. Crop Sci.* **41**, 52–59.
- 37. Thivel D, Fillon A, Genin PM, et al. (2020) Satiety Responsiveness but not Food Reward is modified in response to an acute bout of low versus high intensity exercise in healthy adults. *Appetite* **145**, 104500.
- 38. Albert M-H, Drapeau V & Mathieu M-E (2015) Timing of moderate-to-vigorous exercise and its impact on subsequent energy intake in young males. *Physiol. Behav.* **151**, 557–562.
- 39. Fillon A, Mathieu M-E, Masurier J, et al. (2020) Effect of exercise-meal timing on energy intake, appetite and food reward in adolescents with obesity: the TIMEX study. *Appetite* **146**, 104506.
- 40. Arguin H, Gagnon-Sweeney M, Pigeon É, et al. (2012) Functional food and satiety. Impact of a satiating context effect on appetite control of non-obese men. *Appetite* **58**, 354–363.
- 41. Kral TVE, Moore RH, Chittams J, et al. (2020) Caloric compensation and appetite control in children of different weight status and predisposition to obesity. *Appetite* **36**, 42–55.
- 42. Thivel D, Roche J, Miguet M, et al. (2020) Post-moderate-intensity exercise energy replacement does not reduce subsequent appetite and energy intake in adolescents with obesity. *Br. J. Nutr.* **123**, 592–600.
- 43. Harrington DM, Martin CK, Ravussin E, et al. (2013) Activity related energy expenditure, appetite and energy intake. Potential implications for weight management. *Appetite* **67**, 1–7.
- 44. Jönsson T, Granfeldt Y, Erlanson-Albertsson C, et al. (2010) A paleolithic diet is more satiating per calorie than a mediterranean-like diet in individuals with ischemic heart disease. *Nutr. Metab.* **7**, 85.
- 45. Rodríguez-Rodríguez E, Aparicio A, Bermejo LM, et al. (2009) Changes in the sensation of hunger and well-being before and after meals in overweight/obese women following two types of hypoenergetic diet. *Public Health Nutr.* **12**, 44–50.

- 46. Golloso-Gubat MJ, Magtibay EVJ, Nacis JS, et al. (2016) Differences in Satiating Effects of White Rice and Brown Rice in Selected Filipino Adults. *Philipp. J. Crop Sci.* **41**, 55–60.
- 47. Chaput JP, Pelletier C, Despres JP, et al. (2007) Metabolic and behavioral vulnerability related to weight regain in reduced-obese men might be prevented by an adequate diet-exercise intervention. *Appetite* **49**, 691–695.
- 48. Gilbert JA, Drapeau V, Astrup A, et al. (2009) Relationship between diet-induced changes in body fat and appetite sensations in women. *Appetite* **52**, 809–812.
- 49. Bédard A, Hudon A-M, Drapeau V, et al. (2015) Gender differences in the appetite response to a satiating diet. *J. Obes.* **2015**.
- 50. King NA, Caudwell PP, Hopkins M, et al. (2009) Dual-process action of exercise on appetite control: increase in orexigenic drive but improvement in meal-induced satiety. *Am. J. Clin. Nutr.* **90**, 921–927.
- 51. Sanchez M, Darimont C, Panahi S, et al. (2017) Effects of a Diet-Based Weight-Reducing Program with Probiotic Supplementation on Satiety Efficiency, Eating Behaviour Traits, and Psychosocial Behaviours in Obese Individuals. *Nutrients* 9.
- 52. Carbonneau E, Perron J, Drapeau V, et al. (2015) Impact of nutritional labelling on 10-d energy intake, appetite perceptions and attitudes towards food. *Br. J. Nutr.* **114**, 2138–2147.
- 53. Drapeau V, Jacob R, Panahi S, et al. (2019) Effect of Energy Restriction on Eating Behavior Traits and Psychobehavioral Factors in the Low Satiety Phenotype. *Nutrients* **11**.
- 54. Hintze LJ, Goldfield G, Seguin R, et al. (2019) The rate of weight loss does not affect resting energy expenditure and appetite sensations differently in women living with overweight and obesity. *Physiol. Behav.* **199**, 314–321.
- 55. Jönsson T, Granfeldt Y, Lindeberg S, et al. (2013) Subjective satiety and other experiences of a Paleolithic diet compared to a diabetes diet in patients with type 2 diabetes. *Nutr. J.* **12**, 105.
- 56. Halford J, Boyland E, Cooper S, et al. (2010) The effects of sibutramine on the microstructure of eating behaviour and energy expenditure in obese women. *J. Psychopharmacol. (Oxf.)* **24**, 99–109.

- 57. Caudwell P, Gibbons C, Hopkins M, et al. (2013) No sex difference in body fat in response to supervised and measured exercise. *Med Sci Sports Exerc* **45**, 351–8.
- 58. Buckland NJ, Camidge D, Croden F, et al. (2019) Women with a low-satiety phenotype show impaired appetite control and greater resistance to weight loss. *Br. J. Nutr.* **122**, 951–959.
- 59. Beaulieu K, Casanova N, Oustric P, et al. (2020) Matched Weight Loss Through Intermittent or Continuous Energy Restriction Does Not Lead To Compensatory Increases in Appetite and Eating Behavior in a Randomized Controlled Trial in Women with Overweight and Obesity. *J. Nutr.* **150**, 623–633.
- 60. Drapeau V, Hetherington M & Tremblay A (2011) Impact of Eating and Lifestyle Behaviors on Body Weight: Beyond Energy Value. In *Handb. Behav. Food Nutr.*, pp. 693–706 [Preedy VR, Watson RR, Martin CR, editors]. New York, NY: Springer New York.
- 61. Beaulieu K, Hopkins M, Blundell J, et al. (2016) Does Habitual Physical Activity Increase the Sensitivity of the Appetite Control System? A Systematic Review. *Sports Med. Auckl. NZ* **46**, 1897–1919.
- 62. Beaulieu K, Hopkins M, Long C, et al. (2017) High Habitual Physical Activity Improves Acute Energy Compensation in Nonobese Adults: *Med. Sci. Sports Exerc.* **49**, 2268–2275.
- 63. Beaulieu K, Hopkins M, Blundell J, et al. (2018) Homeostatic and non-homeostatic appetite control along the spectrum of physical activity levels: An updated perspective. *Physiol. Behav.* **192**, 23–29.
- 64. Fillon A, Masurier J, Pereira B, et al. (in press) Usefulness of Satiety Quotient in a clinical pediatric obesity context. .

Figure Legends

..... Error! Bookmark not defined. Figure 1: Flow chart.....

Table 1: Database search strategy details

Data Base	Equation	Filters
	((((((((("Satiation"[Majr]) OR "Satiety Response"[Majr]) OR "Appetite"[Majr:NoExp]) OR "Hunger"[Majr:NoExp]) AND Humans[Mesh])) OR (((satiety[Title/Abstract] OR satiation*[Title/Abstract] OR appetite[Title/Abstract] OR	Humans
Pubmed	fullness[Title/Abstract] OR hunger[Title/Abstract] OR "Prospective food consumption"[Title/Abstract] OR "desire to eat"[Title/Abstract] OR "motivation to eat"[Title/Abstract])) AND Humans[Mesh])) AND Humans[Mesh])) AND quotient[Title/Abstract]	N
Embase	(*satiety OR *satiety response OR *appetite OR *hunger OR fullness.mp OR "desire to eat".mp OR "Prospective food consumption".mp OR "motivation to eat".mp OR satiety.mp. OR satiation*.mp. OR hunger.mp. OR appetite.mp. AND (quotient.mp.	Humans ti
Scopus	(TITLE-ABS-KEY (satiety OR satiation OR appetite OR fullness OR hunger OR "Prospective food consumption" OR "desire to eat" OR "motivation to eat") AND TITLE-ABS-KEY (quotient))	Humans h
Web of Science	((Satiety OR satiation OR appetite OR fullness OR hunger OR "Prospective food consumption" OR "desire to eat" OR "motivation to eat") AND (quotient))	Humans ,
CAB Abstract Core Collection	((Satiety OR satiation OR appetite OR fullness OR hunger OR "Prospective food consumption" OR "desire to eat" OR "motivation to eat") OR ("hunger" OR "satiety" OR "appetite")) AND (Quotient)	Humans tr
Google Scholar	« Satiety Quotient »	n

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word

Table 2: Risk of bias

Study	Random Sequence Generation (Selection bias)	Allocation concealment (Selection bias)	Blinding participants and personnel (Performance bias)	Blinding of outcome assessment (Detection bias)	Incomplete outcome data (Attrition bias)	Selective reporting (Reporting bias)
Albert et al., 2015 (38)	L	NR	L	M	L	L
Arguin et al., 2012 (40)	Н	NR	NR	M	NR	L
Arguin et al., 2017 (12)	L	NR	NR	M	M	L
Au-Yeung et al., 2018 (30)	L	NR	NR	M	NR	L
Beaulieu et al., 2017 (25)	L	NR	NR	M	Н	L
Beaulieu et al., 2020 (59)	L	NR	M	M	M	L
Bédard et al., 2015 (49)	Н	NR	NR	M	L	L
Blanchet et al., 2011 (28)	L	NR	L	L	NR	L
Bligh et al., 2015 (21)	L	NR	L	M	Н	L
Buckland et al., 2019 (58)	L	L	NR	M	L	L
Carbonneau et al., 2015 (52)	L	NR	NR	M	NR	L
Caudwell et al., 2013 (57)	Н	NR	NR	M	L	NR
Chapman et al., 2005 (26)	L	L	L	M	L	NR
Chaput et al., 2007 (47)	Н	NR	NR	M	L	L
Dalton et al., 2015 (14)	L	NR	NR	M	NR	L
Defries et al., 2017 (22)	L	NR	NR	Н	NR	L
Drapeau et al., 2005 (8)	Н	NR	L	M	NR	L

Drapeau et al., 2007 (10)	Н	NR	M	M	L	L
Drapeau et al., 2013 (13)	Н	NR	NR	L	Н	NR
Drapeau et al., 2019 (53)	Н	NR	NR	M	Н	L
Dubé et al., 2013 (7)	L	NR	NR	M	NR	L
Felix et al., 2013 (32)	L	NR	NR	M	NR	NR
Felix et al., 2016 (36)	L	NR	NR	M	NR	NR
Fillon et al., 2020 (39)	L	NR	NR	M	L	L
Finlayson et al., 2011 (35)	L	NR	M	M	M	L
Gilbert et al., 2009 (48)	Н	NR	M	M	L	L
Golloso-Gubat et al., 2016 (46)	L	NR	NR	M	L	NR
Gonzalez et al., 2017 (33)	M	NR	NR	M	NR	NR
Green et al., 1997 (6)	Н	NR	NR	M	NR	NR
Halford et al., 2010 (56)	M	L	L	M	M	L
Hansen et al., 2018 (18)	L	NR	M	M	NR	L
Harrington et al., 2013 (43)	Н	NR	NR	M	L	NR
Hintze et al., 2019 (54)	L	NR	NR	M	Н	L
Hollingworth et al., 2018 (15)	L	NR	NR	NR	NR	NR
Hopkins et al., 2016 (19)	L	NR	NR	M	NR	NR
Jönsson et al., 2010 (44)	L	NR	NR	Н	Н	NR
Jönsson et al., 2013 (55)	L	NR	NR	Н	L	L
Kral et al., 2020 (41)	L	L	M	L	L	L
Kendall et al., 2010 (34)	L	L	L	M	M	NR
King et al., 2009 (50)	Н	NR	NR	M	L	NR

Martini et al., 2018 (27)	L	NR	NR	M	Н	L
McNeil et al., 2013 (29)	Н	NR	NR	M	NR	L
McNeil et al., 2014 (9)	Н	NR	NR	Н	Н	L
McNeil et al., 2017 (31)	L	NR	NR	L	M	L
Polugrudov et al., 2017 (20)	L	NR	NR	M	NR	L
Rodriguez-Rodriguez et al.,	L	NR	Н	Н	L	NR
2008 (45)						
Salama et al., 2016 (11)	L	NR	L	M	Н	L
Sanchez et al., 2017 (51)	L	L	L	M	Н	NR
Schmidt et al., 2014 (24)	L	L	L	M	NR	NR
Thivel et al., 2019 (37)	L	NR	NR	M	NR	L
Thivel et al., 2020 (42)	L	NR	NR	M	L	L
Thomas et al., 2014 (23)	L	NR	L	M	M	L

L: Low risk, M: Medium risk, H: High risk; NR: Not Reported

Table 3: Population, design, methods and main results of adult acute studies

Study	Population characteristics	Design	VAS timing	SQ equation	Main results
Green et al.,	n =18 lean,	Cross-over study	Pre-lunch,	$SQ_H (mm/kJ) = (rating$	SQ, energy intake and appetite control:
1997 ⁽⁶⁾	healthy, dietary	Protocol: Standardized lunch, ad	post-lunch,	pre-eating standardized	- No difference between conditions.
Study 1	unrestrained men	libitum snack	13:30, 14:00,	lunch - rating post-	- Effect of time (p<0.001) indicating that the
	Age= NR	4 lunch conditions:	14:30, 15:00	standardized lunch)/	lunches become less satiating per unit
	BMI= NR	- Low energy lunch (2238		energy content of	energy as time post-lunch \(\cdot \).
		kJ)/high CHO snack		standardized lunch	
		- Low energy lunch (2238			
		kJ)/high fat snack		SQ calculated for each	
		- High energy lunch (3962 kJ)/		of the 5 post-lunch time	
		high CHO snack		points, subtracting the #	
		- High energy lunch (3962		ratings from pre-meal	
		kJ)/high fat snack		rating	
Green et al.,	n=20 (20 lean,	Cross-over study	Pre-lunch,	Same SQ equation as	SQ, energy intake and appetite control:
1997 ⁽⁶⁾	healthy women,	Protocol: Standardized lunch, ad	post-lunch,	Study 1	Unrestrained females: Similar SQ between
Study 2	10 dietary	libitum snack,	13:30, 14:00,		conditions, a main effect of time only
	restrained,10	4 conditions:	14:30, 15:00	SQ calculated for each	(p<0.001).
	dietary	- Low energy lunch (2238 kJ		of the 5 post-meal time	Restrained females: SQ effect of time
	unrestrained)	men, 1679 kJ women)/high		points, subtracting the \neq	(p<0.001) and effect of condition (p<0.05).
	Age= NR	CHO snack		ratings from pre-meal	
	BMI= NR	- Low energy lunch (2238 kJ		rating	

		men, 1679 kJ women)/high fat			
		snack			
		- High energy lunch (3965 kJ			
		men, 2971 kJ women)/ high			
		CHO snack			
		- High energy lunch (3965 kJ			
		men, 2971 kJ women)/high fat			
		snack			
Green et al.,	n =17 lean,	<u>Cross-over study</u>	Pre-preload,	Same SQ equation as	SQ, energy intake and appetite control:
1997 ⁽⁶⁾	healthy men	Protocol: Standardized preload,	post-preload,	Study 1 but for	- Time by condition interaction (p<0.001)
Study 3	Age= NR	ad libitum meal	15:30,	standardized preload	(the low-energy/high-CHO SQ was higher
	BMI= NR	3 preload conditions:	16:00,16:30,		when preload immediately following
		- High energy high-CHO (3347	17:00	SQ calculated for each	consumption but lower than the two other
		kJ)		of the 5 post-meal time	conditions at 17.00 h.)
		- High energy high fat (3343 kJ)		points, subtracting the ≠	- Effect of time (p<0.001).
		- Low energy high-CHO (1828		ratings from pre-meal	*
		kJ)		rating	
		,		6	
Green et al.,	n =16 lean,	Cross-over study	Pre-preload,	Same SQ equation as	SQ, energy intake and appetite control:
1997 ⁽⁶⁾	healthy men	Protocol: Standardized preload	10, 20, 30, 40,	Study 1 but for	- SQ was higher with lower energy preloads
Study 4	Age= NR	(yoghurt), ad libitum meal	50, 60 min	standardized preload	initially than the higher energy preloads, but
Study 7	BMI= NR		,	standardized preioad	
	DIVII= IVK	4 preload conditions:	post-preload		this effect was reversed 60 min post preload
		- Low energy with aspartame		SQ calculated for each	- Effect of time (p<0.001)

		(506 kJ)		of the 6 post-meal time	
		- Low energy without aspartame		points, subtracting the \neq	
		(506 kJ)		ratings from pre-meal	
		- High energy with sucrose		rating	
		(1247 kJ)			
		- High energy with maltodextrin			
		(1167 kJ)			
Green et al.,	n =10 men, 9	Cross-over study	Pre-lunch,	Same SQ equation as	SQ, energy intake and appetite control:
1997 ⁽⁶⁾	women	Protocol: Standardized BF, ad	post-lunch, 30,	Study 1 but for ad	- Macronutrient by time interaction
Study 5	Age= NR	libitum lunch	45, 60, 120,	libitum lunch	(p<0.001) (SQ was initially lower for high
	BMI= NR	4 ad libitum lunch conditions:	180 and 240		fat food than high CHO foods but after the
		- Low fat and sweet	min post-lunch	SQ calculated for each	first hour there was little difference between
		- Low fat and no sweet		of the 7 post-meal time	macronutrient types in their effects on SQ).
		- High fat and sweet		points, subtracting the ≠	- Main effects of condition up to an hour
		- High fat and no sweet		ratings from pre-meal	post-lunch (p=0.01).
				rating	
Chapman et	<u>T2D</u> :	Randomized, double-blind,	1h before,	1. Prandial SQ _H =	Other:
al., 2005 ⁽²⁶⁾	n=11 men	placebo-controlled cross-over	immediately	[rating 1h before ad	- <u>Prandial SQ</u> : Pramlintide > placebo (by
	Age=60.2±8.5 yr	study	before and after	libitum lunch - rating	26% in the T2D group (p=0.21) and by 58%
	BMI=28.9±4.8	Protocol: Drug/placebo	the ad libitum	immediately after] / EI	in the obese without diabetes group
	kg/m²	injection, standardized preload	lunch, and 5h	at the ad libitum lunch.	(p=0.03))

	Obese without	meal (189kcal), ad libitum buffet	after the	2. Postprandial SQ _H =	- <u>Postprandial SQ</u> : Pramlintide < placebo
	diabetes:	lunch	beginning of	[rating 5h after ad	(by 100% in the T2D group (p=0.03) and by
	n=15 men,	2 conditions per group:	the ad libitum	libitum lunch – rating	120% in the obese without diabetes group
	$Age=41\pm21yr$	- Pramlintide	lunch	immediately after] / EI	(p=0.07))
	BMI= 34.4±4.5	- Placebo		at the ad libitum lunch.	
	kg/m²				
Drapeau et	Men:	Observational study	Before and	SQ_H , SQ_F , SQ_{DTE} ,	- SQ men = SQ women.
al., 2005 ⁽⁸⁾	n=28	<u>Protocol</u> : Standardized BF (733	immediately	SQ_{PFC} (mm/kcal) =	SQ, energy intake and appetite control:
	Age= 37.4 ± 7.4	kcal men, 599 kcal women), ad	after BF, and	[fasting rating-60 min	- SQ _F correlated with total EI (r= -0.42,
	yr	libitum lunch and dinner, TFEQ,	every 10 min	post- BF]/energy	p<0.001) (strength of the associations
	BMI=27.9±5.3	body composition, metabolic	for a 1-h period	content of BF *100.	decreased if adjustment for BW and BMI)
	kg/m²	rate	after BF		- SQ _F correlated with fullness 1h AUC
	Women:	2 groups:			(men+women: r=0.55, men: r=0.72, women:
	n=23	1. Men			r=0.40, p<0.0001).
	Age= 38.2±7.2	2. Women			- SQ _F not related with any TFEQ score.
	yr				- In women, SQ _F correlated with % fat
	BMI= 27.4±5.3				intake (r= -0.60, p=0.002).
	kg/m²				SQ and anthropometrics variables:
					- No consistent correlation between SQ and
					BW, BMI, percentage body fat and
					metabolic rate (for the whole sample or for
					each sex separately).

- In women, BW correlated with SQ_{DTE} (r= -

					0.46, p=0.03) and SQ _{PFC} (r= -0.49, p=0.02).
					- In women, BMI correlated with SQ _{PFC} (r=
					-0.49, p=0.02).
					- In men, BMI correlated with SQ_{S} (r= 0.44,
					p=0.02).
					Other:
					- Metabolic rate correlated with SQ _{DTE} (r= -
					0.64, p=0.002) and SQ _{PFC} (r= -0.69,
					p=0.0005).
Kendall et	n =22 healthy	Randomized cross-over	Before and at	SQ _H , SQ _F , SQ _{DTE} ,	Other:
	n =22 healthy subjects (13 men,	Randomized cross-over controlled study	Before and at 15, 30, 45, 60,	SQ_{H} , SQ_{F} , SQ_{DTE} , SQ_{PFC} (mm/kcal) =	Other: $-SQ_F 5g RS > SQ_F control 60-min after the$
	·				
	subjects (13 men,	controlled study	15, 30, 45, 60,	SQ _{PFC} (mm/kcal) =	- SQ_F 5g RS > SQ_F control 60-min after the
	subjects (13 men, 9 women)	controlled study Protocol : Standardized cereal	15, 30, 45, 60, 90 120 min	SQ _{PFC} (mm/kcal) = (rating pre-snack -	- SQ_F 5g RS > SQ_F control 60-min after the test meal (p<0.04).
	subjects (13 men, 9 women) Age=26±4 yr	controlled study Protocol: Standardized cereal bar and beverage snack varying	15, 30, 45, 60, 90 120 min after	SQ _{PFC} (mm/kcal) = (rating pre-snack - rating post-	- SQ_F 5g RS > SQ_F control 60-min after the test meal (p<0.04). - For overall appetite score at 15, 30 and 45:
	subjects (13 men, 9 women) Age=26±4 yr BMI=23.7±2.4	controlled study Protocol: Standardized cereal bar and beverage snack varying in dose of resistant starch (RS),	15, 30, 45, 60, 90 120 min after consuming	SQ _{PFC} (mm/kcal) = (rating pre-snack - rating post- snack)/energy content	- SQ_F 5g RS > SQ_F control 60-min after the test meal (p<0.04). - For overall appetite score at 15, 30 and 45: SQ 25g RS meal>control (p=0.1, 0.08 and
	subjects (13 men, 9 women) Age=26±4 yr BMI=23.7±2.4	controlled study Protocol: Standardized cereal bar and beverage snack varying in dose of resistant starch (RS), ad libitum lunch	15, 30, 45, 60, 90 120 min after consuming	SQ _{PFC} (mm/kcal) = (rating pre-snack - rating post- snack)/energy content	 SQ_F 5g RS > SQ_F control 60-min after the test meal (p<0.04). For overall appetite score at 15, 30 and 45: SQ 25g RS meal>control (p=0.1, 0.08 and 0.04, respectively).
Kendall et al., 2010 ⁽³⁴⁾	subjects (13 men, 9 women) Age=26±4 yr BMI=23.7±2.4	controlled study Protocol: Standardized cereal bar and beverage snack varying in dose of resistant starch (RS), ad libitum lunch 5 beverage conditions:	15, 30, 45, 60, 90 120 min after consuming	SQ _{PFC} (mm/kcal) = (rating pre-snack - rating post- snack)/energy content	 SQ_F 5g RS > SQ_F control 60-min after the test meal (p<0.04). For overall appetite score at 15, 30 and 45: SQ 25g RS meal>control (p=0.1, 0.08 and 0.04, respectively). 25g RS meal: the average appetite SQ over

- 10g RS
- 25g RS

Blanchet et	n = 153	Randomized single-blind cross-	Before and	SQ _H , SQ _F , SQ _{DTE} ,	Other:
al., 2011 ⁽²⁸⁾	premenopausal	over design	immediately,	SQ_{PFC} (mm/kcal) =	- No effect of genotype, meal (BF or
	women	Protocol: Standardized dinner	30 and 60 min	[fasting rating -mean	preload) or interaction, for any of SQ.
	P73T genotype	(day before), standardized BF,	after BF,	post-meal	
	(mutation in	milkshake preloads at 10:00, ad	before and	rating]/energy content	
	<u>neuromedin-β</u>	libitum cold buffet	immediately,	of meal*100.	
	<u>gene</u>): n=61	2 milkshake conditions per	10, 20, 30, 40,		
	Age= 33.4±9.9yr	group:	50, 60 min	SQ calculated for	
	BMI= 23.1±2.5	- Low energy (261 Kcal)	after milkshake	standardized BF and	
	kg/m²	- High energy (625 Kcal)	and after buffet	preloads.	
	P73P genotype		meal.		
	(without				
	mutation): n=85				
	Age=33.3±10.4				
	yr				
	BMI= 22.7±2.7				
	kg/m²				
	T73T genotype				

	(with mutation):				
	n=7				
	Age= 30.1±9.5yr				
	BMI= 22.5±1.2				
	kg/m²				
Finlayson et	n = 30 healthy	Randomized cross-over study	NR	SQ _H (mm/kcal) =	SQ, energy intake and appetite control:
al., 2011 ⁽³⁵⁾	women,	Protocol: Individualized preload		[rating pre-preload -	- Preloads on SQ scores: increase in
	Age=21.9±0,5 yr	(10% of the estimated daily		rating post-preload]	satiation after consumption followed by a
	BMI=22.7±0.4	energy requirement; ~710-1050		energy content of	partial return to baseline (p<0.01).
	kg/m²	kJ), ad libitum lunch (30 min		preload	- No difference in SQ according to preload
		after),			taste.
		3 preload conditions:			- Effect of disinhibition on SQ of the
		- Sweet taste			preloads (p<0.05) and a disinhibition by
		- Savory taste			time interaction (p<0.05).
		- Bland taste			- Higher disinhibition scores associated with
					weaker satiation and a more rapid return to
					baseline SQ levels compared to lower
					scores.

Arguin et al.,	n = 18 men,	Controlled study	Before and at	SQ _H , SQ _F , SQ _{DTE} ,	SQ, energy intake and appetite control:
2012 (40)	Age= 31.0±10.4	Protocol: Standardized BF (733	0, 10, 20, 30,	SQ _{PFC} (mm/kcal)	- No condition difference for $SQ_{\mbox{\tiny -25 min}}DTE$,
	yr	Kcal), ad libitum lunch	40, 50, 60 min	=(fasting rating - mean	H, S and PFC - SQ _{DTE_0-240} and SQ _{H_0-240} , SQ _{S_120-240} ,
	BMI= 23.8 ± 2.9	3 lunch conditions:	after BF,	of the 60-min post-BF	- $SQ_{DTE_0\text{-}240}$ and $SQ_{H_0\text{-}240},SQ_{S_120\text{-}240},$
	kg/m²	- Control: Ad libitum control	immediately	ratings)/ energy content	SQ_{PFC_20-240} : context effect meal > control
		macaroni + chocolate cake	before and after	of BF)*100	and the satiating meals (p<0.05).
		- Satiating: Ad libitum macaroni	lunch,		- At baseline, the SQ of the context effect
		containing more proteins,	immediately	SQ _{-25min} (mm/kcal)	meal was significantly greater from 120 to
		unsaturated fats, fibers and	before and after	=(pre-lunch rating –	240 min in the low satiety signals group (all
		calcium than the control	the dessert and	rating immediately after	AS), and at 120 and 240 min in the high
		macaroni despite similar energy	10, 20, 30, 40,	macaroni)/EI at	satiety signals group (hunger only) (all
		density, appearance and	50, 60, 120,	lunch*100	p<0.05).
		palatability + chocolate cake	180 and 240		- Dietary restraint subgroups SQ (mean
		- Context effect: Ad libitum	min later	SQ _{0-240min} (mm/kcal)	SQ_25min) of the context effect macaroni >
		control macaroni but participants		=(pre-lunch rating -	SQ of the control macaroni for the high
		believed they were eating "a		rating 0-240 min after	restrained individuals (significant
		highly satiating macaroni"+		lunch)/ EI at the meal	interaction between test meals and level of
		chocolate cake'		(macaroni +	dietary restraint; p=0.03).
				dessert)*100	- High restrained individuals SQ (SQ $_{0\text{-}240min}$)
					of the context effect meal > SQ control and
					the satiating meal (SQ $_{DTE_0-240}$, SQ $_{H_0-240}$,
					$SQ_{PFC_0\text{-}240}$ and $SQ_{S_120\text{-}240})$ (all p≤0.05).
					- Low restrained individuals SQ: context

					effect meal > SQ satiating meal (SQ _{PFC_180} ,
					SQ _{H_240} , SQ _{PFC_240}) (all p<0.05)
Drapeau et	n=69 men	Observational study	Before,	SQ_H , SQ_F , SQ_{DTE} ,	- Individual SQ ICC r=0.5-0.6 and mean SQ
al., 2013 ⁽¹³⁾	Age=41.4±5.7 yr	Protocol: Standardized BF (733	immediately	$SQ_{\mbox{\scriptsize PFC}}$ and mean SQ	r=0.7
	BMI=33.6±3.0	kcal), TFEQ, body composition	after, and every	(mm/kcal) = (fasting)	SQ, energy intake and appetite control:
	kg/m²	2 experimental visits:	10 min for a 1-	rating - mean of the 60	- Adjusted on BMI: Mean SQ tended to be
		- Baseline	h period after	min post-BF	correlated with TFEQ external locus for
		- 2-4 weeks after	BF. The two	ratings)/energy content	hunger (r= -0.23, p=0.06), anxiety scores
			last VAS were	of BF*100	(present state $r=-0.21$, $p=0.09$) and night
			performed 90		eating symptoms scores (r= -0.22, p=0.07).
			and 120 min	Low satiety phenotype	- All SQ, attention to self-regulation,
			after the	(LSP): mean	external locus for hunger and night eating
			BF.	SQ<8mm/100 kcal	symptoms were correlated with the SQ _{DTE}
				High satiety phenotype:	(r=0.27, 0.28 and 0.28, respectively,
				mean SQ≥8mm/100	p<0.05).
				kcal	SQ and satiety phenotype:

- Lower individual SQ and mean SQ (p<0.0001) and weaker changes in AS responses to the test-meal (p<0.0001) in LSP.

Other:

- A model including present state anxiety and external hunger was borderline significant (p=0.08) but explained just 28% of the variability in SQ.
- Present state anxiety was related to SQ_{PFC} (r= -0.26, p<0.05).
- Overall blunted cortisol response to the test-meal (p<0.05), which persisted after controlling for waist circumference (p=0.04) in LSP.

Dubé et al.,	n=16,	Randomized cross-over	Before,	SQ _H , SQ _F , SQ _{DTE} ,	- Corrected for body weight, SQ T1D = SQ
2013 ⁽⁷⁾	With T1D:	controlled study	immediately	SQ _{PFC} (mm/kcal) =	T2D
	n=12 (6 men, 6	Protocol: Standardized BF (700	after, and every	(fasting rating -mean	SQ, energy intake and appetite control:
	women)	kcal men, 600 kcal women),	10 min for a 1-	60-min post-BF ratings)	- Correlation between $\ensuremath{SQ_H}$ and ad libitum
	Age= 39.4±6.6	exercise/rest, ad libitum lunch,	h period after	/ (energy content of BF)	EI (r= -0.33, p≤0.05) in T1D
	yr	self-reported 3-day energy	BF	* 100	- Correlations between SQ_{DTE} , SQ_{H} , SQ_{F}
	BMI=24.0±1.4	intake (1-2 weeks before			and reported EI in T1D (r= -0.43, -0.50, -
	kg/m²	exercise)			0.36 and p≤0.01, 0.01, 0.05, respectively)

	With T2D:	3 conditions:			- Correlations between SQ _F and reported EI
	n=4 (3 men, 1	- Control: rest period 60 min			in T2D (r=0.58, p≤0.01)
	women)	- Exercise free (F): exercise 60			
	Age= 53.3±2.8	min on cycle ergometer at			Other:
	yr	50% VO _{2peak} with free blood			- SQ_{DTE} and SQ_{H} in control \neq to F (p<0.05)
	BMI=25.5±1.4	glucose decrease			- SQ_{DTE} and SQ_{PFC} in control \neq to M
	kg/m²	- Exercise maintained (M):			(p<0.05)
		exercise 60 min on cycle			
		ergometer at 50% VO _{2peak} with			
		blood glucose maintained above			
		4 mmol/L			
Felix et al.,	n=10 (5 men,5	Randomized cross-over study	Before BF and	$SQ_H (mm/kJ) = (fasting)$	Other:
2013 (32)	women) healthy	Protocol: Standardized BF, ad	every 15 min	rating - mean 120 min	- SQ_H was highest for the PSB Rc10 and
	adults	libitum lunch	during the 1st	post-BF rating)/ energy	lowest for the Improved Malagkit Sungsong
	Age range=27–	8 BF preload conditions (7	hour and every	content of BF*100	2, but the differences across rice types were
	55 yr	cooked rice varieties with 50 g	30 min during		not significant.
	BMI range= 20-	available carbohydrate):	the 2nd hour		- The short-term satiating capacity of rice
	25 kg/m ²	- Improved Malagkit Sungsong	after BF		was independent of its amylose content and
		2			glycemic index.
		- Sinandomeng (low amylose			
		content)			

content)

- PSB Rc18 (intermediate

amylose content), - IR64

(intermediate amylose content)

and - - PSB Rc12 (intermediate

amylose content)

- PSB Rc10 (high amylose

content)

- 240-mL standard glucose drink

(reference food)

Harrington	n=82,	Observational study	Before and	SQ _H , SQ _F , SQ _{DTE} and	SQ, physical activity and energy
et al., 2013	<u>Men</u> : n=40	Protocol: Ad libitum lunch	after ad libitum	SQ _{PFC} (mm/kcal) =	expenditure:
(43)	Age= 26.4±4.0	3 groups (tertiles of activity-	lunch	(rating pre-lunch -	Men:
	yr	related energy expenditure;		rating post-lunch)/	- EI middle AREE tertile < high tertile
	BMI= 23.5±2.5	AREE):		EI at lunch	(p=0.001).
	kg/m²	- Low AREE			- $SQ_{\mbox{\scriptsize DTE}}$ high $\mbox{\scriptsize AREE} < \mbox{\scriptsize low}$ and middle
	Women: n=42	- Middle AREE			AREE (p<0.05).
	Age= 26.9 ± 4.7	- High AREE			- $SQ_{H}\mbox{ (p<0.05)}$ and $SQ_{PFC}\mbox{ (p<0.001)}$ high
	yr				AREE < middle AREE.
	BMI= 22.4±2.0				- SQ_F high AREE > middle AERR (p<0.05).
	kg/m²				

McNeil et al.,	n= 75	Observational study	Before,	SQ _H , SQ _F , SQ _{DTE} ,	SQ and sleep quality and quantity:
2013 (29)	overweight/	Protocol: Standardized BF (3066	immediately	SQ _{PFC} (mm/kcal) =	- No difference in SQ _H , SQ _F , SQ _{DTE} , SQ _{PFC}
	obese men	kJ), ad libitum lunch,	after, and every	[fasting rating -60 min	between groups.
	Group 1 (Sleep	3 groups:	10 min for 1h	post-BF] /energy	- Short-duration sleepers (<7h/night) SQ <
	duration)	- Sleep duration	after the	content of BF*100.	sleepers with recommended sleep duration
	<u><7h/night</u> : n=34	- Sleep quality	standardized		(≥7h/night)
	Age= 41.6 ± 6.6	- Sleep timing	BF		- Mean SQ sleep quality = mean SQ sleep
	yr				timing.
	BMI= 33.5 ± 2.9				
	kg/m²				
	<u>≥7h/night</u> : n=41				
	Age= 40.4 ± 4.6				
	yr				
	BMI= 33.8 ± 3.0				
	kg/m²				
	Group 2 (Sleep				
	quality)				

·
$\dot{\circ}$
-=
-
SCL
S
Ħ
_
a
Ξ
∇
0
Ţ
Ω
è
ij
Õ
7
\triangleleft

PSQI score ≥ 5 :

n=33

Age= 41.0 ± 6.4

BMI= 33.4 ± 2.9

 kg/m^2

PSQI score <5: n=42

Age= $40.9\pm5yr$

BMI= 33.9 ± 3.1

kg/m²

Group 3 (Sleep

Midpoint of

timing)

sleep > 02:30:

n=37

 $Age=39.3\pm5.7$

BMI= 33.8 ± 2.9

 kg/m^2

Midpoint of

sleep $\leq 02:30$:

Age= 41.8±5.0

yr

BMI= 33.8 ± 3.2

kg/m²

Schmidt et	n= 25 healthy	Randomized, double-blinded,	5 min pre-	SQ_H , SQ_F , SQ_S , SQ_{PFC}	Other:
al,. 2014 ⁽²⁴⁾	males	placebo-controlled, four-arm	infusion, and	(mm/mJ) = [rating pre-	- SQ_{PFC} treatments < placebo (p<0.05) (\downarrow
	Age= 33±9 yr	cross-over study	25, 55, 85, 115	lunch - rating	PFC)
	BMI= 29±3	Protocol: Standardized dinner	and 145 min	post-lunch]/EI at lunch	- SQ_S treatments < placebo (p<0.01)
	kg/m²	day before, no BF, infusion, ad	after the		(†Satiety)
		libitum lunch	beginning of	Note: The authors	
		4 infusions:	the infusion)	define SQ as "Appetite	
		- GLP-1	Ad libitum	Quotient"	
		- PYY ₃₋₃₆	meal: 120 min		
		$- GLP-1 + PYY_{3-36}$	after the		
		- Placebo	beginning of		
			the infusion		

Thomas et	<u>Men</u> : n=24	Randomized, double-blind,	4h pre-lunch,	$SQ_H = ((quartile initial))$	Other:
al,. 2014 ⁽²³⁾	<u>Placebo</u> : n=8	placebo controlled study	2h pre-lunch	rating -quartile ending	- Effect of quartile (p<0.001) and gender
	Age=20.8 ±0.4	Protocol: Typical BF, test dose	and every 30	rating)/calories	(p<0.05), a two-way interaction between
	yr	(2h before lunch), ad libitum	minutes, during	consumed at ad libitum	gender and condition (p<0.01), and a three-
	BMI=23.8±0.7	lunch	lunch, post-	lunch during quartile)	way interaction between quartile, gender
	<u>15 mg</u> : n=8	3 test doses:	lunch, 1h post		and condition (p<0.05).
	Age=21.9±0.8 yr	- Placebo	lunch.	Note: The authors	Men:
	BMI=22.1±0.7	- 5-HT2C receptor agonist meta-		define SQ as "Satiation	- Effect of quartile (p<0.01) and condition
	<u>30 mg</u> : n=8	chlorophenylpiperazine (mCPP)		Quotient"	(p<0.05).
	Age=20.4±0.5 yr	15 mg			- SQ 30-mg mCPP < placebo (p<0.05)
	BMI=22.8±0.8	- mCPP 30 mg			- \uparrow SQ from quartile 2 to 3 (p<0.05).
	Women : n=23				Women:
	<u>Placebo</u> : n=8				- Effect of quartile (p<0.01), condition
	Age=22.4 ±1.0				(p<0.05) and interaction between quartile
	yr				and condition (p<0.05).
	BMI=21.5±0.7				Quartile 1: SQ 30-mg mCPP > placebo
	<u>15 mg</u> : n=8				(p<0.05)
	Age=20.4±0.5 yr				Quartile 2: SQ 15-mg and 30-mg mCPP >
	BMI=22.0±0.8				placebo (p<0.01; p<0.05 respectively)
	<u>30 mg</u> : n=8				
	Age=19.9±0.7 yr				
	BMI=22.4±0.9				

Bligh et al.,	n= 21 healthy	Randomized cross-over study	20 min before	SQ_{H} , SQ_{F} , $SQ_{DTE} = NR$	SQ, energy intake and appetite control:
2015 (21)	males	3 standardized lunch conditions:	lunch, and 10,		- $SQ_{H,}SQ_{F,}SQ_{DTE}$ similarly increased in
	Paleolithic-type	- Paleolithic-type meal 1 (2326	25, 40, 55, 85,		response to both Paleolithic meals.
	meal 1: n=17	kJ) (range ratios for protein; no	115, 175 after		
	Age= 27.9±13.2	cereals or dairy products)	the start of		
	yr	- Paleolithic-type meal 2 (1606	meal		
	BMI= 23.4±2.7	kJ) identical plant-based			
	kg/m²	ingredients to PAL1, but			
	Paleolithic-type	normalized to the REF for fat,			
	meal 2: n=19	protein and energy in addition to			
	Age= 27.5±12.7	available carbohydrates, by			
	yr	changing the fish, nut and			
	BMI= 23.4±2.6	strawberry content.			
	kg/m²	- Reference meal (1602 kJ)			
	Refence meal:	macronutrient proportions, and			
	n=19 Age=	contained protein, fruit and			
	27.5±12.7 yr	vegetables as well as cereals.			
	BMI= 23.4±2.6				
	kg/m²				

Dalton et al.,	n = 30 women	Randomized cross-over study	Before BF and	SQ _H (mm/kcal) =	SQ, energy intake and appetite control:
2015 (14)	Age= 28.0 ± 10.6	Protocol: Individualized and	15,45,75 min	(rating before BF -	- Average SQ across all RMR conditions
	yr	calibrated BF, ad libitum lunch,	post-BF	mean of the 75 min	was associated with RMR (r= -0.38,
	BMI= 23.1 ± 2.9	4 BF conditions:		post-BF ratings)/energy	p<0.05), a greater implicit wanting fat bias
	kg/m²	- Calibrated to 20% resting		content of BF*100	(r=-0.49, p<0.01) and TFEQ disinhibition
		metabolic rate (RMR)			(r=-0.42, p<0.05).
		- Calibrated to 25% RMR		The low satiety	\rightarrow Low SQ associated with a risk factors
		- Calibrated to 30% RMR		phenotypes were	for overconsumption
		- Calibrated to 35% RMR		identified as those who	SQ and satiety phenotype:
				had a low SQ at least 3	- Low satiety phenotype had a lower
				out of 4 conditions (n =	average SQ across conditions compared to
				9) whereas the high	the high satiety phenotype (p<0.001).
				satiety phenotypes were	
				identified as those who	
				had a high SQ at least 3	
				out of 4 conditions (n =	
				9).	
Felix et al.,	n=12 healthy	Randomized, cross-over study	Before preload	SQ _H , SQ _F , SQ _{DTE} ,	Other:
2016 (36)	subjects (7 men,	Protocol: Standardized preload,	and every 15	$SQ_{PFC} (mm/kJ) =$	SQ_H correlated with SQ_F (r= -0.72, p=0.05)
	5 women)	ad libitum lunch	min during the	(fasting rating - mean	SQ_{DTE} correlated with SQ_{PFC} (r= -0.72,
	Age range= 20-	9 preload conditions:	1st hour and	120 min post-preload	p=0.05)
	50 yr	- Milled rice: IMS2	every 30 min	rating)/ energy content	Short term:
	BMI range= 20-	- Milled rice: NSIC Rc160	during the 2nd	of preload * 100	- SQ glucose beverage < milled and brown

	25 kg/m²	- Milled rice: IR64	hour after		rice (liquid foods elicit weaker satiety
		- Milled rice: PSB Rc10	preload		signals than solid foods).
		- Brown rice: IMS2			- Among milled samples, SQ _H was similar
		- Brown rice: NSIC Rc160			across rice varieties, confirming earlier
		- Brown rice: IR64			results.
		- Brown rice: PSB Rc10			- $SQ_{\text{F}},SQ_{\text{DTE}}$ and SQ_{PFC} comparable across
		- Reference food: 240mL			rice types. The same trend was noted for
		standard glucose drink			brown rice.
					-SQ _H and post-meal cooked rice intake were
					independent of milled rice amylose content
					and glycemic index.
					2h post-meal:
					- The higher SQ for brown rice than milled
					rice was not translated into lower common
					cooked rice intake.
Hopkins et	n=65 (26 men,	Randomized cross-over study	Immediately	SQ _H (mm/Kcal) =	SQ, energy intake and appetite control:
al., 2016 ⁽¹⁹⁾	39 women)	Protocol: Ad libitum BF,	before and after	(rating pre-eating	SQ LFHC > SQ HFLC after BF and lunch
	Age= 41.3 ± 8.7	standardized lunch (800kcal), ad	a meal, and at	episode - rating post-	(p=0.006 and p=0.001, respectively).
	yr	libitum dinner, ad libitum snack	hourly intervals	eating episode)/intake	
	BMI= 30.90±3.8	box	throughout the	of eating episode*100	
	kg/m^2	2 meal conditions:	day (from		
		- HFLC day: high-fat/low-	08:00 to	SQ calculated for BF	
		carbohydrate for all meals	18:00).	and lunch.	

- LFHC day: low-fat/high-carbohydrate for all meals

Salama et al.,	n=35 healthy	Randomized cross-over study	Before BF, at	SQ _H , SQ _F , SQ _{DTE} ,	SQ and anthropometrics variables:
2016 (11)	adults	<u>Protocol</u> : Standardized BF (men:	the end of the	SQ _{PFC} (mm/kcal) =	- A high waist circumference was correlated
	<u>Men</u> : n=18	715 Kcal, women: 599Kcal)	two conditions,	(Post-meal rating (T0)-	with lower SQ_F after mental work (r = 0.43,
	Age= 25.4±3.6yr	mental work/control, ad libitum	before and after	Pre-meal rating (T-15))	p<0.05).
	BMI=23.6±2.1	buffet lunch, waist	the buffet, and	/ energy content of the	Positive relationship between % fat mass
	kg/m²	circumference, body	every hour	meal *100.	and:
	Women: n=13	composition	during the		- SQ_F after mental work (r=0.45, p<0.05)
	Age= 22.6±3.3yr	2 conditions (during 45	following 4	SQ calculated at BF and	and rest (r=0.55, p<0.01).
	BMI=22.5±2.1	minutes):	hours	lunch	- SQ_{PFC} after mental work (r=0.71, p<0.001)
	kg/m²	- Mental work (reading a text			and rest (r=0.44, p<0.05).
		and writing a summary of 350			- SQ_{DTE} after mental work (r=0.46, p<0.01)
		words)			and rest (r=0.46, p<0.05).
		- Control (relaxed in a seated			- SQ _H after rest (r=0.44, p<0.05).
		position)			
Beaulieu et	n=39 non-obese	Randomized cross-over study	Pre and post-	SQ _H (mm/kcal) =	SQ, energy intake and appetite control:
al., 2017 ⁽²⁵⁾	adults	Protocol: Individualized BF (ad	BF, 60, 120,	(rating before lunch -	- SQ at lunch: effect of condition (p<0.001),
	High levels of	libitum on first test day	180 min post-	rating after lunch)/EI at	SQ HCHO > SQ HFAT.
	physical activity:	standardized to quantities	BF, pre and	lunch*100	
	n=20 (10 men,	consumed on second test day),	post-lunch		

10 women),

ad libitum lunch

Age= 29.9 ± 9.6

2 lunch conditions

yr

- HFAT: high-fat ad libitum

BMI= 22.6 ± 1.9

lunch

kg/m²

- HCHO: high-carbohydrate ad

Low levels of

libitum lunch

physical activity:

n=19 (8 men, 11

women),

Age= 30.4 ± 9.3

yr

 $BMI=23.1\pm2.7$

kg/m²

Defries et al.,	n=38 (10 men,	Single-site, randomized,	At 30-min	SQ _H (mm/kcal)= (rating	SQ, energy intake and appetite control:
2017 (22)	28 women)	controlled, cross-over study	intervals up to	before snack – rating	- Effect of time for SQ buckwheat groats (p
Seed study	Age = 37.7 yr	Protocol: Typical BF (replicated	180 min after	after snack)/	< 0.0001).
	(range 20-67)	on subsequent test days),	the first bite of	energy content of the	
	BMI= 24.8	standardized snack food, ad	the snack.	snack	
	kg/m² (range	libitum lunch, food diary			
	18.7-30.4)	remainder of day			
		2 snack conditions (140 kcal):			
		- Roasted buckwheat groats			

		- Corn nuts (reference food)			
Defries et al.,	n=38 (11 men,	Single-site, randomized,	At 30-min	SQ _H (mm/kcal)= (rating	SQ, energy intake and appetite control:
2017 (22)	27 women)	controlled, cross-over study	intervals up to	before snack – rating	- Effect of time (p<0.0001) and snack
Pita study	Age= 33.5 yr	<u>Protocol</u> : individualized BF,	180 min after	after snack)/	(p=0.0002) for the SQ buckwheat pita (SQ
	(range 20-67)	standardized snack food, ad	the first bite of	energy content of the	buckwheat pita > SQ rice bread).
	BMI= 24.4	libitum lunch, food diary	the snack.	snack	
	kg/m² (range	remainder of day			
	18.7-30.4)	2 snack conditions (~135 kcal):			
		- Gluten-free pita bread made			
		from buckwheat and pinto bean			
		flour			
		- Gluten-free rice bread			
		(reference food)			
Gonzalez et	Experiment 1:	Randomized, double blind,	Within 5 min	Composite SQ	SQ, energy intake and appetite control:
al., 2017 ⁽³³⁾	n=10 non-obese	cross-over study (data from 2	before liquid	(µm/kJ)= (baseline	The reproducibility of the SQ is better in
	men,	experiments pooled for analyses)	meal, and every	appetite - postprandial	response to the ingestion of meals of higher
	Age= 22±1 yr	Protocol: Liquid meal	15 min over 60	appetite AUC)/energy	energy content compared to lower energy
	BMI= 24.8±1.6	Experiment 1: 2 liquid meal	min post-meal	content of meal	meals.
	kg/m²	conditions (repeated twice)			
	Experiment 2:	- Low energy: 579 kJ		Composite SQ	

I	n=10 non-obese	- Moderate energy: 1776 kJ		calculated with (hunger,	
I	men,	Experiment 2: 2 liquid meal		(100-fullness),	
1	Age=21±4 yr	conditions (repeated twice)		satisfaction and PFC)/4.	
I	BMI=24.2±2.3	- Low energy: 828 kJ			
1	kg/m²	- High energy: 4188 kJ			
McNeil et al.,	n = 18 (12 men,	Randomized cross-over study	Before BF and	SQ _H , SQ _F , SQ _{DTE} ,	SQ and sleep quality and quantity:
2017 (31)	6 women)	Protocol: Individualized BF (ad	0, 30, 60, 90,	SQ_{PFC} (mm/kcal) =	- No difference in SQ between sessions.
I	Age=23±4 yr	libitum on preliminary session	120, 150, 180	[fasting rating - mean	- No correlations between changes in sleep
I	BMI=22.7±2.7	and standardized to quantities	min post-BF.	post-meal rating]	stage durations with mean SQ between
1	kg/m²	consumed on subsequent		/energy content of BF	sessions.
		sessions), ad libitum lunch		*100.	
		3 conditions:			
		- Control (habitual bed- and			
		wake-time)			
		- 50% sleep restriction with an			
		usual bedtime and advanced			
		wake-time			
		- 50% sleep restriction with a			
		delayed bedtime and habitual			
		wake-time			

Polugrudov	n=66	Randomized Trial	Before BF and	SQ _H , SQ _F , SQ _S , SQ _{PFC}	Other:
et al., 2017	Social JetLag	Protocol: Ad libitum BF	at 30, 60, 90,	(mm/kcal)= [fasting	- Mean SQ (mean value of SQ _H , SQ _F , SQ _S ,
(20)	<u>(SJL) ≤1h</u> : n=17	3 groups:	and 120 min	rating - mean post-meal	SQ _{PFC}) in SJL 1-2h and SJL >2h groups
	(3 men, 14	- SJL ≤1 h	after	rating]/EI at BF*100.	lower than SJL \leq 1h group (p \leq 0.01).
	women),	- SJL 1h to \leq 2 h			
	Age=23.7±2.9 yr	- SJL> 2 h			
	BMI=21.2±2.5				
	kg/m²				
	SJL 1h to \leq 2h:				
	n=28 (10 men,				
	18 women)				
	Age=22.8±3.2				
	yrs				
	BMI= 22.2±3.2				
	kg/m²				
	<u>SJL>2h</u> : n=21 (6				
	men, 15 women)				
	Age= 23.2±4.1				
	yr				
	BMI= 23.4±4.6				
	kg/m²				

nd appetite control: Q _{PFC} and composite SQ acreased in response to a compared with 50-rith no difference and control.
acreased in response to compared with 50-ith no difference
compared with 50-
ith no difference
nd control.
and appetite control:
from the HP/LF cheese
compared with the
↑ satiety and ↓ EI when
diet.

		- HP/HF: high-protein/high-fat	meal	+ fullness + (100-	
		hard cheese (2000 kJ)		hunger) + (100-DTE) +	
		- LP/HF: low-protein/high-fat		(100-PFC)/5	
		cream cheese (1796 kJ)		SQ calculated at BF and	
				lunch	
				Note: The authors	
				define SQ as "Appetite	
				Quotient"	
Hollingworth	n= 42 females	Randomized cross-over study	NR	SQ = NR	SQ, energy intake and appetite control:
et al., 2018	Age= 26.0 ± 7.9	Protocol: mid-morning snack, ad			- Consumed energy, reported craving for
(15)	yr	libitum EI			sweet foods: low SQ > high SQ
	BMI=22.0 ± 2.0	3 snack conditions:			- Levels of hunger, desire to eat and
	kg/m²	- Raw almonds			prospective consumption: low SQ > high
		- Savory crackers			SQ
		- Water			- Satiating efficiency in low SQ: almonds >
					snack (crackers)
					- Low SQ = behavioral and psychological
					characteristics associated with risk for
					overconsumption (but substitution of certain
					snack foods may improve the satiety
					responsiveness of these individuals)

Martini et	n= 20 females	Randomized cross-over study	Before and	SQ _F , SQ _{DTE} , SQ _S	SQ, energy intake and appetite control:
al., 2018 ⁽²⁷⁾	Age= NR	Protocol: Own low-fiber BF,	after lunch,	SQ 1 (cm/kcal)=(rating	- SQ_F for all formulations $> SQ_F$ control
	$BMI = <25 \text{ kg/m}^2$	standardized lunch, ad libitum	every 30 min	before lunch-rating after	pasta immediately after lunch and over the
		snack	for 2 h until	lunch)/	subsequent 2 h.
		5 pasta lunch conditions:	snack, before	Energy content of	- SQ _{DTE} for High fiber + high protein pasta
		- High fiber	and after snack	lunch*100	< SQ _{DTE} for control pasta after lunch and
		- High fiber + high protein		SQ 2 (cm/kcal)=(rating	after snack consumption
		- High protein (soy protein)		before lunch-rating	- Only high fiber pasta showed a higher SQs
		- High protein (egg white)		before snack)/	compared to control.
		- Control (standard commercial		Energy content of	
		pasta)		lunch*100	
				SQ 3 (cm/kcal)=(rating	
				before lunch-rating after	
				snack)/	
				(Energy content of	
				lunch + snack)*100	
Thivel et al.,	n=19 normal	Randomized controlled cross-	Before and	SQ _H , SQ _F , SQ _{DTE} ,	SQ, physical activity and energy
2019 (37)	weight (10 men,	over study	after BF,	$\mathrm{SQ}_{\mathrm{PFC}}$	expenditure:
	9 women)	Protocol: Standardized BF (500	before and after	(mm/kcal) = (pre meal	- No difference in SQ_F across conditions.
	Age= 21 ± 1 yr	kcal), exercise/control,	exercise/rest,	rating – mean 60 min	- SQ_{H} CON > LIE and HIE (p≤0.05) (no
	BMI= 22.3 ± 2.9	standardized lunch (women: 750	before and after	post-meal rating) /	difference between LIE and HIE)
	kg/m²	kcal, men: 900 kcal)	lunch, and	energy content of	- SQ_{DTE} CON > HIE (p \leq 0.01) (no difference
		3 conditions:	30 min and	lunch*100.	between CON and LIE, and between LIE

- CON: rest during 45 min	60 min after the	and HIE)
- Low intensity exercise (LIE):	test meal	- SQ_{PFC} HIE < CON (p=0.02) (no difference
45 min cycling at 50% VO _{2max}		between CON and LIE, and LIE and HIE)
- High intensity exercise (HIE):		
30 min cycling at 75% VO _{2max}		

Protocol are detailed only the relevant of SQ; values are presented as means ± SD (standard deviation); AS: appetite sensation; EI: energy intake; BF: Breakfast; BW: Body Weight, NR: Not Reported.

DTE: Desire To Eat; F: Fullness; H: Hunger, PFC: Prospective Food Consumption; S: Satiety; SQ: Satiety Quotient.

Table 4: Data detailed for children and adolescents acute studies

Study	Population	Design	VAS timing	SQ equation	Main results
	characteristics				
Albert et	n = 12 boys	Randomized cross-over study	Before and after	$SQ_H (mm/kJ) = (pre-$	SQ, physical activity and energy
al., 2015	Age= 17±1,6	Protocol: Standardized BF,	lunch and dinner	lunch rating-post-lunch	expenditure:
(38)	yr	exercise (70% VO _{2max}), ad		rating)	- No difference SQ between conditions at
	BMI=	libitum lunch (12:00 pm), ad		/EI at lunch*100	lunch and dinner.
	23.1±3.1 kg/m²	libitum dinner (5:00am)			
		2 conditions:			
		-ExMeal: Exercise at 11:15am			
		meal 12:00pm			
		-Ex _{delay} Meal: Exercise 09:00am			
		meal 12:00pm			
Fillon et	n=15 (6 boys	Randomized controlled study	Before meal,	SQ _H , SQ _S , SQ _{DTE} and	SQ, physical activity and energy
al., 2020	and 9 girls)	Protocol: Standardized BF,	post-meal, 30 and	SQ_{PFC} (mm/kcal) =	expenditure:
(39)	Age=13.1±1.4	exercise/rest condition, ad	60 min after meal	(pre-lunch rating –	- $SQ_{H}CON < SQ_{H}EX180$ and $EX30$
	yr	libitum lunch (12:00), ad	for ad libitum	mean post-lunch and 60	- $SQ_{PFC}\ CON < SQ_{PFC}\ EX180$ and $EX30$
	BMI=	libitum dinner (18:00)	lunch and dinner	min post-lunch rating) /	- $SQ_{DTE} CON < SQ_{DTE} EX180$ and $EX30$
	$34.7\pm6.0 \text{ kg/m}^2$	3 conditions:		EI at lunch*100	
	(z-BMI	- rest condition (CON)			
	2.3 ± 0.3)	- 30-min exercise (65% VO_{2max})			
		180 min before lunch (EX-180)			
		- 30-min exercise (65% VO_{2max})			

30 min before lunch (EX-30)

Kral et	n=212	Randomized cross-over study	Before and after	SQ _H , SQ _S , SQ _{DTE} and	SQ, energy intake and appetite control:
al., 2020	<u>LR-NW</u> : n=60	<u>Protocol</u> : Standardized preload,	preload and BF,	SQ _{PFC} (mm/kcal) =	LED SQ_H and $SQ_{PFC} > HED \ SQ_H$ and SQ_{PFC}
(41)	(28 boys and	ad libitum BF (9:00am), ad	60, 120, 180	(pre-preload rating –	$LED \; SQ_F < HED \; SQ_F$
	32 girls)	libitum lunch (12:00pm), ad	minutes after BF.	mean post-preload and	SQ_{H} (p=0.005), SQ_{DTE} (p=0.01), SQ_{PFC}
	Age=8.3±0.7	libitum dinner (4:30pm), snack.		15 min post-preload	(p=0.02) predict BF EI.
	yr	2 conditions:		rating) / EI at preload	SQ _{DTE} predict daily EI (p=0.001)
	z-BMI= -	-LED: Low Energy Density		*100	SQ and anthropometrics variables:
	0.2 ± 0.7)	preload (100g, 100kcal)			No \neq between groups for all SQ (p>0.10)
	<u>HR-NW</u> : n=77	-HED: High Energy Density			
	(29 boys and	preload (100g, 160kcal)			
	48 girls)	3 groups:			
	Age=8.3±0.8	<u>LR-NW</u> : Normal Weight			
	yr	children with Low Risk for			
	z-	obesity			
	BMI=0.2±0.6)	HR-NW: Normal Weight			
	<u>HR-OB</u> : n=75	children with High Risk for			
	(29 boys and	obesity			
	46 girls)	<u>HR-OB</u> : Overweight / Obese			

	Age=8.5±0.8	children with High Risk for			
	yr	obesity			
	Z-				
	BMI=1.7±0.5)				
Thivel et	n= 14 (6 boys,	Randomized controlled study	Before meal,	SQ _H , SQ _S , SQ _{DTE} and	SQ, physical activity and energy
al., 2020	8 girls)	Protocol: Standardized BF,	post-meal, 30 and	SQ_{PFC} (mm/kcal) =	expenditure:
(42)	Age= 12.8 ± 0.9	exercise/rest condition, ad	60 min after meal	(pre-lunch rating –	- No difference between conditions for $SQ_{\mbox{\scriptsize H}},$
	yr	libitum lunch (12:00), ad	for ad libitum	mean post-lunch and 60	SQ_S , SQ_{DTE} and SQ_{PFC}
	BMI=34.8±5.7	libitum dinner (18:00)	lunch and dinner	min post-lunch rating) /	
	kg/m² (z-BMI	3 conditions:		EI at lunch*100	
	2.3±0.4)	- rest condition (CON)			
		- 30-min exercise (65%VO _{2max} ;			
		EX)			
		- 30-min exercise (65% VO _{2max})			
		+ energy replacement (ER+R).			

Values are means ± SD; EI: energy intake; VAS: Visual Analogue Scale; DTE: Desire To Eat; F: Fullness; H: Hunger, PFC: Prospective Food Consumption; S: Satiety; BF: Breakfast. SQ: Satiety Quotient.

Table 5: Population, design, methods and main results of adult chronic studies

Study	Population	Design	VAS Timing	SQ Equation	Main Results
	characteristics at				
	baseline				
Chaput et	n= 11 men,	Interventional study	Before and after	SQ _H , SQ _F , SQ _{DTE} and	SQ and anthropometrics variables:
al., 2007 ⁽⁴⁷⁾	Age= 38±16.6 yr	Duration: after a 10±1 kg BW	lunch	$SQ_{PFC} = (rating pre-$	- No difference in SQ between phases
	BMI= 33.4±3	loss was achieved		lunch - rating post-	
	kg/m²	Intervention: Diet and		lunch)/EI at lunch	
		exercise			
		Assessment frequency:			
		baseline, after 5±1 kg BW			
		loss (Phase 1) and after 10±1			
		kg BW loss (Phase 2).			
		Assessments protocol:			
		Anthropometric			
		measurements, standardized			
		BF (kcal), ad libitum lunch			
Drapeau et	n=253	Observational study	Before,	SQ _H , SQ _F , SQ _{DTE} and	Baseline data:
al., 2007 ⁽¹⁰⁾	Men: n= 142	Subjects were selected from	immediately after,	SQ _{PFC} (mm/kcal) =	SQ, energy intake and appetite
	Age= 42.7 ± 7.15 yr	different weight loss studies	and every 10 min	(fasting rating - mean	control:
	BMI= 32.5±3.6	(data pooled for analyses)	for	60 min post-meal	- SQ _F was correlated with ad libitum
	kg/m²	Study 1: <u>Duration</u> : 1 year,	1-h after BF	rating)/energy content	EI (r= -0.14, p<0.05) (just in women

Women: n = 111Intervention: Topiramate of BF*100 (r=-0.22, p<0.01)). Age= $41.3 \pm 7.4 \text{ yr}$ Study 2: Duration: 4 weeks, Other: - Men SQ was lower compared with BMI= 33.7 ± 3.2 Intervention: Rimonabant women (p<0.0001). kg/m^2 Study 3: Duration: 15 weeks, Intervention: Diet + Longitudinal data: Fenfluramine/placebo SQ and anthropometrics variables: Study 4: Duration: 30 weeks, $-\uparrow SQ_{DTE}$ (p<0.0001), SQ_{H} (p<0.001), SQ_{PFC} (p<0.0001) in men after weight <u>Intervention</u>: Diet + Physical activity loss, but not in women. Study 5: <u>Duration</u>: 15 weeks, - Changes in SQ_{DTE} were related with Intervention: Diet + calcium changes in BW (r= -0.14, p<0.01). and vit. D/placebo Study 6: Duration: 15 weeks, Intervention: Diet + micronutrient supplementation/placebo Assessment frequency: Baseline and postintervention Assessment protocol: Anthropometrics, standardized BF (men 733 kcal, women 599 kcal), ad

		libitum lunch, self-reported			
		energy intake			
Rodriguez-	n=57 women,	Randomized study	Before and after	SQ _H (cm/kcal) =	SQ, energy intake and appetite
Rodriguez	Age=27.8±4.7 yr	<u>Duration</u> : 6 weeks	meals	(fasting	<u>control</u> :
et al., 2008		<u>Intervention</u> : 2 hypoenergetic		rating post-meal	- At baseline, lunch SQ diet C < diet V,
(45)	<u>Diet V</u> : n=28	diet groups		rating)/energy	but not post-intervention because SQ
	BMI=27.6±2.5	- Diet V: Consumption of		consumed at a	diet C \uparrow . Post-intervention, SQ \uparrow with
	kg/m²	vegetables increased		meal*100	lunch and dinner, as did the mean SQ
		- Diet C: Consumption of			(for all meals taken as a whole).
	<u>Diet C</u> : n=29	cereals (especially BF			- Post-intervention: mean SQ diet C >
	BMI=28.3±3.4	cereals) increased			diet V
	kg/m²	Assessment frequency:			
		Baseline and post-			
		intervention			
		Assessment protocol:			
		Anthropometrics,			
		standardized BF, lunch,			
		dinner, snack, self-reported of			
		food intake			

Gilbert et	n=54 women	Interventional study	Before and after	SQ _H , SQ _F , SQ _{DTE} and	Other:
al., 2009 ⁽⁴⁸⁾	Age= 39.9±7.5 yr	<u>Duration</u> : 4 or 6 months	BF, 1h after BF	SQ_{PFC} (mm/kJ) =	- SQ_{DTE} (p=0,03) was the only
	BMI= 32.9 ± 3.5	Intervention: energy		(fasting rating -60 min	significant change among the SQ and
	kg/m²	restriction program (2900		post-meal	AUC values.
		kJ/day)		rating)/energy content	
		Assessment frequency:		of BF*100	
		baseline and post-intervention			
		Assessments protocol:			
		Anthropometrics,			
		standardized BF (2504 kJ)			
King et al.,	n= 58 (19 men, 39	Interventional Study	Immediately	SQ _H (mm/kcal) =	SQ, physical activity and energy
2009 (50)	women)	<u>Duration</u> : 12 weeks	before, after, and	(rating before the	expenditure:
	Age=39.6±9.8 yr	Intervention: Exercise	periodically in	eating episode	SQ of the standardized BF ↑ over the
	BMI= 31.8±4.5	program (500 kcal per	between meals	-rating after the eating	12-week period of exercise. This effect
	kg/m²	session, 70% of individual's		episode)/energy	was maintained for 4 h after the meal.
		maximum heart rate 5		content of BF *100	
		days/week)			
		Assessment frequency:			
		baseline and post-intervention			
		Assessments protocol:			
		Anthropometrics,			
		individualized BF (ad libitum			
		at baseline and quantities			

		replicated post-intervention; 406±5 kcal), ad libitum lunch and dinner, evening snack box			
Halford et	n= 30 women	Double blind, placebo	Before and after	$SQ_H (mm/kJ) = (pre-$	Other:
al., 2010 ⁽⁵⁶⁾	Age=46.0±12.9 yr	controlled crossover study	BF, 10:00, 11:00,	lunch rating - post-	- SQ in the 10 mg group > placebo
	BMI= 34.6±3.3	<u>Duration</u> : 7 days	12:00, before and	lunch rating) /EI at	(p=0.03).
	kg/m²	<u>Intervention</u> : 3 conditions:	after lunch at	lunch	- SQ in 15 mg = SQ to placebo (smaller
		- Sibutramine 10 mg a day	13:00, 15:00,		change in hunger rating pre- to post-test
		- Sibutramine 15 mg a day	16:00, 17:00		meal because of a proportionally
		- Placebo			greater reduction in food intake in this
		Assessment frequency: before			condition).
		and after drug administration			
		(7 days)			
		Assessment protocol:			
		standardized BF (2173 kJ), ad			
		libitum lunch			

Jönsson et	n=29 men	Interventional randomized	At meal initiation	SQ _S for energy	SQ, energy intake and appetite
al., 2010 ⁽⁴⁴⁾	ischemic heart	study	and 30 min after	(rating/MJ) and	control:
	disease patients	<u>Duration</u> : 12 weeks	meal initiation	weight (rating/kg) =	- SQ for energy Paleolithic group >
	with impaired	Intervention: 2 diet groups	(free-living	(rating pre-eating	Mediterranean group (p=0.057) and
	glucose tolerance	- Paleolithic diet (n=14):	measurements)	episode - rating post-	without the outlier becomes significant
	or T2D, and waist	based on lean meat, fish,		eating episode)/food	(p=0.02).
	circumference >94	fruit, vegetables, root		intake of eating	- Correlation between SQ for energy
	cm	vegetables, eggs, and nuts		episode	and EI (r= 0.54, p=0.004), absolute
	Age= NR	- Mediterranean diet (n=15):			intake of CHO (r=0.50, p=0.007),
	BMI= NR	whole-grain cereals, low-fat		Satiety measured with	glycemic load (r=0.50, p=0.007),
		dairy products, potatoes,		7-point scale anchored	saturated fatty acids (r=0.41, p =0.03)
		legumes, vegetables, fruit,		at -3 (very hungry) to	and sodium (r=0.51, p =0.007).
		fatty fish, refined fats rich in		+3 (very full)	
		monounsaturated fatty acids			
		and alpha-linolenic acid.			
		Assessment frequency:			
		measured once at 15 ± 5 days			
		Assessment protocol: 4-day			
		food record, appetite			
		sensation, anthropometrics,			
		BW			

Caudwell et	n=107 adults with	Interventional study	Immediately	SQ _H (mm/kcal) =	SQ, physical activity and energy
al., 2013 ⁽⁵⁷⁾	overweight/obesity	<u>Duration</u> : 12 weeks	before and after	(rating before BF-	expenditure:
	<u>Men</u> : n=35	Intervention: Aerobic	each meal, and at	rating after BF)/EI of	- Exercise program ↑ SQ in males and
	Age=41.3±8.6 yr	exercise (500 kcal per	hourly intervals	the BF *100	females (p<0.0001).
	BMI= 30.5 ± 8.6	session, 70% of individual's	between		- There was a difference in sex
	kg/m²	maximum heart rate 5			(p=0.014); SQ females > SQ males at
	<u>Premenopausal</u>	days/week)			baseline and post-intervention.
	women: n=72	Assessment frequency:			
	Age= $40.6 \pm 9.5 \text{ yr}$	Baseline and post-			
	BMI= 31.8±4.3	intervention			
	kg/m²	Assessment protocol:			
		Anthropometric			
		measurements, individualized			
		standardized-energy BF,			
		standardized lunch and ad			
		libitum dinner, evening snack			
		box			
Jönsson et	n= 13 (10 men, 3	Randomized cross-over study	At meal initiation	SQ _S for energy	SQ, energy intake and appetite
al., 2013 ⁽⁵⁵⁾	women) T2D	<u>Duration</u> : 3 months	and 30 min after	(rating/MJ), weight	control:
	Age= NR	<u>Intervention</u> : 2 conditions:	meal initiation	(rating/kg), energy	- SQ for energy Paleolithic diet >
	BMI= NR	- Diabetes diet (current	(free-living	density (rating*g/kJ),	diabetes diet (p=0.004).
		guidelines)	measurements)	glycemic load	- No differences between the diets in
		- Paleolithic diet		(rating/kg) and	SQ for weight per meal and GI per

		Assessment frequency:		glycemic index (RS) =	meal.
		baseline and after 3 (in-		(rating pre-eating	- SQ for energy per meal correlated
		between crossover) and 6		episode - rating post-	with triglyceride levels and vitamin B6
		months		eating episode)/food	intake (r=0.60 and 0.64, p=0.03 and
		Assessments protocol: 4-day		intake of eating	0.02, respectively).
		weighed food record at 6		episode	- SQ for energy density correlated with
		weeks			water from food (r=0.71, $p = 0.01$), and
				Satiety measured with	SQ for glycemic load correlated with
				7-point scale anchored	BMI and spirits ($r=-0.84$ and 0.59,
				at -3 (very hungry) to	p=0.0003 and 0.03, respectively).
				+3 (very full)	
McNeil et	n=102	Observational study	VAS: Before,	SQ _H , SQ _F , SQ _{DTE} and	SQ, energy intake and appetite
al., 2014 ⁽⁹⁾	premenopausal	Duration : 5 years	immediately after	SQ_{PFC} (mm/kcal) =	control:
	women,	Assessment frequency:	and every 30 min	[fasting rating - mean	SQ _F , SQ _{PFC} , mean SQ explained 5 to
	Age= 49.9±1.9 yr	baseline and every 1 year	for 3h post-BF	post-meal	14% of the variance in ad libitum
	BMI= 23.3 ± 2.2	Assessment protocol:	consumption.	rating]/energy content	energy and macronutrient intake at
	kg/m²	Anthropometric	SQ: 60 and 180	of the test meal *100	lunch at 1, 3-5 years.
		measurements, standardized	min post-BF		- SQ _F , SQ _{PFC} explained 8 and 14% of
		BF (575 kcal), ad libitum	consumption.		the variance in daily (7-day food diary)
		lunch, 7-day food diary			energy and carbohydrate intakes at year
					4.
					SQ and anthropometrics variables:

- year 1: BW women with a lower mean SQ < higher mean SQ (p=0.02).
- Changes in BW correlated with delta SQ_F at $60(r=0.34;\ p=0.004)$ and 180 $(r=0.30;\ p=0.01)$ min between years 1 and 5.
- Changes in FM correlated with delta SQ_F at 60 min between years 1 and 5 (r=0.24; p=0.04).
- Delta FM correlated with i) delta SQ_H at 60 (r= -0.34; p=0.02) and 180 min (r= -0.34; p=0.02), ii) delta SQ_{PFC} at 60 (r= -0.33; p=0.02) and 180 (r= -0.32; p=0.02) min, between years 4 and 5.
- Changes in waist circumference associated with delta SQ_{DTE} at 60 min (r= -0.31; p=0.02), delta SQ_{H} at 60 min (r= -0.32; p=0.02), delta SQ_{F} at 60 (r= -0.31; p=0.02) and 180 min (r= -0.29; p=0.03), and delta mean SQ at 60 min (r= -0.32; p=0.02) between years 3 and 4.

Other:

					- No difference in SQ between
					menopausal status groups
					(premenopausal, menopausal transition
					and postmenopausal) at years $2-5$.
Bédard et	n=70	Interventional study	Before and	SQ _F (mm/kcal) =	SQ, energy intake and appetite
al., 2015 ⁽⁴⁹⁾	<u>Men</u> : n=38	<u>Duration</u> : 16 weeks	immediately after	(post-meal rating –	control:
	Age=42.6±7.4 yr	<u>Intervention</u> : isoenergetic	each meal	pre-meal	Mean SQ _F (BF, lunch and dinner)
	BMI= 29.0±3.1	MedDiet standardized and		rating)/energy content	correlated with EI in men (r= -0.48,
	kg/m²	personalized menu		of the test meal*100	p=0.003)
	<u>Premenopausal</u>	(Assessment frequency:			Other:
	women: n=32	Every wednesday from week			- No change in SQ from first to fourth
	Age=41.2±7.4 yr	1 to 4.			week for both men and women.
	BMI= 29.6±5.6	Assessments protocol:			
	kg/m²	Individualized BF, lunch and			
		dinner (2500 kcal/d)			

Carbonneau	n=141	Randomized, controlled trial	Before and	SQ _H and SQ _F	Other:
et al., 2015	Low-fat label	Duration : 10 days	immediately after	(mm/kcal) =	- No difference between groups on 10-d
(52)	normal weight:	<u>Intervention</u> : 3 meals per day	meal	(fasting rating - post-	mean for SQ_H and SQ_F .
	n=23	under ad libitum conditions		meal rating)/energy	- Significant labelling group by time
	Age=43.5±10.8 yr	3 groups:		content of the	interaction was observed for the 3-d
	BMI=22.4±1.6	- Low-fat label posted on		meal*100	mean SQ_H (p= 0.046). SQ_H in the
	kg/m²	lunch meal main course			energy label group at days $8-10 <$
	Low-fat label	- Energy label (energy			days 1 – 3 (no difference between low-
	obese:	content of main course and			fat and no-label groups).
	n=23	average daily needs)			
	Age=52.3±11.5	- No label (control)			
	yrs	Assessment frequency: Daily			
	BMI= 34.7 ± 3.9	Assessments protocol: BF,			
	kg/m²	lunch and dinner ad libitum			
	Energy label				
	normal weight:				
	n=25				
	Age= $37.7 \pm 12.6 \text{ yr}$				
	BMI= 21.8 ± 1.9				
	kg/m²				
	Energy label				
	obese: n=23				
	Age= $46.0 \pm 14.3 \text{ yr}$				

BMI= 34.5±4.9

kg/m²

No label normal

weight: n=22

Age= $42.6 \pm 12.4 \text{ yr}$

BMI= 22.8 ± 1.5

kg/m²

No label obese:

n=25 Age=

53.0±11.0 yr

BMI= 32.6 ± 2.3

kg/m²

Golloso-	n=34 healthy male	Randomized crossover study	Before, and 15,	SQ _H (mm/kcal) =	SQ, energy intake and appetite
Gubat et al.,	adults	<u>Duration</u> : 6 weeks	30, 45, 60, 90,	(mean fasting ratings -	control:
2016 (46)	Age=27.7±6.2 yr	<u>Intervention</u> : 3 conditions:	120, 150, 180, 240	mean 240 min post-	- Mean SQ of brown rice > white rice
	BMI= 22.1±1.9	- BF with brown rice	min after meals	prandial	(p=0.045).
	kg/m²	- BF with white rice		ratings)/energy	
		- Control		content of BF*100.	
		Assessment frequency:			
		Before and after each			
		condition			
		Assessment protocol:			
		Standardized BF (500 Kcal			

		kcal; including 160 g cooked			
		rice)			
Arguin et	n=69 men	Randomized controlled trial	Before,	SQ _H , SQ _F , SQ _{DTE} and	SQ and satiety phenotype:
al., 2017 ⁽¹²⁾	Control Diet Low	<u>Duration</u> : 16 weeks	immediately after	SQ_{PFC} (mm/kcal) =	- ↑ all SQ for LSP in the satiating diet
	Satiety Phenotype	<u>Intervention</u> : Diet	and at 10 min	(fasting rating - mean	(all p<0.01).
	<u>(LSP)</u> : n=15	intervention	intervals until 1h	of the 60-min post-	- $SQ_{\rm H}\uparrow$ for HSP in the satiating diet
	Age= 41.0±6.3 yr	2 groups:	then 90 and 120	meal rating/	(p<0.05).
	BMI= 34.1 ± 3.5	- Control: 10-15% protein,	min after BF.	energy content of BF)	- $SQ_{\mbox{\scriptsize PFC}}$ tended to \downarrow in the HSP-control
	kg/m²	55-60% carbohydrate and		*100	subgroup (p=0.05).
	Control Diet High	30% fat			- After adjustment for baseline
	Satiety Phenotype	- Satiating: 20–25% protein,			variables: significant effect of diet for
	(HSP): n=19	45–50% carbohydrate and		Low satiety	the changes in SQ_{H} , SQ_{F} , SQ_{PFC} and
	Age= $41.9 \pm 5.5 \text{ yr}$	30–35% fat		phenotype: mean	mean SQ (all p<0.05), with greater
	BMI= 33.9 ± 2.8	Assessment frequency:		SQ<8mm/100 kcal	increases in SQ for the satiating diet.
	kg/m²	Baseline and post-		High satiety	
	Satiating Diet	intervention		phenotype: mean	
	<u>LSP</u> : n=17	Assessments protocol:		SQ≥8mm/100 kcal	
	Age= $40.4 \pm 6.2 \text{ yr}$	Anthropometrics,			
	BMI= 33.6 ± 3.0	standardized BF (733 kcal),			
	kg/m²	TFEQ			

Satiating Diet

<u>HSP</u>: n=18

Age= $42.55\pm5.0 \text{ yr}$

BMI= 32.9 ± 2.9

kg/m²

Sanchez et	n=125	Double-blind, randomized,	Before,	SQ _H , SQ _F , SQ _{DTE} and	Other:
al., 2017 ⁽⁵¹⁾	Probiotic group:	placebo controlled study	immediately after,	SQ_{PFC} (mm/kcal) =	- Final sample: n=93, Probiotic: n=45,
	n=62	<u>Duration</u> : 24 weeks	and every 10 min	(fasting rating - mean	Placebo: n=48
	Age=35.0±10.0 yr	Intervention: 12-week	for 1 h after the	of the 60-min post-	- For women and men, the $SQ_{\mbox{\scriptsize DTE}}$
	BMI= 33.8±3.3	moderate energy restriction	standardized BF	meal ratings)	probiotic group at lunch > placebo
	kg/m²	including 2 daily capsules of		/energy content of test	group after Phase 1 (men $p = 0.03$;
	Placebo: n=63	probiotic/placebo (Phase 1),		meal) *100	women $p = 0.02$). The same trend was
	Age= 37.0±10.0 yr	followed by 12 weeks of			observed for the changes in SQ_{DTE} at
	BMI= 33.3±3.2	weight maintenance (Phase 2)			BF but not significantly.
	kg/m²	Assessment frequency:			
		baseline, week 12, week 24			
		Assessments protocol:			
		Anthropometrics,			
		standardized BF (men 733			
		kcal, women 599 kcal), ad			
		libitum lunch, TFEQ			

Buckland et	n=52 women	Randomized controlled trial	Before and after	SQ _F (mm/kcal) =	SQ, energy intake and appetite
al., 2019 ⁽⁵⁸⁾	Age= 41.2±12.5 yr	<u>Duration</u> : 14 weeks	each meal and at	(mean of the	control:
	BMI= 34.0 ± 3.6	Intervention: Weight loss	hourly intervals	180-min post-meal	- Preference (explicit liking and
	kg/m²	program with low energy		rating - fasting	implicit wanting) for and consumption
		density meal and high energy		rating/energy content	of HED food: LSP > HSP
		density meal at week 3 and		of BF)*100	SQ and anthropometrics variables:
		12.			- \downarrow BW and \downarrow waist circumference:
		Assessment frequency: week		Low satiety	LSP < HSP
		3 and 12.		phenotype:	Other:
		Assessments protocol:		SQ<4.5mm/100 kcal	- Control over eating and weight loss
		Anthropometric		High satiety	program adherence: LSP < HSP
		measurements, TFEQ,		phenotype:	
		craving control, food reward,		SQ≥8.5mm/100 kcal	
		low energy density (LED)			
		and high energy density			
		(HED) test days:			
		individualized BF and lunch,			
		ad libitum dinner and evening			
		snack box			

Drapeau et	n=100	Observational study	Before,	SQ _H , SQ _F , SQ _{DTE} and	Baseline:
al., 2019 ⁽⁵³⁾	Low Satiety	Subjects were selected from	immediately after,	SQ _{PFC} (mm/kcal)=	SQ, energy intake and appetite
	Responsiveness	different weight loss studies	and 10, 20, 30, 40,	(fasting rating - mean	control:
	(LSR): n=50 (23	Study 1 & 2: <u>Duration</u> : 15	50, and 60 min	of the 60-min post-	- Level of external locus for hunger:
	men, 27 women)	weeks, Intervention: caloric	after BF	meal rating) /energy	LSP > HSP
	Age=37.8±9.5 yr	restriction (-700 kcal/day)		content of BF*100	SQ and satiety phenotype:
	BMI= 33.7±3.9	Study 3: <u>Duration</u> : 12 weeks,			- Mean SQ and for each rating: LSP <
	kg/m²	Intervention: caloric		<u>Low satiety</u>	HSP.
	High Satiety	restriction (-500 kcal/day)		phenotype: mean	SQ and sleep quality and quantity:
	Responsiveness	Assessment frequency:		SQ<8mm/100 kcal	- Level of PSQI total score: LSP >
	(HSR): n=50 (6	Baseline and post-		High satiety	HSP(indicating lower sleep quality
	men, 44 women)	intervention		phenotype: mean	compared to the HSP group)
	Age= 39.6±7.8 yr	Assessment protocol:		SQ≥8mm/100 kcal	Other:
	BMI= 32.6±3.3	Anthropometrics,			- Present-state anxiety associated with
	kg/m²	standardized BF (men 733			SQ (r = -0.38, p = 0.008).
		kcal, women 599 kcal), ad			- Present-state anxiety score: LSP >
		libitum lunch, TFEQ, State-			HSP
		Trait Anxiety Inventory			After weight-loss program:
					SQ and anthropometrics variables:
					- BW loss: LSP = HSP ($-3.5 \pm 3.2 \text{ vs.}$
					$-3.8 \pm 2.8 \text{ kg}$
					SQ and satiety phenotype:
					Changes in satiety efficiency: LSP =

					HSP (LSP pre 6.0 ± 2.6 vs. post $8.0 \pm$
					5.4; HSP group pre 14.8 ± 3.5 vs. post
					15.2 ± 4.4)
Hintze et al.,	n=36	Randomized trial	Fasting, at 0,	SQ _H , SQ _{DTE} and	Final sample: n=30, Slow weight loss:
2019 (54)	Slow weight loss:	Intervention and duration:	30,60,90,120,180	SQ _{PFC} (mm/kcal)=	n=14, Fast weight loss: n=16
	n=17	2 groups:	after standardized	(fasting rating - mean	Other:
	Age=30.2±9.3 yr	- Slow weight loss (-500	BF	60-min post-meal	- $SQ_{\mbox{\scriptsize DTE}},SQ_{\mbox{\scriptsize H}}$ and $SQ_{\mbox{\scriptsize PFC}}$ at 60 and 180
	BMI= 32.1±3.1	kcal/day) during 20 weeks		rating) /energy content	min ↑ after the intervention.
	kg/m²	- Rapid weight loss (-1000		of BF*100	
	Fast weight loss:	kcal/day) during 10 weeks			
	n=19	Assessment frequency:		SQ _F (mm/kcal)=	
	Age= 33.1±9.3 yr	baseline, 5-7 days after		(mean of the 60-min	
	BMI= 34.0±4.4	starting and post-intervention.		post-meal rating –	
	kg/m²	Assessments protocol:		fasting rating) /energy	
		standardized and personalized		content of BF*100	
		BF (ad libitum in preliminary			
		session and replicated on			
		subsequent sessions), ad			

libitum lunch

Beaulieu et	n=46	Randomized Control Trial	Before and after	SQ _H (mm/kcal)=	Final sample per protocol (weight loss
al., 2020 ⁽⁵⁹⁾	<u>CER</u> : n=22	<u>Intervention and duration</u> :	BF, BF+30, +60,	(fasting rating - mean	≥5%): n=30
	Age= 34.9±9 yr	2 groups:	+90, +120, +150	180-min post-BF	Baseline:
	BMI= 28.9±2.3	- CER: Continuous Energy	minutes, before	rating) /energy content	- CER: n=18, Age= 35±9 yr
	kg/m²	Restriction: 25% daily energy	and after lunch	of BF*100	BMI= 29.1±2.4 kg/m²
	<u>IER</u> : n=24	restriction during 12 weeks			- IER: n=12, Age= 34±10 yr
	Age= 35±11 yr	TOD I T			BMI= 29.1±2.5 kg/m ²
	BMI= 29.4±2.5	-IER: Intermittent Energy			After weight loss ≥5%:
	kg/m²	Restriction: alterning ad			- CER: BMI= 27.3 \pm 2.3 kg/m ² (\neq
		libitum meals and 75%			baseline p<0.001)
		energy restriction day during			- IER: BMI= 27.2±2.4 kg/m² (≠
		12 weeks			baseline p<0.001)
		Assessment frequency:			SQ and anthropometrics variables:
		baseline and post-			No SQ ≠ between before and after
		intervention.			weight-loss.
		Assessments protocol: Body			SQ, energy intake and appetite
		composition, individualized			control:
		BF, ad libitum lunch, appetite			No SQ ≠ between groups.
		sensation, eating behavior			Tio by 7 octween groups.
		traits.			

Protocol are detailed only the relevant of SQ; values are presented as means ± SD (standard deviation); AS: appetite sensation; EI: energy intake; BF: Breakfast; BW: Body Weight, NR: Not Reported.

DTE: Desire To Eat; F: Fullness; H: Hunger, PFC: Prospective Food Consumption; S: Satiety; SQ: Satiety Quotient; LSP: Low Satiety Phenotype; HSP: High Satiety Phenotype.