
This is a repository copy of Pinset:A DSL for extracting datasets from models for data
mining-based quality analysis.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/163522/

Version: Accepted Version

Proceedings Paper:
De La Vega, Alfonso, Sanchez, Pablo and Kolovos, Dimitrios S. orcid.org/0000-0002-
1724-6563 (2018) Pinset:A DSL for extracting datasets from models for data mining-based
quality analysis. In: Proceedings - 2018 International Conference on the Quality of
Information and Communications Technology, QUATIC 2018. 11th International
Conference on the Quality of Information and Communications Technology, QUATIC 2018,
04-07 Sep 2018 Proceedings - 2018 International Conference on the Quality of Information
and Communications Technology, QUATIC 2018 . IEEE , PRT , pp. 83-91.

https://doi.org/10.1109/QUATIC.2018.00021

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Pinset: A DSL for Extracting Datasets from Models

for Data Mining-Based Quality Analysis

Alfonso de la Vega

Software Engineering and Real-Time

Universidad de Cantabria

Santander, Spain

alfonso.delavega@unican.es

Pablo Sánchez

Software Engineering and Real-Time

Universidad de Cantabria

Santander, Spain

p.sanchez@unican.es

Dimitrios S. Kolovos

Department of Computer Science

University of York

York, United Kingdom

dimitris.kolovos@york.ac.uk

Abstract—Data mining techniques have been successfully ap-
plied to software quality analysis and assurance, including quality
of modeling artefacts. Before such techniques can be used,
though, data under analysis commonly need to be formatted
into two-dimensional tables. This constraint is imposed by data
mining algorithms, which typically require a collection of records
as input for their computations. The process of extracting data
from the corresponding sources and formatting them properly
can become error-prone and cumbersome. In the case of models,
this process is mostly carried out through scripts written in a
model management language, such as EOL or ATL. To improve
this situation, we present Pinset, a domain-specific language
devised for the extraction of tabular datasets from software
models. Pinset offers a tailored syntax and built-in facilities for
common activities in dataset extraction. For evaluation, Pinset has
been used on UML class diagrams to calculate metrics that can
be employed as input for several fault-prediction algorithms. The
use of Pinset for this calculations led to more compact and high-
level specifications when compared to equivalent scripts written
in generic model management languages.

Index Terms—Data Mining; Software Quality; Model-Driven
Engineering; Domain-Specific Languages

I. INTRODUCTION

Data mining techniques [1] are being employed to improve

different aspects of software quality assurance processes [2]–

[5]. Among other issues, these techniques are being used

to: (1) predict the existence of software bugs [2]; (2) detect

patterns or smells that might affect software quality [3];

(3) obtain intelligent metrics that provide better insights for

quality analysis [4]; and (4) improve the efficiency of mutant

execution for analysing the quality of a test suite [5]. These

techniques are applied to different kinds of software artefacts,

including source code [6] and test reports [7]. Software models

are also included among these artefacts [8].

In general, the objective of these approaches is to develop

prediction models, which can help in the automatic detection

of complex or hidden issues that might affect the quality of

a software product. These prediction models are constructed

by different algorithms, which use information extracted from

existing software repositories and based on a curated history of

previous software projects and their corresponding outcomes.

These algorithms require the provided data to be formatted

as a two-dimensional or tabular dataset. Several examples of

these datasets can be found in D’Ambros et al. [6], who made

publicly available metrics and historical data about five open

source software systems, so that they could be used to, for

instance, train fault-detection predictors for software products.

To build such datasets, software engineers write scripts that

access software repositories, retrieve the required information,

execute computations to calculate some metrics and, finally,

arrange all the gathered data in a tabular form. In the case

of models, these scripts are written using model management

languages, such as OCL [9], ATL [10] or those provided by

Epsilon [11]. As further discussed below, the development of

these scripts can be a tedious and cumbersome process.

To improve this situation, we present Pinset, a Domain-

Specific Language (DSL) for the generation of tabular datasets

from models. Pinset offers high-level primitives that simplify

the specification and computation of datasets, which can be

used as inputs for data mining algorithms. The use of Pinset

leads to more high-level and concise specifications of data

acquisition processes when compared to existing alternatives.

Pinset is implemented as an extension of the Epsilon [11]

suite, making use of the facilities this platform provides,

such as OCL-like expressions. Using this implementation, we

created scripts to build datasets from UML class models. These

datasets can be used for fault prediction analysis by following

several approaches available in the current literature [6], [12].

As input for these scripts, we used third-party UML models

coming from a large public repository [13]. The scripts that

make use of Pinset are more compact than their counterparts

written in other languages, such as ATL or ETL [14]. This

is mainly due to the use of high-level primitives specifically

tailored for the data acquisition and transformation tasks.

The rest of the paper is organised as follows. Section II

extends the motivation behind this work. Then, Section III

shows how to extract datasets with state-of-the-art tools. The

functionality and implementation of Pinset are described in

Sections IV and V, respectively. Pinset is compared against a

generic model transformation language in Section VI. Finally,

Section VII comments on future work and concludes the paper.

II. MOTIVATION AND RUNNING EXAMPLE

This section details the motivation behind this work, de-

scribing first how our approach might be used inside a specific

data-mining process for model quality analysis. Then, we

2. Sources
Selection

Target
Sources

3. Data
Selection

4. Preprocessing

Target
Data

Business
Experts

Business
Question

1. Question

Data Sources

6. Interpretation

Knowledge,
Answers

5. Data
Mining

Patterns

Pinset supports these steps

Tabulated &
Prepared Data

Pinset empowers
the use of models
as data sources

Fig. 1. Role of Pinset inside a generic data mining process. Source: [15]; expanded for clarity. Icons designed by Smartline From Flaticon.

introduce the running example that is used throughout the

paper to describe the features of Pinset.

A. Data Mining Processes

A data mining process can be defined as a succession

of steps, where data are analysed with the objective of

discovering patterns that can be used for different purposes,

such as predicting future behaviours [15]. Figure 1 depicts

a generic data mining process. The process starts with a

business question that must be answered (Figure 1, Step 1).

In a software development context, it could be asked whether

those modules whose maintenance tasks take more time to

finish share some features that might be causing these longer

durations.

Then, a set of data sources to answer these questions must

be selected (Figure 1, Step 2). In the case of software quality

analysis, these data sources might include source code hosted

in a repository, modeling artefacts, requirements specifications

or bug reports, among others. For instance, to find if there are

features that are common to those modules whose mainte-

nance effort is larger, we might decide to analyse information

obtained from the source code of these modules, as well as

data retrieved from the bug tracking system used to manage

the maintenance tasks.

As a third step, specific data are selected and extracted

from these sources. For instance, several parameters of a

maintenance task, such as number of modified classes, number

of added lines of code (LOC), number of removed LOC, and

time spent to complete the task might be retrieved from the

bug tracking system.

In the preprocessing step (Figure 1, Step 4), two different

tasks are carried out. Firstly, to be used as input for data

mining algorithms, the gathered data need to be arranged as

records of information (rows), where each record provides

values of a set of properties (columns) from an instance of the

entities being analysed. That is, each record represents values

for some features of, for instance, a class or a maintenance

task, depending on which elements we are analysing in each

case. Secondly, the selected data is adapted to any specific

requirements of the applied algorithms. For instance, some

numeric values might need to be normalised to fit between 0

and 1, whereas other values might need to be discretised prior

to being used as input of a specific algorithm.

Next, data mining algorithms are executed (Step 5). The

results of these algorithms are analysed to reach some conclu-

sions, which is accomplished in the interpretation phase (Step

TABLE I
OBJECT-ORIENTED METRICS USED THROUGHOUT THE PAPER EXAMPLES.

Metric Description

CK WMC Weighted method count
CK DIT Depth position on the inheritance tree
CK NOC Number of children
CK CBO Coupling between objects

OO FanIn Number of other classes that reference the class
OO FanOut Number of other classes referenced by the class
OO NOF Number of features
OO NOA Number of attributes
OO NOPA Number of public attributes
OO NOPRA Number of private attributes
OO NOIA Number of inherited attributes
OO NOM Number of methods
OO NOPM Number of public methods
OO NOPRM Number of private methods
OO NOIM Number of inherited methods

6). These conclusions should help answer the initial business

question, which might assist in decision making.

As shown in Figure 1, Pinset, the language described in this

work, aims to help with the data acquisition and transformation

phases (steps 3 and 4, respectively) when the sources from

which data are retrieved are well-defined models, this is,

models following a model-driven perspective.

B. Running example

To develop our language, we were inspired by the work

of Osman et al. [16]. This work evaluates how different

automatic feature selection techniques affect the accuracy of

bug predictors. A bug predictor is a tool that uses a data

mining process to determine whether a piece of code might

be a potential source of bugs, usually within some confidence

range. In this case, the business question is whether a class

can be considered as potentially buggy or not.

As input for the bug predictors, Osman et al. rely on an

external dataset, which is provided by D’Ambros et al. [6]

and which has been widely used in the bug prediction liter-

ature [17], [18]. This dataset collects data at the class level,

by analysing source code hosted in software repositories aug-

mented with some change metrics coming from other sources,

such as configuration management systems. Therefore, the

main entities under analysis are classes. For each class, a

set of metrics, including the ones defined by Chidamber and

Kemerer [12], are calculated. Table I lists these metrics.

However, these works usually omit the process through

which the values of the datasets are calculated. It is assumed

that a script crawls a software repository, extracts the data

and formats it. Pinset aims to complement all these works,

by providing mechanisms to retrieve and format these data

more easily when the data sources are models. To illustrate

how Pinset works, we will show how it can be used to extract

the metrics contained in Table I from UML class models. It

should be noted that some of these metrics do not apply to

the model level, so they have been adapted or just skipped.

These adaptations are commented in the paper when required.

Moreover, other metrics are used in some specific places, to

better illustrate some of the features offered by Pinset.

III. RELATED WORK

In the modeling community, the extraction of metrics from

models is typically accomplished by means of generic model

transformation/management languages, such as OCL, ATL or

Epsilon’s EOL/ETL. Indeed, the ATL documentation, which

includes a wide range of model-to-model (M2M) transforma-

tion examples, contains a specific entry for a table extraction

scenario1. In that example, the model of a Java program is

transformed into an instance of a metamodel that represents a

table. It is assumed that a code generation process is executed

next, where the model is transformed into an appropriate

textual format, such as CSV (Comma Separated Values).

Since Pinset is implemented over the Epsilon platform, for

the sake of consistency, we will show how a similar transfor-

mation can be expressed in ETL [14], i.e., the M2M transfor-

mation language of Epsilon. This transformation takes place

in the context of the running example introduced previously,

that is, it will extract a dataset from a UML class diagram. We

have slightly modified the original table metamodel of the ATL

transformation to (1) allow the definition of several datasets in

the same model; and (2) to explicitly store the column headers

of each dataset, as usual in the data-mining community. This

new metamodel is depicted in Figure 2.

A model conforming to this metamodel contains Dataset in-

stances, i.e., one or more datasets. A Dataset is composed of a

set of Column headers, plus a set of rows. Each Row stores Cell

values, one for each column of the dataset. Each cell indicates

to which column it corresponds. The relationship between Cell

and Column might be avoided by imposing an order both to

the cells of each row and to the column headers. This way,

cells in a certain position inside a row would correspond to

the column header in the same position. Nevertheless, this

solution makes instances and model transformations harder

to maintain because of the required attention to ordering. For

instance, if we removed a column of a dataset, we would need

to update, in addition to the values of that column, how the

values of subsequent columns are assigned, since these values

would now correspond to a lower position. Keeping each cell

associated to its column avoids this problem.

Listing 1 shows how some basic metrics of a class can

be computed using ETL. This transformation extracts the

1https://www.eclipse.org/atl/atlTransformations/Java2Table/
ExampleJavaSource2Table[v00.01].pdf

Model Dataset

name : EString

Row

Column

name : EString

Cell

value : Object

[0..*] datasets [0..*] columns

[0..*] rows

[0..*] cells

[1..1] column

Fig. 2. Dataset Metamodel used as output in the M2M transformations.

following information from each class: (1) its name; (2)

whether it is abstract; (3) the name of its parent class, if any;

(4) its number of attributes (NOA); (5) its number of methods

(NOM); (6) its number of features, i.e., the sum of attributes

and methods; and (7) its depth inside an inheritance tree (DIT).

Listing 1. ETL transformation that extracts basic class metrics.
1 pre {

2 var modelRoot = new Dataset!Model();

3 var metricsDataset = createDataset("BasicMetrics");

4 modelRoot.datasets.add(metricsDataset);

5 var bmd_c_name = createColumn("name");

6 var bmd_c_isAbstract = createColumn("isAbstract");

7 var bmd_c_parentName = createColumn("parentName");

8 var bmd_c_OO_NOA = createColumn("OO_NOA");

9 var bmd_c_OO_NOM = createColumn("OO_NOM");

10 var bmd_c_OO_NOF = createColumn("OO_NOF");

11 var bmd_c_CK_DIT = createColumn("CK_DIT");

12 metricsDataset.columns =

13 Collection {bmd_c_name, bmd_c_isAbstract,

14 bmd_c_parentName, bmd_c_OO_NOA,

15 bmd_c_OO_NOM, bmd_c_OO_NOF,

16 bmd_c_CK_DIT};

17 }

18

19 rule BasicMetricsClass2Row

20 transform class : Model!Class

21 to row : Dataset!Row {

22 metricsDataset.rows.add(row);

23 row.cells.add(createCell(bmd_c_name, class.name));

24 row.cells.add(createCell(bmd_c_isAbstract,

25 class.isAbstract));

26 var parentName = "";

27 if (not class.superClass.isEmpty()) {

28 parentName = class.superClass.first().name;

29 }

30 row.cells.add(createCell(bmd_c_parentName,

31 parentName));

32 var OO_NOA = class.attributes.size();

33 var OO_NOM = class.operations.size();

34 var OO_NOF = OO_NOA + OO_NOM;

35 row.cells.add(createCell(bmd_c_OO_NOA, OO_NOA));

36 row.cells.add(createCell(bmd_c_OO_NOM, OO_NOM));

37 row.cells.add(createCell(bmd_c_OO_NOF, OO_NOF));

38 row.cells.add(createCell(bmd_c_CK_DIT, class.dit()));

39 }

40

41 operation Class dit(): Integer {

42 var dit = 0;

43 var node = self;

44 while (not node.superClass.isEmpty()) {

45 node = node.superClass.first();

46 dit += 1;

47 }

48 return dit;

49 }

First, the dataset and its columns are instantiated in a pre

block (lines 1-17). In ETL, a pre block contains code that is

executed before any transformation rule. These blocks usually

set up certain elements that need to be configured before

running the transformations. In our case, the use of a pre

block makes the defined datasets globally accessible during

the execution process, which allows the transformation rules

to populate them with rows. Thus, in lines 2-4 a new dataset

called BasicMetrics is defined and added to the model root

element. Then, in lines 5-16, the columns of the BasicMetrics

dataset are defined and assigned. For the creation of datasets

and columns, we rely on helper functions named accordingly

(createDataset, createColumn). For the sake of simplicity,

these helper functions have been left out of this listing, but

they can be consulted in an external repository2.

Once we have created the dataset schema, it is populated

by defining a transformation rule. The rule transforms each

instance of the selected model type to a row in the dataset

(lines 19-39). In our case, for each Class in the input meta-

model, a new Row is created in the target metamodel (lines

20-21). This row is added to the BasicMetrics dataset (line 22),

and then it is populated with a cell for each column. Thus,

first of all, the name of the class is extracted (line 23) and

assigned to the corresponding column header by means of the

createCell helper function. Then, in the same way, the value

for the isAbstract column is taken from the isAbstract class

attribute (lines 24-25). Next, the parentName column value is

computed (lines 26-31). To do it, we check if the class has

a superclass. If so, the corresponding name is extracted from

the parent class, otherwise this value is set to an empty string.

Other values, like NOA, NOM or NOF are obtained using the

same techniques (lines 32-34). Finally, to calculate the DIT

value for each class (line 38), due to its complexity, we have

opted for extracting the code that computes it to an external

function (lines 41-49).

We can see how the management of the dataset structure

introduces extra verbosity and complexity in the extraction

process. This verbosity obfuscates the final goal of the trans-

formation, which is how elements from the input model get

transformed into rows of the resulting datasets. We tried to

alleviate this obfuscation by defining some helper functions

and providing several global variables. This kind of variables,

as it is known, might lead to some undesired side effects.

It is worth mentioning that the described problems are not

due to the use of a transformation language. If we have opted

for using a general-purpose programming language such as

Java, the problem would be worse, since this language does

not offer facilities for manipulating models.

Therefore, after experimenting with the current state-of-the-

art solutions, we came up with the following idea: to create

a domain-specific language that provides high-level primitives

for the extraction of metrics and values from models. With

such a language, we could avoid the obfuscation and verbosity

witnessed when using a general-purpose model transformation

language for the dataset extraction task.

With this idea in mind, we checked the literature to know

whether this objective had been already addressed. The closest

approach is the work of López-Fernández et al. [19], who

provide two languages for quality assurance in metamodels.

These languages allow developers to specify constraints over

2https://github.com/alfonsodelavega/pinset-examples/blob/master/
es.unican.istr.pinset.examples.etlComparison/etl/basicClassMetrics.etl

EMF metamodels that check different issues, such as, for

instance, that a design rule is not violated, or that a specific

quality indicator does not exceed a certain threshold.

These languages provide some high-level primitives to nav-

igate through a metamodel, and to select sets of metamodel

elements that satisfy some conditions. The languages also

support the computation of metrics, but they are not devised

to construct datasets. Therefore, building datasets using these

languages is not a straightforward task. Moreover, these lan-

guages only work at the metamodel level, so they cannot

be applied to model instances or to other kinds of models,

such as state machines or business process models. With this

context, we borrowed some ideas from this work and we

decided to develop Pinset, a domain-specific language for

extracting datasets from models. The language is presented

in the following section.

IV. SOLUTION DESCRIPTION

We start by presenting a basic Pinset example, followed by

more in-depth descriptions of some Pinset features.

A. Syntax Overview

Listing 2 shows the ETL script of Listing 1 rewritten using

Pinset. As it can be seen, in Pinset, a dataset is specified as

a set of column definitions that capture data from instances

of a type included in an input model. These definitions might

have different flavours: in their most basic form, they allow to

specify a column declaratively through OCL-like expressions.

However, if a column is complex enough to require several

steps to calculate it, Pinset offers imperative language struc-

tures, such as conditions, loops or calls to external functions,

to achieve this task. Moreover, Pinset also provides high-level

constructs, not included in this first example, to facilitate the

definition of complex columns.

Column definitions are organized in dataset rules. In its

simplest form, a dataset rule consists of (i) a name, (ii) a

typed parameter, and (iii) a set of column generators. The name

identifies the dataset. The typed parameter specifies which type

of the input model is going to be processed when populating

the rows of the output dataset. This means that a row will be

generated in the resulting dataset each time a new instance

of the specified type is found in the input model. The column

generators are used to define the columns that the final dataset

will have, and how the values of these columns are calculated.

Listing 2. A Pinset dataset rule that extracts the metrics of Listing 1.
1 dataset basicClassMetrics over class : Class {

2 column name : class.name

3 column isAbstract : class.isAbstract

4 column parentName {

5 var name = null;

6 if (not class.superClass.isEmpty()) {

7 name = class.superClass.first().name;

8 }

9 return name;

10 }

11 column OO_NOA : class.attributes.size()

12 column OO_NOM : class.operations.size()

13 column OO_NOF : OO_NOA + OO_NOM

14 column CK_DIT : class.dit()

15 }

Listing 2 provides a dataset rule example, which is denoted

as basicClassMetrics. Its parameter name is class (line 1),

whose type is Class. This parameter is specified using the over

keyword. The type selection means that a row will be created

in the target dataset each time a Class instance is found in the

input model. Finally, lines 2-14 contain the column generators

that specify the contents of the dataset.

Different generators can be used to define the columns

of a dataset. In this first example, the Column generator is

employed. This generator requires a name, which defines the

header of the column to be generated; plus a piece of code that

specifies how this column must be calculated for each instance

of the typed parameter. This piece of code can be defined using

different styles. In the simplest version, column values are

obtained through an EOL expression. EOL (Epsilon Object

Language) [20] is an OCL-like language from the Epsilon

suite, with capabilities for manipulating models conforming to

a metamodel structure. The expression is invoked over each

instance of the selected type that is found in the input model.

Listing 2, line 2 shows an example of the Column generator.

This example specifies that the output dataset has a column

called name, which contains the name of each class, retrieved

through the expression class.name. It should be noticed that

these EOL expressions have access to the instance being

processed through the name of the dataset parameter, which is

class in this case. A similar strategy is applied in the second

column definition (line 3).

As commented, more complex expressions can be employed

if needed. The column parentName is defined with an EOL

block (lines 4-10), which is composed of a set of instructions,

and ends returning the value that will be used to populate the

column. In the example, the parent name is searched through

the superclass feature of the class. If it is not found, a blank

name is returned.

Column values are calculated in the same order they appear

in the dataset rule. This way, previously calculated column

values can be used in new column definitions. For instance,

two columns holding the number of attributes (OO NOA)

and methods (OO NOM) of the class are declared first (lines

11 and 12 respectively). Then, in line 13, the number of

features (OO NOF) is obtained through the sum of these two

previously calculated values.

Finally, line 24 shows that it is possible to call external

functions from column expressions. The depth of inheritance

(CK DIT) metric is obtained through the external dit() opera-

tion, which is defined outside of the rule. The definition of this

operation has been omitted here, as it is present in Listing 1.

As output, the execution of the rule from Listing 2 generates

a CSV file for each specified dataset rule. Each generated

file has the same name as its corresponding dataset. In our

example, a basicClassMetrics.csv file is created. The first row

of this file contains the name of the defined columns separated

by commas. Then, a row is included for each element of type

Class in the input UML model. Each row contains appropriate

values for their columns, being these values separated with

commas. As it can be noticed, Pinset provides the final datasets

in one step, unlike the M2M and M2T transformation process

of the previously described state-of-the-art approach.

The following sections describe more advanced mechanisms

provided by the language.

B. Properties Accessors

When we want to define columns that only hold values

coming from properties of the selected type, the Column

generator syntax can become too verbose and redundant. For

example, in the name and isAbstract column definitions of

Listing 2 (lines 2 and 3), the name of the column matches the

name of the retrieved property. Therefore, this name could be

easily deducted from that property, such as in the expression

column name : class.name. For these cases, Pinset

provides shorthand constructs that allow to define columns

for simple properties in a more concise way.

Listing 3. Dataset extraction that employs properties and reference helpers.
1 dataset classBasicInfo over class : Class {

2 properties [name as class_name, isAbstract]

3 reference package[name]

4 ...

5 }

Listing 3 shows how this syntactic sugar can be used.

In line 2, the properties generator selects some properties

from the processed type to be included as columns. Property

names must be indicated between square brackets, separated

by commas. For each property, a new column with the same

name is created, which holds the value of that property for

each processed element. These properties must hold values of

a primitive type, not being possible to apply this generator over

references to other model types. In our example, the name

and isAbstract properties of a class are selected to become

columns of the target dataset. It is also possible to modify the

final column names with an alias and the as keyword. In the

example, the name property is renamed to class name.

To include some information about types related to the pro-

cessed one, we can use the Reference generator. This construct

receives the name of a reference of the processed type, and a

set of properties from that reference. The generator creates a

new column for each specified property of the reference, and

the values of these columns will be simply obtained from the

corresponding properties, as before. If no alias is provided, the

name of the columns is obtained by combining the reference

and property names with an underscore. In our example, this

construct is used to include the name of the package that

contains the class (Listing 3, line 3). As a result, a new column

denoted package name is created, which stores the name of

the package to which each class belongs.

The presented generators automatically manage any pres-

ence of null values in the model. If a property is not present,

a blank value is inserted instead. In the same way, if the

reference of an element points to null, blanks are inserted for

all included properties of that reference.

C. Row Filtering Options

In the previous examples, datasets contain one row for each

instance of the type being processed. However, it could be the

case that we are not interested in processing all these instances,

but a subset of them. Pinset offers two alternatives to perform

instances filtering: (1) specifying a guard condition; or (2)

declaring a from expression. One alternative might be more

suitable than the other, depending on the characteristics of the

filtering process. Listings 4 and 5 illustrate both alternatives,

respectively. For the sake of simplicity, column definitions

have been omitted from the listings.

Listing 4. Selection over the type elements of a dataset with a guard.
1 dataset classSelectionGuard over class : Class {

2 guard : class.isAbstract

3 ...

4 }

A guard is a condition declared with the guard keyword

followed by a boolean expression (Listing 4, line 2). This

expression is evaluated over each instance of the corresponding

type. Those instances that do not match the condition are

discarded, and therefore no row is generated for them in the

dataset. As an example, in Listing 4, the guard specifies that

only abstract classes must be processed.

Listing 5. Selection over the type elements of a dataset with from.
1 dataset classSelectionFrom over class : Class

2 from : Class.all.select(c | c.isAbstract) { ... }

Another way of performing the same selection is shown

in Listing 5, which employs a from clause. This clause

explicitly indicates the collection of elements to be used in the

creation of the dataset. The clause is declared with the from

keyword, followed by an expression that returns the mentioned

collection of instances. Listing 5 provides an example of this

use case. The from expression calculates the set of all abstract

classes in the model (line 2).

It should be noted that, when the from clause is used, the

dataset rule may not need to access the input model to search

for instances of the selected type if, for instance, the collection

of instances has been previously calculated in a pre block.

Therefore, in those cases where the same subset of instances

is used as input for several dataset rules, the from option might

be preferred over a guard for performance reasons, since this

subset would be calculated just once for all rules.

Finally, it is worth pointing out that both mechanisms are not

mutually exclusive, and can be applied in combination. When

combined, the guard condition is evaluated over the collection

of elements provided by the from clause, so the guard is used

in this case to filter that collection. This feature might be used

to obtain refined datasets after performing some preliminary

analysis over a broader dataset. For instance, a first analysis

over all classes in a package might indicate that there could be

a problem affecting only the abstract classes of that package.

A second analysis could focus just in these abstract classes, in

order to investigate the roots of this problem more accurately.

D. Multiple Columns Definition: Grid

In some cases, we detected that sets of columns were

defined with an almost identical expression. A typical example

of this situation happens when we calculate the same metric

for different values of a concrete property. For instance, we

TABLE II
CLASS ATTRIBUTES COUNT, GROUPED BY VISIBILITY.

name #public attrs #protected attrs #private attrs . . .

User 0 5 2 . . .
Seller 1 0 4 . . .

.

might be interested in knowing the number of attributes of

a class for each visibility modifier, i.e., number of public,

private, protected or package attributes. Table II shows the

header of a dataset containing this information. The columns

of this dataset are the name of the class and one column per

each possible visibility modifier. These last columns register

the number of attributes that each class has with that visibility.

The one-by-one definition of these columns, for instance

by using the Column generator, becomes redundant, as the

expression that counts the attributes is identical except for the

visibility modifier that is considered for each case. Therefore,

these expressions might be abstracted by converting this vari-

able element into a parameter.

This can be achieved using the Grid generator, which allows

defining multiple columns over the same expression. This

generator creates a set of columns based on a collection of

elements, denoted as keys, which is specified by means of an

EOL expression. Each key is then processed to generate a

column, based on two extra components: (1) a header, which

determines the name of each column being generated: and,

(2) a body, which contains the piece of code that calculates

the value for each generated column. Both header and body

expressions can access to the key being processed through the

key variable name.

Listing 6. Grid example that generates the dataset of Table II.
1 dataset attributesByVisibility over class : Class {

2 properties [name]

3 grid {

4 keys : Sequence{UML!VisibilityKind#public,

5 UML!VisibilityKind#protected,

6 UML!VisibilityKind#private,

7 UML!VisibilityKind#package}

8 header : "#" + key + "_attrs"

9 body : class.attributes

10 .select(a | a.visibility = key).size()

11 }

12 }

Listing 6 shows a dataset rule that uses a grid generator

(lines 3-11) to create the dataset of Table II. In this case,

the keys collection is specified as a sequence of literals (lines

4-7). These literals represent all visibility modifiers available

in the UML metamodel. Next, the header specifies that the

name of each column will be generated with the name of

the visibility modifier being processed, accessed by the key

parameter, prefixed with “#” and ended with “ attrs” (line

8). Finally, for each instance of the type being processed,

i.e., Class in our case, the body is evaluated for each key to

calculate the number of attributes each class has of each kind

of visibility (lines 9-10).

It should be noticed that a grid can be used to generate

datasets with a variable number of columns, which depends

on the contents of the input model. For instance, we might

want to calculate the number of dependencies from each class

in a model to classes in that model that are placed in other

packages. In this case, we would calculate a collection contain-

ing all existing packages in the input model. This collection

would be used as the keys of a grid, so that dependencies

to classes from each package can be easily calculated in the

column corresponding to each key.

E. Typeless Dataset Rules

In the examples we have shown in previous sections, the

datasets were created over a type from the model, precisely,

UML classes. However, it is possible that, instead of placing

the data from each class in a row of the final dataset, we

may want to aggregate the data of certain classes according to

some grouping criteria. For instance, we might be interested

in knowing the number of classes that define less than one,

five, or ten attributes; or the ones with more than one, five

or ten methods. The natural way of defining these conditions

would be to declare a set of thresholds, e.g., {1, 5, 10}, and

then calculate the aggregations for each threshold.

To perform aggregations in Pinset, we can use the from

expression in a typeless dataset rule. In section IV-C, this

construct was presented as a row filtering mechanism, where

it provided the list of elements that were to be transformed

into rows. The process now is the same: the from expression

provides the list of elements used to generate rows, but these

elements are not restricted to a type from the model.

Listing 7. Typeless rule that counts the number of classes that fulfil a set of
conditions. The conditions are defined over the threshold parameter.

1 dataset thresholdMetrics over threshold

2 from : Sequence{0,1,2,5,10} {

3 column threshold : threshold

4 column classes_w_NOA_leq_th : allClasses.select(

5 c | c.attributes.size() <= threshold).size()

6 column classes_w_NOM_leq_th : allClasses.select(

7 c | c.operations.size() <= threshold).size()

8 column classes_w_FanIn_geq_th : allClasses.select(

9 c | c.fanIn().size() >= threshold).size()

10 column classes_w_FanOut_geq_th : allClasses.select(

11 c | c.fanOut().size() >= threshold).size()

12 }

Listing 7 shows the thresholds example in a typeless dataset

rule. The rule counts the number of classes that fulfil different

properties. The parameter of the rule, which does not have

a type in this case, holds the threshold value (line 1). This

parameter will iterate over the values of the collection provided

by the from expression, which in this case is a sequence of

integers (line 2). The dataset contains four metrics that seek

to estimate the size of the classes in the diagram, both in

number of features and in the amount of relationships with

other classes. The first two calculate how many classes have

at most as many attributes (NOA) and methods (NOM) as

the threshold, respectively (lines 4-7). The last two count

the number of classes whose FanIn and FanOut metrics (see

Table I for details) are greater than or equal to the threshold

(lines 8-11).

The result of Listing 7 rule is a dataset containing five

rows (one for each threshold value) and five columns, which

contain the threshold value of the row and the results of the

aggregation expressions for that value.

F. Column Post-Processing

Pinset allows performing transformations to the columns of

a dataset after they have been calculated. For instance, some

data mining algorithms do not allow null values in a column.

A typical transformation involves filling these null values with

something, e.g., a default value, the mean of the column, or

the mode. Another example is the normalization of a numeric

column to, for instance, comprise its values in the 0 to 1 range.

This is necessary when comparing numeric columns that

may have a different scale, e.g., age and numberOfChildren

columns of a person dataset should be normalized. These

transformations are done in Pinset through column annota-

tions. Listing 8 shows some of these annotations.

Listing 8. Post-processing nulls filling and normalization examples.
1 dataset postProcessing over class : Model!Class {

2 properties [name]

3 @fillNulls none

4 column parentName { ... }

5 @normalize

6 column CK_NOC : class.children().size()

7 }

First, nulls are treated in column parentName (line 3). This

column calculation, which appears in Listing 2, returns null if

the class has no parent. The fillNulls annotation indicates that

nulls will be filled by the declared value, none in this case.

Other supported ways of filling nulls can be applied: using

mode or mean as value would fill null cells with the mode

or the mean of the column, respectively. Obviously, the mean

option can only be used in those columns that are numerical.

Second, the CK NOC column, which is the number of

children of the class, is normalized (line 5). In this case,

we use the normalize annotation, which by default divides

column cells by the maximum value of the column, i.e., the

largest children count. We can use other normalization value

by indicating it as with the fillNulls annotation.

The next section gives implementation details about Pinset.

V. IMPLEMENTATION

Pinset has been made available as open-source software3.

In addition, all dataset extraction examples shown in this

paper can be found in a separate repository4. Right now, the

implementation consists of two Eclipse plugins. The first one

contains Pinset’s parser and execution engine, while the second

one offers an Eclipse editor with support for Pinset syntax and

configurable execution wizards.

The following describes the internal components of Pinset,

and the steps that take place in the execution of a Pinset file.

1) Epsilon Platform Usage: Epsilon [11] is a software

suite composed of interoperable languages, each supporting

a different model management task. These tasks include,

among others, validation (EVL), comparison (ECL), model-

to-model (ETL) or model-to-text (EGL) transformations. All

3https://github.com/alfonsodelavega/pinset
4https://github.com/alfonsodelavega/pinset-examples

Fig. 3. Abstract syntax of Pinset.

these languages share a common core: the Epsilon Object

Language (EOL) [20]. This language provides OCL-like ex-

pressions for model management, and supports imperative

language structures such as conditional and loop statements,

user-defined operations and import declarations. The other lan-

guages provided by the Epsilon suite are developed atop EOL’s

syntax and execution engine. Following the same approach, we

implemented Pinset using EOL as base.

Other benefit provided by Epsilon is support for many

model types. Epsilon provides a wider definition of what can

be treated as a model with the Epsilon Model Connectivity

(EMC) layer. This layer allows supporting new model types

through the implementation of a driver. At the moment, lan-

guages from the Epsilon Platform (thus including Pinset) can

operate with a broad number of information representations,

including, among others, EMF and UML models, XML files,

spreadsheets and relational databases.

2) Structure of Pinset: Figure 3 shows the abstract syntax

of Pinset. As the language is defined over EOL, some elements

are inherited, such as Expressions or Operations.

Pinset programs are organized in modules. A module (Pin-

setModule) can import external modules from the Epsilon

platform, such as an EOL library file with operation def-

initions. Each module also contains optional Pre and Post

statement blocks, which are executed before and after the

datasets are generated, respectively. It is also possible to

declare Operations for the encapsulation and reuse of common

functionality during the dataset creation process.

Additionally, the module contains information about where

and how to store the generated datasets. It requires an out-

putFolder, an extension for the dataset files, and the separator

to be placed between the columns. By default, CSV files are

generated, but these output settings are configurable.

The main component of a module are its DatasetRule

definitions. These rules have a name, a parameter that stores

the name and type of the transformed elements, and a set of

ColumnGenerators, that provide the columns of the dataset.

The ColumnGenerator interface defines two methods: get-

Names, which returns the names of the columns it defines;

and getValues(Object), which calculates the column values

for the object that is passed as parameter. Depending on the

TABLE III
SIZE IN LINES OF CODE (LOC) OF PINSET AND ETL SCRIPTS.

Extraction Script ETL/LOC Pinset/LOC % Reduction

Listings 1-2 (Overview) 36 16 55,6%
Listing 3 (Accessors) 18 4 77,8%
Listing 3 (Extended) 28 4 85,7%
Listings 4-5 (Filtering) 13 4 69,2%
Listing 6 (Grid) 30 12 60,0%
Listing 7 (Typeless) 27 11 59,3%
All metrics 61 36 41,0%

Sum of all scripts 231 98 57,6%

column generator, one or more columns will be generated. For

instance, a Column construct always returns one column, while

in the case of the other generators this number is variable.

3) Execution Process: First, pre blocks are executed, in

the same order they were declared. Secondly, each defined

DatasetRule is processed individually. The elements that will

be iterated to generate rows are gathered (see section IV-C).

Column names are obtained once from the getNames method

of the generators. Then, the selected elements are processed

one by one. Cell values of a row are calculated by feeding the

getValues method of the declared generators with the respec-

tive element of that row. For those generators that employ ex-

pressions, the element is made accessible through the name of

the rule’s parameter. Post-processing operations are performed

as the last calculation step. The obtained datasets are stored

following the output details of the PinsetModule, regarding

destination folder, column separator and file extension. Finally,

post blocks are executed, in the order that they were declared.

VI. DISCUSSION

Here we analyse whether Pinset satisfies our initial goal.

The goal consisted in the creation of a DSL for specifying

data acquisition tasks from models. The use of this DSL should

lead to more compact and less verbose specifications, which

should be easier to understand and maintain.

To analyse compactness, we have compared the size of the

data acquisition scripts shown throughout this paper with their

corresponding ETL [14] counterparts. The selection of ETL for

the comparison is irrelevant, as other M2M languages such as

ATL would offer similar results. The ETL scripts can be found

in an external file5. In addition to the scripts present in this

paper, we added two other examples: an extended version of

Listing 3, where more properties and references are extracted;

and a script where all metrics from Table I are calculated.

Table III summarises the results of this comparison.

To measure script size, we counted lines of code (LOC). For

ETL scripts, some artefacts that are reused across scripts were

not considered. Specifically, these artefacts are: (1) the helper

functions for dataset management (Listing 1); (2) the dataset

metamodel definition (Figure 2); and, (3) the model-to-text

transformations that would generate the final CSV files.

5https://github.com/alfonsodelavega/pinset-examples/blob/master/
es.unican.istr.pinset.examples.etlComparison/etl/01-examples.etl

Table III shows that Pinset is able to reduce scripts size

by half on average (∽57%), when compared with ETL

scripts. This reduction is due to the use of high-level column

generators specifically designed for certain data acquisition

tasks. These primitives avoid the need to explicitly manage

column creation. Moreover, some columns generators, such

as feature accessors (see section IV-B), greatly help reduce

script size. These benefits are not present in general-purpose

model transformation languages, like ETL, where including

this domain-specific syntactic sugar would not make sense.

Moreover, Pinset provides some specific features that help

simplify code, such as the management of null values. For

some generators, when a reference is accessed, we do not need

to check if this reference points to null. If it does, instead of

raising an exception, Pinset provides an appropriate default

behaviour, which most of the time prevents developers from

having to take care of this issue.

The high-level syntax of Pinset also contributes to improve

maintainability. Thanks to this syntax, we do not need to

manage explicitly the dataset structure, which makes dataset

definitions easier to maintain. As an example, if we wanted

to include or remove a column from a dataset in Pinset, we

would only need to update one section of the script, that is,

the generator where the column is defined and calculated. In

the ETL scripts, such as the one shown in Listing 1, there

are three different places that would require modifications: (1)

the section where columns are created (lines 5-11); (2) the

statement where columns are assigned to the dataset (lines 12-

16); and (3) the piece of code that calculates the values for that

column (lines 23-38). This redundancy makes maintenance

more complex, and it might lead to inconsistencies and errors.

These improvements in conciseness and maintainability

seem to indicate that Pinset scripts might be easier to un-

derstand when compared to equivalent versions written in

a generic model-transformation language. However, to be

rigorous, this assessment needs to be confirmed with empirical

research, where possible end-users, i.e., modeling experts,

evaluate Pinset against the tools they employ daily. However,

executing these empirical experiments gets outside of the

scope of this paper, and will be part of our future work.

With respect to performance, in our experience, Pinset

scripts take a similar execution time to those of ETL. As

with conciseness and maintainability, we will carry out more

detailed tests to achieve a rigorous performance comparison.

VII. CONCLUSIONS AND FUTURE WORK

This work has presented Pinset, a language for the extraction

of tabular-based datasets from models. This kind of extractions

allow to enrich data mining processes by including models

as new data sources, which enables the assessment of these

models through advanced quality analysis techniques.

When compared with existing model management or model

transformation tools, Pinset offers an equally powerful but

more concise way of declaring datasets. This mainly happens

because existing tools require preparing and managing the

structure of the datasets explicitly while, in the case of Pinset,

this structure is managed internally by the language. Therefore,

it allows forgetting about boilerplate code and focusing on

the features we wish to extract from the models. In addition,

Pinset offers high-level constructs that facilitate the definition

of dataset columns and the execution of typical dataset-related

tasks that would need to be manually performed instead.

As future work, we will carry out detailed performance and

end-user tests, to empirically assess the language and to see

what kind of new features would be well-received.

ACKNOWLEDGMENT

This work has been partially funded by the doctoral pro-

gram from the University of Cantabria, and by the Spanish

Government under grant TIN2014-56158-C4-2-P (M2C2).

REFERENCES

[1] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical

Machine Learning Tools and Techniques, 4th ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2016.

[2] R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Applied Soft Computing, vol. 27, 2015.

[3] F. Palomba et al., “Investigating code smell co-occurrences using as-
sociation rule learning: A replicated study,” in IEEE Workshop on ML

Techniques for Soft. Quality Evaluation (MaLTeSQuE), 2017, pp. 8–13.
[4] M. Ochodek et al., “Using machine learning to design a flexible LOC

counter,” in 2017 IEEE Workshop on Machine Learning Techniques for

Software Quality Evaluation (MaLTeSQuE), Feb 2017, pp. 14–20.
[5] J. Zhang et al., “Predictive mutation testing,” IEEE Transactions on

Software Engineering, vol. PP, no. 99, pp. 1–1, 2018.
[6] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of

bug prediction approaches,” in 7th IEEE Working Conference on Mining

Software Repositories (MSR), 2010, pp. 31 – 41.
[7] Beller, Moritz et al., “TravisTorrent: Synthesizing Travis CI and GitHub

for Full-Stack Research on Continuous Integration,” in 14th IEEE

Working Conference on Mining Software Repositories, 2017.
[8] J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio, “Mining

Metrics for Understanding Metamodel Characteristics,” in International

Workshop on Modeling in Software Engineering, MiSE 2014, pp. 55–60.
[9] Object Management Group, “The Object Constraint Language Specifi-

cation,” https://www.omg.org/spec/OCL/.
[10] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A Model

Transformation Tool,” Sci. Comput. Program., vol. 72, pp. 31–39, 2008.
[11] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. C. , “The

design of a conceptual framework and technical infrastructure for model
management language engineering,” in IEEE International Conference

on Engineering of Complex Computer Systems, 2009.
[12] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” IEEE Transactions on Soft. Eng., vol. 20, pp. 476–493, 1994.
[13] R. Hebig et al., “The Quest for Open Source Projects That Use

UML: Mining GitHub,” in ACM/IEEE 19th Int. Conf. on Model Driven

Engineering Languages and Systems (MODELS), 2016, pp. 173–183.
[14] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The Epsilon Transforma-

tion Language,” in Proceedings of the 1st International Conference on

Theory and Practice of Model Transformations, 2008, pp. 46–60.
[15] U. Fayyad et al., “The KDD Process for Extracting Useful Knowledge

from Volumes of Data,” Commun. ACM, vol. 39, pp. 27–34, Nov. 1996.
[16] H. Osman et al., “Automatic feature selection by regularization to

improve bug prediction accuracy,” in IEEE Workshop on ML Techniques

for Soft. Quality Evaluation (MaLTeSQuE), 2017, pp. 27–32.
[17] C. Couto et al., “Predicting software defects with causality tests,”

Journal of Systems and Software, vol. 93, pp. 24 – 41, 2014.
[18] Tantithamthavorn, Chakkrit et al., “Automated parameter optimization of

classification techniques for defect prediction models,” in 38th Interna-

tional Conference on Software Engineering (ICSE), 2016, pp. 321–332.
[19] J. J. López-Fernández, E. Guerra, and J. de Lara, “Combining unit and

specification-based testing for meta-model validation and verification,”
Information Systems, vol. 62, pp. 104–135, 2016.

[20] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “The Epsilon Object
Language (EOL),” in Model Driven Architecture – Foundations and

Applications, 2006, pp. 128–142.

	Introduction
	Motivation and Running Example
	Data Mining Processes
	Running example

	Related Work
	Solution Description
	Syntax Overview
	Properties Accessors
	Row Filtering Options
	Multiple Columns Definition: Grid
	Typeless Dataset Rules
	Column Post-Processing

	Implementation
	Epsilon Platform Usage
	Structure of Pinset
	Execution Process

	Discussion
	Conclusions and Future Work
	References

