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LYUBEZNIK NUMBERS, F-MODULES AND MODULES OF GENERALIZED
FRACTIONS

MORDECHAI KATZMAN AND RODNEY Y. SHARP

ABSTRACT. This paper presents an algorithm for calculation of the Lyubeznik numbers of a local ring
which is a homomorphic image of a regular local ring R of prime characteristic. The methods used
employ Lyubeznik’s F-modules over R, particularly his F-finite F-modules, and also the modules of
generalized fractions of Sharp and Zakeri. It is shown that many modules of generalized fractions over
R have natural structures as F-modules; these lead to F-module structures on certain local cohomology
modules over R, which are exploited, in conjunction with F-module structures on injective R-modules
that result from work of Huneke and Sharp, to compute Lyubeznik numbers. The resulting algorithm
has been implemented in Macaulay2.

0. Introduction

The aims of this paper are to study connections between the notions of F-module and module of
generalized fractions over a regular ring R of prime characteristic p, and to use these connections to pro-
duce an algorithm for calculation of the Lyubeznik numbers of certain local rings that are homomorphic
images of regular local rings of characteristic p.

The concept of an F-module was introduced by Gennady Lyubeznik in his seminal paper [15], in
which he showed that particularly simple instances of F-modules, namely F'-finite F'-modules, satisfy
strong finiteness conditions, including finiteness of the Bass numbers and set of associated primes.
Furthermore, the methods employed in [15] are fairly constructive, yielding, for example, algorithms
for determining the set of associated primes of an F-finite F-module. We will review the necessary
concepts from the theory of F-finite F-modules in Section 1 of this paper.

One motivation for Lyubeznik’s work in [15] was a desire to strengthen certain results of C. Huneke
and the second author in [9]; in that paper, Huneke and Sharp proved that, for an ideal a of R, and for
an integer 7 > 0, the local cohomology module H (R) (which could well fail to be finitely generated)
has a finite set of associated primes and finite Bass numbers. Local cohomology theory, due to A.
Grothendieck (see [5]), is a powerful tool in algebraic geometry and commutative algebra and the study
of local cohomology modules has yielded many insights.

Central to Huneke’s and Sharp’s argument in [9] was the result that E = F(E) for every injective
R-module E, where F is the so-called Frobenius functor R' @ e, where R’ denotes R considered as a left
R-module in the natural way and as a right R-module via the Frobenius homomorphism f: R — R
(which raises all elements of R to the pth power).

Lyubeznik introduced the concept of F-module in [15, 1.1]: an F-module is an R-module M

equipped with an R-module isomorphism 6 : M —s F(M), called the structure (iso)morphism of
M. Lyubeznik’s detailed development of his theory of F-modules enabled him to prove, among many
other things, that if a, ..., a, areideals of R and ji,. .., j, are non-negative integers, then the R-module

HY(Ha, 23 (- (H(R)) - ),
obtained by applying n local cohomology functors successively to R, has finite set of associated primes
and finite Bass numbers.
The second concept at the heart of this paper is that of module of generalized fractions introduced by
the second author and H. Zakeri in [21] and [22] as a generalization of the classical concept of fraction
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2 MORDECHAI KATZMAN AND RODNEY Y. SHARP

formation in commutative algebra. The latter theory produces, for a module N over a commutative ring
A and a multiplicatively closed subset S of A, a module of fractions S™!N. The theory of generalized
fractions produces, for a so-called triangular subset U of A = A x --- x A (n factors), a module of
generalized fractions U™"N. Some preparatory results about generalized fractions are presented in
Section 2. Key results for us in this paper are that, over our regular ring R of characteristic p, whenever
M is an F-module over R and U is a triangular subset of R", then U~"M is again an F-module in a
naturally-determined way; moreover, if M is actually an F-finite F-module (there is a reminder about
this concept in Section 1), then so too is U~"M when U has a simple form determined by a sequence of
n elements of R. These key results are presented in Sections 3 and 4 respectively. One very useful result
proved in Section 4 is that the tensor product of two F-finite F-modules over R is again an F-finite
F-module.

In Section 5, we use the concept of filter regular sequence in conjunction with a theorem of K. Khash-
yarmanesh, Sh. Salarian and H. Zakeri [13, Theorem 1.2] in order to describe many local cohomology
modules over R as cohomology modules of complexes of modules of generalized fractions. The final
Section 6 applies ideas from the first five sections to produce an algorithm for the calculation of certain
so-called ‘Lyubeznik numbers’. To explain what these are, we introduce additional notation.

Let A be a d-dimensional local ring which can be expressed as a homomorphic image of an n-
dimensional regular local ring (S, n) that contains a subfield, by means of a surjective ring homomor-
phism 7 : S — A having kernel d. Let 4, j, k € Ng. It is known that all the Bass numbers of H%(S) are
finite: this was proved by Huneke and Sharp in [9, Theorem 2.1] in the case of prime characteristic, and
by Lyubeznik in [14, Theorem 3.4] in the case where S has characteristic 0. In [14, Theorem-Definition
4.1], Lyubeznik showed that the Bass number p(n, Hy "/ (S)) depends only on A, i and j, but not on
S, n or 7; he denoted ui(n, Hy " 7(S)) by A ;(A), and subsequently it has become known as the (i, ;)
Lyubeznik number of A. Recall that this Bass number is equal to the number of copies of Eg(S/n),
the injective envelope of the simple S-module S/n, that occur in the decomposition, as a direct sum of
indecomposable injective S-modules, of the ith term in the minimal injective resolution of Hy' - (9).

In [14, 4.4], Lyubeznik noted that A; ;(A) = 0if j > d or ¢ > j, and that A\gq4(A4) # 0. We can
present the Lyubeznik numbers of A in the (d + 1) x (d 4+ 1) matrix

X0,0(A) - Xoa(A)

Aa(A)

The matrix is upper triangular because, as noted above, A; j(A) = 0 if ¢ > j. It is usual to omit the Os
below the main diagonal. This matrix is referred to as the Lyubeznik table of A or the type of A. We
say that the Lyubeznik table is trivial if A; j(A) = 0 except when ¢ = j = d, and Ag 4(A) = 1. This is
the case when A is Cohen—Macaulay and R has prime characteristic: see [19].The reader should note
that the Lyubeznik table of the completion A of A is identical to the Lyubeznik table of A.

Lyubeznik numbers sometimes convey information about topological properties. For example, if A
as above is complete, equidimensional, has separably closed residue field and has dim A > 3, then it is
a result of L. Nifiez-Betancourt, S. Spiroff and E. E. Witt in [18, Theorem 6.1] that the connectedness
dimension (see [3, 19.1.9]) of Spec(A) is at least 2 if and only if Mg 1(A) = A12(A4) = 0.

The aim of Section 6 is the presentation of our algorithm for the calculation of the Lyubeznik
numbers of certain homomorphic images of regular local rings of prime characteristic. We believe
this is the first practical algorithm for the calculation of Lyubeznik numbers in prime characteris-
tic. The algorithm has been implemented in Macaulay2, and any interested reader is referred to
http://www.katzman.staff.shef.ac.uk /LyubeznikNumbers/

1. G. Lyubeznik’s F-modules

1.1. Notation. Throughout the paper, we shall assume that a is a proper ideal of a regular (commutative
Noetherian) ring R of prime characteristic p, and we shall use f : R — R to denote the Frobenius
homomorphism, which raises each element of R to its pth power. We use Ny (respectively N) to denote
the set of non-negative (respectively positive) integers.
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Sometimes we shall wish to work over a commutative ring more general than R; we adopt the
convention that A will denote a general commutative ring (with identity), and that A will only be
assumed to have additional properties, such as being Noetherian, when this is explicitly stated.

Returning to R, and following Lyubeznik [15], we shall use F to denote the functor R’ ® g e, where R’
is as described in the above Introduction. Thus F' is a functor from the category of all R-modules and
R-homomorphisms to itself. Because R is regular, F' is exact. We refer to F' as the Frobenius functor.

Lyubeznik introduced the concept of F-module in [15, 1.1]. An F-module is an R-module M equipped

with an R-module isomorphism 6 : M —» F (M), called the structure (iso)morphism of M. Huneke—
Sharp [9, Proposition 1.5] shows that every injective R-module is an F-module, while Lyubeznik [15,
Example 1.2(b)] shows that every local cohomology module HE(R) (i € Ny) of R is an F-module.

Let M be an R-module and let 8 : M — F(M) be an R-homomorphism. We can repeatedly apply
F to 8 and obtain an R-homomorphism F*(3) : Fi(M) — F**'(M) for each i € N. These F(j) fit
together into a commutative diagram

M B F(M) FB), ... _F7(B) Fi(M) F(B) Fitl (M) ...
B \F(ﬁ) F(8) F(B)
F(M) F(B), F2(M) F28) ... Fi+1(M)F”1(/3,)Fi+2(M) ..

The top row in this diagram gives rise to a direct system (F(M));en, (where FO denotes the identity
functor); let N be the direct limit of this system. Because tensor product commutes with direct
limits, there is a natural isomorphism between F'(N) and the direct limit of the lower row; we use
this isomorphism to identify that direct limit with F(N). The (F%(8));en, induce an R-isomorphism

¢ : N —» F(N), which therefore makes A into an F-module. We say that 8 : M —s F(M)
is a generating morphism for N. Furthermore, we say that an F-module M is F-finite if it has a
generating morphism « : L — F(L) with L a finitely generated R-module. If, in this situation, « is
in addition injective, we say that L is a root of M and that a : L — F(L) is a root morphism of M.
We also refer to the image of L in M as a root of M. In yet another variation, we shall say that an
R-homomorphism v : G — H is isomorphic to a root of M if there exists a root L of M with root

morphism « : L — F(L) and isomorphisms ¢ : L =5 G and 1 : F(L) =5 H such that the diagram

L —— F(L)
¢ |= w\:
G — H

commutes.

In [15, Proposition 2.3(c)], Lyubeznik proved that an arbitrary F-finite F-module M has a root,
L say. We provide a short proof in Section 4 that, for each maximal ideal m of R, the Bass numbers
p°(m, L) and p°(m, M) are equal. This point is crucial for our algorithm.

2. Preparatory results about modules of generalized fractions

The concept of module of generalized fractions (due to the second author and H. Zakeri [21]) will be
used in this paper. The construction and basic properties of these modules can be found in [21], but, at
the request of the referee, we include in this section explanation of some of the main ideas. Throughout
this section, we shall work over A: see 1.1. Let n € N and let D,,(A4) denote the set of all n x n lower
triangular matrices with entries in A. The determinant of a square matrix H with entries in A will be
denoted by |H|. Of course, the determinant of a lower triangular matrix is the product of its diagonal
entries.

2.1. Reminder. (Sharp—Zakeri [21, §2].)
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(i) Let U be a triangular subset of A", that is, a non-empty subset of A™ such that (a) whenever
(u1,...,un) €U and aq,...,a, € N (the set of all positive integers), then (ui,...,ui") e U

n
also; and (b) whenever (uy,...,uy,), (v1,...,v,) € U, then there exists (wy,...,w,) € U such

that w; € (2321 ujA) N (Z;‘:l vjA) for all ¢ = 1,...,n, so that there exist H,K € D, (A)
such that

Hlup, ..., un)? = [wi,...,w,]" =K[vg,... 007,
(Here, 7 denotes matrix transpose, and [z1,...,2,]7 (for z1,...,2, € A) is to be interpreted
as an n X 1 column matrix in the obvious way.)

(ii) Let M be an A-module. Define a relation ~ on M x U as follows: for m,g € M and
(U1, un), (V1,...,0,) € U, write (m, (u1,...,us)) ~ (g, (v1,...,v,)) precisely when there
exist (wy,...,w,) € U and H,K € D,(A) such that H[uy,...,u,]T = [wy,...,w,]T =
K(v, ..., v,)7 and [H|m — [Kl|g € Y071 w; M.

(iii) It turns out that ~ is an equivalence relation on M x U. A crucial ingredient for the proof of
this given in [21] is what might be called ‘the Two Routes Lemma’ [21, Lemma 2.3]: suppose
that u := (u1,...,un),v := (v1,...,v,) € U and there exist Hy,Ha € D, (A) such that
Hyu?” = v’ = Hyu® (so that, in a sense, there are two ‘routes’ from u’ to v via lower
triangular matrices). Then |DH;| — |[DH3| € Z;:ll Av?, where D is the diagonal matrix
diag(vi,...,vn).

(iv) For m € M and u := (u1,...,u,) € U, we denote the equivalence class of (m, (u1,...,uy))
under ~ by the ‘generalized fraction’

m

(U1y.- ey Up)

or m/u. The set UM of all equivalence classes of ~ is an A-module, called the module of
generalized fractions of M with respect to U, under operations for which, for m,g € M and
u:= (g, ..., Up),v:i=(v1,...,0,) € U,
m__ g |Hm+[K
(U, . un)  (v1,...,0n)  (wi1,...,wy,)
for any choice of w := (wy,...,w,) € U and H,K € D, (A) such that Hu? = w! = Kv’,
and a(m/u) = am/u for a € A.
(v) The reader should note that the operations in U~"M are such that, if u := (u1,...,u,) € U
and m € Z?:_ll u; M, then the generalized fraction m/(u1,...,uy,) in U""M is zero, because
Lou” = u” = L,u” and [I|m — 1,00 € 3207w M.

The referee has asked us to point out explicitly how a ‘classical’ module of fractions is indeed a
module of generalized fractions. We do this in the next lemma.

2.2. Lemma. Let S be a multiplicatively closed subset of A and let M be an A-module. Then S is a
triangular subset of A', and the module of generalized fractions S™'M is just the classical module of
fractions of M with respect to S.

Proof. Tt is clear that S is a triangular subset of A!, because [t][s] = [st] = [s][t] for all s,t € S.
Consider the relation ~ on M x S of 2.1(ii). Let s,t € S and m,g € M, and suppose that (m,s) ~
(g,t). This means that there exist u € S and h, k € A such that hs = u = kt and hm — kg = 0; multiply
by st to see that sthm — stkg = 0, that is, u(tm — sg) = 0. Conversely, if there exists v € S such that
v(tm — sg) = 0, then vts € S and (vt)s = vts = (vs)t, with (vt)m — (vs)g = 0, so that (m,s) ~ (g,1).
Thus ~ is just the equivalence relation used to form the classical module of fractions. Therefore, as
sets, the module of generalized fractions S~'M is equal to the classical module of fractions, and it is
straightforward to check that the arithmetic operations in the two structures are the same. O

2.3. Notation. Let n € Nand let f = (f1,..., fn) € A™. We are going to use the module of generalized
fractions Ag = Uy " A where U denotes the triangular subset {(f"*,..., fo") : a1,...,on € No} of A™.
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A general element ® of Af has the form a/( 151, ..oy f5) for some a € A and Sy, ..., B, € Ng. Use of
the diagonal matrix diag(flﬁfﬁl, ..., fB7Pn) for a B € N greater than all the 3; enables us to see that
a _ JEP fBbng
U fa) U )

So, when considering a general element ® of Af as above, we may assume that g; = --- = §,. Thus

1
m:UAWWm%

BEN

is the union of the cyclic submodules A(l/(flﬁ, .o f2)) (B € N). To work with these, we would like to
have descriptions of their annihilators.

2.4. Lemma. Let the notation be as in 2.3, and let B € N. Then the annihilator of the generalized
fraction 1/(fP,..., f2) € Ag is

JE€ENp
Proof. Let j € Ng and a € (fIT7P A+ f7H0A i i), Use diag(f, ..., f7) to see that

. 1 _ fl--fla
o) P )

and this is zero by 2.1(v).
Now let a € A be such that a(l/(flﬁ, ..., f%)) = 0. This means that there exist an H € D,,(A)
T

and a,...,a, € Ny such that H[flﬁfff] = | f‘l...fg‘"}T and |Hla € Z;:llffjA. Let § =
max{f,a1,...,an}. Set

D, = diag(ff_ﬁ,...,f,f*ﬁ), D, := diag( ffal,...,f,f*"‘").
Then DoH[f ... 27 = [f0... 151" = Du[fP... 15]". Let E := diag(f?,...,f2). By the Two

Routes Lemma (see 2.1(iii)),

[ED,H| — [ED,| € Y7} f2 A,
Since |H|a € Z}:ll [ A, it follows that [ED2Hla € Z}:ll f?°A. Therefore [ED1|a € Z}:ll fPA,
that is, a € (Y02} fPA: f7070 . f2070). O

2.5. Definition. Suppose, in the situation of 2.4, that A is Noetherian. The ideals in the sequence
(A LA )

form an ascending chain which will eventually become stationary; we call the eventual stationary value
the lower limit ideal of (f1,..., fn) and denote it by (f1,..., f,)°"™. Observe that

f’ﬂ+1(f17 ce fn)lowlil’n g (flu N '7fn7 fn—i—l)lOWlim.

This contrasts with the limit closure of (f1,. .., fa), denoted by (f1, ..., f»)'™, and defined by Huneke
(in a special case) [7, Definition 5.3] as

oo

(oo B ™™= J ((HT A+ + (A H ).

j=1
It follows from 2.4 that the annihilator of the generalized fraction 1/(f1,..., fn) in Ag is
(Froeo s )™ = (T A+ 4 1AL ) forall >0,

The same result shows that (f1, ..., f,)"™ is the annihilator of the generalized fraction 1/(f1,. .., fn, 1)
in (Up x {1})~ (D 4,
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Let t € N. The annihilator of the generalized fraction 1/(fft7 cey fﬁt) in Af is, by Lemma 2.4,
U™ A+ +BRAR L),
J€No

Since the ideals in the sequence ((ff+ptA + e+ f,]:ﬁ)tA : ff e f,{))jeN0 form an ascending chain, this

annihilator is equal to

kt t kt t kt t t t .
U (A7 TPA+ o fPPA 7Py = (fF . 2o,
keNg

Recall that the pth Frobenius power of a, denoted al?!, is the ideal generated by all pth powers of
elements of a.

2.6. Lemma. Letn € N and let f = (f1,..., fn) € R™ (see 1.1). Then

lowlim wlim
(Lo £ = (s ) P
Proof. Choose j sufficiently large so that (f1,..., fn)lomim = (fI""R+ -+ fIYR : f]...f}) and
(ff,..., fﬁ)lOWhm = (ff(jH)R +- 4 ffz(,jfl)R . fPI . fPi). Since f is a flat ring homomorphism,
UEye S = (PO R4 fROTVR PR
— ( f+1R+ R fﬁliriR . ff . f%)[P] — ((f17 N '7fn)lowlim)[20]. O
2.7. Lemma. Letn € N and let f = (f1,..., fn) € R™. For each e € N, let
Gei=(f{ R+ + AR,
If ge = ges1, then go = ge for all €' > e.
Note. Since the ideals in the sequence
(HR+-+ R 7 )
form an ascending chain, the above lemma provides us with an effective way to compute (f1,. .., fn)hm.
Proof. Let ¢c =3 1", ffe R, for each e € Ny; let r denote a general element of R. When e > 1, there is
an isomorphism 8, : F(R/c.—1) = R/c. which maps r ® (14 ¢.—1)) to r 4+ c.. Denote the isomorphism
Beo F(Be—1)o---0 F*Y(B1) : FE(R/co) — R/c.

by fie; it maps r® (1@ ® (1 +¢g) ) to 7+ ce.
Set g = f1...fn. Letv: R/cog — R/¢1 be the R-homomorphism induced by multiplication by g?~*.
Let A:= By ovy: R/cg — F(R/co). Note that A(r +¢g) = g 'r @ (14 ). Set
Se = F Y N) o FS2(N\)o---0 F(A) oA : R/cg — F(R/c),
which maps r + ¢g to
e—1 e—1_ _e—2

g T (1o @14 )=¢" r@1®---®(14c) ).

By Lyubeznik [15, Proposition 2.3(b)], not only does the chain Kerd; C Kerds C --- C Kerdy C ---
become stationary, but also, if Kerd, = Ker d.41 for some e € N, then Ker ., = Kerd, for all ¢/ > e.
Now Ker 6, = Ker(e 0d.) and pi 00, : R/co — R/¢. is induced by multiplication by g?"~'. Therefore
Kerd. = ge/co. The result follows. O

2.8. Lemma. With the notation of 2.7 and with n > 1,
(Froeee s )™ = (1o fa) ™ )

for any j € Ny such that ((f1,.. fae) fi) = ((f1,-- o faoy) fiTY) (and there will be one
such because R is Noetherian).
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Note. It follows from the note immediately after the statement of Lemma 2.7 that that lemma provides

us with an effective way to compute (fi, ..., fo_1)"™, and so Lemma 2.8 provides us with an effective
lowlim

way to compute (f1,..., fn) .

Proof. Observe that, for any ideal d of R and j € No, if (0 : f7) = (0 : fi+1), then (0: fit1) = (0 : fi1+2).
Let h be the smallest non-negative integer such that

((Froeeos Fam )™ 2 0) = ((frye oo fam)™ : £,

Because the definitions of lower limit and limit closure involve unions of ascending chains of ideals,
there exists an integer ¢ € N such that

(Froeo s )™ = (R4 + fIR: f .. f1) forall j >t
and
(Frseeosfo)™ = (AT R+ + IR 1)) forallj>t.

Let w € N be such that w > max{h,¢}. Then we have

(f17 o fn lowllm (fw+1R 4. fw+1R fl o fw)
((fw+1R+' fw+1R fl e 1) fw)
(

(oo fat)™) 5 1)
(
The claim follows from this. O

(Frseees fuo)™) s f3) for all j > h.

We shall use the following technical lemma about generalized fractions in the next section.

2.9. Lemma. Let M be a module over the commutative ring A, and let U be a triangular subset of
A™. There is an A-isomorphism ppr : U""A Q@4 M = UM for which ppr(a/u® x) = ax/u for all
a€A rzeMandueU.

Proof. Tt is straightforward to show that there is a map A : U™™A x M — U~"M for which
M(a/u,z)) = az/u for all @ € A, x € M and u € U, although one must remember that a gener-
alized fraction in U~ ™A can be represented in many different ways as a/(u1, ..., un).

Since two generalized fractions in U~™A can be put on a common denominator, it is then clear that
A is A-linear in both variables and gives rise to an A-homomorphism pps : U""A®a M — U™"M
satisfying the formula in the statement.

We construct an inverse for pups. Suppose that a generalized fraction in U~" M is represented in two
ways as ©/(u1,...,u,) and 2’/ (u},...,u)) for z,2" € M and u = (u1,...,u,), 0’ = (u},...,u,) € U.
Then there exist u” := (uf,...,u) € U and J,J’ € D, (A) such that

Ju” =vw"" =Ju" and Iz — T2 = Sl
for some x1,...,T,_1 € M. Therefore, in U™ "A® 4 M, we have
1 1Ml o1 "o
n—1 1 n—1 ’U,/-/
=y U= @, =0 by2.1(v).
; (uff, ..., ul) v ; (ulf,. . ult) T

It follows that there is a mapping vas : UT"M — M ®4 U™ A for which vy/(z/u) = z ® 1/u for all
x € M and u € U, and one checks easily that vy, is an inverse for pys. O
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3. Modules of generalized fractions of F-modules are again F-modules.

3.1. Notation. Throughout this section, we shall work over R: see 1.1. Also, U will denote a triangular
subset of R™.

The main aim of this section is to show that, whenever M is an F-module over R, then the module
of generalized fractions U~ M is again an F-module. We shall first achieve this result for the special
case in which M = R, and then we shall use 2.9 to prove the general result.

3.2. Proposition. The module of generalized fractions U™ R is an F-module with structural isomor-
phism 0 : U""R —>» F(U™R)=R ®gr U ™R such that
_ 1
0 <;> = w9 ————  forall (uy,...,up) €U and r € R.
(U1y.. oy Up) (U1, .y Up)

Proof. Suppose that r;s € R and u = (u1,...,u,),v = (v1,...,v,) € U are such that r/u = s/v in
U~"R. Then there exist w = (w1,...,w,) € U and H,K € D, (R) such that
Hu” = w? = Kv? and H|r — |K|s = wia; + -+ + wp—1a,-1 for some aq,...,a,-1 € R.

Let Dy = diag(uq,...,u,), Dy = diag(vy,...,v,) and D3 = diag(ws, ..., w,). Our immediate aim is
to show that
1

(U1, ..., up)

and we shall achieve this by showing that

_ 1
=] 1...U7€_18®7 in R @r U™"R,

p— p—1
Uy Uy TR (1, o)

1

1 = (JHPP|Dy [P 'r — |K[P|Dg|P —
() © (| || 1| ' | || 2| S)®(w1,...,wn)

in R @r U™"R
is zero. Set ® :=1/(w?,...,w2) € U R. Note that
(2) © = [Ds|” ([H|”|Dy[7~'r — [K[7|D2 [P~ 's) @ @.
Note also that
HPDY 'u? = wPT = DY 'Hu? and KPDL ' = wPl = DY KT

Therefore, by 2.1(iii), we have |Ds[?|H[P|D;[?~! — |Ds|?|Ds[*~![H| = wi’by + --- + w’ ;b,_; and

|D3|P|K[?|Dy[P~! — |D3|?| D3P~ K| = wiPe; 4 - -+ w | ¢p_y for some by, ... by 1,¢1,... ¢ 1 € R.
Therefore
n—1 n—1 ’LU2
_ _ 2 j
(IDsf? P17~ — DD Hlr) © @ = | S uihyr | 0@ =3 byr @ oty =0
]:1 ]:1 gy n

by 2.1(v). Similarly, |D3|?|K[?|D3|P~1s ® ® = |D3|?|D3|P~|K|s @ ®. It follows from Equation (2) that
© = [Ds|? (|Ds[’~'[H|r — D[’ '|K]s) ® ® = [Ds[**~" (|H|r — [K|s) @ ®
=Pt WPt (Z;-:ll wjaj) ®RP = Z}:ll w‘?pyj ® ® for some y1,...,Yn—1 € R’

w?

n—1
:Zyj@)i(w% J w2)=0 by 2.1(v).
j=1

Yyt n

There is therefore a mapping 6 : U""R — F(U "R) = R’ ®g U~ "R such that
1
0 <;> =u w9 —————— forall (uy,...,u,) € U and r € R.
(’U,l, ,’U,n) (u17 uun)
By [12, Lemma 3.5], there is an R-homomorphism ¢ : R’ ® g U""R — U~ "R for which
rP

qb(r’@ - >—T/
(Ul,...,un) (u€77ug)

forall?’ € R, r € Rand (uy,...,u,) € U. One checks easily that § and ¢ are inverse isomorphisms. [
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We have not so far been able to find the following lemma in the existing literature.
3.3. Lemma. Let X andY be R-modules. There is an R-isomorphism
A:F(X)®p F(Y) = F(X®gY)
for which A((r' @ z) @ (s ®y)) =7's @ (x®y) for allv’,s' € R andz € X, ye€Y.

Note. The reader may note that the argument in the proof below is valid over any commutative Noe-
therian ring of characteristic p; the hypothesis that the ring is regular is not needed here.

Proof. Let ', s’ denote general elements of R’, let a,b denote general elements of R, and let x (respec-
tively y) denote a general element of X (respectively V).

In the formation of F(X)®pg F(Y), the left R-module F(Y) = R'®gY is such that b(s'®y) = bs'®@y
and the right R-module W := F(X) is such that (v’ ® x)a = ar’ ® x. Let w denote a general element
of W. By the associative law for tensor products, there is a Z-isomorphism

A :F(X)@rF(Y)=W g (R ®rY) — WerR)®rY

for which Aj(w ® (s’ ® y)) = (w ® s') ® y. Note that, in the formation of (W ®r R’) ®r Y, the right
R-module structure on W ®p R’ is such that (w ® §')a = w ® s'aP.
Since the left R-module structure on R’ = R is the natural one, there is a Z-isomorphism T' :

W @r R’ —=» W such that MNw®s') = s'w. Let W denote the Abelian group W endowed with the
right R-module structure that makes I' into an isomorphism of right R-modules. This is such that
wb =TT~} (w)b) for all w € W, that is,
rFrex)b=T(re@z)1)b) =T cz)®) =01 1) =r"@s=1r bz
Thus this right R-module structure on W is the structure induced on R’ ® rX by regarding X as both a
right R-module and a left R-module in the natural way. The reader should note the difference between
W and the R-module W considered in the second paragraph of this proof.
The isomorphism of right R-modules I' induces a Z-isomorphism
Ay:=T®Idy : (WRrR)®rY WY = (R Qr X)®r Y

which is such that T @ Idy (" ® ) ® ') @ y) = (7" ® ) @ y. It is important to note that, in this
display, the right R-module structure on the right-most appearance of R’ ® g X is the one that comes
from regarding X as an (R, R)-bimodule in the natural way.

Another use of the associative law for tensor products produces a Z-isomorphism

Ay WRRY =(RRrX)®rY — R @r (X ®rY) = F(X ®rY)
such that As((r' ® ) @ y) =1’ @ (x ® y). The composition
A:=Ag0Ay0A : F(X)@pr F(Y) — F(X @rY)
satisfies A((r" @ z) @ (' ® y)) =r's’ @ (xr ® y) and is an R-isomorphism. O

3.4. Theorem. Let M be an F-module over the regular ring R with structural isomorphism v : M =
F(M) = R ®gr M. Then the module of generalized fractions U~"M s again an F-module with

structural isomorphism £ : U~"M — F(U™"M) = R' @ U""M such that

v (S e m)
i=1"4 g m;
P E u? up 1 ;®7l
(U1, ..., up) L (U1, Up)

for all (uy,...,uy) €U, h €N, T’l,...,rﬁléRandml,...,mhe./\/l.

Proof. Define k to be the composition of the isomorphism v : U~" M = U"R ®r M from 2.9, the
tensor product 6 ® v : U "R®r M — F(U "R) @ F(M) where 6 : U™"R — F(U "R) is the
isomorphism of 3.2, the isomorphism A : F(U "R) ®p F(M) = F(U™R®pr M) of 3.3, and the

o~

isomorphism F(¢~1) : F(UT"R®r M) — F(U~"M), where 9 is as immediately above. O
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3.5. Remarks. Let M be an F-module over the regular ring R. Let f = (f1,..., fn) € R™.
(i) By 3.4, Mg = Ug "M is again an F-module.
(ii) In particular, R¢ = Uy "R is an F-module.
(iii) In particular again, since a multiplicatively closed subset S of R is a triangular subset of R!,
the ordinary ring of fractions S~'R is an F-module.

We shall find the following useful in Section 4.

3.6. Remark. Let S be a multiplicatively closed subset of our regular ring R, and let F’ denote the
Frobenius functor over the regular ring S~ R (also of characteristic p). Let M be an R-module. Then
it is straightforward to show that there is an S~!R-isomorphism

T STHE(M)) = S YR @ M) — (ST'R) ®g-15 S~'M = F'(S™'M)

for which 7/ ((r' ® m)/s) = (r'/s) @ (m/1) for all 7/ € R’, s € S and m € M. (Here, (S™'R)’ denotes
the ring S~'R considered as a left module over itself in the natural way and as a right S~!R-module
via the Frobenius homomorphism.) As M varies through the category of R-modules, the 75 constitute
a natural equivalence of functors.

4. Some modules of generalized fractions are F-finite F-modules

Throughout this section, we shall work over R: see 1.1.

In 3.5(ii), we noted that the module of generalized fractions Rg, where f = (f1,..., fn) € R™, is an
F-module. One of the aims of this section is to prove that this F-module Ry is F-finite. In fact, we shall
prove that, if M is any F-finite F-module, then the module of generalized fractions My is F-finite.

4.1. Theorem. Letn € N and letf = (f1,..., fn) € R™. Let j € Ng. We consider the cyclic submodules
of Rs generated by 1/f”j+l and 1/fpj.
(i) There is an isomorphism ;41 : R(l/prl) = F(R(l/fpj)) for which
i (r/F” Y =r®1/f7 for allr € R.
(ii) There is an isomorphism ~y; : R(l/f”j) = i (R(1/£)) for which

” (f%) :r®(1® (~-~® (1@%))) for all v € R.
(Interpret yo as the identity mapping on R(l/f). Then we can take vj41 = F(7;) o i1 for
all j € Ny.)
(iii) Let 6 : Ry — F (R%) be the composition of the inclusion map R(1/f) N R(1/f?) and the
isomorphism 1 : R(1/£?) =5 F(R(1/£)) of part (i). Then 6(r/f) = Pl el @ 1/f for

all € R, and 0 is monomorphic. There is a commutative diagram

1 < 1 < . < 1 < 1 <
Rs R Reys R
= i1=71 =\ Y41

R — 7 p(RL)EO, ... F0 pi (RLYFE) pitt (R
(iv) The module of generalized fractions Rg is an F-finite F-module with 8 : R(1/f) — F(R(1/f))
as a root morphism. Moreover, the inclusion map R(1/f) SN R(1/£P) is isomorphic to a root

Of Rf.
Proof. (i) Denote (ffj, ceey fﬁj)lo‘”“m by b;. This ideal is, by 2.5, the annihilator of the generalized
fraction 1/f7" in Re. Thus there is an isomorphism o; R(1/£7) = R/b; for which ¢; (r/f7') =r+ h;
for all » € R. Apply F' to obtain the isomorphism F(¢;) : F(R(l/fpj)) = F(R/b;). But there is
an isomorphism d; : F(R/b;) — R/f)gp] for which d;(r ® (14 b;)) =7+ hgp} for all » € R. Now 2.6
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~

shows that bBP] = Bjt+1, so that there is the isomorphism ¢;; : R(1/fPT) = R/bji1 = R/[jgp]. The
composite isomorphism 1,1 1= (F(¢;))"! o 6;1 o Pji R(1/£7) = F(R(l/fpj)) satisfies

J1
G (r/E77) = (F(97)) 7 067 (r - b0) = (F(97)) " 067 (r 0,7
=(F(¢;) 're(l+h)=re (1/f7") forall r € R.
(ii) We interpret FO as the identity functor (on the category of R-modules) and define o to be the
identity mapping on R(1/f). Define v; := F(v) o 91 = 1 : R(1/fP) = F(R(1/f)), and use this as
the basis for a straightforward induction employing the formula ;41 := F(y;) o 941 for all j € N.

(iii) Tt is clear that the left-most square in the diagram commutes and that 6 is a monomorphism.
Also, for r € R,

O(r/f) = pn(f10 277y = f270 @ YR,

Consider a square in the diagram with j > 1. Let » € R. Then

r ffjﬂfpj . fﬁjﬂ’pjr
Yi+1 (f?) = Yj+1 fpit1

J+1_ 7 J+1

S Y

1

_) . )) (j + 1 tensor products),

*Pjr®(1®(---®(1®f

whereas

Fi@)on (o) =F@(ro(1e (o (1ag)-)

T®(1®(...®(f71.. ®i.)
(

:r®(1®(~-~®(f P 5_p® )) )) (j + 1 tensor products)

1
(1o g) ) =nals)
Thus the diagram in the statement of the theorem commutes.
(iv) The top row in the diagram gives rise to a direct system whose direct limit is R¢. The bottom
row gives rise to a direct system, whose direct limit we denote by M; it is clear that M = Rg. Recall
from 1.1 that the map M — F(M) induced by the commutative diagram

)) Jj tensor products)

(J
)) j + 1 tensor products)

1
f
®

] 130 Fi—1(@ i Fi (0 i
R% F(R%) ® , ... ) F(R%)#.FJA(R%)_.
6 F(8) F'(6) Fiti(g)
F(R%)Lg)» F2(R%) F*9), ... Fi+l(R%)Ll(§)>Fi+2(R%)_>

is an isomorphism. Therefore Rg is an F-finite F-module with 6 : R(1/f) — F(R(1/f)) as a root
morphism. The final claim follows from the definition of 6. O

In the remainder of this section, we shall show that, if M is any F-finite F-module, then the module
of generalized fractions Mg is an F-finite F-module. It will follow that, if g1, ..., g; are finite sequences
of elements of R (possibly of different lengths), then the R-module

(- Mgy )ga) -+ e

produced by t successive constructions of modules of generalized fractions, is again an F-finite F-module.
In particular, since R itself is an F-finite F-module, (... ((Rg,)g,) - - -)g. is an F-finite F-module.

In the situation of 3.3, that lemma yields an isomorphism F(X) ®g F(Y) = F(X ®rY), and
application of the functor F produces an isomorphism F(F(X) ®p F(Y)) — F2(X @g Y). However,
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application of 3.3 to the R-modules F(X) and F(Y) yields an isomorphism F2(X) @ F2(Y) —»
F(F(X)®pgr F(Y)) and composition of the latter two isomorphisms yields an isomorphism

FA(X)®@r FA(Y) = F*(X @rY).
It will be convenient to have some formal terminology and notation.
4.2. Notation. Let the situation and notation be as in 3.3. We refer to the isomorphism
A:F(X)or F(Y) — F(X®rY)
of 3.3 as the canonical isomorphism. When there is need for greater precision, we shall denote A by
Ak y-
Suppose, inductively, that i € N and the isomorphism Ay : F*(X) @p F*(Y) =5 Fi(X ®RY) has

been defined for all choices of R-modules X and Y. Let A”l FHY(X)@p FH(Y) = FITY (X®RY)
be the composition of the isomorphisms

Ay pigyy : FFPHUX) @p FPH(Y) = F(FY(X) @ F'(Y))
and
F(Aky) : F(F(X) @ FI(Y)) — F(F(X ®rY)) = F* (X @rY).

This induction defines the isomorphism A%QY L FI(X)®@p FI(Y) — FI(X®gY), called the canonical
isomorphism, for all j € N. We shall occasionally extend the notation and use Ag{)y : XQ®rY —
X ®rY to denote the identity map on X Qg Y.

4.3. Lemma. For arbitrary R-modules X and Y, and R-homomorphisms A : X — F(X) and p :
Y — F(Y), the diagram

F(X) @r F(Y) T2, p2(x) & 4 F2(Y)

~

o~ 1
Al y|= = | Arx), F(v)

F(X @pY)—2REM . p(F(X) @R F(Y))
commutes, where Aﬁ(yy and A},(X)VF(Y) are as defined in 4.2.
Proof. Let x € X,y €Y and a/,b’' € R'; then
Apo,ren © (FO) @ F(u)((d @) @ (0 @y)) = Apx) pan (@ @ M) @ (V' @ u(y)))

=a't'® (A(z) @ p(y)) = FA @ p)(a't @ (z @ y))

:F(A@u)oAX_’Y((a'®:E)®(b'®y)). O
4.4. Discussion. Assume that the ring A is Noetherian and suppose we have a sequence

X0 Joy xt oy xSyt

of A-modules and A-homomorphisms. By the associated direct system we shall mean the direct system
indexed by the set Ny of non-negative integers whose constituent modules are X%, X' ... X% ... and
whose constituent homomorphism for i < k in Ny is the composite homomorphism fx_1 0---0o f;. Let
X denote the direct limit of this associated direct system.

Now suppose we have a second sequence

YO 2%yt .yt Iy
of A-modules and A-homomorphisms and that the associated direct system has direct limit Y.

Fix i € Ny. The fact that tensor product commutes with direct limits means that X? ® 4 Y*° is the
direct limit of the direct system associated to the sequence

X o v o0 xig vl X, YT S i, yit
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and X ®4 Y is the direct limit of the direct system associated to the sequence

X0®Ayoof0®;Y;oX1®AYOO_>,.._)Xi®Ayoofi®_Y;oxi+1®Ayoo_)”'.

A straightforward argument involving these facts will show that X*° ® 4 Y*° is the direct limit of
the direct system associated to the ‘diagonal’ sequence

X0, Y02 X1, vl . s X,y RS Xl g, yitl
For the remainder of this section, we shall work over R: see 1.1.

4.5. Theorem. Let M be an F-finite F-module over R with generating morphism o : M — F(M),
where M is a finitely generated R-module. Also, let N be a second F-finite F-module over R with
generating morphism 3 : N — F(N), where N is a finitely generated R-module.

Then M ®@g N is an F-finite F-module with generating morphism

vi=Ao(a®p): M @r N — F(M ®@grN),

where A : F(M) ®@g F(N) = F(M ®g N) is the isomorphism given by Lemma 3.3 (and denoted by
Ay in 4.2).

Proof. We can assume that M is the direct limit of the direct system associated to the sequence

M — () ERL, L FNe) pi gy Ee), piv )
and that N is the direct limit of the direct system associated to the sequence
N — P pN)EO L P pi ) FO), iy

For each i € Ny, let L' := F'(M) ®g F(N) and let d* := Fi(a) ® F(B) : FY (M) ®g F/(N) = L' —
FHY(M)®g FH(N) = L. Tt follows from 4.4 that M ® g A is isomorphic to the direct limit of the
direct system associated to the ‘diagonal’ sequence

MerN L F(M)®g F(N) — -+ — F{(M) @5 F{(N) -5 FHY(M) @ FIT{(N) — -
Observe that the diagram
Mop N —22% o F(M)®r F(N)

o

1
AyN| =

Mo N —

F(M ®g N)

commutes. This fact is a basis for our inductive proof that, for all i € Ny, the diagram

Fi(a)®F'(B)

FY(M) @r F'(N) FH(M) @ FHHN)

i o i+1 o
A]W,N - AM,ZV -

. Ft
Fi(M ®p N) @)

Fi+1(M®RN)

commutes. Suppose that the above diagram does indeed commute for some i € Ny. Apply the functor
F to see that the diagram

F(F'(a)®F'(8))

F(F'(M) @r F*(N)) F(FHY(M) ®p F'TH(N))

F(Ayn) | = F(AY ) | =

. Fitt
Fit1(M ®g N) @)

FH2(M @p N)
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commutes.
By 4.3 applied to the R-modules F*(M) and F!(N) (and the homomorphisms F'(a) : F(M) —
FHL(M) and FY(B) : FY(N) — F'T1(N)), the diagram

FH@)pFt(5)

Fi+1 (M) ®r FiJrl (N) Fi+2 (M) ®r Fi+2 (N)

A A

1 ~ 1
Fi(M),Fi(N) |~ Fitl(a), Fitl(N)

F(F (a)@F"(8))

F(F'(M) @ F'(N)) F(F™H (M) @ FITH(N))

commutes. Now splice the last two commutative diagrams together, and recall from 4.2 the definitions
of A}}FIN and Aé\j}?]\,. We can conclude that the diagram

FH(a)@F ™ (8)

Fi-i-l (M) R Fi+1 (N) Fi+2 (M) R Fi+2 (N)

i+l e i+2 oo
Ay | = A E

M,N

Fitl()

FiJrl(M@RN) Fi+2(M®RN)

commutes. This completes our inductive argument that shows that the diagram

F'(a)®F'(B)

Fi{(M)®pr F'(N) FHY(M) g F©LH(N)

NV AN | =
) F? )
Fi(M ®p N) O P (M @R N)

commutes for all i € Ng. It follows that M ®g N is isomorphic to the direct limit of the direct system
associated to the sequence

GO R il

Mo N F(M ®g N) Yy Fi(M @ N) 200 Pt (M @ N)— -

Since M ®g N is a finitely generated R-module, we deduce that M ® g N is an F-finite F-module with
generating morphism v := Ap, yo(a® f) : M @g N — F(M ®@g N). g

4.6. Corollary. Let M be an F-finite F-module over R. Let n € N and let £ := (f1,...,fn) € R™.
Then the module of generalized fractions Mg := Uy "M is an F-finite F-module.

Proof. This is immediate from 4.5 once it is recalled from 2.9 that Mg := Uy "M = M @ Uy "(R)
and from 4.1(iv) that Ug "(R) is an F-finite F-module. O

4.7. Corollary. Let M be an F-finite F-module over R. If g1,...,8: are finite sequences of elements
of R (possibly of different lengths), then the R-module

(' o ((Mgl)g2) o ')gw

produced by t successive constructions of modules of generalized fractions, is again an F'-finite F'-module.
In particular, (... ((Rgy)es) - - -)e 15 an F-finite F-module.

Proof. This is immediate from 4.6; note that R itself is an F-finite F-module. O

4.8. Lemma. Let M be an F-finite F'-module over R with root N. The following hold:

(i) pi(p, F(N)) < u’(p,N) for all i € Ny and p € Spec(R);
(ii) if m is a mazimal ideal of R, then p°(m, M) = pu°(m, N) = pu°(m, F(N)).
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Proof. There is an R-monomorphism 5 : N — F(N) such that M is the direct limit of the resulting
direct system (F*(N))ien,-
(i) Let the exact sequence

0 .
0— N — E9N) % EY(N) — -+ — EY(N) —» ---
provide the injective resolution of N, so that, for each i € Ny,

BN = D BR/pM Y,

pESpec(R)

where E* denotes a direct sum of u copies of E. Apply the exact functor F: since F(FE) = E for each
injective R-module E (by [9, Proposition 1.5]), the exact sequence

0 — F(N) — F(E*(N)) "5 F(EY(N)) — - — F(E(N)) — -+

provides an injective resolution of F(N), so that F(E*(N)) has a direct summand isomorphic to
EY(F(N)), for each i € Ny (by [3, 11.1.11], for example). Another use of [9, Proposition 1.5] now

shows that v v
FEWN)E @ FERM)I Y @ BEp Y,
peSpec(R) peSpec(R)
for each i € Ng. It follows that u'(p, F(N)) < p'(p, N) for all i € Ny and p € Spec(R).

(ii) By part (i) above, u°(m, F(N)) < u°(m, N). Write u°(m, N) = h; then E°(N) has a submodule
isomorphic to (R/m)", so that, because m is maximal, N has a submodule isomorphic to (R/m)".
Apply the exact functor F: we see that F(N) has a submodule isomorphic to (R/mP))". But m is the
unique minimal prime ideal of ml’l| and so R/m[p has a submodule 1s0morph1c to R/m. Thus F(N)
has a submodule isomorphic to (R/m)" and p°(m, F(N)) > h. Therefore p°(m, N) = ( F(N)) =
pl(m, FE(N)) for all £ € N. A minor modification of [9, 1.7] now enables us to see that ) (m M) < h.
On the other hand, the fact that N can be embedded in M ensures that p°(m, M) > h. 0

5. Filter-regular sequences

Throughout this section, we shall assume that the commutative ring A is Noetherian. For most of
the section, we shall work over A; we shall not make any assumption about the characteristic of A, and
we shall not assume that A is regular. Also, b will denote an ideal of A. The variety Var(b) of b is the
set {p € Spec(A) : p 2 b}. We shall use M to denote an arbitrary A-module; M will only be assumed
to be finitely generated when this is explicitly stated. We say that by,...,b, € A form (or is) a poor
M -sequence if b; is a non-zero-divisor on M/ EZ ! b;M for all ¢ =1,...,n. We say that an A-module
N is b-torsion if each element of N is annlhllated by some power of b; note that this is the case if and
only if Supp(N) C Var(b).

5.1. Definition. Let aq,...,a, € A. We say that a1,...,a, form (or is) a b-filter-reqular sequence on
M (of length n) if

Supp ((Z;;ll a; M az)/(zz;ll ajM)) CVar(b) foralli=1,...,n

We regard the empty sequence as a b-filter-regular sequence on M of length 0. We say that an infinite
sequence (a;);en of elements of A is a b-filter-reqular sequence on M if a1, ..., a; is a b-filter-regular
sequence on M for allt € N. If aq,...,a, is a b-filter-regular sequence on M, then aq,...,a,,1,1,...
is an infinite b-filter-regular sequence on M.

The reader should note that in this definition we have not required the elements of a b-filter-regular
sequence on M to be members of b. We think there are advantages in this approach, even though
several authors have required that the elements of an m-filter-regular sequence on a local ring (R, m)
belong to m.

The proof of the following lemma is elementary and left to the reader.

5.2. Lemma. Let ay,...,a, € A. Then the following statements are equivalent:

(i) a1,...,a, is a b-filter-reqular sequence on M ;
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(ii) for all p € Spec(A) \ Var(b), the sequence a1/1,...,an/1 of natural images in A, is a poor
My -sequence;

(iii) for alli=1,...,n, the A-module (Z;;ll a; M ai) / (Z;;ll ajM) is b-torsion.

5.3. Remark. Use the notation of 5.2, which could help the reader to verify the following.

(i) If a1,...,a, form a b-filter-regular sequence on M, then af*,...,a%" is a b-filter-regular se-
quence on M for all choices of aq,...,a, € N.

(i) If (A, <) is a directed partially ordered set, and (Wy,)aca is a direct system of A-modules over
A with direct limit W, and if aq, ..., a, is a b-filter-regular sequence on W, for each o € A,
then the aq,...,a, form a b-filter-regular sequence on W..

A straightforward prime-avoidance argument will prove the following lemma.

5.4. Lemma. (See Khashyarmanesh—Salarian—Zakeri [13, p. 39].) Assume that M is non-zero and
finitely generated. Suppose that ai,...,a, is a b-filter-reqular sequence on M composed of elements of
b. Then there exists ant1 € b such that ai,...,an,ant1 s a b-filter-reqular sequence on M.

It follows that there exists an infinite b-filter-regular sequence on M composed of elements of b.

A triangular subset U of A™ is ezpanded if, whenever (a1, ...,a,) € U, then (a1,...,a;,1,...,1) €U
foralli=0,...,n—1. When n >t > 1, the restriction of U to Al is

{(by,...,b;) € A" : there exist byy1,...,b, € A such that (by,...,bs,bi11,...,b,) € U}.

5.5. Notation. Let V = (V;);en be a chain of expanded triangular subsets on A in the sense of [20, p.
420]. Thus V; is an expanded triangular subset of A? for all i € N, and V; is the restriction of Vi, to
At for all i € N.

We can form the associated complex of modules of generalized fractions

0—M-Dviiw L v Sy O

which we denote by C’(V, M) Here, d°(m) = m/(1) for all m € M, and, for i € N,

. m m
dl( ): for all m € M, (vy, ..., v;) € V.
(’Ul,...,’Ui) (’Ul,...,’l)i,l) orallm e (1)1 ’U)E

Part (i) of the next proposition is an easy consequence of [23, Proposition (2.1)] and 5.2.

5.6. Theorem. (See Khashyarmanesh—Salarian—Zakeri [13, Theorems 1.1, 1.2].) Let the situation and
notation be as in 5.5.

(i) Each member of each V; (i € N) is a b-filter-regular sequence on M if and only if all the
cohomology modules H'(C(V, M)) (i € Ng) of the complex C(V, M) are b-torsion.

(i) Assume that the conditions in (i) are satisfied, and also that Hg(Vi_iM) =0 for all j € Ny
and i € N. Then H(C(V,M)) = H{(M) for all i € Ny.

Proof. (i) By 5.2, each member of each V; is a b-filter-regular sequence on M if and only if, for each
i € N, for each p € Spec(A) \ Var(b), and for each (ai,...,a;) € V;, the sequence a1/1,...,a;/1 of
natural images in A, is a poor My-sequence. By [23, (2.1)], this is the case if and only if all the
cohomology modules of the complex C(V, M) have support contained in Var(b), that is, are b-torsion.

(ii) This is Theorem 1.2 of Khashyarmanesh—Salarian—Zakeri [13]. Their proof is a statement that one
can use the arguments in the proof of [23, Theorem 2.4]. In that theorem, the underlying ring is local
and the module M is finitely generated. The argument there works in our more general situation here.
We point out that Khashyarmanesh, Salarian and Zakeri do not assume that M is finitely generated in
their Theorems 1.1 and 1.2 of [13]. O

Note. It is important to note that M is not assumed to be finitely generated in 5.6. In the corol-
lary below, we generalize [13, Consequences 1.3(i)] to the case of an arbitrary, not necessarily finitely
generated, A-module M.
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5.7. Corollary. Let f = (f1,...,ft,...) be an infinite b-filter-reqular sequence on M composed of
elements of b. For each i € N, set U; := Uy, . 5y = {(fi" .-, fi%) s a1,...,; € No}, an expanded
triangular subset of At. Also set Uy = (U;)ien, a chain of expanded triangular subsets on A. We can
form the complex C(Us, M ).

There are A-isomorphisms H'(C(Ug, M)) = H{ (M) for all i € Ny.

Note. Of course, for ¢ sufficiently large, for example for ¢ greater than the arithmetic rank of b, the
local cohomology module H{ (M) will be zero.

Proof. Let i € N, and set V; := {(f{"*,..., ) : a1,...,; € N}, a triangular subset of A®. Now
Vi C U; and the natural homomorphism V[iM — U{iM is an isomorphism. Therefore we have
H{(U7"M) = H}(V;"M) for all j € Ny, and this is zero by [22, 2.2]. Every member of U; (including
those with some components equal to 1) is a b-filter-regular sequence on M (by 5.3(i)). Therefore, by the
Theorem 5.6 of Khashyarmanesh-Salarian-Zakeri, there are A-isomorphisms H*(C(Ug, M)) = H{ (M)
for all i € Ng. ]

Our remaining results in this section concern modules over R: see 1.1.

5.8. Theorem. Qver R, let M be an F-finite F-module with root N. By 5.4, there exists an infinite
a-filter-reqular sequence g := (g;)ieny on N composed of elements of a. Then (g;):en is an a-filter-reqular
sequence on M.

Proof. Let p € Spec(R) \ Var(a). By 5.2, the sequence ¢1/1,...,g5/1,... of natural images in R, is
a poor Ny-sequence. Therefore g7 /1,...,¢7/1,... is a poor F'(N,)-sequence, where F’ denotes the
(exact) Frobenius functor on the category of modules over the regular local ring Ry,. It follows from
this that g1/1,...,9xn/1,...1s a poor F'(N,)-sequence: see [10, Exercise 12(c), p. 103]. We can now use
3.6 to show that the sequence g1/1,...,9x/1,... of natural images in R, is a poor (F(IV)),-sequence.
This is true for all p € Spec(R) \ Var(a). Therefore, by 5.2 again, (g;)ien is an a-filter-regular sequence
on F(N). It follows that (g;);en is an a-filter-regular sequence on F7(N) for all j € N. Since M is
the direct limit of a direct system with constituent R-modules (F(N));en,, it follows from 5.3(ii) that
(gi)ien is an a-filter-regular sequence on M. O

5.9. Strategy. Here we set out a strategy that can help with the analysis of an F-finite F-module M
over R.

(i) Let N be a root for M. Necessarily, N is finitely generated.
(ii) By 5.4, there exists an infinite a-filter-regular sequence g := (g;):eny on N composed of elements

of a.
(iii) By 5.8, (gi)ien is an a-filter-regular sequence on M.
(iv) For each i € N, set g; := (¢1,...,¢;) and consider Rg,, the module of generalized fractions of

R with respect to Ug, := {(¢7*,...,9") : 1,..., 8 € No}. Now Uy := (Ug, )ic is a chain of
triangular sets on R and we can form the complex of generalized fractions C'(Ug, R), namely

d71 dO dl dhfl dh
0—R—Rg, — -+ — Rg, , — Rg, — -+,
as in 5.7.
(v) We can also form the complex of generalized fractions C(Ug, M), again as in 5.7; this has the
form

—1 0 1 h—1 h
0 M- Mg, = — Mg, |, = Mg, ——---;
note that, by 2.9, this is isomorphic to C(Ug, R) @ M.
(vi) It now follows from (5.7) that H*(C(Ug, M)) = HL(M) for all i € Ny.

We plan to use the above strategy in our discussion of Lyubeznik numbers in the next section.
However, the strategy recovers some results of Lyubeznik.

5.10. Theorem. (Lyubeznik [15, Proposition 2.10].) Let M be an F-finite F-module over R. Then the
local cohomology module H: (M) is an F-finite F-module, for all i € Ny.
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Proof. Use Strategy 5.9, and the notation thereof. The conclusion is that H*(C(Ug, M)) = Hi(M) for
all 7 € Np.

Let v: M —3 F(M) = R' ® M be the structural isomorphism. It follows from 3.5(i) that My is
an F-module for all f = (f1,..., fn) € R™; the details given in the statement of 3.4 show that, for each

i € N, a structural isomorphism for Mg, is 6; : Mg, = F(Myg,), where

o, (ki @) | _ zw:gmp—l) g T
(o', a) = 1 (o', 0")
for all j1,...,5; € No, w € N, rf,...,rl, € R and my,...,m, € M. It is routine to check that
01 0e’ = F(e®) ov and ;11 o e’ = F(e') o 6; for all i € N. Hence C(Ug, M) is actually a complex
in the category F of F-modules and F-homomorphisms. By [15, 1.1], this category is Abelian, and,
for an h € Ny, both K := Kerey, and £ := Imej,_; are F-submodules of Mg,. Since Mg, is an
F-finite F-module (by 4.6), it then follows from [15, Proposition 2.5(b)] that both K and £ are F-finite
F-modules. Finally, it follows from the discussion of the full Abelian subcategory of F formed by the
F-finite F-modules in [15, Theorem 2.8] (and its proof) that K/L£ = H"(C(Ug, M)) is an F-finite F-
module. The isomorphism H"(C(Ug, M)) = H!(M) enables us to conclude that H(M) is an F-finite

F-module. |
5.11. Corollary. (Lyubeznik [15].) Let M be an F-finite F-module over R, let ay,...a4 be ideals of R
and let i1,...,1q € Ng. Then the local cohomology module

Ht (Hay ™ (- (Ht (M) --+))

is an F-finite F'-module.

6. LYUBEZNIK NUMBERS

We plan to show, in this section, that the ideas we have presented so far in this paper have application
to the calculation of Lyubeznik numbers. We recalled the definition of Lyubeznik numbers at the end
of the Introduction. This section provides our algorithm for the calculation of the Lyubeznik numbers
of certain localizations of affine algebras over fields of prime characteristic.

6.1. Notation. Throughout this section, let K denote a field of prime characteristic p, and let R denote
the polynomial ring K[X7, ..., X,] over K in the indeterminates X,..., X,,. We are interested in the
affine K-algebra R/c, where ¢ is a proper ideal of R, and in finding the Lyubeznik numbers of the local
ring A := (R/¢)m/c, where m is a maximal ideal of R containing ¢. Note that A = Ry /cRuy.

We shall often be interested in the case where m is the ideal of R generated by all the indeterminates
X1,...,X,. Recall that, then, the completion of Ry, is K[[X1,...,X,]]. It is an easy consequence of
the Flat Base Change Theorem for local cohomology that the Lyubeznik table of A is equal to the
Lyubeznik table of the completion A 2 K[[X1, ..., X,]]/cK[[X1, ..., Xn]]. Throughout, i and j will
denote arbitrary non-negative integers.

We have \; ;(A) = p'(mRy, H?R_r:(Rm)) A route to calculation of these Bass numbers is provided

by Huneke-Sharp [9, Corollary 3.7], from which it follows that H} , (H R, f (Rw)) is an injective Rpy-
module. The following lemma will be helpful.

6.2. Lemma. Let N be an m-torsion R-module whose localization N at the mazimal ideal m is an
injective Ry -module. Then N is an injective R-module isomorphic to E(R/m)“o(m’N).

Proof. Suppose there exists p € Spec(R) with p # m such that p°(p,N') > 0. Because m is maximal,
there exists r € m \ p. Also, there exists 0 # = € N such that (0 : ) = p. As N is m-torsion,
there exists ¢ € N such that rfz = 0. Therefore r* € p, and we have a contradiction. It follows that
E°(N), the injective envelope of N, is a direct sum of copies of E(R/m), and so is m-torsion. So also
is EO(N)/N. An easy inductive argument now shows that E*(N) is a direct sum of copies of E(R/m),
that is, E*(N) = E(R/m)* (™N) for all i € Ny.

But pf(m,N) = p'(mRy, Nw) and this is 0 when i > 0 because Ny, is an injective Ry-module.
Therefore E‘(N) = 0 for all i € N, so that N is an injective R-module isomorphic to E°(N). O
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6.3. Remark. We return to the calculation of \; j(Rm/¢Rm) = p'(mRy, H (Rm)). It follows from
Huneke—Sharp |9, Corollary 3.7) that H. p (H% r: (Rm)) is an injective Ry, -module isomorphic to the di-
rectsum of (1 Ry HJ ! (Fo))copies f El (B /o) (s (o, HZ (o)) = ' (on, HE ()

is finite). Now H{ p ( 7. (Rm)) = (Hy (H™ I(R)))m; it follows from 6.2 applied to the m-torsion R-
module H}, (H{"~ I(R)) that Hi(H? 7 (R)) is injective and its Oth Bass number with respect to m is
i (m, 2 (R)).

Consequently, \;;(A) is equal to the dimension, as a vector space over R/m, of the annihilator
(0 prg 2=y ™)-

In Discussion 6.4 below, we describe a sequence of steps which provide the basis for our algorithm.
For full details of the Macaulay2 coding, the reader is referred to

http://www.katzman.staff.shef.ac.uk /LyubeznikNumbers/

We mention now that, by the image and cokernel of an n x ¢ matrix @ over R, we mean the image
and cokernel of the R-homomorphism vg : R — R™ given by left multiplication by @, that is
vo((ri,...,rt)) = (Q(r1,...,m)T)T for all (r1,...,r) € R, where T denotes matrix transpose.

6.4. Discussion. Let the situation and notation be as in 6.1, and use M to denote the F-finite F-
module H{' 7 (R) (see 5.10). This discussion is a recipe for finding the Lyubeznik number \; j (R /R ).
We have seen in 6.3 that this is equal to the R/m-vector-space dimension of (O Hi (M) m) .

(i) First find a generating morphism a : L — F(L) for M = H"7(R). One (but not the only)
way of doing this is to follow the recipe of Lyubeznik [15, Proposition 1.11(a)]: the R-module
homomorphism

a: L:=Ext 7/ (R/c,R) — F(Extly 7/ (R/c, R)) = Ext’s 7 (F(R/c), F(R))
induced by the maps ¢ : F(R/¢) — R/cand ¢ : R — F(R), for which ¢ (r'®@(r+c¢)) = rPr'+c
and ¢(r) =r®1 for all r € R and ' € R', is a generating morphism for H' "/ (R).
(ii) The next step is to find a root morphism 6 : N — F(N) for M, given the generating morphism

a: L — F(L) of part (i) for it. An effective method for doing this is provided by Lyubeznik
[15, Proposition 2.3]: for each i € N, let ; : L — F*(L) be the composition

L (L) e PN L)L F(L)

(interpret F°(a) as «); let k be the smallest i for which Kera; = Kera;y1 (and such exists
because L is finitely generated); Lyubeznik [15, Proposition 2.3] shows that Imay =: N is a
root for H{" 7 (R), and that the restriction of F*(a) to N yields a root morphism for H;" 7 (R).

(ili) Now use Strategy 5.9 (and the notation thereof) on M = H{ 7 (R), but with the choice a = m
We find an infinite m-filter-regular sequence g := (g;)ien, composed of elements of m, on N; by
5.8, that is automatically an m-filter-regular sequence on M; we also get the chain of triangular
sets Ug := (Ug,)ien on R, the complexes of generalized fractions C'(Ug, M) and C(Ug, R), and
the isomorphisms H*(C(Ug, M)) = Hi (M) for i € Ny. Although theoretically this step deals
with an infinite m-filter-regular sequence g := (g;);eny on N and M, in practice one does not
need details of the terms of the sequence beyond a certain stage: if one is interested in, say,
H*(C(Ug, M)), then one only needs details of g1, ..., gri1-

(iv) Let us take stock. Recall that we wish to calculate the Lyubeznik number A; ;(Ruy/cRm). We
have seen in 6.3 that this is equal to the R/m-vector-space dimension of (O Hi (M) m) . Since
Hi (M) is m-torsion and m is maximal, this dimension is the Oth Bass number p°(m, H (M)).
We plan to use the isomorphism H*(C(Ug, M)) = HE (M) and a root J for H(C(Ug, M)) to
complete the calculation, for it will then follow from 4.8(ii) that

Xij (B [¢Ruw) = ditpm (0 513, (p) m) = p(m, Hy (M) = p°(m, H'(C(Ug, M)))
= p%(m, J) = dimp/ (0 17 m).

We therefore direct our attention to finding a root J for H*(C(Ug, M)) and the R/m-vector-
space dimension of the annihilator (0 :; m).
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Each Rg, = Ugij is the union of its cyclic submodules (R(l / gie))e N Now M is the direct
limit of the direct system associated to the sequence
N o F(N) F () Fiil(elFi(N) Fi(e), FiJrl(N) e

It therefore follows from 4.4 that R,
associated to the diagonal sequence

)y ®r M is the direct limit of the direct system

-3 9h

0—>R(é) ®RN—>R(E15) ®RF(N)—>---—>R(g%E)®RF€(N)—>---

These sequences, for various hs, fit as the columns in the commutative diagram

d'7?[®1d 1 d'7[®1d 1 d'[®1d 1 dt[eId
L LR eN RN 25 R e N 25
lb@@ lb@@ lb@@
i—2 i—1 7 i+1
Ry e r) T EE R @ F(N) TN Ry @ R T2
gi—1 g; git1
l/b@F(@) lb@F(@) l/b@F(@)

3

in which ‘¢’ is used to indicate an appropriate inclusion map, ‘Id’ is used to denote an appro-
priate identity map, the symbol ‘[’ is used to denote restriction (of maps) and all the tensor
products are over R. The rows of this commutative diagram form a direct system (over N)
of complexes of R-modules and R-homomorphisms, and of chain maps of such complexes. By
4.4, the direct limit of these complexes is isomorphic to the complex C(Ug, R) ® g M. By 2.9,
this is isomorphic to C(Ug, M). We are aiming to find a root for H*(C(Ug, M)).

Now, for a direct system of complexes and chain maps of complexes, the operation of taking
direct limits commutes with the operation of taking cohomology. It follows that a generating
morphism for the (F-finite) F-module H(C(Ug, M)) is the map

Ker(d'[@Idy)/Im(d ' [©Idy) — Ker(d' [©Idp(n)/ Im(d" ' [@ Idp(n))

induced by ¢ ® 6. (Do not forget that F(R(1/g;)) = R(1/g?): see 4.1(i).)
The annihilator of the generalized fraction 1/g; = 1/(g1,...,9:) in Rg, is (g1,...,g;)°"™,
by 2.5. The map d'[: R(1/g;) — R(1/g;+1) is isomorphic to

R/(g1, - vgi)bw“m = R/(g1,. .. agiagiJrl)lOWlim.

(The notation means that the homomorphism is induced by multiplication by g;4+1.) Also, be-
cause (g1...9:)P 1 (1/(g},....97)) =1/(g1,--.,9:), the inclusion map ¢ : R(1/g;) — R(1/g?)
is isomorphic to

R/(g1, ... 7gi)lowlim iy R/(g:f, o ,gf)lowlim7

where m; = gV ... 95 ~! for all j € N. The concept of the ezxpansion of a triangular subset of

R™ (|21, p. 38]) enables one to see quickly that the annihilator of 1/(g?,...,¢") is the same
whether we consider this generalized fraction as a member of Rg, or Rgr.

For j € N, set ¢; := (g1, ..., g;)!°"i™; calculate ¢; and ¢; 11, with the aid of 2.7. Express N as
R"/Im K = Coker K for a suitable n x t matrix K over R; we shall denote by KP! the matrix
obtained from K by raising all its entries to the pth power. Then

R(1/gi) @r N = (R/¢;) @p (R"/Im K)
~ (R"/Im K)/ci(R"/Im K) & R™/(¢;R" + Im K).
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The above comments enable us to see that the commutative diagram in (v) is isomorphic to

gi—1®Id 9:®Id
A i QN —mM CE RN

lﬂl@e lm@@ lm+1®9
gf@ld gip+1®1d gip+2®1d

i F(N) *— % ® F(N) —— [fj ® F(N) —— ...

‘LFng@F(G) \wa@F(@) \Lﬂip+1®F(0)

gi+1®1d gi+2®Id
LI IV

Ci—1

where all the tensor products are over R.
(vii) Next, find an n x n matrix U over R such that the map 6 : N — F(N) is isomorphic to

R"/Im K Y, gr /Im K [l the map being induced by multiplication on the left by U. It then
follows that the commutative diagrams in (v) and (vi) are isomorphic to

g g gi+1 gi+2
B ———

= R"/(¢;1R" + Im K) ——= R"/(;R" + Im K) R /(i1 R” + Im K)

lﬂ'ilU lTriU lﬂ'iJrlU
qp+2

P p "
Ry R I K ) 2 R (P R 4 T K 2L (P R 4 W) 2

lﬂilU[pJ lﬂfU[pJ lﬁ;p“ﬂ

(viii) We can now conclude that a generating morphism for H*(C(Ug, M)) is

(¢it1R*"+ImK) :gn git1 mU ((cﬂan +Im KP)) :pn )
R+ gR*+ImK (CEP]Rn + gilDRn + Im K[P]) .

Unfortunately, this homomorphism, which we here abbreviate by v : G — F(G), need not
be injective. We again use the ideas of the proof of Lyubeznik [15, Proposition 2.3]: for each
i €N, let v; : G — F¥(G) be the composition

¢ — 21+ F(G)E2, ... F1(@) 2= piq)

if ¢ is the smallest integer such that Kery; = Ker;41 (and there will be such), then Im~; =: J
is a root for H*(C(Ug, M)).

(ix) We can now use part (iv) to conclude that the desired Lyubeznik number is equal to the
R/m-vector-space dimension of the annihilator (0 :; m).

6.5. Example. In this first example, the procedure described in 6.4 simplifies considerably.
Let K :=Z/2Z, let R := K[X1, X5, X3, X4, X5], and set

m:= (Xl,XQ,X3,X4,X5)R, n:= (Xl,X27X3,X4)R,
¢ := (X1, X9, X3, X4) RN (X2, X3, X5)RN (X1 — X5, X2 — X5, X5 — X4)R.

We are going to use our algorithm to show that Ag1(Rm/cRm) = 1, so that the Lyubeznik table for
Ry /cRy is not trivial.
Set L := Ext% '(R/c, R) and let

a: L — F(L) = F(Ext} '(R/c,R)) = Ext}; '(F(R/c), F(R)) = Ext}; '(R/c® R)

be the generating morphism for H?'(R) =: M described in 6.4(i). We compute this morphism to be
isomorphic to the R-homomorphism 3 : (R/n)®(R/m) — (R/nl)@(R/ml?) induced by multiplication
by U := X1 X5X3X,4X5. It is not hard to see that this § is injective, and therefore a root of Hf’_l(R).
It is clear that Ass((R/n) & (R/m)) = {m,n}, and so g; := X5 is an m-filter-regular sequence on
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(R/n) @ (R/m) and therefore also on M (by 5.8). We continue with the procedure outlined in 6.4(vi)
and calculate that ¢o := 0°Vi™ = 0, ¢; := (X5R)!°VIm =0,

Vi=(R*4+ndm):ipe Xs=n®R and W:=c¢R*+ndm=ndm.
The upshot is that the map & : V/W — V12 / W induced by multiplication by U is a root for
HO(H?>~*(R)). But ¢ is isomorphic to the map R/m — R/ml? induced by multiplication by U. We
are able to conclude that \g1(Rm/cRm) = 1.

Further calculations using our algorithm yielded the Lyubeznik table for Ry, /cRy, as [ 0 ; } .

6.6. Example. Here we illustrate the operation of our algorithm by computing in some detail some
Lyubeznik numbers of a ring whose characteristic zero counterpart was studied by Alvarez Montaner
in [1, §5].

Let K be a field and R = K[Xl, XQ,Xg, X4,X5, X6,X7]; write m = (Xl,XQ, X37X4, X5,X6, X7)R,
and let ¢ := (X1, X2)R N (X3, X4)R N (X5, X6, X7)R. We now illustrate our algorithm by using it to
compute Azq(Rm/cRy) and Agy(Rm/cRy) in the case where K = Z/27.

The first step is to compute a free resolution F, of R/¢ and to lift the quotient map R/c?) — R/ctoa
map of resolutions Fi(Fs) — Fo. We next apply Hompg(—, R) to this map and compute cohomology
to obtain maps Extk(R/c, R) — Extk(R/c? R). Specifically in this example we obtain a map
Exth(R/c, R) — Exth(R/c2, R) given by ¢ : Coker K 2+ Coker K2 where

K,[X7X6X5X2X10 0O 0 0 0]
' 0 0 0 0 0 X7z X¢ X5 X4y Xj
and
U [ X1 X0 X5 X6X7 0 ]
' 0 X3 Xy X5 X6 X7 |°
One can verify that this map is injective and hence a root.
The next step is to find an m-filter-regular sequence on Coker K. One such sequence begins

(917927937947957 o )
= (X1 +Xo+ Xy + X5+ X7, Xo + X3+ Xy + X5 + Xo + X7, X5+ X6 + X7, X2, X1,..)
For our calculations, we only need details of the first five terms in the m-filter-regular sequence. Write

m=g1...g; forall i € N.

We calculate that
¢ = (g1,92,93)' "™ = (Xo + X3 + X + X5 + X6 + X7, X1 + X5 + Xo) R

and
¢4 = (91,92, 93, 94) "™ = (X1 + X7, Xo + X4 + X5, X5 + X + X7)R.
We now compute a generating morphism for H*(C(Ug, HI~*(R))) (= H3 (H?*(R))) as follows.
We calculate that
B:= (4R’ +ImK) :p> g4 = R® (X1, Xo + X4, X3, X5, X6, X7)R,
C:=aR*+@R*+InK =m® (X1, Xs + X4, X3, X5, X, X7)R
and (C1 :ge m3U) N B = C, and we conclude that Agq(Rm/cRm) = dimp /(0 :5/c m) = 1.
To find a generating morphism for Hg, (H 7 _4(R)) we calculate that
¢4 = (91,92, 93, 94) "™ = (X1 + X7, Xo + X4 + X5, X3 + X + X7)R
(as above) and
¢s := (g1, 92, 93, 94, 95)" """ = (X1 + X7, X2, X5 + X + X7, X4 + X5)R.
We compute
Vi=(sR*+ImK):p2 gs = R, W:=¢R?+@R*+ImK=m®m,
W g mU)NnV=Rom and (W .p 3URPUY NV =Rom.
R

Hence Ay (R /cRy) = dimp/n R/m = 1.
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We have used our algorithm to calculate the Lyubeznik table A(Ry/cRm) = (Aij(Rm/cRw)) of
Ry /cRy as

0 0
0

OO =

AR /¢ Rn) =

o N OO
== 0O O O
N OO O OO

Interestingly, this is exactly the same Lyubeznik table as that given by Alvarez Montaner in [1, §5] for
Ry /cRy when K is a field of characteristic 0.

6.7. Examples. We have tested our algorithm in some situations where Lyubeznik numbers are already
known. Here are some examples. In them, R denotes the polynomial ring with coefficients in Z/2Z in
a finite number n of variables which will be denoted by upper case letters with numeric suffices, such
as X1, Xo, A1, Az, . ..; m denotes the maximal ideal of R generated by all the variables and ¢ is an ideal
of R contained in m. We are interested in the Lyubeznik table for Ry, /cRy in various cases. Notice
that this is equal to the Lyubeznik table for R'/cR’, where R’ is the ring of formal power series with
coefficients in Z/2Z in the same variables used for the construction of R.

(i) We have used our algorithm in the case where n = 6 and
c= (X1X2X3)R + (X1X2X4)R + (X1X3X5)R + (X2X4X5)R + (X3X4X5)R

+ (X2 X3X6)R + (X1 X4X6)R + (X3X4Xe)R + (X1 X5 X6)R + (X2X5X6) R

0 0

0

to calculate the Lyubeznik table for Ry, /cRy, as , just as reported by Alvarez

o O =

0
0
1
1

Montaner and Vahidi in [2, Example 4.8].
(ii)) Whenn =4 and ¢ = X1 Xo R+ X2 X3 R+ X3 X4 R+ X4 X1 R, our calculations using our algorithm

010
give the Lyubeznik table for Ry, /cRy, as 0 0 [, just asreported by Nadi, Rahmati and
2

Eghbali in [16, Example 4.6].
(iii) Whenn =5 and ¢ = (X1, X2, X3)RN(X3, X4, X5)RN(X1, X2, X35, X4) R, our calculations using
0 1 0
our algorithm yielded the Lyubeznik table for Ry /cRy, as 0 O [, just as reported by
2

Alvarez Montaner and Vahidi in [2, Example 5.3].

(iv) When n = 6 and ¢ = (X1, X2)RN (X3, X4)RN (X5, X6)R, our calculations using our algorithm
0 01 00
0 0 0 O
show that the Lyubeznik table for Ry, /cRy is 0 3 0 [, justasreported by Nunez-
0 0
3

Betancourt, Spiroff and Witt in [18, Example 2.4 and 5.5].
(v) We have used our algorithm in the case where n = 7 and

c=X1XoR+ XoXsR+ X3 XyR+ Xy Xs R+ X5 Xe R+ X6 X7 R+ X7 X1 R

0 010

. 0 0 0 . .

to calculate the Lyubeznik table for Ry /cRy, as 01 |- just as reported by Nadi,
1

Rahmati and Eghbali in [16, Example 4.6].
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(vi) In the case where n = 6 and c¢ is generated by {A;1As, B1Bs, C1Ca, A1 B1C1, A3 B2Cs}, our
0 01 0
algorithm produced 0 8 as the Lyubeznik table for Ry, /cRy. This is consistent

—_—= O

with the results reported by Nematbakhsh in [17, Example 4.2].

6.8. Examples. Other situations where we have tested our algorithm against known Lyubeznik numbers
include those studied by De Stefani, Grifo and Nufiez-Betancourt in [4, Example 4.11], and Singh and
Walther in [24, Example 2.3]. Again, our results using our algorithm are consistent with the previously
published results.

However, we also also found evidence that the usefulness of our algorithm can depend on the com-
puter(s) available for the calculations. In 2020, we tried the algorithm in the case where n = 8 and ¢ is
generated by

A1AsAsAy, B1 By B3 By, A1 A3 Ay B1BoBs, Ap A3 Ay B1 By, A1 As Ay By By,
A1A2A3BsBy, Ay Ay B1 B2 By, Ay A3 B1 B3 By, A1 A2 Bo B3 By.

The complexities of the calculations, via our algorithm, of the Lyubeznik table for Ry, /cRy, turned out
to be too severe for the laptop available in the 2020 ‘lockdown’. However, we had success with this
example in 2022 using a more powerful computer.
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