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RESEARCH ARTICLE

Land cover harmonization using Latent Dirichlet Allocation
Zhan Li a, Joanne C. White a, Michael A. Wulder a, Txomin Hermosilla a, 
Andrew M. Davidson b,c and Alexis J. Comber d

aCanadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, Victoria, Canada; bScience and 
Technology Branch, Agriculture and Agri-Food Canada, Ottawa, Canada; cDepartment of Geography and 
Environmental Studies, Carleton University, Ottawa, Canada; dSchool of Geography, University of Leeds, 
Leeds, UK

ABSTRACT
Large-area land cover maps are produced to satisfy different infor-
mation needs. Land cover maps having partial or complete spatial 
and/or temporal overlap, different legends, and varying accuracies 
for similar classes, are increasingly common. To address these con-
cerns and combine two 30-m resolution land cover products, we 
implemented a harmonization procedure using a Latent Dirichlet 
Allocation (LDA) model. The LDA model used regionalized class co- 
occurrences from multiple maps to generate a harmonized class 
label for each pixel by statistically characterizing land attributes 
from the class co-occurrences. We evaluated multiple harmoniza-
tion approaches: using the LDA model alone and in combination 
with more commonly used information sources for harmonization 
(i.e. error matrices and semantic affinity scores). The results were 
compared with the benchmark maps generated using simple 
legend crosswalks and showed that using LDA outputs with error 
matrices performed better and increased harmonized map overall 
accuracy by 6–19% for areas of disagreement between the source 
maps. Our results revealed the importance of error matrices to 
harmonization, since excluding error matrices reduced overall accu-
racy by 4–20%. The LDA-based harmonization approach demon-
strated in this paper is quantitative, transparent, portable, and 
efficient at leveraging the strengths of multiple land cover maps 
over large areas.
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Introduction

Mapping land cover is critical to estimating, understanding and modeling continuous and 
dynamic exchanges of energy and matter between the atmosphere and the land surface 
(Sellers et al. 1997, Running 2008). Land cover mapping over large areas has evolved from 
manual compilations of land-related source data of varying qualities (Matthews 1983) to 
automated approaches that rely on Earth observation data (Townshend 1992, Wulder 
et al. 2018). Such advances have improved the efficiency, consistency, and transparency of 
land cover mapping over large areas, facilitating the production of land cover maps at 
national, continental, and global scales by various agencies (Franklin and Wulder 2002). 
With this new capacity comes the reality of multiple maps being generated for the same 
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area, driven by different information needs, agency mandates, or programmatic require-
ments. Therefore, the resulting maps may have discrepant land cover labels assigned to 
the same land areas, as reported by a range of studies comparing land cover maps 
(Comber et al. 2004a, 2004b; Giri et al. 2005, McCallum et al. 2006, Fritz and See 2008, 
Herold et al. 2008, Fritz et al. 2011, Kaptué Tchuenté et al. 2011, Pflugmacher et al. 2011, 
Pérez-Hoyos et al. 2012a, 2017).

Users of land cover maps may need to combine multiple overlapping maps for a given 
region to meet their specific objectives or information needs. Several studies have devel-
oped methods for generating new, unique land cover outputs from multiple co-existing 
land cover maps (Jung et al. 2006, Pérez-Hoyos et al. 2012b, Tuanmu and Jetz 2014, See 
et al. 2015, Lesiv et al. 2016). These studies demonstrated the benefits of multi-source land 
cover information through the harmonization of coexisting maps. Harmonization in the 
context of land cover mapping is a process that emphasizes the similarities between 
coexisting characterizations of land cover categories and also serves to highlight their 
discrepancies (Herold et al. 2006).

Conceptually, most harmonization methods involve casting votes to harmonized land 
cover (HLC) classes according to source land cover (SLC) labels. This voting process usually 
first establishes class associations, which are a measurement of the thematic correspon-
dence or similarity between SLC and HLC classes. Such associations guide the votes from an 
SLC label to each HLC class. Specifically, the stronger the association between an SLC class 
and an HLC class, the more likely a label of this SLC class will vote for this HLC class. Often 
studies establish fixed associations using binary values (either associated or not) because 
they are simple and easy (Kavouras and Kokla 2002, Herold et al. 2008, Iwao et al. 2011, 
Tuanmu and Jetz 2014, See et al. 2015, Tsendbazar et al. 2015, 2017). Other approaches are 
more complex, and address the thematic overlap of class definitions by establishing soft 
associations using a multi- or continuous-valued variable, referred to as the semantic affinity 
score, between SLC and HLC classes. Semantic affinity scores are determined mostly in two 
ways. One approach is to follow predefined descriptive rules with subjective scoring, as 
exemplified by Comber et al. (2004a, 2004b), Jepsen and Levin (2013), Jung et al. (2006), and 
Vancutsem et al. (2013). Alternately, a more elaborate approach is used by calculating 
overlap metrics mathematically; however this approach requires detailed class definitions 
(Feng and Flewelling 2004, Ahlqvist 2005, Pérez-Hoyos et al. 2012b).

Once the associations between SLC and HLC classes are established, the SLC labels of 
a pixel (in the case of raster maps) vote for each HLC class accordingly. Then, votes to all 
the HLC classes are tallied per pixel and the HLC label of a pixel is assigned as the HLC class 
with the highest total number of votes cast by all its SLC labels. The total votes to an HLC 
class can be computed as a count of SLC labels associated with an HLC class in case of 
hard associations between SLC and HLC classes (Iwao et al. 2011), or as a sum of semantic 
affinity scores between all SLC labels of a pixel and an HLC class, in case of soft associa-
tions (Jung et al. 2006). More sophisticated approaches use a weighted count of asso-
ciated SLC labels or a weighted sum of semantic affinity scores. The weights can be based 
on classification homogeneity (Comber et al. 2004b), overall classification accuracy 
(Jepsen and Levin 2013, Vancutsem et al. 2013), or complete error matrices of source 
maps (Tuanmu and Jetz 2014).

Given multiple maps to harmonize, we can enhance mapping confidence by demon-
strating co-occurrence of compatible land cover labels from these maps. Conversely, 
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a lack of agreement in land cover can indicate the complexity present and assist in making 
decisions on harmonized land cover labels according to the different strengths and 
weaknesses of source maps. For example, a class in one source map may be frequently 
or rarely co-located with a different class in another map. Such co-occurrence of classes 
between maps is a manifestation of the thematic similarity and/or the confusion between 
classes due to classification errors. Therefore, the spatial co-occurrence of classes between 
source maps offers insights into semantic affinity and source map quality that may be 
exploited in order to harmonize maps in a quantitative, transparent, and largely auto-
mated fashion.

As large-area land cover products become more common (Wulder et al. 2018), quanti-
tative and automated approaches for harmonizing land cover products will be increas-
ingly required. In this study, we used regionalized co-occurrence information to 
harmonize two large-area land cover maps for southern Canada. Our objectives were two- 
fold. First, to develop a quantitative and data-driven harmonization approach that takes 
advantage of the co-occurrence information inherent in the nature of agreement and 
disagreement between the two maps (by incorporating both pixel-level class agreement 
and over-arching map-specific classification error matrices). Second, to assess and com-
pare the harmonized maps with those generated using only semantic affinity and/or error 
matrices, without co-occurrence information. The aim was to develop an approach that is 
portable and of generic relevance beyond the data and particular maps assessed and 
harmonized in this study.

Study area and data

In southern Canada, a non-discrete region of transition between dominant land uses 
occurs (Figure 1), with complementary land cover maps resulting from mandated mon-
itoring responsibilities respectively by Canadian Forest Service (CFS) and Agriculture and 
Agri-Food Canada (AAFC). The integration of the land cover maps from these agencies is 
desired to meet cross-sector interests and regional information needs. These two different 
national-level land cover products are the Virtual Land Cover Engine or VLCE from the CFS; 
(Hermosilla et al. 2018), and AAFC’s Annual Crop Inventory or ACI; (Agriculture and Agri- 
Food Canada, 2018). These two maps have different geographic extents but overlap 
substantially in southern Canada at the interface of agricultural and forest dominated 
regions. The overlapping area is approximately 2,980,000 km2 and defines the study area 
within which we tested our harmonization approaches for the year 2015 using VLCE and 
ACI as source land cover maps. Both source maps are in raster format at 30-m spatial 
resolution in a Lambert Conformal Conic equal-area projection, enabling a 30-m spatial 
resolution for harmonized map outputs.

VLCE land cover map

Annual VLCE maps were generated from gap-free best-available-pixel (BAP) composites of 
Landsat surface reflectance combined with auxiliary topographic data (Hermosilla et al. 
2018). Rules were used to produce annual BAP composites free of atmospheric perturba-
tions (clouds, cloud shadows, haze) and representing similar seasonality conditions (i.e., 
proximity to mid-summer target date of August 1st) (White et al. 2014). Then, temporal 
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Figure 1. Study area as represented by the source maps (A) Virtual Land Cover Engine (VLCE) and (B) 
Annual Crop Inventory (ACI). Note that ACI map displays only the 35 ACI classes with validation 
samples in the accuracy assessment. ACI classes without validation samples were merged into higher 
level parent classes.
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trend analysis was used to detect changes and to infill gaps in the BAP composites 
(Hermosilla et al. 2015). Preliminary annual land cover classifications were generated 
using a Random Forest classifier which were then further processed using a Hidden 
Markov Model (Abercrombie and Friedl 2016) with expert-based class transition probabil-
ities to reduce the identification of spurious land cover transitions. This process generated 
refined annual land cover maps that are change-informed and temporally integrated 
(Hermosilla et al. 2018). The VLCE classification has twelve land cover classes including 
non-vegetated (i.e., water, snow/ice, rock/rubble, exposed/barren land), non-treed vege-
tation (i.e., bryoids, herbs, non-treed wetland, shrubland), and treed-vegetation (i.e., treed 
wetland, coniferous, broadleaf, mixedwood) after Wulder et al. (2008). The overall accu-
racy of the VLCE map is 70.3% (± 2.5% of 95% confidence interval) using an independent 
validation from the interpretation of high-resolution Google Earth hosted images for 
a representative year (2005), as described in Hermosilla et al. (2018).

ACI land cover map

Annual ACI maps were generated from multi-date optical and synthetic aperture radar 
images using a Random Forest model applied on a region-by-region basis to account for 
differences between adjacent scenes (Davidson et al. 2017). Three post-classification steps 
were undertaken to generate a final refined ACI product, including filtering (to reduce 
isolated and erroneously classified pixels), mosaicking (to properly choose class labels 
within overlap areas between classification regions), and adding ‘permanent’ classes (such 
as golf courses, sports fields, ski hills and airports according to a local database) (Davidson 
et al. 2017). The ACI maps use a detailed classification comprising 56 agricultural classes 
and 10 non-agricultural land cover classes (Agriculture and Agri-Food Canada, 2018). The 
overall accuracy of the 2015 ACI map is approximately 70% based on independent 
validation from annual crop insurance data surveys and in situ observations by AAFC 
staff (Davidson et al. 2017) and many of the crop classes have user’s and producer’s 
accuracies above 90%.

Methods

A generalized legend of six HLC classes (water, non-vegetated land, shrub, wetland, herb, 
and treed) was defined based on the two SLC maps and the information needs for 
generalized land cover classification (Wulder et al. 2008). The pixel by pixel co- 
occurrence of classes between the two maps was determined and semantic affinity scores 
were assigned to each pair of SLC and HLC classes (Section 3.1). Eight HLC maps were 
generated using different approaches under three scenarios: benchmark, simple harmo-
nization, and complex harmonization (Table 1). In the benchmark scenario (Section 3.2), 
HLC maps were created directly by cross-walking the source map legends to the HLC 
legend. In the simple harmonization scenario (Section 3.3), two HLC maps were generated 
from semantic affinity scores with and without the use of error matrices. In the complex 
scenario (Section 3.4), the harmonization approaches analyzed co-occurrence information 
using Latent Dirichlet Allocation (LDA), an unsupervised statistical model developed for 
processing text documents, but which has been adapted to improve the semantic 
interoperability of land cover data (Wadsworth et al. 2006, Comber et al. 2018). Finally, 
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we used independent validation data to assess and compare all the resulting HLC maps 
(Section 3.5) and to determine the reliability of harmonization using error matrices, 
semantic affinity scores and LDA outputs.

Comparing source land cover products and harmonizing their legends

All possible SLC classes were identified from a union of source map classes: if one VLCE 
class and one ACI class had the same definition, they were treated as one SLC class. 
Classes with the same name but different definitions were treated separately (for exam-
ple, herb). The ACI classes not included in the ACI accuracy assessment were merged into 
their higher-level parent classes in the ACI legend. In total, 44 unique SLC classes were 
identified from the VLCE and ACI legends. The marginal relative frequencies of the ACI 
classes per VLCE class and the VLCE classes per ACI class were calculated to demonstrate 
the similarities and differences between the source maps. Semantic affinity scores for each 
of the 44 SLC classes and the 6 HLC classes were generated following an approach similar 
to the semantic rules of Jung et al. (2006). Table 2 lists the five semantic rules, along with 
the associated affinity scores for some example classes: higher affinity scores indicate 
stronger associations between two classes.

Benchmark scenario: crosswalk from VLCE/ACI legend to HLC legend

The crosswalk rules (Tables 3 and 4) were applied to link the SLC classes to the HLC classes 
to generate an HLC map which was validated using independent samples (Section 3.5). 
When both SLC classes mapped to the same HLC class, they were considered to be in 
agreement and in disagreement when they mapped to different HLC classes.

Simple harmonization scenario: without using LDA model

To examine the value of LDA-based harmonization, we implemented two harmonization 
approaches without using the LDA model: (1) by using only semantic affinity scores, and 
(2) by combining both error matrices of the source maps and semantic affinity scores. In 
the first case, a total semantic affinity score was calculated for each HLC class for a given 
pixel according to its SLC labels and the HLC class with the highest score was assigned to 
the pixel. In the second case, the summed semantic affinity scores were weighted by 
confusion probabilities of classes from the user’s perspective based on error matrices 
(after Tuanmu and Jetz (2014)) to account for confusion errors in SLC labels. In both cases, 
if the total scores of more than one HLC class are tied, a random choice was made from 
these tied HLC classes.

Table 2. Definition of semantic affinity scores between example classes.
Example SLC Class Semantic Rules Affinity Score Example HLC Class

Grassland ‘Is not’ 0 Treed
Cranberry ‘Is or Has minor parts of’ 1 Water
Wetland treed ‘Is or Has parts of’ 2 Water
Wetland non-treed Herbs
Woody savanna 

(A hypothetical class)
‘Is or Has major parts of’ 3 Trees and grasses 

(A hypothetical class)
Broadleaf ‘Is’ 4 Treed
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Complex harmonization scenario: using LDA model

Land cover data are discrete and comprised of categorical pixel labels with embedded 
semantics. Several techniques for handling discrete and categorical data and their 
semantics originate in the field of text mining in order to sort and classify text documents. 
In text mining, a text corpus is a collection of documents, themselves containing words, 
terms and shared topics that when considered together allow documents to be char-
acterized as discrete and semantic data. Text mining allows for groups of documents to be 
statistically classified based on their component words. As such, we can assign an HLC 
label to a pixel based on its SLC labels in a manner that is analogous to assigning 
a category to a text document based on its words.

Description of Latent Dirichlet Allocation models
In text mining, Latent Dirichlet Allocation (LDA) is a well-established approach to finding 
representative topics in a document (Blei et al. 2003) that is treated as a ‘bag-of-words’ (i.e. 
ignoring the order of words). LDA identifies topics shared by documents in a corpus to 
explain the frequencies or co-occurrences of words in each document. These topics are 
described as probability distributions over the possible vocabulary words. In this way LDA 
describes each document with a set of topic probabilities, which provide a quantitative 
measure of a document’s content; topics with higher probabilities provide an indication 
of the document’s content (Blei 2012). Training an LDA model involves identifying a set of 
topics (i.e. a set of probability distributions over vocabulary words) that are shared across 
training documents to best explain the word occurrences in each document. With 
a trained LDA model, the most likely topic probabilities in a test document are estimated 
given its observed word occurrences. LDA training is a trade-off between two goals: (1) 
allocating as few probable topics as possible to each document; and (2) assigning as few 
probable words or terms as possible to each topic. Allocating few probable topics to 
a document requires that each topic has many terms to cover all the concepts in the 
document, whereas assigning few probable terms to each topic requires many more 
topics to be allocated to a document to cover all the concepts in the document. Training 
of the LDA model balances between these two goals by finding groups of tightly co- 
occurring words from training documents (Blei 2019).

Adapting the LDA model into land cover context
The following terminology is used in the descriptions of the LDA modeling of land cover:

Table 3. Crosswalk rules from classes in the VLCE legend to classes in the HLC legend.
Original Classes in 
VLCE SLC Classes

Classes in HLC 
Legend

Original Classes in 
VLCE SLC Classes

Classes in HLC 
Legend

Water Water Water Wetland-Treed Wetland-Treed Treed
Exposed/Barren 

Land
Exposed Land / 

Barren
Non-vegetated 

land
Wetland Wetland- 

Nontreed
Wetland

Snow/Ice Snow/Ice Non-vegetated 
land

Herbs Herbs-Generic Herb

Rock/Rubble Rock/Rubble Non-vegetated 
land

Coniferous Coniferous Treed

Bryoids Bryoids Non-vegetated 
land

Broadleaf Broadleaf Treed

Shrubland Shrubland Shrub Mixed Wood Mixedwood Treed
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● A ‘document’ is a collection of SLC labels in a spatially contiguous land area, for 
example, a tile in a raster map. An SLC label in this subset is a ‘word’ within this 
‘document’. For example, one of the pixels in a subset has SLC labels of water (VLCE) 
and cereals (ACI), providing two of the ‘words’ in this ‘document’.

● A ‘vocabulary’ is a list of all SLC classes within the source maps.
● Latent ‘topics’ are the underlying concepts in a ‘document’ as latent land attributes 

in a mapped area. For example, a map tile (document) that has many SLC labels 
(words) of water or wetland-combined suggests it has a latent land attribute (topic) 
related to high wetness and the LDA would estimate high probabilities for topics 
containing probable words like water but low ones for topics containing probable 
words like urban/developed.

The LDA-based approach to harmonization
The LDA approach transforms the semantic representation of a pixel in the feature space 
of SLC classes (co-occurring SLC labels) to a representation in a feature space of latent 
land attributes (topic probabilities) that are then transformed to HLC class votes. The 
transformation from SLC classes to HLC is enhanced because the latent land attributes 
contain information of the co-occurrence of SLC classes derived from semantic similarities 
in class definitions and class confusions/classification errors. This LDA-based harmoniza-
tion captures both shared land attributes among classes (i.e. pixel-by-pixel co-occurrence 
of SLC classes between the source maps) and their inherent correlations (i.e. spatial co- 
occurrence of SLC classes due to shared attributes among nearby pixels within the source 
maps). In this LDA model, a common set of latent topics (land attributes) generate co- 
occurring words (SLC classes) in each document (collection of labels in a contiguous 
mapped area) of a text corpus (entirety of mapped area). As the LDA uncovers latent 
topics from observed co-occurring words, we apply it to uncover latent land attributes for 
land cover harmonization from observed co-occurring SLC classes, without separating the 
two kinds of SLC class co-occurrence (i.e., pixel-by-pixel and spatial) since both are 
generated from shared attributes among classes.

In applying the LDA, three assumptions are made. First, within a raster map, all pixels in 
a map tile are similar enough to converge around a limited and small number of 
prominent land attributes. Second, latent land attributes derived from tiles of an appro-
priate size can explain the co-occurrence of SLC classes in a pixel. In other words, the 
spatial variations of land cover within a pixel and within a tile are statistically comparable 
over many pixels and tiles. Third, topics (land attributes) of a pixel that determine its HLC 
class label are latent and have no explicit meaning. Topic probabilities are converted into 
HLC class votes by assigning each topic to an HLC class, following the assumption that 
each topic (land attribute) is an indication of one HLC class and each HLC class may 
manifest as multiple topics (land attributes).

Considering these three assumptions, we applied the following steps to determine HLC 
labels in the LDA-based harmonization:

(1) Training an LDA model with documents (spatially-contiguous areas) constructed by 
simple tiles of a chosen size to discover latent topics (land attributes) (Section 3.4.4).

(2) Estimating probabilities of latent topics (land attributes) from the co-occurrence of 
SLC classes in each pixel via the trained LDA model (Section 3.4.5).
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(3) Converting topic probabilities to HLC class votes by assigning latent topics to the 
HLC classes in our target legend (Section 3.4.6).

Training an LDA model with tiles of source maps
We selected the tile size for training that yielded the best LDA performance to predict SLC 
labels in individual pixels. We trained the LDA over all the tiles in the study area and 
evaluated the LDA performance by a standard measure called perplexity (Blei et al. 2003, 
Griffiths and Steyvers 2004) over randomly selected test pixels (20% of pixels in the study 
area). Perplexity indicates the uncertainty in predicting a single word in test documents 
by a trained LDA model with its discovered topics; lower values are better, and chance 
performance results in a perplexity equal to the size of the vocabulary (Griffiths and 
Steyvers 2004). Using the above criteria, we determined a tile size of 300 × 300 pixels 
(~81 km2). We also needed to prescribe the number of topics for the LDA training. The 
perplexity was minimized (and stable) as the topic count increased to 72 and therefore, 
we used 72 topics in the LDA model training.

We used an implementation of the LDA model in the Scikit-learn Python package 
(Pedregosa et al. 2011). The LDA model training takes the input of a document-word 
matrix that is built from a collection of documents by populating each row with the 
frequencies of vocabulary words per document. In this analysis, a row in this matrix 
becomes the frequencies of SLC classes given the labels from each tile of 300 × 300 pixels. 
We constructed the document-word matrix from tiles of the source maps in two ways, the 
first without using error matrices of source maps and the second using error matrices. 
Essentially, without using error matrices, the frequencies of SLC classes in a map tile (i.e., 
a row of the document-word matrix) are simple sums of the frequencies from both source 
maps. When using error matrices, we populated the document-word matrix by classifica-
tion-error-adjusted frequencies of SLC classes in map tiles. Adjusting frequencies per map 
tile essentially resamples SLC labels and redistributes their frequencies according to their 
classification errors respectively for the source maps in a similar fashion as in Tuanmu and 
Jetz (2014).

Estimating probabilities of latent topics underlying source land cover labels
After training the LDA model, we estimated the topic probabilities per pixel that are latent 
but quantitative representations of land attributes given by its SLC labels. The trained LDA 
can take in a sequence of enough SLC labels, i.e. a document, to estimate topic prob-
abilities underlying these labels. While two SLC labels per pixel from the source maps are 
too scarce for a trained LDA model to estimate reliable topic probabilities, we generated 
a pseudo document of the average size of label (word; W) counts (�NW ) per map tile to 
estimate topic probabilities given a combination of one VLCE and one ACI label. The 
purpose of the pseudo document is to enable the trained LDA model to estimate topic 
probabilities when given only two SLC labels (one from VLCE and one from ACI). 
Preliminary investigations indicated that the LDA is sensitive to document sizes, in this 
case class descriptions, as also found by Wadsworth et al. (2006). To avoid inconsistencies 
due to document sizes, a trained LDA model should be applied to documents of similar 
sizes to those documents on which it was trained. Therefore, the purpose of using pseudo 
documents of the same size as the training tiles is to obtain reliable estimates of topic 
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probabilities while avoiding inconsistencies due to large differences in document sizes 
between training and topic estimation.

Without using an error matrix, per combination of a VLCE label iv and an ACI label ia, 

each label is simply replicated for �NW
2 times to formulate a pseudo document. Such 

a replication preserves the probabilities of latent topics (land attributes) underlying the 
original two SLC labels per pixel. When using error matrices, we adjusted the replication 
times per class based on classification errors to penalize the probabilities of topics related 
to less accurate SLC classes. Specifically, we replicated the label iv into a label of class j for 
�NW
2 � ûiv j times, where ûiv j is the estimated probability that a pixel mapped as the class iv in 

the VLCE map has true land cover of the class j. Similarly, we replicated the label ia into 

a label of class j for �NW
2 � ûiaj times, where ûiaj means the same as ûiv j but for the ACI map. 

We estimated ûiv j and ûiaj from the error matrices of the source maps similarly as in 
Tuanmu and Jetz (2014).

Converting latent topic probabilities into votes to harmonized land cover classes
We converted topic probabilities into HLC class votes by assigning each topic to an HLC 
class. After estimating the probabilities of topics given a combination of two SLC labels 
respectively from source maps, we calculated the total probability of topics that we 
assigned to an HLC class. We used this total probability as the vote to this HLC class for 
a pixel and then labeled this pixel with the HLC class of the highest vote.

We assigned the topics to HLC classes by using semantic affinity scores, and without 
using these scores. Essentially, when using semantic affinity scores, we first identified the 
two most important SLC classes to a topic for the assignment. A trained LDA model 
quantified the importance of SLC classes to a topic by estimating the conditional prob-
abilities of SLC classes for a topic. Higher probabilities indicate more importance. We 
chose the top two classes per topic since each pixel contains information from two labels. 
Per topic, we calculated a total semantic affinity score for each HLC class from its two most 
important SLC classes weighted by their conditional probabilities for this topic. Then we 
assigned this topic to the HLC class with the highest weighted sum of scores.

When assigning topics without using semantic affinity scores, we took advantage of 
the combinations of agreed classes between the source maps. For each of the 46 
combinations in agreement (grid cells with black dots in Figures 2 and 3), its two SLC 
classes corresponded to the same HLC class according to the direct crosswalk from SLC 
legends to the HLC legend (Tables 3 and 4). Each combination in agreement therefore 
corresponded to this HLC class shared by its two SLC classes. Given any pixel from any 
combination in agreement, its votes to HLC classes are assumed to be 1 for its corre-
sponding HLC class and 0 for the others. Using the known HLC votes of pixels from 
combinations in agreement and their topic probabilities as training data, we found a set 
of correspondences between topics and HLC classes, i.e. assignment of topics to HLC 
classes, by minimizing squared sum of differences between the predicted and known 
votes to HLC classes for the combinations in agreement.

Quantifying confidence in harmonized land cover labels
As the exact estimation of topic probabilities for LDA is intractable (Blei et al. 2003), only 
approximate estimation is available. Therefore, multiple runs of LDA model training and 
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estimation may yield different results of harmonization because these approximate algo-
rithms may find different latent topics (different probability distributions over vocabulary 
words) and hence estimate different topic probabilities each time. The randomness due to 
different results of discovered latent topics offers a chance to quantify the confidence in 
estimated HLC labels per combination of source map classes. We ran LDA model training 
for 400 iterations and bootstrapped these model outputs to 4000 resamples, from which 
we found the most frequent HLC labels and calculated their relative frequencies as class 
probabilities to quantify the confidence in HLC labels. Intuitively, the more likely 
a combination is to occur, the more consistent the LDA outputs will be and hence the 
higher the class probabilities. For example, the co-occurrence of VLCE water and ACI 
water is common, leading to higher confidence in the estimated HLC label (water) than 
other less likely combinations, such as water by VLCE and shrubland by ACI.

Assessing and comparing approaches to land cover harmonization

All harmonized land cover outputs were assessed using independent validation sample 
pixels. An overall sample size of 1200 was selected assuming an overall map accuracy of 
0.85 and a targeted margin of error of 0.02 for 95% confidence interval using the following 
equation (Cochran 1977; Olofsson et al. 2014), 

Figure 2. Reference sample allocation. In the matrix image on the upper left, blanks indicate no such 
combination and grays indicate no reference sample is allocated. Darker fonts of class names mean 
higher frequencies. The bar charts on the right of and directly below the image are marginal 
proportions. Class colors are presented on the right Y-axis and the bottom X-axis of the matrix 
image. The proportion of reference sample units over areas of agreement and disagreement is 
presented on the lower-right bar chart.
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n ¼ z
m

� �2
� α � 1 � αð Þ

where α is conjectured accuracy expressed as an areal proportion, z is the percentile from 
the standard normal distribution (1.96 for 95% confidence interval), and m is the margin of 
error.

We designed a two-step hierarchical stratified random sampling approach to allocate 
validation samples to each of the HLC class strata and then to each combination of source 
map classes (Figure 2). This sampling strategy balanced the need to sample those 
combinations of VLCE and ACI classes that were more common, with those combinations 
of VLCE and ACI classes that were likely to result in less accurate HLC labels in areas of 
disagreement. Sample pixels were allocated to HLC classes according to their expected 
accuracies and their average mapped areas, as derived from the HLC maps VLCE2H and 
ACI2H. As indicated in Figure 2, more samples were allocated to areas of disagreement.

High-resolution images on Google Earth were interpreted to assign a primary label to 
each sample pixel (with a 30 m × 30 m area as a spatial support region, same as the 
resolution of source maps). We also assigned a secondary label to each sample pixel to 
accommodate both thematic ambiguity and spatial accuracy in land cover mapping 
(Stehman and Czaplewski 2003). After the visual interpretation, we excluded sample 
pixels that had no available high-resolution images on Google Earth and obtained in 
total 936 validation sample pixels as reference for accuracy assessment. Agreement 

Figure 3. Co-occurrence frequencies (pixel counts) of combinations of source map classes. In the 
matrix image on the upper left, blanks indicate no such combination. Darker fonts of class names 
mean higher frequencies. The bar charts on the right of and directly below the image are marginal 
proportions. Class colors are presented on the right Y-axis and the bottom X-axis of the matrix image. 
The proportion of combinations in agreement and disagreement is presented on the lower-right bar 
chart.
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between map and reference data was defined if a map label matched either primary or 
secondary reference label. We summarized accuracy assessment results for each harmo-
nization approach in error matrices that were estimated using the reference data and 
mapped class proportions following Olofsson et al. (2014). We then computed the overall 
accuracy, user’s and producer’s accuracy per class, and their standard error from the error 
matrix of a map over areas of agreement, and disagreement respectively.

Over areas of disagreement, land cover labels from one source map may be correct, or 
labels from both source maps may be incorrect. The best a harmonization approach can 
achieve is to either choose the winning HLC labels given by source maps, or wisely choose 
an HLC class different from that given by any source map when it detects both source 
labels are wrong. If a harmonization approach can achieve the above ideal performance 
for all the pixels, it will result in the best possible harmonized map that has higher values 
for all the accuracy quantities (overall, user’s and producer’s) than any source map. 
However, it is difficult, if not impossible, to automatically achieve this ideal harmonization. 
Therefore, over areas of disagreement, a good result from a harmonization approach 
gives higher accuracy than all source maps, whereas a fair result gives accuracies that are 
somewhere in between source maps. Conversely, a poor harmonization would result in an 
accuracy that is lower than all the source maps. The use of these criteria to identify the 
best overall performance of harmonized maps was corroborated by previous studies on 
land cover harmonization, most of which reported overall, and user’s and producer’s 
accuracies of harmonized maps exceeding at least one source map, rarely being lower 
than all source maps, but also rarely exceeding all source maps (Iwao et al. 2011, Pérez- 
Hoyos et al. 2012b, Kinoshita et al. 2014, Tuanmu and Jetz 2014, Tsendbazar et al. 2017).

Results

Comparison of source land cover maps

We found the source map (VLCE and ACI) land cover classes agreed with each other for 
more than 75% of the total map area (Figure 3, combinations in agreement are marked by 
black dots in the co-occurrence matrix). Thus, despite being produced by two separate 
agencies with different mapping objectives, the source land cover maps achieved 
a substantial area of agreement for land cover classification. Our harmonization efforts 
therefore focused on reconciling disagreement in the remaining 25% of the total map 
area. The total area of agreement indicates that the co-occurrence of agreed classes 
between source maps is not by chance and provides increased confidence in the classi-
fication outcomes for pixels labeled with highly agreed classes. However, across different 
source map classes, the marginal proportions of pixels with agreed labels are uneven. For 
example, more than 90% of water pixels in VLCE agreed with ACI and vice versa while less 
than 40% of shrubland pixels agreed. Although most agricultural classes in the ACI map 
agree with the VLCE herb class over 90% of their classified area, pixels classified as ACI 
cranberry have much lower agreement with the VLCE herb class, and stronger agreement 
with the VLCE wetland non-treed class. Different levels of agreement and disagreement 
imply varying semantic similarities between source map classes as well as different levels 
of class confusions, both of which are a manifestation of shared land attributes among 
classes and are informative to the harmonization.
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Comparison of complex and simple harmonization approaches

We found almost identical estimates of accuracy over areas of agreement (Table 5) 
for all the maps that were generated with the different harmonization approaches 
(Table 1), all of which fall within the accuracy constraints set by the two benchmark 
land cover maps (‘VLCE2H’ and ‘ACI2H’). Over these areas, the overall accuracy 
estimates for the harmonized maps were close to 0.9. Both the user’s and producer’s 
accuracy estimates for most HLC classes also achieved high values around or above 
0.8, except for shrubland and wetland classes. In contrast, over areas of disagree-
ment, there was variability in accuracy measures of harmonized maps according to 
the approach applied (Table 6).

With the evaluation criteria stated in Section 3.5 in mind, we found that the following 
three harmonization approaches had better overall performance for areas of disagree-
ment between the VLCE and ACI maps: ‘E~2SH’, ‘EL~2H’, and ‘ELS2H’. All three of these 
approaches use error matrices. The harmonized maps from the two approaches using the 
LDA (Figure 4) are quite similar, with some differences that we explain in more detail in 
Section 4.3. The increase in overall accuracy relative to the VLCE-based benchmark map 
(VLCE2H) ranged from 4–10% and about 7–23% compared to the ACI benchmark map 
(ACI2H). ‘ELS2H’ was the only harmonized map that yielded both user’s and producer’s 
accuracies for all classes that exceeded the accuracy of at least one benchmark map 
(Table 6).

Efficacy of error matrix, LDA model and semantic affinity for the harmonization

In our assessment, we separately tested the utility of three information sources for 
harmonization: error matrices, LDA outputs, and semantic affinity scores. We used the 
change in accuracy of the resulting output maps when excluding an information 
source as an indicator of its value for harmonization. The exclusion of error matrices 
resulted in the greatest decrease in accuracy measures (Table 7), with the change of 
overall accuracy ranging from -4% to -20%, a median change in producer’s accuracy 
of −5%, and a median change in user’s accuracy of −3%, highlighting the importance 
of error matrices in land cover harmonization. In contrast, excluding the rank-based 

Table 5. Estimates of overall, producer’s (Pj), and user’s (Ui) accuracy per HLC class over areas of 
agreement, with standard error. Codes for harmonization scenarios are fully described in Table 1.

Area of 
Agreement VLCE2H ACI2H ~~S2H E~ S2H ~L~2H ~LS2H EL~2H ELS2H

Overall .89 ±.04 .89 ± .04 .89 ± .04 .89 ± .04 .89 ± .04 .89 ± .04 .89 ± .04 .88 ± .04
Producer’s Water .91 ± .05 .91 ± .05 .91 ± .05 .91 ± .05 .91 ± .05 .92 ± .05 .91 ± .05 .92 ± .05

Non-veg. .79 ± .13 .79 ± .13 .79 ± .13 .79 ± .13 .79 ± .13 .78 ± .13 .79 ± .13 .78 ± .13
Shrub .37 ± .13 .37 ± .13 .37 ± .13 .37 ± .13 .37 ± .13 .37 ± .13 .37 ± .13 .37 ± .13
Wetland .79 ± .13 .79 ± .13 .79 ± .13 .79 ± .13 .79 ± .13 .79 ± .12 .79 ± .13 .79 ± .13
Herbs .97 ± .03 .97 ± .03 .97 ± .03 .97 ± .03 .97 ± .03 .94 ± .04 .97 ± .03 .92 ± .04
Treed .89 ± .07 .89 ± .07 .89 ± .07 .89 ± .07 .89 ± .07 .89 ± .07 .89 ± .07 .89 ± .07

User’s Water .83 ± .17 .83 ± .17 .83 ± .17 .83 ± .17 .83 ± .17 .83 ± .17 .83 ± .17 .83 ± .17
Non-veg. .84 ± .07 .84 ± .07 .84 ± .07 .84 ± .07 .84 ± .07 .85 ± .07 .84 ± .07 .84 ± .07
Shrub .62 ± .11 .62 ± .11 .62 ± .11 .62 ± .11 .62 ± .11 .62 ± .11 .62 ± .11 .62 ± .11
Wetland .47 ± .12 .47 ± .12 .47 ± .12 .47 ± .12 .47 ± .12 .47 ± .12 .47 ± .12 .47 ± .12
Herbs .95 ± .03 .95 ± .03 .95 ± .03 .95 ± .03 .95 ± .03 .95 ± .03 .95 ± .03 .95 ± .03
Treed .92 ± .03 .92 ± .03 .92 ± .03 .92 ± .03 .92 ± .03 .91 ± .04 .92 ± .03 .90 ± .04
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semantic affinity scores from the harmonization resulted in a small increase in overall 
accuracy of 2% to 3%, with a median change in producer’s accuracy of 2% and no 
change in user’s accuracy (Table 7). Compared to error matrices and semantic affinity 
scores, the effect of excluding the LDA model was mixed. When LDA models were 
excluded from the ~LS2H scenario (which does not include an error matrix; Table 1), 
overall accuracy decreased by 10%, with a median change in producer’s accuracy of 
3% and a median change in user’s accuracy of 11%. For the ELS2H scenario however, 
excluding the LDA from the harmonization resulted in an increase in overall accuracy 
of 5%, with no change in producer’s accuracy and a median change in user’s 
accuracy of 3%.

Confidence in harmonized land cover labels and quality of harmonization

We visualized as matrices the harmonization results for the ‘EL~2H’ (Figure 5) and 
‘ELS2H’ (Figure 6) approaches. The spatial details of the harmonization results (both 
HLC classes and class probabilities) in comparison with the benchmark maps are 
demonstrated over an example region near the west of Calgary, Alberta (Figure 7). As 
expected, the class combinations in agreement generally have high confidence in HLC 
labels (Figures 5 and 6). In the ‘ELS2H’ (Figure 6), the following two combinations in 
agreement do not follow their SLC labels from VLCE and ACI, (1) VLCE herbs and ACI 
cranberry, and (2) VLCE herbs and ACI buckwheat. However, the class probabilities for 
both combinations are low, suggesting caution when using the harmonized labels of 
these two combinations. For those intuitively less probable combinations that have 
thematically distant classes (e.g., VLCE shrubland and ACI wetland-combined), their low 
class probabilities also indicate cautions with their HLC labels. Such cases may result 
from serious commission errors of SLC classes from the source maps, which suggests 
a need for a manual review of those areas in the source maps to determine the most 
appropriate HLC label. Therefore, the LDA-based harmonization approaches allow the 
generation of useful class probabilities via multiple runs of LDA models that are 
essential for interpreting the harmonized maps.

Table 6. Estimates of overall, producer’s (Pj), and user’s (Ui) accuracy per HLC class over areas of 
disagreement, with standard error. Codes for harmonization scenarios are fully described in Table 1.

Area of 
Disagreement VLCE2H ACI2H ~~S2H E~ S2H ~L~2H ~LS2 H EL~2 H ELS2 H

Overall .52 ± .02 .39 ± .02 .42 ± .02 .62 ± .02 .54 ± .02 .51 ± .02 .58 ± .02 .56 ± .02
Producer’s Water .16 ± .03 .13 ± .02 .10 ± .01 .15 ± .02 .00 ± .00 .00 ± .00 .26 ± .03 .18 ± .02

Non-veg. .39 ± .06 .33 ± .07 .67 ± .05 .51 ± .06 .47 ± .06 .52 ± .06 .54 ± .06 .47 ± .06
Shrub .46 ± .07 .68 ± .05 .86 ± .03 .34 ± .06 .14 ± .05 .12 ± .05 .44 ± .06 .47 ± .06
Wetland .15 ± .03 .62 ± .05 .22 ± .03 .28 ± .04 .33 ± .04 .60 ± .05 .22 ± .04 .40 ± .04
Herbs .57 ± .05 .25 ± .03 .67 ± .04 .78 ± .04 .74 ± .03 .71 ± .04 .77 ± .04 .69 ± .04
Treed .70 ± .03 .32 ± .02 .23 ± .02 .76 ± .02 .70 ± .02 .59 ± .02 .67 ± .02 .65 ± .02

User’s Water .79 ± .05 .53 ± .06 .75 ± .07 .70 ± .06 1.0 ± .00 .00 ± .00 .71 ± .05 .79 ± .05
Non-veg. .48 ± .05 .28 ± .07 .46 ± .04 .33 ± .05 .33 ± .06 .35 ± .05 .43 ± .07 .50 ± .08
Shrub .30 ± .05 .23 ± .03 .27 ± .03 .40 ± .06 .17 ± .06 .16 ± .07 .33 ± .05 .34 ± .05
Wetland .23 ± .05 .36 ± .04 .59 ± .10 .61 ± .09 .33 ± .05 .37 ± .04 .33 ± .06 .41 ± .05
Herbs .45 ± .07 .56 ± .03 .55 ± .04 .54 ± .03 .53 ± .03 .52 ± .03 .55 ± .03 .54 ± .03
Treed .68 ± .02 .65 ± .05 .63 ± .04 .75 ± .03 .68 ± .03 .67 ± .03 .73 ± .03 .68 ± .03
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Figure 4. Harmonized maps by the approaches (A) ‘EL~2H’, using error matrices and LDA outputs for 
harmonization; and (B) ‘ELS2H’, using error matrices, LDA outputs, and semantic affinity scores for 
harmonization.
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Discussion

The training of the LDA model uses the co-occurrence of classes between source maps 
that result either from semantic similarities in class definitions or from class confusion due 
to classification errors. The LDA model thereby provides similar information content to 
that of semantic affinity scores and error matrices for land cover harmonization. The 
difference however is that both error matrices and semantic affinity scores need to be 
known before harmonization as a priori information, whereas the LDA-based information 
is estimated from, and driven by, the source map data directly. As demonstrated in this 
study, although the LDA outputs are not complete substitutes for error matrices or 
semantic affinity scores, they can recover sufficient information on class affinities and 
class confusions to support harmonization efforts when error matrices or semantic affinity 
scores are unavailable. Furthermore, separate error matrices from source maps character-
ize confusions between classes within each map and may not address class confusion 
between maps, such as the source map error matrices used in this study. However, the LDA 
model does use co-occurrence of classes between source maps, which helps to address 
class confusions between maps.

LDA outputs (latent topic probabilities and conditional probabilities of SLC classes for 
topics) are derived from the statistical modeling of the co-occurrence of SLC classes in 
source maps. The resulting implicit information on class confusions from LDA outputs 
complement information on confusion errors of source maps from error matrices that are 
of poor quality or unavailable (Table 7). Similarly, the LDA provides implicit but data- 
driven information on semantic affinity. Without using semantic affinity scores, as in 
‘EL~2H’, the LDA statistically connected HLC classes to topics by assigning topics to HLC 
classes based on combinations of agreed classes (Section 3.4.6). Meanwhile, topics were 
connected to SLC classes quantitatively by conditional probabilities of SLC classes for 
given topics. With latent topics as the bridge, we indirectly constructed the association 

Table 7. For the area of disagreement, the change in accuracy in the harmonized output maps as 
a function of not using an error matrix, not using an LDA model, and not using semantic affinity scores. 
Codes for harmonization scenarios are fully described in Table 1.

Change in accuracy due to:

No Error Matrix No LDA Model
No Semantic Affinity 

Score

Harmonized Land Cover 
Class ~~S – E ~ S ~L~ – EL~ ~LS – ELS ~~S – ~LS E ~ S – ELS ~L~ – ~LS EL~ – ELS

Overall -.199 -.037 -.047 -.097 .054 .029 .019
Producer’s Water -.048 -.256 -.182 .105 -.029 .001 .075

Non-veg. .152 -.073 .054 .143 .045 -.056 .071
Shrub .527 -.306 -.357 .748 -.136 .022 -.029
Wetland -.062 .110 .195 -.380 -.122 -.265 -.180
Herbs -.107 -.026 .012 -.037 .081 .037 .074
Treed -.532 .023 -.059 -.362 .111 .105 .023

User’s Water .050 .286 -.793 .750 -.093 1.000 -.079
Non-veg. .131 -.095 -.151 .115 -.167 -.016 -.071
Shrub -.128 -.162 -.181 .113 .059 .015 -.004
Wetland -.020 -.006 -.035 .219 .204 -.046 -.075
Herbs .008 -.024 -.022 .028 -.001 .008 .010
Treed -.121 -.053 -.009 -.043 .069 .008 .052

366 Z. LI ET AL.



between the HLC and SLC classes, i.e. information similar to the rank-based semantic 
affinity scores between the HLC and SLC classes.

In order to enable LDA model training over map tiles (Section 3.4.4), we assumed that 
the spatial variations of a landscape within a pixel (30-m spatial resolution) and within an 
objectively sized tile (300 × 300 pixels) are statistically comparable. If source maps have 
lower, higher, or different spatial resolutions, further studies would be needed to deter-
mine the validity of the assumption of comparable spatial variations of land cover 
between pixels and tiles. For example, analyzing the sensitivity of harmonization to tile 
sizes may provide insights. The tile size for training was determined by minimizing the 
perplexity over test pixels extracted from a simple random sample over the entire map. 
Some rare classes or class combinations of input maps may be left out by such a sampling 
protocol, pointing to future opportunities for investigation of stratified random sampling 
over different class combinations of input maps.

Our results highlight the importance of error matrices in land cover harmonization. This 
finding concurs with several recent studies that used source map error matrices to achieve 

Figure 5. Harmonization by the approach ‘EL~2H’, using error matrices and LDA outputs (Table 1). HLC 
labels and their class probabilities of all the combinations of source map classes. Blanks indicate no 
such combination. Darker fonts of class names mean higher frequencies.
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satisfactory harmonization results (Pérez-Hoyos et al. 2012b, Tuanmu and Jetz 2014, See 
et al. 2015, Tsendbazar et al. 2015). While our results demonstrate the potential of LDA, 
our implementation is a single case study, albeit one over a very large area with a range of 
different environments. In addition, we used error matrices that were spatially global (i.e. 
representing class accuracies of an entire map as a whole). However, different classes 
likely have different classification errors over different parts of a map, especially for large- 
area maps such as those used in this study. Local measures of class accuracy may further 
improve harmonization. Some recent studies have explored the use of local accuracy 
measures in harmonization (Schepaschenko et al. 2015, See et al. 2015, Tsendbazar et al. 
2015, 2017); however, these local accuracy measures are not class-specific. Many current 
land cover products provide both classification maps and spatially-explicit class probabil-
ities (sometimes also referred to as class membership, class likelihood, or confidence 
measures) (Blanco et al. 2013, Latifovic et al. 2017, Hermosilla et al. 2018, Buchhorn et al. 
2019, Sulla-Menashe et al. 2019). These full vectors of class probabilities at the pixel level 
can be explored with map-level accuracy measures of source maps for harmonization. 
However, the characterizations of class probabilities in different land cover products are 

Figure 6. Harmonization by the approach ‘ELS2H’, using error matrices, LDA outputs, and semantic 
affinity scores (Table 1). HLC labels and their class probabilities of all the combinations of source map 
classes. Blanks indicate no such combination. Darker fonts of class names mean higher frequencies.
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usually not similar but rather product specific. Thus, using class probabilities from differ-
ent products together is like using digital numbers from different sensors, suggesting that 
some cross calibration of class probabilities between land cover products may be neces-
sary before using them together for harmonization.

Although our case study harmonized two source maps, the LDA-based method also 
enables the harmonization of three or more maps, a likely case given the increasing 
availability of land cover maps. More class labels per pixel from more maps provide more 

Figure 7. Details of benchmark maps (VLCE2H and ACI2H), harmonized maps (EL~2H and ELS2H), and 
maps of HLC class probabilities over an example region west of Calgary, Alberta, represented by the 
red dot in the lower-right map.
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information on pixel-by-pixel co-occurrence of classes among source maps, which helps 
the LDA model training and the estimation of topic probabilities per pixel. The processing 
cost of training and running the LDA model will increase, however, given current avail-
ability and capacity of high-performance computing facilities we do not envision major 
computational challenges.

Conclusions

In this study, we introduced the LDA model to the harmonization of two national land 
cover products over southern Canada respectively focused on forest (VLCE) and agricul-
tural (ACI) environments. We tested multiple harmonization approaches, using the LDA 
model alone and in combination with more commonly used information sources for land 
cover harmonization, specifically error matrices and/or semantic affinity scores. The 
evaluation and comparison of all the approaches revealed both the importance of error 
matrices and the unique benefits of the LDA model for harmonization. For the harmoni-
zation of the source maps in this study, the best performance came from the approach 
that combined the use of error matrices, LDA outputs, and semantic affinity scores. The 
harmonized maps generated using this approach combined the strengths of the input 
source maps while also reducing their weaknesses, as indicated by the achieved overall 
and user’s and producer’s accuracies for all the HLC classes. Our results demonstrated that 
the LDA model boosts the quality of harmonization results and strengthens the robust-
ness of the accuracies of derived harmonized maps, making them less sensitive to the lack 
of error matrices and/or semantic affinity scores. As more overlapping land cover products 
from various mapping agencies are generated, the harmonization approaches described 
in this study provide a framework to help users to take greater advantage of existing 
thematic maps in a transparent, systematic, and automated manner, to generate high 
quality harmonized land cover products able to support diverse application-specific 
objectives in land-related research and management in a cost-effective way.
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