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ABSTRACT 

For curbing recent outbreaks of coronavirus disease 2019 (COVID-

19), suppression or mitigation are two typical intervention 

strategies. But both strategies have their merits and limitations, and 

hardly achieve an optimal balance between healthcare demand and 

economic protection. In this paper, we designed a model to attempt 

to infer the impact of mitigation, suppression and multiple rolling 

interventions for controlling COVID-19 outbreaks in London and 

the UK. Our model assumed that each intervention has equivalent 

effect on the reproduction number R across countries and over time; 

where its intensity was presented by average-number contacts with 

susceptible individuals as infectious individuals. We considered 

two important features: direct link between Exposed and Recovered 

population, and practical healthcare demand by separation of 

infections into mild and critical cases. We combined the calibrated 

model with data on the cases of COVID-19 in London and non-

London regions in the UK during February 2020 and March 2020 

to estimate the number and distribution of infections, growth of 

deaths, and healthcare demand by using multiple interventions. Our 

results show given that multiple interventions with an intensity 

range, one optimal strategy was to take suppression with very high 

intensity in London from 23rd March for 100 days, and 3 weeks 

rolling intervention between very high intensity and high intensity 

in non-London regions. In this scenario, the total infections and 

deaths in the UK were limited to 2.43 million and 33.8 thousand; 

the peak time of healthcare demand was due to the 65th day (April 

11th), where it needs hospital beds for 25.3 thousand severe and 

critical cases. This strategy would potentially reduce the overall 

infections and deaths, and delay and reduce peak healthcare 

demand. 

CCS CONCEPTS 

• Information systems → Data mining; • Computing 

methodologies→ Machine Learning;  

KEYWORDS 

Epidemic propagation, COVID-19, Mitigation, Suppression, SEIR. 

INTRODUCTION 
Throughout human history, Infectious diseases (ID), also known as 

transmissible diseases or communicable diseases, are considered as 

serious threats to global public health and economics [1]. From the 

1918 influenza pandemic in Spain resulting in nearly 50 million  

deaths in 1920s, to recent ongoing global outbreaks of coronavirus 

disease 2019 (COVID-19) killing over 11 thousands people in all 

over the world [2], infectious disease is a leading contributor to 

significant mortality and causes huge losses to society as well as 

personal family burden. Among a variety of factors leading to 

emergence and outbreaks of ID, the key issues are population 

density and human mobility where in these cities with developed 

transportation systems, pathogens can be spread to large 

geographic space within a short period of time. For instance, the 

ongoing global epidemic outbreak of COVID-19 has spread to at 

least 146 countries and territories on 6 continents in 2 months. In 

order to give an accurate prediction of outbreaks, many researchers 

have been working in traditional ID propagation models [3-7] like 

SIR, SEIR,.et.al, for understanding COVID-19 transmission with 

human mobility and predicting outbreak process of epidemics. 

Meanwhile, as realizing a long period of this battle against COVID-

19, many of them recently focus on intervention strategies [8-10] 

that can balance a trade-off between limited human mobility and 

potential economic loss in COVID-19 control. It poses an important 

research area that explores how and when to take what level of 

interventions in light of multiple natures and capabilities of 

countries. 

In traditional compartmental models paradigm in epidemiology, 

SIR (Susceptible-Infectious-Recovered) [3] and SEIR (Susceptible 

–Exposure-Infectious-Recovered) [4] are two popular approaches 

to simulate and predict how infectious disease is transmitted from 

human to human. These two models have defined several variables 
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that represent the number of people in each compartment at a 

particular time. As implied by the variable function of time, these 

models are dynamic to reflect the changes and fluctuations of these 

numbers in each compartment over time. For COVID-19 control in 

Wuhan, Zhong, et.al [11] introduced a modified SEIR model in 

prediction of the epidemics trend of COVID-19 in China, where the 

results showed that under strong suppression of “lockdown Hubei”, 
the epidemic of COVID-19 in China would achieve peak by late 

February and gradually decline by the end of April 2020. Some 

other extended models [8] [12] are also proposed for predicting the 

epidemics of COVID-19 in Wuhan and give some similar forecasts. 

While above methods demonstrate good performance in prediction 

of COVID-19 outbreak by taking strong public intervention, also 

named as suppression strategy [13] that aims to reverse epidemic 

growth, one important challenge is that taking suppression strategy 

only is to treat disease controls as single-objective optimisation of 

reducing the overall infectious populations as soon as possible, and 

require strategic consistency in a long term. In real-world, taking 

public health intervention strategies is actually a multiple-objective 

optimisation problem including economic loss and society impacts. 

Thus, most countries have taken different intervention strategies, 

like enhanced surveillance and isolation to affected individuals in 
Singapore [14], four-stage response plan of the UK [15], mitigation 

approaches [13] and even multiple interventions taken in many EU 

countries. Due to the fact that standalone intervention strategy has 

apparent merits and limitations, it becomes highly necessary to 

study the feasibility of intervention strategies to certain country in 

light of its multiple natures and capabilities.  

Targeting at this problem, this paper conducts a feasibility study 

that analyses and compares mitigation and suppression intervention 

strategies for controlling COVID-19 outbreaks in Wuhan and 

London. Taking Wuhan as a simulated case using data from [11], 

we demonstrated performance of taking different intervention 

strategies: a) No interventions: the peak of daily infections would 

be up to 2.1 million, but will be completed  in 150 days. The 

epidemics lasts a relatively shorter period of 140 - 150 days, but 

lead to more death. b) Contain phase: taking 90% effectiveness of 

surveillance and isolation from the 2nd day of confirmed case 

potentially enables controlling a new outbreak of COVID-19, but it 

needs to be maintained over 300 days. c). Suppression intervention 

from the 32nd day: the peak of daily infections greatly reduced to 

16 thousand, but it had to be followed at least 200 days. Nearly 3 
months suppression may potentially lead to economic loss even 

crisis. d). Mitigation intervention from the 32nd day: the peak of 

daily infectious populations increased to 27.7 thousand, but the 

period of maintenance extended to 150 days. It implied there would 

be growing death but less economic loss compared to suppression. 

e). Hybrid intervention of taking both suppression and intervention 

every 2 weeks: the epidemics of COVID-19 appeared a long-term 

multimodal trend where the peaks of daily infectious populations 

were within a range of 40-60 thousand. This might lead to less daily 

critical cases and offer more time to hospital for releasing their 

resources. 

Above analysis demonstrates the complexity of controlling 

COVID-19 outbreaks that how and when to take what level of 

interventions. In this paper, we proposed a mathematical model: 

SEMCR to study this problem. The model extended traditional 

SEIR (Susceptible-Exposed-Infectious-Recovered) model [3] [4] 

by adding one important fact: there has been a direct link between 

Exposed and Recovered population. Then, it defined parameters to 

classify two stages of COVID control: active contain by isolation 

of cases and contacts, passive contain by suppression or mitigation. 

The model was fitted and evaluated with public dataset containing 

daily number of confirmed active cases including Wuhan, London, 

Hubei province and the UK during January, 2020 and March 2020. 

For each point, we design and set up experimental protocols for 

comparison and exploration, highlighting following contributions:  

 Immediate suppression taken in Wuhan significantly reduced 

the total exposed and infectious populations, but it has to be 

consistently maintained at least 90 days (by the middle of 

April 2020). Its success heavily relied on sufficiently external 

support from other places of China. This mode were not 

suitable to other countries that have no sufficient resources.  

 In the UK, we estimated given that one optimal strategy was 

to take suppression with very high intensity in London from 

23rd March for 100 days, and 3 weeks rolling intervention 

between very high intensity and high intensity in non-London 

regions. In this scenario, the total infections and deaths in the 

UK were limited to 2.43 million and 33.8 thousand; the peak 

time of healthcare demand was due to the 65th day (April 11th), 

where it needs hospital beds for 25.3 thousand severe and 

critical cases.  

 To release rolling intervention intensity to moderate level and 

simultaneously implement them in all regions of the UK, the 

COVID-19 outbreak would not end in 1 year and distribute a 

multi-modal mode, where the total infections and deaths in 

the UK possibly reached to 16.2 million and 257 thousand.  

 Our results show that taking rolling intervention is probably 

an optimal strategy to effectively and efficiently control 

COVID-19 outbreaks in the UK. As large difference of 

population density and social distancing between London and 

non-London regions in the UK, it is more appropriate to 

implement consistent suppression in London for 100 days 

and rolling intervention in other regions. This strategy would 

potentially reduce the overall infections and deaths, and delay 

and reduce peak healthcare demand.  

The remainder of this paper is arranged as follows. Section 2 

introduces the model. In the Section 3, the materials and 

implementation of experiment are reported. Section 4 provides 

detailed experimental evaluation and discussion. The conclusion 

and future directions are given in Section 5. 

1. METHODOLOGY  

2.1 Problem formulation of COVID-19 

outbreak  
We implemented a modified SEIR model to account for a dynamic 

Susceptible [S], Exposed [E] (infected but asymptomatic), 

Infectious [I] (infected and symptomatic) and Recovered [R] or 

Dead [D] population’s state. For estimating healthcare needs, we 
categorised infectious group into two sub-cases: Mild [M] and 

Critical [C]; where Mild cases did not require hospital beds;  

Critical cases need hospital beds but possibly cannot get it due to 

shortage of health sources. Conceptually, the modified modal is 

shown in Fig.1. The model accounted for delays in symptom onset 

and reporting by including compartments to reflect transitions 

between reporting states and disease states. 
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Figure 1: Extended SEMCR model structure: The population 

is divided into the following six classes: susceptible, exposed 

(and not yet symptomatic), infectious (symptomatic), mild 

(mild or moderate symptom), critical (severe symptom), death 

and recovered (i.e, isolated, recovered, or otherwise non-

infectious). 

Here, this modal assumed that S is initial susceptible population 

of certain region; and incorporated an initial intervention of 

surveillance and isolation of cases in contain phase by a parameter 

β [14] [15]. If effectiveness of intervention in contain phase was 

not sufficiently strong, susceptible individuals may contract disease 
with a given rate when in contact with a portion of exposed 

population E. After an incubation period α1, the exposed 

individuals became the infectious population I at a ratio 1/α1.The 

incubation period was assumed to be 5.8 days.8 Once exposed to 

infection, infectious population started from Mild cases M to 

Critical cases C at a ratio a, Critical cases led to deaths at a ratio d; 

other infectious population finally recovered.  

Notably, two important features in our model differ with other 

SIR or SEIR models.12.13 The first one was that we built two direct 

relationships between Exposed and Recovered population, 

Infections with mild symptoms and Recovered population. It was 

based on an observation of COVID-19 breakouts in Wuhan that a 
large portion (like 42.5% in Wuhan) of self-recovered population 

were asymptomatic or mild symptomatic.14 They did not go to 

hospital for official COVID-19 tests but actually were infected. 

Without considering this issue, the estimation of total infections 

were greatly underestimated.13 In order to measure portion of self-

recovery population, we assumed that exposed individuals at home 

recovered in 3.5 days; mild case at home recovered in 7 days.19 The 

second feature was to consider shortage of health sources (hospital 
beds) in the early breakouts of COVID-19 might lead to more 

deaths, because some severe or critical cases cannot be 

accommodated in time and led to death at home (non-hospital). For 

instance, in Wuhan, taking an immediate suppression intervention 

on 23rd Jan 2020 increased serious society anxiety and led to a 

higher mortality rate. In order to accurately quantify deaths, our 

modal considered percentage of elder people in the UK at a ratio O, 

occupancy of available NHS hospital beds over time at a ratios Ht 

and their availability for COVID-19 critical cases at a ratio Jt. We 

assumed that critical cases at non-hospital places led to death in 4 

days; elderly people in critical condition at hospital led to death in 

14 days, and non-elderly people in critical condition at hospital led 

to death in 21 days [20]. 

One parameter was defined to measure intervention intensity 

over time as Mt. which was presented by average number of 

contacts per person per day. We assumed that transmission ratio β 
equals to the product of intervention intensity Mt and the 

probability of transmission (b) when exposed (i.e., β= mb). In 

Wuhan, intervention intensity was assumed within [3-15], and gave 

with a relatively accurate estimation of COVID-19 breakouts [11]. 

We calibrated its value with respect to the population density and 

human mobility in London and the UK, and estimated outcomes of 

COVID-2019 outbreaks by implementing different interventions. 

Using Wuhan’s data, our estimation was close to the practical trend 

of outbreaks in Wuhan, and gave similar results to other works.13.22 

We tested that transmission rate from I to S is about 0.157; 

transmission rate from E to S is about 0.787.13 The incubation 

period was assumed to be 6 days.8 As for other parameters, we 

followed the COVID-19 official report from WHO19, and gave a 

medium estimation on average durations related from infectious, to 

mild or critical case, and death or recovery were shown in Table.1.  

Table 1: Parameters estimation in SEMCR model 

Name Representation Value [20] 

N UK population by Aug 2019 6.6 million 

i Efficiency of isolation contacts 0.88-1.00 

β1 Transmission rate from I to S 0.157 

β2 Transmission rate from E to S 0.787 

    α1  Incubation period 6 days 

α2 Average period from M to C 7 days 

ɤ1 Average period from E to R 3.5 days 

ɤ2 Average period from M to R 7 days 

ɤ3 Average period from Non-H to R 42 days 

ɤ4 Average period of older people 

from H to R 

    18 days 

ɤ5 Average period from non-older 

people from H to R 

13 days 

d1 Average period from Non-H to D 4 days 

d2 Average period of older people 

from H to D 

14 days 

d3 Average period of non-older 

people from H to D 

21 days 

m Proportion of Mild case  0.80 

s Proportion of Severe case 0.138 

c Proportion of Critical case 0.061 

Bt Number of hospital beds in the 

UK  

167589 

O Percentage of people over 65 in 

the UK 

0.18 



 

 

Ht Percentage of unoccupied 

hospital beds 

0.20-0.60 

Jt Percentage of available hospital 

beds for COVID-19 critical cases  

0.8-1 

Mt The intensity of intervention  3-15 

 

Regard as the percentage of elderly people in the UK, it was 

assumed as 18%.21 The total number of NHS hospital beds was 

given as 167589 with an initial occupied ratio up to 85%.22 

Considering that UK government began to release NHS hospital 

beds after COVID-19 breakouts, we assumed the occupied ratio 

reduced to 80% and would further fall to 40% by April 04, 2020. 

Accounting for other serious disease cases requiring NHS hospital 

beds in the early breakout of COVID-19, we assumed that a ratio 

of available hospital beds for COVID-19 critical cases was initially 

at 80%, and gradually raised to 100%.   

The intervention intensity was related to the population density 

and human mobility. We gave an initialization to London and non-
London regions: London (M=15, population: 9.3 million), non-

London regions (M=15, population: 57.2 million). After taking any 

kind of interventions, we assumed the change of M would follow a 

reasonable decline or increase in 3-5 days.  

If we assumed the overall population of a certain region is N, the 

number of days is t, the dynamic transmissions of each components 

of our model are defined as follow:  𝑑𝑆(𝑡)𝑑𝑡 = − 𝛽1𝑆(𝑡)𝐼(𝑡)𝑁 − 𝛽2𝑆(𝑡)𝐸(𝑡)𝑁                               (1) 𝑑𝐸(𝑡)𝑑𝑡 = 𝛽1𝑆(𝑡)𝐼(𝑡)𝑁 + 𝛽2𝑆(𝑡)𝐸(𝑡)𝑁 − 𝛼1𝐸(𝑡) − 𝛾1𝐸(𝑡)   (2) 𝑑𝐼(𝑡)𝑑𝑡 = 𝑀(𝑡) + 𝐶(𝑡)                                           (3) 𝑑𝑅(𝑡)𝑑𝑡 = 𝛾1𝐸(𝑡) + 𝛾2𝑀(𝑡) + 𝛾3𝐶(𝑡)                    (4) 

    Regarding Mild cases, Critical cases and Death, the dynamic 

transmission is as below: 𝑑𝑀(𝑡)𝑑𝑡 = 𝛼1𝐸(𝑡) − 𝛼2 𝑐+𝑠𝑚 𝑀(𝑡) − 𝛾2𝑀(𝑡)                  (5) 𝑑𝐶(𝑡)𝑑𝑡 = 𝛼2 𝑐+𝑠𝑚 𝑀(𝑡) − 𝛾3𝐶(𝑡) − 𝑑 𝑐𝑐+𝑠 𝐶(𝑡)               (6) 𝑑𝐷(𝑡)𝑑𝑡 = 𝑑 𝑐𝑐+𝑠 𝐶(𝑡)                                                       (7) 

2.2 Implementation of dynamic transmission  
In practical cases, it needs to estimate the defined parameters 

including𝜶𝟏, 𝜶𝟐, β, and 𝜸𝟏, 𝜸𝟐, 𝜸𝟑, b, where β is the product of the 
people exposed to each day by confirmed infected people (k) and 

the probability of transmission (b) when exposed (i.e., β= kb) and 

σ is the incubation rate which is the rate of latent individuals 
becoming symptomatic (average duration of incubation is 1/𝜶𝟏). 

According to recent report [8], the incubation period of COVID-19 

was reported to be between 2 to 14 days, we chose the midpoint of 

7 days. γ is the average rate of recovery or death in infected 
populations. Using epidemic data from [6], we used SEMCR model 

to determine the probability of transmission (b) which was used to 

derive β and the probability of recovery or death (γ). The number 

of people who stay susceptible in each region was similar to that of 

its total resident population. Other transmission parameters were 

estimated with early prediction of Hubei cases in [6] on January 23 

2020 using Monte Carlo simulation, as shown in the Table.1  

Parameter i is the efficiency of isolation contacts. Parameter 

m is the proportion of mild case, parameter s is the proportion of 

severe case, and parameter c is the proportion of critical case. 

Parameter O is the percentage of people over 65 in the UK. 

Parameter β1 is the transmission rate from I to S, Parameter β2  is the transmission rate from E to S. Parameter 𝜑1  is the 

transmission rate from E to M (1/  𝛼1 (incubation period)), 

Parameter 𝜑2 is the transmission rate from M to C (1/ 𝛼2(average 

period from M to C)).  

Parameter 𝛾1  is the transmission rate from E to R 

(1/  ɤ1 (average period from E to R)), parameter 𝛾2  is the 

transmission rate from M to R (1/ ɤ2(average period from M to R)), 

parameter 𝛾3 is the transmission rate from NH to R (1/ ɤ3(average 

period from NH to R)), parameter 𝛾4 is the transmission rate of 

older people from IH to R (1/ ɤ4(average period of older people 

from IH to R)), parameter 𝛾5 is the transmission rate of non-older 

people from IH to R (1/ ɤ5(average period of non-older people from 

IH to R)). 

Parameter 𝛿1  is the transmission rate from NH to R 

(1/  𝑑1 (average period from NH to D)), parameter 𝛿2  is the 

transmission rate of older people from IH to R (1/  𝑑2 (average 

period of older people from IH to D)), parameter 𝛿3  is the 

transmission rate of non-older people from IH to R (1/ 𝑑3(average 

period of non-older people from IH to D)). 

Parameter 𝐵𝑡  is the number of hospital beds in the UK, 

parameter 𝐽𝑡  is the percentage of available hospital beds for 

COVID-19 critical cases, 𝐻𝑡  is the percentage of unoccupied 

hospital beds，𝑀𝑡  is the intensity of intervention. 

    Notably, as for the strength of intervention M, it was related to 

the population density in a region. We used a benchmark reported 

in [11] that assumes Hubei province with no intervention as M = 

15, and after suppression intervention, M reduced to 3. When 

applying SEMCR model into other simulated cases, M was 

initialized according to the population density and human mobility 

in these places. Also, after taking any kind of interventions, the 

change of M would follow a reasonable decline or increase over 

few days, not immediately occur at the second day.  

Following previous assumptions, the implementation of dynamic 

transmission of SEMCR model follows steps as below: St+1 = St − β1MtItStNt − iβ2MtItStNt   (8) Et+1 = Et + β1MtItStNt + iβ2MtItStNt − 𝜑1Et − 𝛾1Et (9) Mt+1 = Mt + 𝜑1Et − 𝜑2(s+cm )Mt − 𝛾2Mt (10) If  𝐶𝑡 > 𝐵𝑡𝐽𝑡𝐻𝑡 ∶  𝑁𝐻𝑡 = 𝐶𝑡 − 𝐵𝑡𝐽𝑡𝐻𝑡   (11) 𝐼𝐻𝑡 = 𝐵𝑡𝐽𝑡𝐻𝑡    (12) else  
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Figure 2: Illustration of controlling COVID-19 outbreaks in London and non-London regions by taking suppression and mitigation 

with parameters (a) London population: 9.30 million; non-London population: 57.2 million. (b) Suppression Intervention (M = 3), 

Mitigation Intervention: Low (M = 10). Moderate (M = 8). High (M =6). (c) Effectiveness of isolation in contact phase (before 12th 

March 2020): London. 94%, non-London: 88%. 

 𝑁𝐻𝑡 = 0   (13) 𝐼𝐻𝑡 =  𝐶𝑡   (14) Ct+1 = Ct + 𝜑2 (s+cm ) Mt − 𝛾3NHt − 𝛾4𝑂IHt − 𝛾5(1 − 𝑂)IHt −𝛿1 ( 𝑐𝑠+𝑐) NHt − 𝛿2 ( 𝑐𝑠+𝑐) 𝑂IHt − 𝛿3 ( 𝑐𝑠+𝑐) (1 − 𝑂)IHt (15) It+1 = Mt + Ct  (16) Dt+1 = Dt + 𝛿1 ( 𝑐𝑠 + 𝑐) NHt + 𝛿2 ( 𝑐𝑠 + 𝑐) 𝑂IHt +𝛿3 ( 𝑐𝑠+𝑐) (1 − 𝑂)IHt  (17) Rt+1 = Rt + 𝛾1Et + 𝛾2Mt + 𝛾3NHt + 𝛾4OIHt + 𝛾5(1 − 𝑂)IHt
 (18) 

2. EXPERIMENTS 

3.1 Effectiveness of suppression 
We estimated that suppression with intensity M = 3 was taken in 

both London and non-London regions in the UK on the 46th day 

(March 23rd, 2020). The model reproduced the observed temporal 

trend of cases within London, non-London and the UK. As shown 

in Fig.3, it captured the exponential growth in infections between 

the 35th day (March 12th, 2020) and the 55th day (April 1st, 2020). 

We estimated that at the day (on March 23th, 2020) to take 

intervention, daily infectious population (Exposed) in the UK 

actually reached 78579. Our results suggested there were nearly 11 

times more infections in the UK than were reported as confirmed 

cases (6650 on March 23rd, 2020). The infections in London nearly 

occupied about 51% of the overall UK infections. After 

implementing suppression, the results in the UK appeared a similar 

trend as Wuhan in Fig.1, where daily exposed and infectious  
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Figure 3: Illustration of controlling COVID-19 outbreaks in London and non-London regions by taking suppression and 3 weeks 

rolling intervention with parameters (a) London population: 9.30 million; non-London population: 57.2 million. (b) Suppression 

Intervention (M = 3), 3 weeks rolling intervention: M = 3-5-3-5, M = 3-4-3-4-3-4. (c) Effectiveness of isolation in contact phase (before 

12th March 2020): London. 94%, non-London: 88%.  

population were greatly reduced. The total deaths by the 200th day 

(August 24th, 2020) in the UK was about 23805, where London had 

about 9388 deaths and non-London regions had about 14117 deaths. 

The outbreak of COVID-19 could be possibly controlled by the 

100th day (May 16th 2020), and can be nearly ended by the 150th 

day (July 5th 2020). The difference was that the peak of daily 

infectious population (E = 54760) of London was nearly 3.4 times 

greater than the one in Wuhan (E = 15870); the peak time (the 50th 

day) of daily infections in London was 14 days later than the one 

(the 36th day) in Wuhan. It was probably because suppression 

applied in Wuhan (the 32nd day) was 3 days earlier than London 

(the 35th day). It implied that earlier suppression could reduce 

infections significantly, but may lead to an earlier peak time of 

healthcare demand.  

We estimated that the predicted Rt of London, non-London and 

the UK dramatically raised in the first 7 days to 2.5 above, and 

varied from the 2nd days (February 8th 2020) to from the 46th day 

(March 23th 2020), with values ranging from 2.5 to 3.2. Notably, 

non-London regions had slightly higher value of R than London 

during these days. That was because the total population in non-

London regions was about 5 times more than the Figure 3 in 

London, as a result of more susceptible and exposed population in 

non-London regions. After taking suppression in the UK, we 

estimated a rapid decline in R in later March, from 3 at the 46th day 

(March 23th 2020) to 1.4 at the 230th day (September 23rd 2020).  

3.2 Effectiveness of mitigation 
We simulated that mitigation with low, moderate and high intensity 

(M = 6, 8, 10) were taken in both London and non-London regions 

in the UK at the 46th day (March 23rd, 2020), as show in Fig.3.  

Considering that the UK went to delay phase on the 35th day (March 

12th, 2020), M in the UK was adjusted to 12 from March 12th 2020 

to March 23th 2020.  

The results showed that mitigation strategies were able to delay 

the peak of COVID-19 breakouts but ineffective to reduce daily 

infectious populations. We estimated that the peak of daily 

infectious population was reduced to 3.10 million (M = 10) to 1.33 

million (M = 8) or 0.28 million (M = 6); the peak date of daily 



 

 

infections was about on the 82th, 100th and 135th day. Compared to 

suppression, the total deaths in the UK increased to 2.17 million (M 

= 10) to 1.47 million (M = 8) or 37 thousand (M = 6), where London 

had about 0.27 million (M = 10) to 165 thousand (M = 8) or 41 

thousand (M = 6) and non-London regions had about 1.90 million 

(M = 10) to 1.30 million (M = 8) or 330 thousand (M = 6). The 

periods of breakouts with varied mitigations were extended to 180, 

200 or 300 days.  

Compared to suppression, mitigation taken in the UK gave a 

slower decline in R in late March, from 3 on the 46th day (March 

23rd 2020) to 1.4 on the 280th day (November 12nd 2020). It implied 

that during this period, there were more infections in the UK. But 

London had lower R than non-London regions; it implied that 

London probably would reach a certain level of “herd immunity” 
earlier. Above simulations appeared similar trends as findings,4 

taking mitigation intervention in the UK enabled reducing impacts 

of an epidemic by flattening the curve, reducing peak incidence and 

overall death. While total infectious population may increase over 

a longer period, the final mortality ratio may be minimised at the 

end. But as similar as taking suppression, mitigation need to remain 

in place for as much of the epidemic period as possible.  

3.3 Effectiveness of multiple interventions 
We simulated two possible situations in London and the UK by 
implementing rolling interventions as shown in Fig. 4. We assumed 

that all regions in the UK implemented an initial 3 weeks 

suppression intervention (M=3) from the 46th day (March 23rd 2020) 

to the 67th day (April 13rd 2020). Then, two possible rolling 

interventions were given: 1) to keep suppression in London, and 

take a 3 weeks rolling intervention between suppression and high 

intensity mitigation (M = 5) in non-London regions; (2) to take a 3 

weeks rolling intervention between suppression and high intensity 

mitigation (M = 5) in all UK.  

    The simulated results showed the epidemic appeared a unimodal 

distribution trend over 350 days, longer than the period of 

suppression. Similar to suppression in Fig.3, the peak date of 

infectious population in London or non-London regions remain 

same at the 50th day. After three weeks, rolling intervention with 

released intensity in non-London regions led to a fluctuation with 

4 or 5 peaks of infections until the end of epidemic. The total deaths 

and infectious population in the UK were greatly reduced to a range 

from 33 thousand to 37 thousand. It was about 37% - 54% more 

than the outcome of taking suppression in all the UK. 

Above two rolling interventions taken in the UK gave a similar 

trend of R as suppression, where there was a fast decline in R in 

late March, from 3 on the 46th day (March 23rd 2020) to 1.4 on the 

230th day (September 23rd 2020). It implied that 3 weeks rolling 

intervention (M = 3 or 5) had equivalent effects on controlling 

transmissions as suppression, but need to be maintained in a longer 

period of 350 days. 

3.4 Optimal rolling intervention 

We simulated other possible rolling interventions with varied 

period (2, 3 and 4 weeks) and intensity (M = 4, 5 and 6), as shown 

in Table.2. The results first revealed that rolling intervention with 

middle intensity (M = 6) cannot control the outbreaks in one year, 

where the distribution of epidemic was a multimodal trend as 

similar to mitigation outcomes in Fig.3. The overall infections and 

deaths significantly increased to over 450 thousand and 60 

thousand. While the peak time of healthcare demand for severe 

critical cases delayed to the 80th – 110th day, the total deaths of the 

UK would be double than other rolling interventions with low 

intensity.  

Another finding was that given equivalent intensity (M= 3 or 5) 

of rolling interventions, the longer period (4 weeks) led to slight 

reduction of the total deaths to 36288, compared to 37432of 3 

weeks rolling and 38537 of 2 weeks rolling in the UK. The peak 

time of healthcare demand nearly occurred at same: the 64th-65th 

day; with an equivalent peak value. Thus, in balance of total deaths 

and human mobility restriction, 3 weeks of period might be a 

feasible choice.  

We considered the length of intervention in the UK impacting 

on social and economic. Maintaining a period of suppression in 

London, it was possible to control the outbreaks at the 100th-150th 

day that minimized economic loss to the greatest extent. Due to 

lower population density and less human mobility of non-London 

regions, 3 weeks rolling intervention was appropriated to non-

London regions for balancing the total infections and economic loss, 

but the length of this strategy was extended to 300 days.   

DISCUSSION 
Notably, the total infections estimated in our model was measured 

by Exposed population (asymptomatic), which might be largely 

greater than other works only estimating Infectious population 

(symptomatic). We found that a large portion of self-recovered 

population were asymptomatic or mild symptomatic in the 

COVID-19 breakouts in Wuhan (occupied about 42%-60% of the 

total infectious population). These people might think they had 

been healthy at home because they did not go to hospital for 

COVID-19 tests. It was one important issue that some SEIR model 

predicted infectious population in Wuhan that 10 times over than 

confirmed cases.12.13 Early release of intensity might increase a risk 

of the second breakout.  There are some limitations to our model 

and analysis. First, our model’s prediction depends on an 

estimation of intervention intensity that is presented by average-

number contacts with susceptible individuals as infectious 

individuals in a certain region. We assumed that each intervention 

had equivalent or similar effect on the reproduction number in 

different regions over time. The practical effectiveness of 

implementing intervention intensity might be varied with respect to 

cultures or other issues of certain county. In the UK or similar 

countries, how to quantify intervention intensity needs an accurate 

measure of combination of social distancing of the entire 

population, home isolation of cases and household quarantine of 

their family members. As for implementing rolling interventions in 

the UK, the policy needs to be very specific and well-estimated at 

each day according to the number of confirmed cases, deaths, 

morality ratio, health resources, etc. Secondly, our model used a 

variety of plausible biological parameters for COVID-19 based on 

current evidence as shown in Table.1, but these assumed values 

might be varied by populations or countries. For instance, we 

assumed that average period of mild cases to critical cases is 7 days, 

and average period of elderly people in hospital from severe cases 

to deaths was 14 days, etc. The change of these variables may 

impact on our estimation of infections and deaths in the UK. Lastly, 

our model assumes a condition that there will be a reasonable 

growth of available hospital source as time goes in the UK after 

23rd March 2020. This was actually supported by latest news that 

Nightingale hospital that enables holding 4000 patients opened at 

London Excel centre on 4th April 2020.24  Our results show that 
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taking rolling intervention is one optimal strategy to effectively and 

efficiently control COVID-19 outbreaks in the UK. This strategy 

potentially reduces the overall infections and deaths; delays and 

reduces peak healthcare demand. In future, our model will be 

extended to investigate how to optimise the timing and strength of 

intervention to reduce COVID-19 morality and specific healthcare 

demand.  

3. CONCLUSIONS 
This paper conducts a feasibility study by defining a mathematical 

model named SEMCR that analyses and compares mitigation and 

suppression intervention strategies for controlling COVID-19 

outbreaks in London and Wuhan Cases. The model was fitted and 

evaluated with public dataset containing daily number of confirmed 

active cases including Wuhan, London, Hubei province and the UK. 

The experimental findings show that the optimal timing of 

interventions differs between suppression and mitigation strategies, 

as well as depending on the definition of optimal. In future, our 

model could be extended to investigate how to optimise the timing 

and strength of intervention to reduce COVID-19 morality and 

healthcare demand in mobile application.    

4. DATA AND CODE 
All data and code required to reproduce the analysis are available 

online at: https://github.com/TurtleZZH/Feasibility-Study-of-

Mitigation-and-Suppression-Intervention-Strategies-for-
Controlling-COVID-19.git  
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