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G E O C H E M I S T R Y

An enormous sulfur isotope excursion indicates marine 
anoxia during the end-Triassic mass extinction
Tianchen He1*, Jacopo Dal Corso1,2*, Robert J. Newton1*, Paul B. Wignall1, Benjamin J. W. Mills1, 
Simona Todaro3, Pietro Di Stefano3, Emily C. Turner1, Robert A. Jamieson1, Vincenzo Randazzo3, 
Manuel Rigo4, Rosemary E. Jones5, Alexander M. Dunhill1

The role of ocean anoxia as a cause of the end-Triassic marine mass extinction is widely debated. Here, we present 
carbonate-associated sulfate 34S data from sections spanning the Late Triassic–Early Jurassic transition, which 
document synchronous large positive excursions on a global scale occurring in ~50 thousand years. Biogeochemical 
modeling demonstrates that this S isotope perturbation is best explained by a fivefold increase in global pyrite 
burial, consistent with large-scale development of marine anoxia on the Panthalassa margin and northwest 
European shelf. This pyrite burial event coincides with the loss of Triassic taxa seen in the studied sections. Modeling 
results also indicate that the pre-event ocean sulfate concentration was low (<1 millimolar), a common feature of 
many Phanerozoic deoxygenation events. We propose that sulfate scarcity preconditions oceans for the develop-
ment of anoxia during rapid warming events by increasing the benthic methane flux and the resulting bottom-water 
oxygen demand.

INTRODUCTION
The end-Triassic mass extinction (ETME) is one of the largest 
known biological crises of the Phanerozoic and is regarded as one of 
the “Big Five” (1). This extinction has been linked with voluminous 
volcanism during the emplacement of Central Atlantic magmatic 
province (CAMP) and its associated environmental effects (2). 
These effects include global warming and ocean anoxia. Existing 
evidence suggests that basinal marine anoxia was widespread on the 
northern Panthalassan margin of Pangaea and that intense shelf 
euxinia also became widespread in the latest Triassic–earliest Jurassic 
of Western Europe, but some of these conditions developed, some 
~150 thousand years (ka) after the onset of the ETME (3–6). Addi-
tional findings from seawater 238U in the Lombardy basin of western 
Tethys suggest an increase in the extent of anoxic deposition 
through the Triassic-Jurassic boundary (7). However, in other 
oceans, clear evidence for widespread anoxia in the latest Rhaetian 
that directly coincides with the beginning of ETME has not been 
recorded, leaving its role as the cause of the marine component of 
the ETME questionable (8).

Carbonate-associated sulfate (CAS) in bulk marine carbonate 
and biogenic calcite is widely used to reconstruct the primary sea-
water sulfate S isotope composition during major redox perturba-
tions of the Earth surface system (9–13). Seawater sulfate 34S 
is dynamically controlled by variations in the fluxes and isoto-
pic compositions of riverine sulfate sources and marine pyrite buri-
al. The removal of sulfate from the oceans via gypsum precipitation 
does not impart an isotopic fractionation, but this removal makes 
the global sulfate reservoir smaller and, therefore, more isotopically 
susceptible to changes in other fluxes (14). The production and 
burial of pyrite represent a primary redox-sensitive pathway in the 

marine sulfur cycle, which drives a large offset between the sulfur 
isotopic composition of the seawater sulfate and sedimentary pyrite 
pools, and thus may control variations in the S isotope composition 
of oceanic sulfate (34SCAS) through time. Large and rapid global-
scale S isotope perturbations, as well as the small ocean sulfate 
reservoirs needed to produce them, seem to be a feature of major 
deoxygenation events of the Phanerozoic (9–13). Although there is 
some evidence in the sedimentary pyrite isotope record that sug-
gests the regional development of marine anoxia at the ETME 
(5, 15, 16), direct records of changes in the marine sulfate pool and 
therefore impacts on the global sulfur cycle are undocumented.

Here, we report three open marine CAS-34SCAS profiles from 
Sicily [Mount Sparagio section (MS)], Northern Ireland [Cloghan 
Point section (CP)], and British Columbia [Black Bear Ridge section 
(BBR)] (Fig. 1). These derive from both Tethyan and Panthalassan 
locations; the first two sections archive well-preserved, shallow-water, 
peritidal, micritic, and shelly limestones and shell materials (17, 18); 
and the last section consists of open-shelf, organic-rich, and 
bivalve-rich marly limestone (6, 19). The sections span the Norian 
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Fig. 1. Simplified paleogeographical map for Triassic-Jurassic transition 
showing localities for all three studied sections. This figure is modified after the 
work of Luo et al. (16). T-J, Triassic-Jurassic. Yellow filled triangles indicate the loca-
tion of studied sections. The paleogeographical location and the extent of CAMP 
are based on the work of Marzoli et al. (42).
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to lower Hettangian and record the major losses of the ETME 
(6, 17–19). Therefore, they provide a window into the possible links 
between the ecosystem response and marine redox variations in 
Late Triassic oceans over a broad area (see Materials and Methods 
and the Supplementary Materials for analytical procedures, strati-
graphic correlations, and sample descriptions).

RESULTS
Sulfate S isotope trends
All 34SCAS profiles from three different localities show similar 
trends (Fig. 2), although the absolute values vary between the Euro-
pean and North American sections (see the Supplementary Materials 
for evaluation of diagenesis and data). In all sections, a large posi-
tive 34SCAS shift with a magnitude of >10 per mil (‰) is seen in the 
latest Rhaetian [~201.5 million years (Ma) ago] and coincides pre-
cisely with the extinction horizon (Fig. 2). Two consecutive positive 
34SCAS excursions are shown at the MS, while only a single spike is 
seen at the other two sections. At the CP, only the falling limb of the 
positive excursion was recovered because of the absence of suitable 
bulk carbonate or shell material below this level. The pre- and post-
excursion baseline values for the two Tethyan sections are be-
tween 15 and 20‰, which are close to the existing global 34SCAS and 
evaporite dataset for the Late Triassic (20). By contrast, the 34SCAS 
record at the Panthalassa BBR generally yields more positive baseline 
values and a slightly larger positive swing (see discussion in the 
Supplementary Materials). This is likely due to the development of 
sulfate isotopic and concentration heterogeneity between Tethyan 

and Panthalassan sites under low sulfate conditions (9, 11). Note 
also that the positive sulfate 34SCAS excursion at the BBR is mir-
rored by synchronous positive 34S shifts in sedimentary pyrite at 
a deeper site (Kennecott Point section) in eastern Panthalassa (15), 
suggesting a coupled behavior in both marine oxidized and reduced 
sulfur sinks.

Duration of the S isotope excursion event
We calculated the age model at the most stratigraphically complete 
Tethyan MS (Fig. 2). The duration of the shift from the baseline 
value (~16 to 17‰) to the first peak value (~31‰) is estimated to 
take ~50 ka with the assumption of a constant sedimentation rate 
and a Rhaetian duration of 4.1 Ma (see the Supplementary Materials 
for details). This time frame is broadly in agreement with the equally 
short-lived major phase of the extinction, which was proposed to 
last for ~40 ka (21). Thus, the observed 34SCAS-positive excursion 
event in the latest Triassic appears to represent an extreme and 
short-lived perturbation when compared to other similar positive S 
isotope events during, for example, the end-Permian extinction 
(~100 ka) (12), Toarcian oceanic anoxic event (OAE) (~1 Ma) 
(9, 11), and Cretaceous OAE 2 (~0.5 Ma) (10).

DISCUSSION
Latest Triassic anoxia, enhanced pyrite burial, and low 
marine sulfate
The observed positive swing in the S isotope composition of seawater 
sulfate in the latest Triassic could have been driven by an increase in 
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Fig. 2. 34SCAS profiles from Late Triassic to Early Jurassic for the three studied sites of the Tethys and Panthalassa oceans. R., Rhaetian. The orange shadowed field 
indicates the extended extinction interval following the major mass extinction horizon. The light green field indicates a hiatus between Norian and Rhaetian at the 
BBR. Dark green bars represent the fossil occurrence ranges. See the Supplementary Materials for further stratigraphic details. Vertical dash lines indicate pre- or postex-
cursion average baseline values.
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the net burial of sedimentary pyrite under expanded anoxic/euxinic 
conditions (22). These conditions result in enhanced microbial sul-
fate reduction (SR), leading to an enhanced pyrite burial flux on the 
continental shelves and slopes when there is sufficient supply of 
available iron and organic matter. Because pyrite is depleted in the 
heavier isotope 34S, elevated burial fluxes on a global scale would 
drive the seawater sulfate 34S to more positive values. The oxida-
tive biotic pathway of the global sulfur cycle may also have the po-
tential to drive seawater sulfate 34S enrichment to some extent via 
microbial sulfide oxidation by some sulfide-oxidizing micro-
organisms (23). However, the contribution of this oxidative meta-
bolic pathway to the oceanic sulfate pool remains unclear, and there 
is no obvious mechanism for it to have driven a prolonged positive 
S isotope excursion in the global seawater sulfate inventory. On a larger 
scale, it may be possible to drive S isotope variations by altering the 
weathering rates of continental pyrite and gypsum; here, a geologi-
cally sudden increase in seawater 34S might represent a cessation of 
pyrite weathering and a switch to an isotopically heavy riverine flux.

To investigate the response of seawater sulfate 34S to the varia-
tions of oceanic sulfate inventory and the degree of change in the 
net pyrite burial flux, we applied a time-dependent sulfur cycle single-
box model (24). The model assumes that the isotopic composition 
of the pyrite and gypsum weathering fluxes remain constant, and 
experiments then alter the pyrite input and output fluxes through 
either weathering or burial. Full model details are in Materials and 
Methods and the Supplementary Materials. Figure 3 (A and B) 
shows the results of increasing the pyrite sulfur burial flux for 50 ka 
by a factor of between 2 and 10 to simulate black shale deposition, 
driven by large-scale marine anoxia and increased supply of nutri-
ents from warming-induced continental weathering (2). In the 
model, a substantial increase in pyrite burial by approximately a 
factor of 5 and a very small marine sulfate reservoir (<1 mM) is re-
quired to replicate the magnitude and timing of the 34SCAS shift 
(Fig. 3B). The version of the model in Fig. 3 (A to C) fixes the isotopic 
enrichment of buried pyrite at 30‰ more negative than contempo-
raneous seawater sulfate, but the expansion of euxinia may have 
increased this enrichment factor; thus, we also experiment with 
a scenario in which this is increased to 40‰ during the event 
(Fig. 3, D to F) (10). This experiment has a very similar requirement 
for a large increase in pyrite burial and very low seawater sulfate 
concentration. Note that it is the size, direction, and duration of 
change that are the important foundations of our modeling ap-
proach. Differences in regional sulfate isotope baselines have no 
impact on the conclusions from the modeling work, as a similar sized 
isotope excursion is present in all records. Replicating the change in 
34S by reducing pyrite weathering rates while maintaining the same 
gypsum weathering flux (Fig. 3, C and F) is much more difficult and 
requires a complete cessation of pyrite weathering and extremely 
low ocean sulfate (~0.1 mM). Even then, the shape of the excursion 
is not readily reproducible, as the very low sulfate concentrations 
mean that the system rapidly recovers from the perturbation.

The maximum marine sulfate concentrations can be inde-
pendently estimated using the maximum rate of change in 34SCAS. 
The “rate method” model (13, 25) gives an upper estimate for 
marine sulfate of ~0.2 to 1.1 mM for the interval through the Late 
Triassic–positive isotope excursion event (Materials and Methods 
give the model details). The lower end of these maximum estimates 
is consistent with the calculations inferred from our sulfur cycle box 
model (Fig. 3). Therefore, the intervals predating and during the 

positive S isotope excursion event appear to be characterized by a 
scarcity of oceanic sulfate when compared to a higher fluid inclu-
sion–based estimate of ≥13 mM during the Carnian, although this 
was ca. 20 Ma earlier (26). The development of a low sulfate ocean 
in the later Triassic was likely caused by substantial evaporite depo-
sition. As shown in global compilations for this interval (27), mini-
mum estimates of global halite deposition suggest a 16-fold increase 
from the Middle to Late Triassic. By contrast, the earlier part of the 
Triassic experienced a low level of evaporite occurrence following 
the end-Permian extinction (27). Late Triassic evaporites were de-
posited in newly formed rift basins that developed in an arid climate 
as Pangaea began to break up (27). When examined on a regional 
scale, for example, evaporite deposition became widespread sur-
rounding the North Atlantic rift (northeastern Grand Banks, Oranian 
meseta, and Western Europe) during the Late Triassic and sub-
sequently peaked in the Earliest Jurassic (28).

Low sulfate facilitates the rapid expansion of  
anoxia during warming
Our finding of low marine sulfate concentrations preceding an episode 
of massive pyrite burial in the latest Triassic adds to an increasing 
number of studies that link low seawater sulfate with the expansion 
of anoxic waters in the oceans (table S2) (9–13). Here, we propose a 
conceptual model to link these observations. Marine sulfate and or-
ganic carbon availability exert a major control over the balance be-
tween three microbially mediated biogeochemical pathways in marine 
sediments (Fig. 4): SR (SO4

2− + 2CH2O → H2S + 2 HCO3
−), 

methanogenesis (CH3COO− + H+ → CH4 + CO2 and CO2 + 
4H2 → CH4 + 2H2O), and the anaerobic oxidation of methane 
(AOM) (CH4 + SO4

2− → HCO3
− + HS− + H2O). Under high sulfate 

conditions such as the modern ocean, SR consumes large amounts 
of organic carbon, while methane is produced deeper in the sediment 
where sulfate has been depleted. The overlying sulfate-rich pore 
water fuels AOM and prevents substantial benthic methane escape, 
therefore limiting bottom-water oxygen consumption (Fig. 4A). In 
contrast, under conditions of low sulfate availability, the balance of 
processes oxidizing organic matter in marine sediments shifts in favor 
of methanogenesis (Fig. 4B), as occurs widely in freshwater sedi-
ments (e.g., lakes) (29, 30), where sulfate supply is usually limited. 
Lower sulfate concentrations bring the sulfate-methane transition 
zone closer to the sediment-water interface (SWI) and reduce the 
amount of organic matter consumed by SR, ultimately increasing 
the organic carbon flux to methanogens and limiting the capacity 
for anaerobic oxidation of the resulting methane. The organic matter 
reaching the zone of maximum methanogenesis will also have in-
creased reactivity. The result is a greater flux of methane from the 
sediment, leading to increased aerobic respiration of methane close 
to the SWI (Fig. 4B) placing an increased burden on bottom-water 
O2 levels (12, 31, 32).

In the modern system, around 98% of all buried organic carbon 
in the ocean is stored in continental margin sediments (30). On 
average, around 20% of the global organic carbon flux (~191 Tmol 
C year−1) to the seafloor is processed via SR, and ~3 to 4% is converted 
to methane, giving an annual methane flux from seafloor of ~5.7 to 
7.6 Tmol CH4 year−1 (30, 33, 34). If we assume that a drawdown in 
oceanic sulfate concentration by ~97% from 29 mM (modern value) 
to 1 mM will reduce the rate of SR by a similar amount and that the 
excess organic matter will all be used by methanogens (i.e., they 
now process ~22 to 23% of the organic carbon), then the methane 
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flux would rise to around ~42 to 44 Tmol CH4 year−1. This calculation 
is conservative, since it does not take into account any increase in 
reactivity of the organic matter reaching the methanogenic zone. 
Furthermore, suppression of AOM under these low sulfate condi-

tions would make it easier for this methane to reach the water column 
and consume free O2. Making more detailed calculations on the 
expected impact of low sulfate conditions on water column O2 de-
mand requires further modeling, which is beyond the scope of this 
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Fig. 3. Sulfur cycle box model outputs. (A and B) Increased in the pyrite burial rate under different values for the starting oceanic sulfate inventory, with tests of 1 mM 
(A) (yellow) and 0.33 mM (B) (red). For both scenarios, a step increase in pyrite burial is assumed to occur at t = 0 over a period of 50 ka, which represents the ETME. Both 
models assume the same increase in pyrite burial rates, which ranges from 2- to 10-fold to create the shaded area, with the centerline showing a fivefold increase. The 
best fit to the data occurs for marine sulfate concentration [SO4] = 0.33 mM (B). (C) Attempts to fit the 34SCAS data by instead reducing the pyrite weathering rate to zero 
over the same 50-ka time frame. Here, regardless of [SO4], the shape of the curve cannot be fit. This is because creating the large excursion this way requires extremely 
low [SO4], and, in these circumstances, the system is quick to regain isotopic stability. (D to F) Repetition of these experiments with the addition of a change in the enrich-
ment factor S between oceanic sulfate and sedimentary pyrite and continuation to produce a better fit when [SO4] = 0.33 mM.
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study, but our calculations demonstrate that there is clear potential 
for at least a six- or sevenfold elevation in the methane flux at the 
SWI and a concomitant increase in the global consumption of ben-
thic O2. Note that these elevated demands on bottom-water O2 exist 
where sulfate concentrations are low and before any additional 
drivers from the release of volcanic CO2.

Finding evidence for elevated aerobic methane oxidation under 
low sulfate conditions in the sedimentary record is not simple be-
cause the resulting dissolved inorganic carbon (DIC) flux, while large 
when considered in the context of dissolved oxygen uptake, is small 
compared to the abundance of ocean DIC, especially when oxida-
tion takes place in the water column as proposed. Isotopically de-
pleted carbonate cements form from pore waters and are a common 
feature of the sedimentary record and so do not provide definitive 
evidence. Calcifying organisms living at the SWI are likely to pro-
vide the best archive for recording this process, evidence for which 
has been recognized in high-latitude late Cretaceous bivalves (31).

A key feature of our conceptual model is that sulfate poor condi-
tions are established before volcanic perturbation, likely by wide-
spread evaporite deposition (Fig. 4, C and D). Previously, authors 
have explained the link between the expansion of marine anoxia 
during large igneous province (LIP)–driven warming and extinc-
tion events via the decreased solubility of O2 in warmer waters and 

increased productivity and oxygen demand driven by increased 
weathering fluxes of nutrients from land and the recycling of phos-
phorus once euxinic water column conditions are established (35). 
The higher bottom-water oxygen demand of a steady-state Earth 
system with a small marine sulfate reservoir will predispose the 
oceans to the rapid expansion of anoxic conditions via these mech-
anisms. In addition, a low sulfate ocean is likely to impose some 
additional feedbacks once warming has been initiated: The rate of 
methanogenesis is highly temperature sensitive (36), so methane 
production will increase with sediment temperature, a situation 
amplified by the reduced depth to the methanogenic zone under 
low sulfate conditions. Increased marine organic matter production 
will increase the delivery of organic matter and its reactivity to the 
methanogenic zone in sediments, again adding to increased methane 
fluxes across the SWI and O2 consumption from methane oxidation. 
Pyrite burial will increase as anoxic conditions expand, creating 
downward pressure on marine sulfate concentrations, although this 
may be countered by bigger fluxes of weathered sulfate from land. 
Elevated global marine methane production may also promote 
methane release to the atmosphere and thereby contribute to warming 
trends initiated by the large-scale release of volcanic CO2, although 
much of the additional methane production is likely to be oxidized 
in the water column. These additional feedbacks may explain why 
the expansion of anoxic conditions is more severe under low sulfate 
conditions and why not all LIP-driven warming events create wide-
spread oxygen depletion.

Marine anoxia and mass extinction
Although anoxia may not have developed on the deep ocean floor 
during the Triassic-Jurassic transition (8), other geochemical evi-
dence, in the form of enrichment of redox-sensitive elements (e.g., 
Mn and Mo) and nitrogen isotope fluctuations, suggests that there 
was a major intensification of the mid-water oxygen minimum 
zone (OMZ) in the Panthalassa Ocean at the time (19, 37). Tangible 
evidence for this is seen where the OMZ impinged on the western 
margin of the Pangean supercontinent, leading to extensive black 
shale deposition in Western Canada (6, 38). Euxinia also became 
extensive in the latest Triassic shelf seas of Western Europe, both 
during and at the termination of the mass extinction phase (3, 5). 
Uranium isotope data from marine carbonates provide a possible 
measure of ocean redox conditions with negative excursions of 238U 
values signifying enhanced reduction from U(VI) to U(IV) (7). Such 
a signal, seen at the start of the mass extinction, suggests a major 
increase in the area of anoxic deposition that lasted for ~50 ka (7).

Our 34SCAS excursions reveal a similar link between the onset of 
mass extinction and an anoxia-driven isotopic excursion. The link 
is most clearly seen in western Tethys (MS) where megalodont 
bivalves and the foraminifer Triasina hantkeni are suddenly lost at 
the onset of the positive shift (Fig. 2) (17). Although there is no 
direct evidence for anoxia at this peritidal location, some contem-
poraneous anoxic sedimentary matrices are seen at a neighboring 
site that was also connected to the western Tethys (39). There is a hi-
atus in the Panthalassan section (BBR), but the extinction level is still 
recorded. This occurs in the dysoxic strata of the basal Fernie For-
mation, where the last Rhaetian conodonts disappear, and is co-
incident with the 34SCAS excursion (Fig. 2) (6). The extinction of 
monotid bivalves at BBR marks an earlier crisis at the end of the 
Norian, several million years before the end-Triassic event (6, 19). 
The end-Triassic extinction is also seen at CP, where several bivalve 
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indicate retardation. (C and D) The envisaged oxygen depletion responses of the 
ocean to the same CO2 forcing under high and low sulfate conditions. Sulfate is 
thought to be removed by evaporite deposition. Marine anoxia is exacerbated by 
the increased oxygen demand as net seafloor methane fluxes increase during warm-
ing. MG, methanogenesis. SMTZ, sulfate-methane transition zone.  on S
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species, including the Rhaetian marker Rhaetavicula contorta, 
disappear at the base of the Cotham Member (Fig. 2). The lack of 
limestones at this level precludes measurement of 34SCAS, but the 
lowest data point obtained in this section, a short distance above, 
displays a strongly positive value (Fig. 2). In summary, the major 
34SCAS excursion found here is best explained by a major pyrite 
burial event driven by a large-scale, increase in anoxia in the late 
Rhaetian. Our age model for the MS section suggests a 50-ka duration 
for the initial positive shift in 34SCAS, a time span in remarkable 
accord with the 50-ka estimate for the main anoxia intensification 
during latest Rhaetian based on the contemporary uranium isotope 
record (7). Subsequently, the gradual falling limb of the 34SCAS 
excursion corresponds with the second phase of limited anoxia 
that extended into the Hettangian (7). The event also saw the intensi-
fication of the Panthalassan OMZ and the deposition of black shales 
on the Pangean margin and in the shelf seas of Europe. Shallowest 
water locations, such as MS, remained oxygenated. The coincidence 
of the 34SCAS excursion with the extinction losses implicates anoxia 
as an important factor in the crisis.

The late Permian and the Mesozoic Era were punctuated by re-
curring OAEs accompanied by hyperthermal events and enhanced 
weathering that coincide with the eruption of LIPs (2, 12, 35). Large 
positive S isotope shifts in seawater sulfate provide evidence of a 
greatly reduced marine sulfate reservoir and enhanced pyrite burial 
for many of these OAEs (9–12). We explain this generalized coinci-
dence via a mechanistic linkage between low dissolved sulfate, 
enhanced sedimentary methane generation, and consequent elevated 
bottom-water O2 consumption. Hence, we propose that a low sul-
fate boundary condition before volcanically driven greenhouse 
warming events makes the expansion of anoxic conditions more 
likely and that associated feedbacks during the event extend the 
geographic reach and intensity of anoxia. Many of these events are 
preceded by increased evaporite burial fluxes, suggesting that this is 
the mechanism for sulfate removal from the ocean (27, 32, 40). 
Hence, the development of widespread anoxia during rapid warm-
ing may ultimately trace some of its origins to widespread rifting or 
other circumstances that create favorable conditions for evaporite 
deposition.

MATERIALS AND METHODS
CAS extraction and elemental analysis
Micritic limestone samples were targeted for the extraction of CAS, 
but a few shell fragments and sparitic samples were selected from 
the CP and BBR in the absence of pure micritic carbonate materials 
(see lithological description for individual sample in data file S1). 
For bulk limestone samples, weathered surface or crusts were re-
moved before grinding to a fine powder using a TEMA laboratory 
agate disc mill. Shell fragments were powdered by hand using 
an agate mortar. We applied a modified and miniaturized CAS 
extraction method that follows the work of He et al. (13) and 
Newton et al. (9), ~10 g of powder of the bulk limestone or ~0.8 g of 
powder of shell fragments was first bleached in excess 6% NaOCl 
for 48 hours to oxidize organic sulfur and metastable sulfide minerals 
to soluble sulfate. The bleaching step was repeated for the pyrite-
rich samples from the BBR. The bleached solution was retained 
after filtration through 0.2-m polypropylene membrane syringe 
filters, acidified with 6 M HCl, followed by addition of saturated 
BaCl2, and left to precipitate BaSO4 over a week at ~2°C to de-

celerate the barite crystal growth rate. The solid bleached residue 
was then washed in 10% NaCl solution for 24 hours to remove 
easily soluble sulfate and other non-CAS sulfur-bearing compounds. 
This NaCl wash step was repeated five times to guarantee the 
removal of non-CAS water-soluble sulfur contaminates (13). No 
BaSO4 precipitate was seen upon addition of BaCl2 to the final wash 
filtrate. We also measured sulfur concentrations in these final wash 
filtrates using a Thermo Fisher iCAP 7400 radial inductively cou-
pled plasma optical emission spectrometer (ICP-OES) in the Cohen 
Geochemistry Laboratory, University of Leeds, but no sulfur was 
detected. Note that NaCl washes are necessary after the NaOCl 
bleach step to ensure the removal of soluble sulfate contaminates 
that were generated during the bleaching process. The NaCl-washed 
solid residue was then treated with an excess 6 M HCl to extract 
CAS. The acid digestion was finished within 20 min to minimize 
the potential for oxidation of any remaining pyrite contaminates. 
The extracted CAS solution was retained by filtration through 
0.2-m polypropylene membrane syringe filters. An aliquot of the 
filtered solution was measured for the concentration of sulfur and 
other elements (Ca, Mg, Fe, Sr, and Mn) using the ICP-OES. The 
analytical precisions for these elements were better than 3%. 
Saturated BaCl2 was then added to the remaining filtered solution 
and left to precipitate BaSO4. The resulting BaSO4 precipitate 
was repeatedly washed by ultrapure water before being dried and 
weighed out for isotope measurement.

S isotope measurement
Sulfur isotopic analysis of dried BaSO4 precipitate from both the 
bleached filtrate and CAS solution were also carried out in 
the Cohen Geochemistry Laboratory using an Elementar PYRO cube 
coupled to an IsoPrime continuous flow mass spectrometer. 
The sample was weighed into an 8 mm by 5 mm tin cup and com-
busted at 1150°C in a flow of helium (CP grade) and pure oxygen 
(N5.0). Complete combustion was obtained by passing the gas 
through tungstic oxide held at the same temperature. Excess ox-
ygen was removed from the gas stream using pure copper wires 
held at 850°C, and water was removed using SICAPENT. The 
resulting SO2 gas was separated from any contaminating N2 or 
CO2 by temperature-controlled adsorption/desorption columns. 
All solid reagents were sourced from Elemental Microanalysis, 
UK, and all gases were from BOC, UK. The sample 34S value is 
derived using the integrated mass 64 and 66 signals of the sam-
ple relative to those in a pulse of SO2 reference gas (N3.0). These 
values were calibrated to the international Vienna-Canyon Diablo 
Troilite (V-CDT) scale using a seawater-derived lab barium sulfate 
standard, SWS-3, which has been analyzed against the international 
standards NBS-127 (20.3 ‰), NBS-123 (17.01 ‰), IAEA S-1 (−0.30 ‰), 
and IAEA S-3 (−32.06 ‰) and assigned a value of 20.3‰, and an 
interlab chalcopyrite standard CP-1 assigned a value of −4.56 ‰. 
The precision obtained for repeat analysis of a laboratory check stan-
dard BaSO4 was ±0.3‰ (1 SD) or better.

Rate method and the sulfur cycle box model
The rate method (13, 25, 41) was performed to estimate the 
maximum seawater sulfate concentrations using the parame-
ters and calculation method described in the work of He et al. 
(13). The sulfur cycle box model follows the work of Witts et al. 
(24). Fluxes and parameters for the model are shown in table S1, 
and further information is given in the Supplementary Materials.

 on S
eptem

ber 30, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


He et al., Sci. Adv. 2020; 6 : eabb6704     9 September 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 8

SUPPLEMENTARY MATERIALS
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