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This paper proposes to estimate possibly misspecified semiparametric estimating equations
models using a two-step combined nonparametric likelihood method. The method uses in the
first step the plug in principle and replaces the infinite dimensional parameter with a consis-
tent estimator. In the second step an estimator for the finite dimensional parameter is ob-
tained by combining exponential tilting with a another member of the empirical Cressie-Read
discrepancy. The resulting class of semiparametric estimators are robust to misspecification
and have the same asymptotic variance as that of the efficient semiparametric generalised
method of moment estimator under correct specification. It is also shown that the asymptotic
distributions of the proposed estimators can be consistently estimated by a multiplier boot-
strap procedure. The results of the paper are illustrated with a quadratic inference function
model and an instrumental variable partially linear additive model. Monte Carlo evidence
suggests that the proposed estimators have competitive finite sample properties.
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1. Introduction

In this paper we propose a novel estimation method for semiparametric estimating equa-
tions models, also known as moment conditions models in the econometric literature,
where the parameter of interest is finite dimensional and the nuisance parameter is in-
finite dimensional. These models are rather general and include, for example, semipara-
metric extensions to generalised instrumental variables models that are often used in the
economic and financial literature - see for example Hansen and Singleton (1982) - and to
generalised estimating equations and quadratic inference functions models that are very
popular in the statistical literature - see for example Liang and Zeger (1986) and Qu,
Lindsay, and Li (2000). One important feature of the method we propose is its robustness
to misspecification of the estimating equations themselves. By robust to misspecification
we mean that the proposed estimators are characterised by the standard n1/2 conver-
gence rate. Note also that the misspecification considered here is a global one (see (1)
below) and not the local one recently investigated by Kitamura, Otsu, and Evdokimov
(2013), who proposed an estimation method that is robust to local misspecification and
yields estimators with an asymptotic minimax property.
Misspecified estimating equations models are theoretically interesting and empirically
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relevant. For example, many asset pricing models are likely to be misspecified and, as
shown for example by Gospodinov, Kan, and Robotti (2013) and Gospodinov, Kan,
and Robotti (2014), using standard statistical inferences in such models could be very
misleading. Hall and Inoue (2003) and Grace and Reid (2010) provide other examples of
misspecified estimating equations models.
The method we propose is an alternative to generalised method of moments (GMM)

(Hansen 1982) that is based on a two-step version of the empirical Cressie-Read (ECR)
discrepancy approach, originally introduced by Baggerly (1998) as a generalisation of
Owen (1988)’s empirical likelihood, which includes other well-known nonparametric like-
lihoods including exponential tilting (see for example Kitamura and Stutzer (1997)),
Pearson’s χ2 and Euclidean likelihood (see for example Owen (1991)). In the context
of correctly specified estimating equations, estimators based on the ECR approach are
asymptotically equivalent to those based on the efficient GMM approach (see for example
Newey and Smith (2004)). This asymptotic equivalence is however lost with misspecified
estimating equations, since misspecification affects ECR and GMM estimators in a very
different way: GMM estimators are robust to misspecification but their asymptotic dis-
tribution depends on both the weighting matrix used in the estimation process and the
gradient of the estimating equations - see for example Hall and Inoue (2003) and Theorem
3.3 below. On the other hand, the robustness of ECR estimators crucially depends on
which nonparametric likelihood is used in the estimation process; for example Schennach
(2007) showed that the empirical likelihood estimator is not robust to misspecification.
This unusual behaviour can be explained informally by noting that in the case of em-
pirical likelihood the so-called implied probabilities - see (5) below for a definition, can
diverge causing a singularity in the first order conditions defining the estimator. Since
empirical likelihood corresponds to the ECR discrepancy with the user specific real val-
ued parameter γ = −1, the same informal argument can be used to deduce that no ECR
estimators based on any γ < 0 is in fact robust to misspecification. On the other hand,
ECR estimators based on γ ≥ 0 (for example Kitamura and Stutzer (1997)’s exponential
tilting and Owen’s (1991) Euclidean likelihood) are robust to misspecification, but can
result (for γ > 0) in implied probabilities that are not range preserving (i.e. they might
be negative or bigger than 1) - see Baggerly (1998), which is clearly not a desirable
property for inference. These two facts naturally lead to the combined ECR (CECR)
discrepancy approach considered in this paper. The estimator we propose combines ex-
ponential tilting and another member of the ECR discrepancy defined by a nonpositive
γ; for example, for γ = −1 the CECR estimator corresponds to the exponential tilting
empirical likelihood estimator of Schennach (2007), for γ = −1/2 the CECR estimator
is the exponential tilting Hellinger estimator, and γ = −2 the CECR is the exponen-
tial tilting Pearson’s χ2 estimator. The estimator is computed using an iterative process
based on a nested algorithm in which in the inner stage exponential tilting is used to
estimate the implied probabilities, while in the outer stage the other chosen member of
the ECR discrepancy is used to estimate the unknown parameter of interest.
To deal with the semiparametric nature of the estimating equations considered in this

paper, we propose a two-step version of the CECR estimator: the first step is used to
obtain a consistent nonparametric estimator of the infinite dimensional (nuisance) pa-
rameter, whereas the second step is used to estimate the finite dimensional parameter of
interest. The resulting two-step semiparametric CECR estimator is robust to misspecifi-
cation as is the two-step semiparametric GMM estimator, but as opposed to the latter its
asymptotic distribution does not depend on any weighting matrix nor on the gradient of
the estimating equations. At the same time, the two-step semiparametric CECR estima-
tor is asymptotically equivalent to the efficient two-step semiparametric GMM estimator
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(see for example Ackerberg, Chen, Hahn, and Liao (2014)) under correct specification and
an asymptotic orthogonality condition given in Assumption A3(ii) in Section 3 below.
These two characteristics imply that the proposed estimation method has two important
advantages over GMM: first, as opposed to the GMM estimates that under misspecifi-
cation depend on the chosen weighting matrix, the CECR estimates are unique. Second,
because estimation of the weighting matrix is a source of bias (Newey and Smith 2004),
the CECR estimator should typically have better finite sample properties, a claim that
will be confirmed in the simulation study reported in Section 5.
In this paper we make the following contributions: First, we establish the asymptotic

normality of the proposed two-step semiparametric CECR and GMM estimators that
have not been considered in the literature before. This result is rather general because
it considers the cases of the first step estimation either affecting or not affecting the
asymptotic variance of the finite dimensional parameter estimator. This result comple-
ments and/or extends results of Andrews (1994), Newey (1994), Chen, Linton, and van
Keilegom (2003), Hjort, McKeague, and VanKeilegom (2009), Bravo (2009) and Bravo,
Escanciano, and Van Keilegom (2020) among others. It is important to note that all of
these papers consider correctly specified and exactly identified semiparametric estimating
equations and thus their results cannot be directly applied to the misspecified estimating
equations considered in this paper.
Second, we consider the same weighted bootstrap used by Jin, Ying, and Wei (2001),

Ma and Kosorok (2005), and more recently by Lavergne and Patilea (2013) among others
and propose a weighted bootstrap procedure that can be used as an alternative to the
standard bootstrap to obtain the standard errors and more generally to approximate
the distributions of all of the estimators considered. Bootstrapping the standard errors
seems particularly useful in the context of the semiparametric estimators of this paper,
given the complicated structure of their asymptotic variances - see Section 5 below and
Sections 3.1 and 3.2 in the supplemental appendix for two illustrative examples. The
proposed weighted bootstrap procedure, often called multiplier bootstrap in the statis-
tical literature, does not require the semiparametric model to be in reduced form and it
is easy to implement, as it is based on randomly perturbing the objective function and
then recomputing the estimators.
Finally, we illustrate the results of the paper both theoretically and numerically by

considering two models that have not been previously considered in the semiparametric
literature: a semiparametric extension of a quadratic inference functions (QIF) model
and an instrumental variable partially linear additive model. These results extend, among
others, those obtained by Li (2000), Bai, Zhu, and Fung (2008) and Lai, Li, and Lian
(2013).
The rest of the paper is structured as follows: next section introduces the statistical

model and the estimators. Section 3 develops the asymptotic theory; Sections 4 and 5,
respectively, illustrate the theory with the two examples and report the results of the
Monte Carlo simulations. Section 6 contains some concluding remarks.
The following notation is used throughout the paper: “′” indicates transpose, “−”

denotes the generalised inverse of a matrix, ”⊗” denotes Kronecker product, ”‖·‖” and
”‖·‖F” denote, respectively, the standard Euclidean (Frobenius) norm for random vectors
(matrices) and a functional norm such as the sup norm for a pseudo-metric space of
functions F , ”tr”, ”vec” are the trace and vec operators, and finally for any vector v,
v⊗2 = vv′.
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2. The model and estimators

Let {Zi}ni=1 denote a random sample from the distribution P of Z ∈ Z ⊂ R
dz , θ ∈ Θ ⊂ R

k

denote a vector of unknown finite dimensional parameters, Θ is a compact set, and
h (Z) := h ∈ H = H1 × .... × Hm is a vector of unknown functions and H is a pseudo-
metric space of functions. The statistical model we consider is

E [g (Z, θ, h•)] = µ (θ, h•) for all θ ∈ Θ, (1)

where g (·) : Z×Θ × H → R
l (l ≥ k) is a vector-valued known function, µ (θ, h•) is the

indicator of misspecification such that infθ∈Θ ‖µ (θ, h•)‖ > 0, and h• is an element of
H that can be either the true parameter h0 or the pseudo-true parameter h∗ in case of
misspecification of h itself.
To introduce the two-step semiparametric estimators of this paper it is useful to assume

that (1) is correctly specified, that is µ (θ, h0) = 0 for θ = θ0, and that there exists a

preliminary nonparametric estimator ĥ of h0. One possible way to estimate θ0 is to use
GMM, with the resulting two-step semiparametric GMM estimator defined as

θ̂GMM = argmin
θ∈Θ

Q̂
Ŵ

(
θ, ĥ
)
, (2)

where

Q̂
Ŵ

(
θ, ĥ
)
=

1

n

n∑

i=1

g
(
Zi, θ, ĥ

)′
Ŵ

1

n

n∑

i=1

g
(
Zi, θ, ĥ

)
,

and Ŵ is a possibly random positive semidefinite weighting matrix.
An alternative method of estimating θ0 can be based on the nonparametric likeli-

hood approach, which consists of finding among the set of multinomial distributions
{πi (θ0)}ni=1 supported on the sample {Zi}ni=1 the one closest to the empirical distribu-
tion function, that is the nonparametric maximum likelihood estimator. In the case of
the ECR approach, this amounts to use the Cressie-Read power divergence criterion and
solve the generic program

min
πi(θ)

{
n∑

i=1

(nπi (θ))
γ+1 − 1

γ (γ + 1)
|

n∑

i=1

πi (θ) = 1,

n∑

i=1

πi (θ) g
(
Zi, θ, ĥ

)
= 0

}
, γ ∈ R, (3)

where γ is a user-specific parameter and the values γ = −1 and γ = 0, corresponding
to empirical likelihood and exponential tilting, should be interpreted as limits. By a
Lagrange multiplier argument, it is possible to show that the solution to (3) results in
the so-called profile ECR function

ΓECR
(
θ, λ̂, ĥ

)
=

n∑

i=1

(
1 + γλ̂′g

(
Zi, θ, ĥ

)) γ+1

γ

γ + 1
, (4)

where the estimated Lagrange multiplier λ̂ is associated with the restriction∑n
i=1 πi (θ) g

(
Zi, θ, ĥ

)
= 0. The two-step semiparametric ECR estimator of θ = θ0
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is then defined as θ̂ECR = argminθ∈Θ ΓECR
(
θ, λ̂, ĥ

)
. Crucially, under correct specifica-

tion the asymptotic distribution of n1/2
(
θ̂ECR − θ0

)
does not depend on the value of γ,

albeit some care should be taken if using the implied probabilities

πi

(
θ̂
)
=

(
1 + γλ̂′g

(
Zi, θ̂, ĥ

)) 1

γ

∑n
j=1

(
1 + γλ̂′g

(
Zj , θ̂, ĥ

)) 1

γ

(5)

for inference, since they are range preserving only for nonpositive values of γ, see for
example Baggerly (1998). On the other hand, as mentioned in the Introduction, under
global misspecification the value of γ becomes crucial, because only nonnegative values
of γ yield estimators that are robust to misspecification. Note also that we use the
notation λ (θ) to emphasise the dependence of the Lagrange multiplier λ on θ. This
dependence is not relevant in the case of correctly specified estimating equations models
as λ̂ (θ) converges to 0 uniformly in θ ∈ Θ, but becomes very important under global

misspecification since λ̂ (θ) converges to a nonzero limit that depends on the pseudo-true
value θγ∗ defined in the next section.
The two-step semiparametric CERC estimator we propose is robust to misspecification

and has range preserving implied probabilities. The estimator is defined as

θ̂CECR = argmin
θ∈Θ

n∑

i=1

(
nπe

i

(
θ, λ̂ (θ) , ĥ

))γ+1
− 1

γ (γ + 1)
(6)

for a given γ chosen in the range (−∞, 0], where exponential tilting is used to obtain the
implied probabilities

πe
i

(
θ, λ̂ (θ) , ĥ

)
=

exp
(
λ̂ (θ)′ g

(
Zi, θ, ĥ

))

∑n
j=1 exp

(
λ̂ (θ)′ g

(
Zj , θ, ĥ

))

with

λ̂ (θ) = arg max
λ(θ)∈Λ(Θ)

−
n∑

i=1

exp
(
λ (θ)′ g

(
Zi, θ, ĥ

))
. (7)

3. Asymptotic theory

It is important to define the so-called pseudo-true value θ∗, that is the parameter of
interest in misspecified estimating equations models. For the semiparametric two-step
GMM estimator (2), the pseudo-true value θ∗ is defined as the unique minimiser of the

probability limit of the objective function Q̂
Ŵ

(
θ, ĥ
)
, that is

θ∗ (W ) := θ∗ = argmin
θ∈Θ

µ (θ, h•)
′Wµ (θ, h•) ,

5
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where the definition emphasises the fact that the pseudo-true value θ∗ depends on the

matrix W, the (assumed positive definite) probability limit of the matrix Ŵ defined in (2)
- see Assumption A5(i) in the supplemental appendix for details. For the semiparametric
two-step CECR estimator (6), the pseudo-true value θ∗ is defined as the unique minimiser
of the expected Cressie-Read discrepancy, that is

θγ∗ = argmin
θ∈Θ

E

[
(nπe (θ, λ∗ (θ) , h•))

γ+1 − 1

γ (γ + 1)

]
,

where the definition emphasises the fact that pseudo-true value θγ∗ depends on the chosen
γ ∈ (−∞, 0], that is on the chosen member of the Cressie-Read divergence, and

λ∗ (θ) = arg max
λ(θ)∈Λ(Θ)

−E
[
exp

(
λ (θ)′ g (Z, θ, h•)

)]
, (8)

which exists and is unique by the strict concavity of −E
[
exp

(
λ (θ)′ g (Z, θ, h•)

)]
in λ (θ).

Note also that both definitions of pseudo true-value implicitly depend on h• - the prob-
ability limit of ĥ - and thus do not rely on the correct specification of h itself.
The main consequence of misspecification can be seen in the asymptotic variances

of both the two-step CECR and GMM estimators, which are more complicated than
the corresponding ones obtained under correct specification (compare (11) and (14) be-
low with (A.1) and (A.2) in the supplemental appendix). In particular, for the CECR
estimator the difference can be explained by the fact that under misspecification the
Lagrange multiplier estimator converges to a nonzero vector that implicitly depends on
the unknown parameter of interest, and this dependency introduces additional terms
in the corresponding asymptotic variance - see for example Sections 3.1 and 3.2 in the
supplemental appendix. For the GMM estimator the difference can be explained by the
fact that under misspecification both the gradient of the estimating equations and the
weighting matrix contributes to the asymptotic normality of the estimator - see Theorem
3.3 below for more details.
We introduce some additional notation: for any random scalar, vector or matrix

v (Z, θ, h), let v (Z, θ, h) = v (θ, h), v (Zi, θ, h) = vi (θ, h) and v̂ (θ, h) =
∑n

i=1 vi (θ, h) /n,

so for example g (Zi, θ, h) = gi (θ, h), and ĝ (θ, h) =
∑n

i=1 gi (θ, h) /n. For any h, h ∈ H,

we say that v (θ, h) is pathway differentiable at h in the direction of
[
h− h

]
if, for τ ∈ [0, 1]

and
{
h+ τ

(
h− h

)}
⊂ H,

lim
τ→0

(
v
(
θ, h+ τ

(
h− h

))
− v (θ, h)

)

τ
:= vh (θ, h)

[
h− h

]
(9)

exists. Let

s (θ, λ, h) = exp
(
λ (θ)′ g (θ, h)

)
and ργ (θ, λ, h) =

(nπe (θ, λ (θ) , h))γ+1 − 1

γ (γ + 1)
, (10)
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and

Rγ (θ, λ, h) = E

{
∂2 [ργ (θ, λ, h) , s (θ, λ, h)]

′

∂ (θ′, λ′)′⊗2

}
,

Rγ (θ, λ, h)
−1 : = Qγ (θ, λ, h) =

[
Qγ

θθ (θ, λ, h) Qγ
θλ (θ, λ, h)

Qs
λθ (θ, λ, h) Qs

λλ (θ, λ, h)

]
,

Ξγ (θ, λ, h) = E





[
∂ργ(θ,λ,h)

∂θ
∂s(θ,λ,h)

∂λ

]⊗2


 =

[
Ξγ
θθ (θ, λ, h) Ξγ

θλ (θ, λ, h)
Ξs
λθ (θ, λ, h) Ξs

λλ (θ, λ, h)

]
,

Ξγ (θ, λ, h, δ) = E





[
∂ργ(θ,λ,h)

∂θ + δγ
∂s(θ,λ,h)

∂λ + δs

]⊗2


 =

[
Ξγ
θθ (θ, λ, h, δ) Ξγ

θλ (θ, λ, h, δ)
Ξs
λθ (θ, λ, h, δ) Ξs

λλ (θ, λ, h, δ)

]
,

where δγ and δs denote, respectively, the probability limits of the asymptotic repre-
sentations of the pathwise derivatives of ∂ργ (θγ∗, λ∗, h•) /∂θ and of ∂s (θγ∗, λ∗, h•) /∂λ
satisfying the regularity condition given in A4 below.
Theorem 3.1 establishes the asymptotic distribution of the two-step semiparametric

CECR estimator (6) for θγ∗ under some general regularity conditions (A0-A3(i) stated
in the supplemental appendix), Assumptions A3(ii) and A4 below and some further
standard regularity conditions (i-iv) commonly assumed in the nonlinear statistical esti-
mation literature (see for example Van der Vaart (1998)). Assumptions A3(ii) and A4 are
important because they explain the different structures of the asymptotic variances ma-
trices ΦCECR (θγ∗, λ∗, h•) and ΦCECR (θγ∗, λ∗, h•, δ) appearing in Theorem 3.1. Assume
that:

either
A3 (ii) E [∂ργ (θγ∗, λ∗, h) /∂θ

′, ∂s (θγ∗, λ∗, h) /∂λ
′]′ |

h=ĥ
= op

(
n−1/2

)
,

or
A4 (i) the pathwise derivatives ∂ργh (θγ∗, λ∗, h•) /∂θ [h− h•] of ∂ργ (θγ∗, λ∗, h•) /∂θ and

∂sh (θγ∗, λ∗, h•) /∂λ [h− h•] of ∂s (θγ∗, λ∗, h•) /∂λ exist a.s. in all directions [h− h•]
and for small enough ‖h− h•‖H
∥∥∥∥
∂ργ (θγ∗, λ∗, h)

∂θ
− ∂ργ (θγ∗, λ∗, h•)

∂θ
− ∂ργh (θγ∗, λ∗, h•)

∂θ
[h− h•]

∥∥∥∥ ≤ bγ (Z) ‖h− h•‖2H ,

∥∥∥∥
∂s (θγ∗, λ∗, h)

∂λ
− ∂s (θγ∗, λ∗, h•)

∂λ
− ∂sh (θγ∗, λ∗, h•)

∂λ
[h− h•]

∥∥∥∥ ≤ bs (Z) ‖h− h•‖2H

with E |bγ (Z)| < ∞ and E |bs (Z)| < ∞, (ii) there exist two functions δγ (·) : Z →R
k

and δs (·) : Z →R
l with E [δ• (Z)] = 0 and E

[
‖δ• (Z)‖2

]
< ∞ such that

∥∥∥∥
∂ρ̂γh (θγ∗, λ∗, h•)

∂θ

[
ĥ− h•

]
− δ̂γ (Z)

∥∥∥∥ = op

(
n−1/2

)
,

∥∥∥∥
∂ŝh (θγ∗, λ∗, h•)

∂λ

[
ĥ− h•

]
− δ̂s (Z)

∥∥∥∥ = op

(
n−1/2

)
,

7
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where δ̂• (Z) :=
∑n

i=1 δ• (Zi) /n with δ̂• (Z)
p→ δ• (Z) and ”•” is either γ or s.

Assumption A3(ii) can be interpreted as an asymptotic orthogonality condition imply-
ing that estimation of h• does not affect the variance of the asymptotic distribution of
the estimator of θ∗. With correctly specified estimating equations (see Section 1 in the
supplemental appendix), it ensures that the proposed two-step estimators are efficient,
in the sense that they achieve the same efficiency bound as that given by Chamberlain
(1987) for GMM estimators of unknown finite dimensional parameters and by Ackerberg
et al. (2014) for two-step semiparametric GMM estimators. Note that A3(ii) is satisfied
by a number of important semiparametric models including partial linear, additive and
single index models, see Newey (1994) for further examples. Assumption A4 is more
technical: A4(i) implies effectively Frechet differentiability of ∂ργ (θγ∗, λ∗, h•) /∂θ and of
∂s (θγ∗, λ∗, h•) /∂λ. A4(ii) characterises the estimation effect from the first step estima-

tion in terms of the random vectors δ̂• (Z) and their limits δ• (Z). It can often be verified

if h is an unknown density or regression function and ĥ is a kernel or a nonparametric
series estimator, see for example Chen and Liao (2015), Bravo et al. (2020) and the proof
of Proposition 4.1 in the supplemental appendix.

Theorem 3.1 Assume that for λ∗ (θ) defined in (8) (i) E [ργ (θ, λ∗, h•)] has a unique
minimum at θγ∗ ∈ Θ (ii) θγ∗ ∈ int (Θ), λ∗ (θ) ∈ int (Λ (Θ)), with both Θ and Λ (Θ) com-
pact sets (iii) Rγ (θγ∗, λ∗, h•) is nonsingular (iv) Ξγ (θγ∗, λ∗, h•) and Ξγ (θγ∗, λ∗, h•, δ) are
positive definite. Then, under either (v) A0 (with ϑ = 0), A1-A3(i) (in the supplemental
appendix) and A3(ii)

n1/2
(
θ̂CECR − θγ∗

)
d→ N (0,ΦCECR (θγ∗, λ∗, h•)) ,

where

ΦCECR (θγ∗, λ∗, h•) = Qγ
θθ (θγ∗, λ∗, h•) Ξ

γ
θθ (θγ∗, λ∗, h•)Q

γ
θθ (θγ∗, λ∗, h•) + (11)

Qγ
θλ (θγ∗, λ∗, h•) Ξ

s
λθ (θγ∗, λ∗, h•)Q

γ
θθ (θγ∗, λ∗, h•) +

Qγ
θθ (θγ∗, λ∗, h•) Ξ

γ
θλρ (θγ∗, λ∗, h•)Q

γ
θλ (θγ∗, λ∗, h•)

′ +

Qγ
θλ (θγ∗, λ∗, h•) Ξ

s
λλ (θγ∗, λ∗, h•)Q

γ
θλ (θγ∗, λ∗, h•)

′ ,

or (vi) A0 (with ϑ = 1/4), A1-A2 (in the supplemental appendix) and A4

n1/2
(
θ̂CECR − θγ∗

)
d→ N (0,ΦCECR (θγ∗, λ∗, h•, δ)) , (12)

where ΦCECR (θγ∗, λ∗, h•, δ) is as that defined in (11) with Ξγ (θ, λ, h, δ) replacing
Ξγ (θ, λ, h) .

We now consider the weighted bootstrap procedure mentioned in the Introduction. Let
{ωi}ni=1 denote an i.i.d. sample of positive random weights independent of {Zi}ni=1 with
E (ωi) = 1 and V ar (ωi) = υ0 < ∞. Let

θ̂ω,CECR = argmin
θ∈Θ

n∑

i=1

ωiργi

(
θ, λ̂ω, ĥ

)
(13)

denote the weighted bootstrap version of (6), where ργi (θ, λ, h) =

8
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(
(nπe

i (θ, λ (θ) , h))γ+1 − 1
)
/γ (γ + 1) and λ̂ω (θ) is the weighted bootstrap ana-

logue of (7) . The following theorem shows that by drawing B times {ωi}ni=1 samples, the

weighted bootstrap distribution of θ̂ω,CECR, conditional on the observations, imitates
asymptotically the unconditional one and hence can be used for inference.

Theorem 3.2 Under the same assumptions of Theorem 3.1, then conditionally on the
sample {Zi}ni=1,

sup
u

∣∣∣∣∣Pr
ω

((
n

υ0

)1/2 (
θ̂ω,CECR − θ̂CECR

)
≤ u

)
− Pr

(
n1/2

(
θ̂CECR − θγ∗

)
≤ u

)∣∣∣∣∣ = op (1) ,

where we use the notation Pr ω to emphasise that the resampling is over the ωi’s.

Remark 1. Theorem 3.1 defines a class of estimators indexed by the user-specific
parameter γ ∈ (−∞, 0] that are all robust to misspecification. The theorem however does
not provide any guidance on the choice of γ. One possibility would be to use second order
asymptotic analysis and compare estimators in terms of their second order bias and mean
squared error. Unfortunately in the context of (possibly misspecified) semiparametric
estimating equations models, second order analysis is complicated by two key facts: First,
the nonparametric estimator used to estimate h• becomes important because its second
order properties (if at all known) affect in a different way those of the estimators of
interest. For example Dalalyan, Golubev, and Tsybakov (2006) noted that in the context
of penalised spline estimation of a (correctly specified) semiparametric Gaussian shift
model, the magnitude of the second order terms is almost as big as that of first order
terms1. Linton (2002) showed that for certain adaptive semiparametric models (including
partial linear) kernel (or local polynomial) estimators affect the second order variance
term but not the bias, whereas Ichimura and Linton (2006) noted that in the context
of semiparametric average treatment effect models, the second order terms are mostly
bias related and very large for the optimal choice of bandwidth. Secondly, because of the
dependence on different θγ∗’s and on the nonzero probability limit λ∗ (θγ∗), as well as
on the Jacobian ∂λ∗ (θ) /∂θ

′ and its derivatives ∂2λ∗ (θ) /∂θ
′∂θj (j = 1, ..., k) evaluated

at θ = θγ∗, the expressions of the second order terms become very cumbersome and
difficult to compare, if a comparison is at all possible. For these reasons we use simulation
evidence, reported in Section 5, which suggests that actually no particular value of γ
yields an estimator that clearly dominates in terms of its finite sample properties.

To consider the asymptotic distribution of the two-step semiparametric GMM estima-
tor defined in (2), let

H (θ, h,W ) = G (θ, h)′WG (θ, h) + µ′
∗W ⊗ Ik

{
E

[
∂

∂θ′
vec

(
∂g (θ, h)

∂θ′

)]}
,

1In the typical case of twice differentiable unknown functions, the second order terms are of order Op
(
n−7/10

)
.

9
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Ω (θ, h,W ) = E








(g (θ, h)− µ∗)(
∂g(θ,h)
∂θ′

−G (θ, h)
)′

Wµ∗(
Ŵ −W

)
µ∗




⊗2




=




Ωg (θ∗, h•) ΩgG (θ∗, h•,W ) ΩgW (θ∗, h•,W )
ΩgG (θ∗, h•,W )′ ΩG (θ∗, h•,W ) ΩGW (θ∗, h•,W )
ΩgW (θ∗, h•,W )′ ΩGW (θ∗, h•,W )′ ΩW (θ∗, h•,W )


 ,

Ω (θ, h,W, δ) = E

{
(g (θ, h)− µ∗ + δg)

′ ,

[(
∂g (θ, h)

∂θ′
−G (θ, h) + vec−1 (δ∂g)

)′

Wµ∗

]′
,

[(
Ŵ −W

)
µ∗

]′}′⊗2

,

where δg and δ∂g denote the asymptotic representations of the pathwise derivatives
gh (θ∗, h) [h− h•] of g (θ∗, h) and ∂gh (θ∗, h) /∂θ

′ [h− h•] of ∂g (θ∗, h) /∂θ
′ satisfying the

regularity condition A7 given below and vec−1 (δ∂g) is the inverse vec operator that ar-
ranges (column-wise) the components of the lk × 1 vector δ∂g into an l × k matrix.
Assume that:

either
A6 (ii) E [g (θ∗, h)− µ (θ∗, h)] |h=ĥ

= op
(
n−1/2

)
, E [vec (∂g (θ∗, h) /∂θ

′)− vec (G (θ∗, h))] |h=ĥ
=

op
(
n−1/2

)
,

or
A7 (i) the pathwise derivatives gh (θ∗, h) [h− h•] of g (θ∗, h) and ∂gh (θ∗, h) /∂θ

′ [h− h•]
of ∂g (θ∗, h) /∂θ

′ exist a.s. in all directions [h− h•] and for small enough ‖h− h•‖H

‖g (θ∗, h)− g (θ∗, h•)− gh (θ∗, h) [h− h•]‖ ≤ bg (Z) ‖h− h•‖2H ,∥∥∥∥vec
∂g (θ∗, h)

∂θ′
− vec

∂g (θ∗, h•)

∂θ′
− vec

∂gh (θ∗, h•)

∂θ′
[h− h•]

∥∥∥∥ ≤ b∂g (Z) ‖h− h•‖2H

for small enough ‖h− h•‖H , with E |bg (Z)| < ∞ and E |b∂g (Z)| < ∞, (ii) there

exist functions δg (·) : Z →R
l and δ∂g (·) : Z →R

lk with E
[
δg (Z)′ , δ∂g (Z)′

]′
= 0

and E
[∥∥δg (Z)′ , δ∂g (Z)′

∥∥2
]
< ∞ such that

∥∥∥ĝh (θ∗, h•)
[
ĥ− h•

]
− δ̂g (Z)

∥∥∥ = op

(
n−1/2

)
,

∥∥∥∥vec
∂ĝh (θ∗, h•)

∂θ′

[
ĥ− h•

]
− δ̂∂g (Z)

∥∥∥∥ = op

(
n−1/2

)
,

where δ̂• (Z)
p→ δ• (Z) and ”•” is either g or ∂g. Assumptions A6(ii)-A7 are similar

to A3(ii) and A4 and are important because as with the CECR extimator they ex-
plain the difference between the asymptotic variance matrices ΦGMM (θ∗, h•,W ) and
ΦGMM (θ∗, λ∗, h•, δ) in Theorem 3.3.

Theorem 3.3 Assume that (i) QW (θ, h•) is uniquely minimized at θ∗ ∈ Θ (ii)
θ∗ ∈ int (Θ) (iii) H (θ∗, h•,W ) is nonsingular (iv) Ω (θ∗, h•,W ) and Ω (θ∗, h•,W, δ) are

10
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positive definite. Then under either (v) A0 (with ϑ = 0) A1(i), A2(i), A3’, A5, A6(i)
(in the supplemental appendix) and A6(ii)

n1/2
(
θ̂GMM − θ∗

)
d→ N (0,ΦGMM (θ∗, h•,W )) ,

where

ΦGMM (θ∗, h•,W ) = H (θ∗,W, h•)
−1 [G (θ∗, h•)

′W (Ωg (θ∗, h•)+ (14)

ΩG (θ∗, h•,W ) + ΩW (θ∗, h•,W ))G (θ∗, h•) +G (θ∗, h•)
′WΩgG (θ∗, h•,W ) +

G (θ∗, h•)
′WΩgW (θ∗, h•,W )G (θ∗, h•) + ΩgG (θ∗, h•,W )′WG (θ∗, h•) +

G (θ∗, h•)
′ΩgW (θ∗, h•,W )′WG (θ∗, h•) + ΩGW (θ∗, h•,W )G (θ∗, h•) +

G (θ∗, h•)
′ΩGW (θ∗, h•,W )′

] (
H (θ∗,W, h•)

−1
)′

,

or (vi) A0 (with ϑ = 1/4), A1(i), A2(i), A3’, A5 (in the supplemental appendix) and A7

n1/2
(
θ̂GMM − θ∗

)
d→ N (0,ΦGMM (θ∗, h•,W, δ)) , (15)

where ΦGMM (θ∗, λ∗, h•, δ) is as that defined in (14) with Ω (θ∗, λ∗, h•, δ) replacing
Ω (θ∗, λ∗, h•).

Theorem 3.3 shows that the asymptotic variance of the two-step semiparametric GMM
estimator is fairly complicated but its structure is easy to interpret since it reflects the fact
that the centred derivatives vec (∂g (θ∗, h∗) /∂θ

′) − vec (G (θ∗, h∗)) and weight matrices

Ŵ −W contribute to the asymptotic normality of n1/2
(
θ̂GMM − θ∗

)
.

The same weighted bootstrap approach used to approximate the asymptotic distri-
bution of θ̂CECR can be used to approximate that of θ̂GMM . Let {ωi}ni=1 denote an
i.i.d. sample of positive random weights independent of {Zi}ni=1 with E (ωi) = 1 and
V ar (ωi) = υ0 < ∞ and let

θ̂ω,GMM = argmin
θ∈Θ

1

n

n∑

i=1

gωi

(
θ, ĥ
)′

Ŵω
1

n

n∑

i=1

gωi

(
θ, ĥ
)

denote the weighted bootstrap two-step semiparametric GMM estimator, where

gωi (θ, h) = ωigi (θ, h) and Ŵω is a possibly random matrix that might also depend
on the ωi’s.

Theorem 3.4 Under the same assumptions of Theorem 3.3, with Ŵω replacing Ŵ in
assumption A5 (in the supplemental appendix), then conditionally on the sample {Zi}ni=1,

sup
u

∣∣∣∣∣Pr
ω

((
n

υ0

)1/2 (
θ̂ω,GMM − θ̂GMM

)
≤ u

)
− Pr

(
n1/2

(
θ̂GMM − θ∗

)
≤ u

)∣∣∣∣∣ = op (1) .

Remark 2 It is important to note that the proposed two-step semiparametric CECR
estimator can also be used with correctly specified semiparametric models, that is for
models where µ (θ, h0) = 0 has a unique solution for θ = θ0. See Section 1 in the
supplemental appendix for further details and results.

11
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4. Two examples

In this section we illustrate the results of the previous section by considering two semi-
parametric models with a separable additive nonparametric component. In the first case,
the first step estimation has an effect on the asymptotic variance of the finite dimensional
parameter estimator, whereas in the second case it has not. In both cases the nonparamet-
ric parameter is assumed to be correctly specified and is estimated with (nonparametric)
series (see for example Stone (1985) and Newey (1997)). Suppose that Z = [Z ′

1, Z
′
2]
′ and

h0 = h0 (Z2); for m = 1 the series estimator of h0 is ĥ = pK (Z2)
′ β , where

pK (Z2) = [p1 (Z2) , ...., pK (Z2)]
′

is a K dimensional vector of approximating functions such as power series or splines
and β is a vector of unknown parameters that can be estimated from the data. Let

|h (Z2)|d = max|λ|≤d supZ2∈Z2

∣∣∣∂|λ|h (Z2) /∂Z
λ1

21 ...∂Z
λk2

2k2

∣∣∣ for |λ| :=
∑k2

j=1 λj and k2 =

dim (Z2). Assume that:

S1 (i) the support Z2 of Z2 is the Cartesian product of compact subsets of R (ii) h0 (Z2)
is d-times continuously differentiable on Z2 with uniformly bounded derivatives,

S2 (i) for every K, there is a nonsingular matrix J such that for PK (Z2) := JpK (Z2)

the smallest eigenvalue of E
[
PK (Z2)

⊗2
]
is bounded away from zero uniformly in K

(ii) there exists a sequence of constants ξ (K) satisfying supZ2∈Z2

∥∥PK (Z2)
∥∥ ≤ ξ (K)

and K = K (n) such that ξ (K)2K/n → 0 as n → ∞,
S3 (i) for d ≥ 0

∣∣h0 (Z2)− pK (Z2)
′ β
∣∣
d
= O

(
K−δ

)
as K → ∞ (ii) n1/2K−2δ → 0 as

n → ∞.

Assumptions S1 and S3 are standard in the literature of nonparametric series estima-
tion, see for example Newey (1997); S2 usually implies that the density function of Z2

is bounded below by a positive constant. S1 implies S3(i) with the rate δ := δ (d, k2);
S3(ii) implies that the estimation bias from the nonparametric component is smaller
than the parametric convergence rate. It is equivalent to the standard undersmoothing
assumption often assumed in kernel estimation of semiparametric models. Examples of
nonparametric series that satisfy S2 and S3 include power series and splines.

4.1. Quadratic inference functions (QIF) models with nonparametric
generated regressors

QIF models were introduced by Qu et al. (2000) as an alternative to the generalised
estimating equations (GEE) approach of Liang and Zeger (1986), which avoids estimating
the nuisance correlation structure parameters by assuming that the inverse of the working
correlation matrix can be approximated by a linear combination of several known basis
matrices. The QIF model considered here allows for general misspecification of the
estimating equations and is defined as

E (Y |X) = m
(
X ′

1θ10 +X∗
2
′θ20
)
, (16)

where m (·) : X1×X 2 → R
dy is a vector of known functions with the same dimen-

sion as that of the vector valued response Y and X∗
2 ∈ R

k2 are latent covariates

12
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that can be expressed as conditional expectations E (X2|X1) of the observable co-
variates X2. In this case h0 (X1) = E (X2|X1) := h0 and the series estimator is

ĥ (X1i) = pK (X1i)
′ (PP ′)− PX2, where P =

[
pK (X11) , ...., p

K (X1n)
]
. Under correct

specification, we assume that there exist unique θ10 and θ20 such that (16) holds a.s.,
whereas under misspecification we have

Pr
(
E (Y |X) 6= m

(
X ′

1θ1 +X∗
2
′θ2
))

> 0,

∀ θ1, θ2 ∈ Θ1 × Θ2. In this case estimation of the pseudo-true parameter of interest
θ∗ = [θ′1∗, θ

′
2∗]

′ or θγ∗ =
[
θ′γ1∗, θ

′
γ2∗

]′
can be based on the profile quadratic inference

function

gi

(
θ, ĥ
)

= Is ⊗



∂m

(
vi

(
θ, ĥ (X1i)

))

∂θ′




′

[B1i, ..., Bsi]
′
(
Yi −m

(
vi

(
θ, ĥ (X1i)

)))
(17)

Bji = A
−1/2
i MjA

−1/2
i j = 1, .., s,

where vi

(
θ, ĥ (X1i)

)
= X ′

ĥi
θ, X

ĥi
=
[
X ′

1i, ĥ (X1i)
′
]′
, A is an R

dy × R
dy diagonal matrix

containing the marginal variances of Y and Mj (j = 1, ...s) are known basis matrices used
to approximate the inverse of the working correlation matrix R, the number of which
s depends on the assumed structure of R. For example if we assume an exchangeable
working correlation matrix where all pairs of observations share the same correlation
coefficient, then s = 2 and M1 is the identity matrix while M2 has 0’s on the diagonal
and 1’s elsewhere - see Qu et al. (2000) for more examples.

Proposition 4.1 Under QIF1-QIF4 (in the supplemental appendix) and if, for λ∗ (θ)

defined in (8) with gi

(
θ, ĥ
)
given in (17) , (i) E [ργ (θ, λ∗, h0)] has a unique minimum at

θγ∗ ∈ Θ and (ii) θγ∗ ∈ int (Θ) and λ∗ (θ) ∈ int (Λ (Θ)), then the asymptotic distribution

of n1/2
(
θ̂CECR − θγ∗

)
is as that given in (12) with the pathwise derivatives δγ (X1) and

δs (X1) given in (A.4) in the supplemental appendix. In addition under QIF5 (in the
supplemental appendix) a consistent estimator for ΦCECR (θγ∗, λ∗, h0, δ) is given by its

sample analogue Φ̂CECR

(
θ̂CECR, λ̂, ĥ, δ̂

)
.

Under QIF1, QIF2, QIF6–QIF9 (in the supplemental appendix) and if (i) QW (θ, h0) is
uniquely minimised at θ∗ ∈ Θ and (ii) θ∗ ∈ int (Θ), then the asymptotic distribution of

n1/2
(
θ̂GMM − θ∗

)
based on (17) is as that given in (15) with δg (X1) and δ∂g (X1) given

in (A.5) in the supplemental appendix. In addition under QIF10 (in the supplemental
appendix) a consistent estimator for ΦGMM (θ∗, h0,W, δ) is given by its sample analogue

Φ̂GMM

(
θ̂GMM , ĥ, Ŵ , δ̂

)
.

4.2. Instrumental variables partially linear additive models

The statistical model is

Y = X ′
1θ0 +

m∑

j=1

h0j (X2j) + ε, (18)

13
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where θ0 ∈ Θ is a k-dimensional vector of unknown parameters, h0 (X2) =
[h01 (X21) , ...., h0m (X2m)]′ is a vector of unknown real valued functions and ε is an
unobservable error. Li (2000) considered the case of a correctly specified (18) in the
sense that E (ε|X) = 0 a.s., where X = [X ′

1, X
′
2]
′. We assume instead that the X1

vector of covariates is endogenous (that is it is correlated with the errors) and that
there exists an R

l-valued (l ≥ k) vector V of instruments, which is however misspec-
ified in the sense that Pr (E (ε|V ) 6= 0) > 0 for all θ ∈ Θ. Let A denote the space
of additive continuous functions h satisfying hj (0) = 0 and

∑m
j=1E [hj (X2j)]

2 < ∞
for j = 1, ...,m and let Π (·|A) denote the mean square projection of · on A. In this

example h0 (X2) =
[
Π(Y |A) ,Π(X1|A)′

]′
:= h0 and the series estimator of the pro-

jections is ĥ (X2i) =
[
pK (X2i)

′ β̂Y , p
K (X2i)

′ β̂′
X1

]′
where β̂Y = (P ′P )− P ′Y , β̂X1

=

(P ′P )− P ′ [X11, X12, ..., X1k]
′ with P =

[
pK (X21) , ...., p

K (X2n)
]
and

pK (X2i) =
[
pK1 (X21i)

′ , ..., pKm (X2mi)
′]′ ,

pKj (X2j) =
[
pj1 (X2j) , ..., pjKj

(X2j)
′] , j = 1, ...,m.

In this case estimation of the pseudo true parameter of interest θ∗ or θγ∗ can be based
on the profile moment indicator

gi

(
θ, ĥ (X2i)

)
= Vi

(
Ŷi − X̂ ′

1iθ
)
, (19)

where Ŷi = Yi − pK (X2i)
′ β̂Y and X̂1i = X1i − pK (X2i)

′ β̂X1
.

Proposition 4.2 Under PLA1-PLA4 (in the supplemental appendix) and if, for λ∗ (θ)

defined (8) with gi

(
θ, ĥ
)

given in (19), (i) E [ργ (θ, λ∗, h0)] has a unique minimum at

θγ∗ ∈ Θ and (ii) θγ∗ ∈ int (Θ) and λ∗ (θ) ∈ int (Λ (Θ)), then the asymptotic distribu-

tion of n1/2
(
θ̂CECR − θγ∗

)
is as that given in (11) . In addition, a consistent estima-

tor for ΦCECR (θγ∗, λ∗, h0) is given by its sample analogue Φ̂CECR

(
θ̂CECR, λ̂, ĥ

)
. Un-

der PLA1-PLA2 and PLA5-PLA7 (in the supplemental appendix) and if (i) QW (θ, h0)
is uniquely minimized at θ∗ ∈ Θ and (ii) θ∗ ∈ int (Θ), then the asymptotic distribu-

tion of n1/2
(
θ̂GMM − θ∗

)
based on (19) is as that given in (14) with H (θ∗,W, h0) =

E
(
X1V

′WVX
′
1

)
. In addition, a consistent estimator for ΦGMM (θ∗, h0,W ) is given by

its sample analogue Φ̂GMM

(
θ̂GMM , ĥ, Ŵ

)
.

5. Monte Carlo evidence

In this section we use the two examples of the previous section to illustrate the finite sam-
ple properties of the estimators considered in Section 3. We consider six estimators for
the case of correctly specified estimating equations and seven estimators for the case of
misspecified estimating equations. The estimators are θ̂EL (two-step semiparametric em-

pirical likelihood), θ̂ET (two-step semiparametric exponential tilting, that is CECR with

γ = 0), θ̂ETEL (two-step semiparametric combined exponential tilting empirical likeli-

hood, that is CECR with γ = −1), θ̂ELEU (two-step semiparametric combined empirical

14
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likelihood Euclidean likelihood), θ̂ETEU (two-step semiparametric combined exponential

tilting Euclidean likelihood, that is CECR with γ = 2) and two θ̂GMM s (two-step semi-

parametric GMM) computed using two different weighting matrices Ŵ .
Under correct specification and the asymptotic orthogonality condition A2’(ii) (in the

supplemental appendix) all of the above estimators (including θ̂GMM with the optimal

weighting matrix Ŵ =

(∑n
i=1 gi

(
θ̃, ĥ
)⊗2

/n

)−1

(Ackerberg et al. 2014), where θ̃ is a

preliminary n1/2 consistent estimator) are asymptotically equivalent (see for example

Theorem 5 (a)-(b) in the supplemental appendix), but only θ̂ET , θ̂ETEL, θ̂ETEU and

θ̂GMM are robust to misspecification. Note that while robust to misspecification, θ̂ETEU

is defined for γ = 1, which, as mentioned in Section 2, can yield negative implied proba-
bilities.
Under misspecification, we consider two specifications of Ŵ , namely the same optimal
weighting matrix used in the case of correct specification and the identity matrix I
(θ̂GMMI

). The latter choice is motivated by the fact that under misspecification there

is no optimal choice of Ŵ , hence any weighting matrix satisfying assumption A5 (in
the supplemetal appendix) can be used in the estimation process. Indeed the choice of

Ŵ = I is often used with misspecified models, see for example Cochrane (2001) and Ai
and Chen (2007).
For the weighted bootstrap we use the same two points distribution as that used
by Lavergne and Patilea (2013) defined by Pr

(
ω =

(
3−

√
5
)
/2
)
=
(
5 +

√
5
)
/10 and

Pr
(
ω =

(
3 +

√
5
)
/2
)
=
(
5−

√
5
)
/10 for which E (ω) = V ar (ω) = 1.

We first consider a semiparametric QIF model with identity link

Y = X11θ10 + κX12 + E (X2|X11) + ε, (20)

where X11 and X12 are two correlated U (0, 1) random variables, E (X2|X11) = sin (X11)
and ε ∼ Nc (0, R (α)), where Nc (·) denotes a c-dimensional multivariate normal, R (α)
stands for the covariance matrix and c is the dimension of the cluster (which implies
that the dimension of Y is also c). Note that by Proposition 2 of Newey (1994) the
pathwise derivatives appearing in the asymptotic variances ΦCECR (θ∗, λ∗, h0, δ) and
ΦGMM (θ∗, h0,W, δ) are all identically equal to 0. In the simulations we set θ10 = 2
with the dimension of the cluster c = 10; the working correlation matrix R (α) has an
AR(1) structure with parameter α = 0.5, so that M1 is the identity matrix and for
j = 2, 3 the structure of Mj is known (Qu et al. 2000). The parameter κ takes two val-
ues, 0 or κ∗ 6= 0, which correspond, respectively, to the correctly specified case (κ = 0)
and to the misspecified one (κ∗), since we specify the estimating equations (17) as

gi

(
θ1, ĥ

)
= I3 ⊗X11i [B1, B2, B3]

′
(
Yi − 1cX11iθ1 − 1cÊ (X2i|X11i)

)
, (21)

where Ê (X2i|X11i) is a nonparametric series estimator of E (X2|X11). For κ = 0 (21) is
correctly specified since E (g (θ10, h0)) = 0 in view of (20), whereas for κ = κ∗, (21) is
misspecified since there is no θ1 that satisfies E (g (θ1, h0)) = 0 simultaneously for B1,
B2 and B3, given the correlation ρX11X12

between X11 and X12 and κ∗ 6= 0. To construct

the estimator Ê (X2i|X1i) we use cubic splines to generate the approximating functions
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pK (·) with the term K determined by the generalised cross-validation criterion2

K̂GCV (K) = argmin
K

1

n

n∑

i=1

∥∥∥I3 ⊗X11i [B1i, B2i, B3i]
′
(
Yi − 1cX11iθ̂1 − 1cÊ (X2i|X11i)

)
‖2

(1− (K/n))2
.

To compute the pseudo-true values θ1∗ of the two-step semiparametric empirical like-
lihood and four two-step semiparametric CECR estimators using numerical integration
and a two-step procedure. In the first step, for a fixed θ1, the maximiser λ∗ (θ1) of (8)
with h• = h0 is computed. In the second step, given λ∗ (θ1) obtained in the first step,
the minimiser θγ1∗ of E [ργ (θ1, λ∗ (θ1) , h0)] is found over the interval θ1 ∈ [−5, 5]. This
procedure yields, for a correlation coefficient ρX11X12

of 0.5 and κ∗ = 2, the pseudo-true
value θ1∗ of -2.06 for the empirical likelihood, of -1.03 for the exponential tilting, of -0.918
for the combined exponential tilting empirical likelihood, of -2.77 for the combined em-
pirical likelihood Euclidean likelihood and of -1.98 for the combined exponential tilting
Euclidean likelihood specifications. For the two-step semiparametric GMM (QIF) objec-
tive function, the pseudo-true value θ1∗ is computed using only the second step of the
procedure, which gives a value of -2.35.
Tables 1 and 2 report the finite sample bias, standard error, coverage of a nominal 95%

confidence interval and its average length calculated using the normal approximation and
the weighted bootstrap approximation for the six estimators under correct specification
and seven estimators under misspecification. The results are for two sample sizes n =
100 and n = 400 and are based on 1000 replications with the number B of bootstrap
replications set to B = 300.

Tables 1 and 2 approx. here

Figure 1 shows the cumulative distributions of θ̂EL, θ̂ET , θ̂ELEU and θ̂ETEU (centred
at θ0 under correct specification and at the corresponding θ′∗s under misspecification) for
n = 100. Figure 2 shows the mean squared error (MSE), coverage and average length of
the nominal 95% level confidence intervals for the six estimators considered in Tables 1
and 2 and seventeen additional two-step semiparametric CECR estimators corresponding
to γ =[-16,-15,-12,-8,-7,-5,-4,-3,-2,-3/2,-3/4,-1/2,-1/4,1/2,1,2,3,5] under misspecification
(note that the estimators corresponding to the positive values of γ can yield implied
probabilities that are not positive by construction).

Figures 1 and 2 approx. here

Next we consider a partially linear additive (PLA) model which extends the one con-
sidered by Li (2000) by allowing endogeneity of the regressors and misspecification of the
instruments. The model is

Y = θ10 + θ20X1 + h10 (X21) + h20 (X22) + ε1, (22)

X1 = X3 + 3X4 + ε2,

where [θ10, θ20]
′ = [1, 0.5]′, Xj ∼ U (0, 2) (j = 1, 3, 4), X2k ∼ U (0, 2) (k = 1, 2),

2As discussed in Bickel and Kwon (2002) estimation of the finite dimensional parameter is not very sensitive in
general to the choice of K (which can be interpreted as a smoothing parameter) as long as the selected K does

not result in a large bias for the infinite dimensional parameter estimate. In this respect cross-validation typically
performs well, regardless of possible misspecification, and this is why we use it in the simulations.
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h10 (X21) = exp (−X21)− 1, h20 (X22) = sin (πX22),

[
ε1
ε2

]
∼ N

([
0
0

]
,

[
1 ρ12
ρ12 1

])
,

ρ12 = corr (ε1, ε2) = 0.4. In the case of correct specification, we use as instru-
ments V = [1, X21, X22, X3, X4]

′, while in the misspecified case we use as instruments
V = [1, X21, X22, X

∗
3 , X4]

′ with X∗
3 = 10ε2. As with the previous example, the various

pseudo-true values θγ∗ = [θγ1∗, θγ2∗]
′ are calculated using numerical integration and the

same two-step procedure described above, with the only difference that the minimisation
of E [ργ (θ, λ∗, h0)] is carried over the rectangle [−2, 2] × [−1, 1] . The resulting pseudo-
true values are [1.71, 0.31]′ for the empirical likelihood, [1.54, 0.22]′ for the exponential
tilting, [1.64, 0.32]′ for the combined exponential tilting empirical likelihood, [1.63, 0.42]′

for the combined empirical likelihood Euclidean likelihood, [1.56, 0.21]′ for the combined
exponential tilting Euclidean likelihood and finally [1.34, 0.81] for the GMM specifica-
tion. As with the previous example, we use cubic splines to estimate the nonparametric
components with the term K determined by the generalised cross-validation criterion

K̂GCV (K) = argmin
K

1

n

n∑

i=1

(
Yi − [1, X1i] θ̂ − ĥ

)2

(1− (K/n))2
.

Tables 3 and 4 report the finite sample bias, standard errors, coverage of a nominal
95% confidence interval and average length for the slope parameter θ2 calculated using
the normal approximation and the weighted bootstrap approximation for the same six
estimators, sample sizes and bootstrap replications as those considered in Tables 1 and
2.

Tables 3 and 4 approx. here

Figure 3 shows the cumulative distribution of θ̂2EL, θ̂2ET , θ̂2ELEU and θ̂2ETEU (centred
at θ20 under correct specification and at the corresponding θ2∗ under misspecification)
for n = 100. Figure 4 shows the MSE, coverage and average length of the nominal 95%
level confidence intervals for the six estimators considered in Tables 3 and 4 and the same
seventeen additional two-step semiparametric CECR estimators under misspecification
considered in Figure 3.

Figures 3 and 4

The results of Tables 1-4 can be summarised as follows: under correct specification
(Tables 1 and 3) all estimators are characterised by good finite sample properties. The
finite sample biases are statistically insignificant for both sample sizes, with the biases
of the two-step semiparametric empirical likelihood estimator θ̂EL and of the two-step
semiparametric combined empirical likelihood euclidean likelihood estimator θ̂ELEU be-
ing the smallest and those of the GMM estimators being the largest. The magnitude of
the standard errors indicates that the estimators are fairly precise, with the magnitude
shrinking, as expected, by a factor of 2 as the sample size increases from 100 to 400.
The confidence intervals have good coverage accuracy that gets closer to the nominal
95% level as the sample size increases. Similarly the average lengths of the confidence
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intervals decrease as the sample size increases. Finally, the proposed weighted bootstrap
procedure yields confidence intervals that have better coverage accuracy and are slightly
shorter than those based on the normal approximation. Under misspecification (Tables

2 and 4) the biases of θ̂EL and θ̂ELEU become statistically significant and can be more

than four times as large as that of θ̂ET or of θ̂ETEL (see for example Table 4). Also

θ̂ETEU has a larger bias than that of either θ̂ET or θ̂ETEL. The standard errors of θ̂ET ,
θ̂ETEL and θ̂ETEU are considerably smaller than those of θ̂EL and θ̂ELEU , which do not
decrease as the sample size increases. Note, however, that the standard error of θ̂ETEU

is larger than that of θ̂ET and θ̂ETEL. As expected, misspecification negatively affects
the coverage and especially the length of the confidence intervals based on θ̂EL and
θ̂ELEU and their standard errors, which can be up to more than twice wider than those
based on the robust estimators and standard errors. Tables 2 and 4 also show that θ̂ET ,
θ̂ETEL and θ̂ETEU compare favourably with respect to the GMM estimators based on

both Ŵ =

(∑n
i=1 gi

(
θ̃, ĥ
)⊗2

/n

)−1

and Ŵ = I. Interestingly, among the two GMM

estimators, the one based on the identity matrix (GMMI) performs better than the one
based on the optimal weighting matrix. Finally, the weighted bootstrap seems to work
well under misspecification, delivering confidence intervals closer to their nominal level
and shorter than those based on the normal approximation.
Figures 1 and 3 confirm the findings of Tables 1-4 as they show that under correct

specification the finite sample distribution of the centred four estimators θ̂EL, θ̂ELEU , θ̂ET

and θ̂ETEU are very similar, whereas under misspecification there is a marked difference
between the finite sample distributions of θ̂ET and θ̂ETEL with those of θ̂EL and θ̂ELEU .
In particular the much larger variability of θ̂EL and θ̂ELEU , as reported by the standard
errors in Tables 2 and 4, is clearly shown. Figures 2 and 4 show that all of the additional
two-step semiparametric CECR estimators with γ < 0 have finite sample properties
similar to those of θ̂ET , θ̂ETEL with no one clearly dominating in terms of MSE, coverage
accuracy and/or average length of the confidence intervals. Figures 2 and 4 also show
that the additional two-step semiparametric CECR estimators with γ > 0, while robust
to misspecification, are characterised by a larger MSE (about 32% for the QIF model
and 35% for the PLA model), larger average length (about 12% for the QIF model and
8% for the PLA model) and a slightly lower coverage (about 1% for the QIF model and
about 4% for the PLA model). The larger MSE is due mainly to larger standard errors
than those obtained for γ ≤ 0 (about 18% for the QIF model and 16% for the PLA
model), which also explains the fact that the average length of the confidence intervals
is longer. Thus Figures 2 and 4 seem to suggest that two-step semiparametric CECR
estimators defined by nonpositive γ’s are characterised by better sample properties than
those defined by a positive γ.

6. Conclusion

In this paper we propose a general estimation method that can be used in the context of
possibly misspecified semiparametric estimating equations models, where a preliminary
estimator of the infinite dimensional parameter is available. The method is an alternative
to generalised method of moments estimation and combines exponential tilting with an-
other member of the empirical Cressie-Read discrepancy defined by a nonpositive value of
the user specific parameter γ. The resulting two-step semiparametric CECR estimators
are robust to misspecification and have implied probabilities that can are range preserv-
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ing. Their asymptotic distribution is normal with a variance that depends on whether
there is an estimation effect arising from the preliminary nonparametric estimator or
not. To illustrate these results we consider two models that have not been previously
investigated in the semiparametric literature: a quadratic inference functions model with
nonparametric generated regressors and a partially linear additive model with endoge-
nous regressors. We use a simulation study to investigate the finite sample properties of
a number of estimators and test statistics. Taken together the results of the simulation
study suggest that the proposed two-step combined nonparametric likelihood estimation
can be a useful and valid alternative to generalised method of moment estimation in the
context of possibly misspecified semiparametric estimating equations models.
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7. Tables and figures

Table 1. Finite sample bias (B), standard error (SE), 0.95 coverage probability (COV),

average length (AL), their bootstrap versions (BCOV) and (BAL) for estimators and

confidence intervals of θ10 in the QIF model under correct specification

B
(
x10−2

)
SE
(
×10−2

)
COV AL BCOV BAL

n = 100
EL
ET

ETEL
ELEU
ETEU
GMM

2.892
3.113
3.110
2.866
3.056
3.919

9.264
8.112
9.143
8.044
8.054
10.354

0.912
0.904
0.908
0.904
0.906
0.907

0.373
0.380
0.386
0.356
0.354
0.366

0.910
0.909
0.909
0.908
0.910
0.909

0.327
0.332
0.343
0.329
0.322
0.323

n = 400
EL
ET

ETEL
ELEU
ETEU
GMM

2.086
2.122
2.194
2.090
2.099
2.501

2. 632
2. 556
2. 571
2. 522
2.563
2. 677

0.921
0.914
0.912
0.908
0.914
0.913

0.165
0.175
0.175
0.163
0.162
0.183

0.919
0.920
0.918
0.912
0.916
0.918

0.153
0.156
0.158
0.146
0.151
0.156

Table 2. Finite sample bias (B), standard error (SE), 0.95 coverage probability (COV)

average length (AL), their bootstrap versions (BCOV) and (BAL) for estimators and

confidence intervals of θ1∗ in the QIF model under misspecification

B
(
x10−2

)
SE
(
x10−1

)
COV AL BCOV BAL

n = 100
EL
ET

ETEL
ELEU
ETEU
GMM
GMMI

9. 637
4. 564
5. 103
9. 899
5.897
9.886
9.407

12.299
2. 706
3.116
11. 832
3.564
8.225
8.126

0.827
0.895
0.900
0.826
0.895
0.870
0.889

0.457
0.389
0.398
0.475
0.406
0.428
0.416

0.899
0.904
0.903
0.891
0.899
0.899
0.895

.

0.401
0.354
0.345
0.398
0.378
0.384
0.382

n = 400
EL
ET

ETEL
ELEU
ETEU
GMM
GMMI

9.132
3. 005
3. 451
8. 899
3.798
7.432
7. 019

11. 450
1. 534
1. 675
9.877
2.104
7.543
6.896

0.841
0.912
0.913
0.841
0.912
0.856
0.897

0.450
0.199
0.194
0.469
0.228
0.326
0.282

0.897
0.912
0.908
0.894
0.912
0.886
0.899

0.398
0.210
0.195
0.410
0.185
0.312
0.289
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Table 3. Finite sample bias (B), standard error (SE), 0.95 coverage probability (COV)

average length (AL), their bootstrap versions (BCOV) and (BAL) for estimators and

confidence intervals of θ20 in the IV partially linear additive model under correct specification

B
(
×10−2

)
SE
(
×10−1

)
COV AL BCOV BAL

n = 100
EL
ET

ETEL
ELEU
ETEU
GMM

-2.152
-2.323
-2.889
-2.165
-2.932
3.123

1.903
1.877
1.896
1.910
1.902
2.457

0.901
0.912
0.905
0.908
0.912
0.918

0.745
0.735
0.743
0.748
0.745
0.960

0.923
0.913
0.917
0.923
0.928
0.926

0.731
0.725
0.728
0.741
0.702
0.898

n = 400
EL
ET

ETEL
ELEU
ETEU
GMM

-1.086
-1.091
-1.098
-1.097
-1.206
1.466

0.915
0.976
0.943
0.930
0. 932
1.062

0.920
0.927
0.913
0.918
0.918
0.931

0.358
0.382
0.369
0.364
0.365
0.416

0.928
0.938
0.925
0.923
0.927
0.937

0.324
0.316
0.343
0.332
0.351
0.391

Table 4. Finite sample bias (B),standard error (SE), 0.95 coverage probability (COV)

average length (AL), their bootstrap versions (BCOV) and (BAL) for estimators and

confidence intervals of θ2∗ in the IV partially linear additive model under misspecification

B
(
x10−1

)
SE
(
×10−1

)
COV AL BCOV BAL

n = 100
EL
ET

ETEL
ELEU
ETEU
GMM
GMMI

-0.988
-0.323
-0.331
-1.145
-0.373
0.788
0.556

6.901
2.321
2.272
7.002
2.823
5.123
4.675

0.845
0.897
0.899
0.813
0.888
0.857
0.869

1.346
0.876
0.858
1.297
0.891
1.231
1.118

0.871
0.896
0.901
0.880
0.898
0.866
0.875

1.312
0.749
0.756
1.235
0.807
1.043
0.996

n = 400
EL
ET

ETEL
ELEU
ETEU
GMM
GMMI

-0.906
-0.199
-0.195
-0.989
-0.147
0.453
0.400

5.996
1.328
1.237
6.597
1.315
3.998
3.441

0.879
0.902
0.904
0.851
0.898
0.875
0.880

1.075
0.584
0.541
1.063
0.662
1.112
0.938

0.882
0.905
0.906
0.862
0.901
0.872
0.883

1.071
0.496
0.499
1.052
0.512
0.945
0.927
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Figure 1. Distributions of the centered EL, ELEU, ET and ETEU estimators of the QIF model under correct
specification (left panel) and misspecification (right panel).
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Figure 2. MSE, coverage and average length for the additional θ̂CECR estimators and for the estimators of Tables
1 and 2 of the QIF model under misspecification. Note that the position on the γ -axis of the GMM estimator is
arbitrarily set at γ = −2.
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Figure 3. Distributions of the centered EL, ELEU, ET and ETEU estimators of the IV PLA model under correct
specification (left panel) and misspecification (right panel).
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Figure 4. MSE, coverage and average length for the additional θ̂CECR estimators and for the estimators of Tables
3 and 4 of the IV PLA model under misspecification. Note that the position on the γ -axis of the GMM estimator
is arbitrarily set at γ = −2.
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