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Abstract 24 

Nanogels have potential for encapsulating cancer therapeutics, yet their susceptibility to 25 

physiological degradation and lack of cellular specificity hinder their use as effective oral 26 

delivery vehicles. Herein, we engineered novel albumin-core with folic acid functionalized 27 

hyperbranched amylopectin shell-type nanogels, prepared through a two-step reaction and 28 

loaded with curcumin while the proteinaceous core was undergoing thermal gelation. The 29 

nanogels had a mean hydrodynamic diameter of ca. 90 nm and ζ-potential of ca. -24 mV. 30 

Encapsulation of curcumin within the nanogels was restored, up to ca. 0.05 mg mL-1, beyond 31 

which, a gradual increase in size and a decrease in ζ-potential was observed. The core-shell 32 

structures were resilient to in vitro physiological oral-gastrointestinal digestion owing to a 33 

liquid crystalline B- and V-type polymorphism in the polysaccharide shell, the latter being 34 

driven by the shell functionalization with folic acid. Additionally, these biocompatible 35 

nanogels restored stability of the encapsulated curcumin and exhibited augmented cellular 36 

uptake and retention specifically in folate receptor-positive HT29 human colon 37 

adenocarcinoma cells, inducing early-stage apoptosis. Novel insights from this study 38 

represent a promising platform for rational designing of future oral delivery systems that can 39 

surmount physiological barriers for delivering cancer therapeutics to colon cancer cells with 40 

improved stability and specificity. 41 

 42 
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Albumin; Amylopectin starch; Core-shell nanogels; Colon cancer therapy; Curcumin 44 

encapsulation; Folic acid; Improved bioavailability; in vitro Digestion; Maillard reaction; 45 

Targeted oral drug delivery. 46 
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Abbreviations 48 

ACS, amylopectin from corn starch; SF20, folic acid functionalized amylopectin polymers; 49 

BSAnative, native bovine serum albumin; BSA, nanogels derived from BSAnative; BSAcur, 50 

curcumin encapsulated BSA; BSAFITC, FITC tagged BSA; BSMcon, Maillard conjugates of 51 

bovine serum albumin + SF20; BSM, nanogels derived from BSMcon; BSMcur, curcumin 52 

encapsulated BSM; BSMFITC, FITC tagged BSM; BAMcon, Maillard conjugates of bovine 53 

serum albumin + ACS; BAM, nanogels derived from BAMcon; BAMcur, curcumin 54 

encapsulated BAM; BAMFITC, FITC tagged BAM; Dh, mean hydrodynamic diameter; KDa, 55 

Kilodalton; wt. %, weight percentage; vol. %, volume percentage. 56 
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1. Introduction 58 

Colon cancer is one of the most pervasive malignant cancers in existence [1]. To ameliorate 59 

such cancers, tremendous advances in nanotechnology research have facilitated a steep rise in 60 

fabricating nano-carriers (ranging from ~ 1 to 100 nm) for localized delivery of cancer 61 

therapeutics [2]. Such nano-carriers can be beneficial over direct administration of the bare 62 

cancer drugs as they are aimed to package the cancer therapeutic and deliver them to the 63 

targeted cancer tissues with improved pharmacokinetic and pharmacodynamic outcomes [3, 64 

4]. By exploiting biodegradable chemistries, nano-carriers with reduced cytotoxicity as 65 

compared to the synthetic polymeric counterparts have ranged in literature from micelles, 66 

liposomes, solid lipid nanoparticles, dendrimers, to nanogels. 67 

Nanogels, i.e. nanometric-sized hydrogels are considered as one of the most promising 68 

classes of nanoparticle-based delivery vehicles as it combines properties of both the hydrogels 69 

and the nanoparticles [5]. Furthermore, nanogels are tunable in size, surface properties, 70 

responsiveness, etc. for cancer cell targeting [5]. In particular, nanogels synthesized from 71 

proteins [6-8], including bovine serum albumin (BSA), which is a natural transporter of small-72 

molecule hydrophobes [9], have recently attracted a great deal of research attention for 73 

therapeutic delivery. The major advantages of protein-based nanogels are their 74 

biodegradability, biocompatibility, and non-antigenicity along with flexibility for surface 75 

modifications and/or chemical functionalization [8, 10]. Additionally, proteins are 76 

polyampholytic in nature and enhanced surface hydrophobicity of thermally-treated globular 77 

proteins due to unfolding offers these protein-based nanogels to serve as excellent carriers for 78 

hydrophobic and charged therapeutic molecules [9, 11-14]. However, most protein-based 79 

nanogels suffer from high susceptibility to proteolytic enzymes during physiological transit 80 

[10, 15, 16] which may consequently result in structural degradation. This might result in 81 
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premature therapeutic release during oral delivery or even degradation of the therapeutic 82 

before reaching the targeted diseased colonic sites. 83 

To address this afore-mentioned challenge of physiological degradation, covalent 84 

conjugation of proteins with polysaccharides can be particularly appealing [9, 14, 17]. 85 

Usually, protein-polysaccharide conjugates are developed via Maillard dry-heat reaction [17] 86 

resulting in the formation of a copolymer conjugate between the reducing end carbonyl group 87 

in the polysaccharides and the ε-amino groups in the protein [18]. This can be followed by the 88 

employment of a thermal-gelation process to prepare nanogels that result in a sophisticated 89 

core-shell structure [18, 19]. The protein core is known to act as a hydrophobic carrier for 90 

encapsulating hydrophobic therapeutic molecules and safeguard the latter against 91 

physiological degradation, whereas the polysaccharide shell provides a steric barrier for 92 

limiting the digestion of the proteinaceous core [17]. Yet, such nanogel architecture lacks 93 

cellular specificity, and indiscriminately delivers the therapeutics to both diseased and healthy 94 

cells. This not only reduces the bioavailability of the therapeutics at diseased sites but also 95 

promote undesired side effects upon oral administration. 96 

These issues can be addressed using cancer cell-specific delivery of therapeutic 97 

molecules using core-shell nanogel architectures equipped with targeting moieties [20, 21]. 98 

The polysaccharides shells provide spatial positioning of functional groups for attachment of 99 

targeting moieties, such as the vitamin B9 i.e. folic acid ((2S)-2-[[4-[(2-amino-4-oxo-3H-100 

pteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid; PubChem CID: 135398658).  101 

Folic acid is known to impart specific as well as high binding affinity (Kd, ca. 10-7 mM) to 102 

folate receptors, the latter are overexpressed ca. 100 - 300 times greater in a vast majority of 103 

cancer cells including the colon [22]. Additionally, experimental studies coupled with 104 

computational simulations have shown that folic acid can inhibit a wide array of digestive 105 

enzymes such as α-amylase, pepsin, and trypsin [23, 24]. Our group has recently developed 106 
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folic acid functionalized amylopectin (SF20) polymers and deciphered its structural hierarchy 107 

using small angle and wide angle X-ray scattering and we demonstrated a high degree of 108 

resilience of these designed polymers to physiological digestion [22, 25]. The glucose 109 

homopolymers, amylopectin, offers significant advantages in terms of larger spatial 110 

conformation for folic acid-functionalization owing to its branched tree-like topology [26]. 111 

Such advantages are deficient in linear polysaccharides, such as dextran, chitosan, and 112 

hydroxyethyl cellulose that are currently utilized in most drug delivery studies to date [27]. 113 

Herein, we report the design of novel folic acid functionalized core-shell nanogels and 114 

hypothesize that the vehicle will uniquely combine 1) biocompatibility, 2) restricted 115 

degradation of the delivery vehicle and payload in in vitro physiological conditions, and 3) 116 

targeted colon cancer cell specificity and retention. The nanogels functionalized with folic 117 

acid are expected to have a two-fold beneficial effect. Firstly, folic acid is expected to serve as 118 

a targeting motif for specific recognition, cellular-uptake, and retention in folate receptor-119 

positive colon cancer cells. This in turn can increase the bioavailability of the encapsulated 120 

therapeutics specifically in the diseased cells without interfering with the healthy cells, thus 121 

providing an oral targeted delivery, which is seldom reported in the literature. Curcumin 122 

((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione; PubChem CID: 123 

969516), a highly hydrophobic polyphenol derived from turmeric (Curcuma longa) was 124 

chosen as a model cancer therapeutics in this study owing to its well-established 125 

pharmacological properties and high responsiveness to physiological degradation [4, 28, 29]. 126 

Secondly, this is the first study where folic acid is additionally utilized to drive a liquid 127 

crystalline polymorphism in the polysaccharide chains of the shell, which is expected to 128 

hinder the physiological degradation of the nanogels and enhance their stability in the 129 

complex oral-to-gastrointestinal milieu.  130 
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In this study, we systematically deconvoluted the structure of the nanogels using 131 

dynamic/ static light scattering, electrophoretic mobility, X-ray diffraction, spectroscopy 132 

(circular dichroism and infrared), thermogravimetric analysis, and microscopy (fluorescence 133 

and scanning-/transmission-electron microscopy) at multiple length scales. Then, we discuss 134 

the unprecedented bio-functional properties of these nanogels loaded with curcumin in terms 135 

of in vitro physiological stability, alongside specific internalization and inhibition of folate-136 

receptor positive human cellular models of colon cancer. Novel insights from this study can 137 

be used to inform future design of oral delivery vehicles that are biocompatible, 138 

physiologically stable, and allow targeting the cancer therapeutics specifically to the colon 139 

cancer cell. 140 

2. Materials and methods 141 

2.1. Materials 142 

Bovine serum albumin (BSA, ≥ 96 %), amylopectin from corn starch (ACS, containing no 143 

amylose as assessed using colorimetric procedure [22]), folic acid (FA, ≥ 97 %), curcumin 144 

from Curcuma longa (≥ 81 %), 1, 3-dicyclohexylcarbodiimide (N,N'-145 

dicyclohexylmethanediimine, DCC, ≥ 99 %), 4-dimethylaminopyridine (N,N-146 

dimethylpyridin-4-amine, DMAP, ≥ 99 %), potassium bromide (KBr, ≥ 99 %), n-hexane (≥ 147 

97 %), α-amylase type IX-A from human saliva (300 - 1500 U mg-1), α-amylase type VI-B 148 

from porcine pancreas (> 10 U mg-1), pepsin from porcine gastric mucosa (3200 - 4500 U mg-149 

1), pancreatin from porcine pancreas (4 × USP), toluene (≥ 99.8 %), isopropanol (≥ 70 % in 150 

H2O), hydrochloric acid (HCl, 36.5 - 38.0 %), dimethyl sulfoxide (DMSO, ≥ 99.9 %) sodium 151 

hydroxide (NaOH, ≥ 97 %), O-phthaldialdehyde reagent (phthaldialdehyde (1 mg mL-1), Brij® 152 

35, methanol, 2-mercaptoethanol, potassium hydroxide, and boric acid, pH 10.4), fluorescein 153 

isothiocyanate isomer I (FITC, ≥ 90 %), TERGITOL™ Type NP-40, and Amicon® Ultra 154 
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centrifugal dialysis filter (30 kDa MWCO) were purchased from Sigma-Aldrich, India or UK. 155 

The HT29 (folate receptor-positive human colon adenocarcinoma) and A549 (folate receptor-156 

negative human alveolar carcinoma) cells were purchased from the National Centre for Cell 157 

Science, India. ProLong™ Gold Antifade Mountant with 4′, 6-diamidino-2-phenylindole 158 

(DAPI) was purchased from Thermo Fischer Scientific, India. Alexa Fluor™ 568 Phalloidin, 159 

fetal bovine serum (FBS), and antibiotics (100 unit mL-1 penicillin and 100 µg mL-1 160 

streptomycin) were purchased from Abcam, USA. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-161 

diphenyl-2H-tetrazolium bromide (MTT), Dulbecco's Modified Eagle Medium (DMEM), 162 

Dulbecco’s Phosphate Buffered Saline (DPBS), acridine orange (AO), and ethidium bromide 163 

(EB) were purchased from Himedia Labs, India. Milli-Q water (Millipore Corp., USA) was 164 

used throughout the experiments (18.2 MΩ.cm ionic purity at 25 °C). 165 

The folic acid functionalized amylopectin (SF20) polymer with a degree of 166 

substitution, 0.02; i.e. 0.02 folic acid molecules per glucose residues of the ACS polymer was 167 

synthesized as described in detail previously [22]. Briefly, folic acid was reacted with DCC 168 

and DMAP (FA: DCC: DMAP molar ratio of 1:1:0.3) by stirring for 30 min in DMSO. ACS 169 

was added to the reaction mixture (20 wt. % of folic acid to starch dry weight) and was further 170 

reacted under dark conditions for 24 h at 30 °C. The reaction products were washed with 171 

100 mM HCl and water, and then dialyzed (3.5 kDa MWCO) against 10 mM phosphate buffer 172 

at pH 7.4 containing 100 mM NaCl for 24 h, and, then with water for another 24 h. The 173 

product was lyophilized, ground to a fine powder, and the SF20 polymer was obtained. The 174 

substitution of folic acid in SF20 is described using complementary spectroscopy (UV and 175 

infrared) and confocal laser scanning microscopy elsewhere [22]. 176 

2.2. Synthesis of albumin (BSA)-folic acid functionalized amylopectin (SF20) copolymer 177 

conjugates 178 
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Maillard reaction was used to conjugate BSA and SF20 using a molar ratio of 1:1, lysine 179 

residues of BSA: SF20 [30]. Both BSA and SF20 were dissolved together in 10 mM 180 

phosphate buffer and the pH of the mixture was adjusted to pH 8.0 using NaOH. The mixture 181 

was then stirred at 500 rpm for 12 h in the dark at room temperature. The resultant dispersion 182 

was lyophilized and then reacted inside a desiccator pre-conditioned using a saturated solution 183 

of KBr to yield 79 % relative humidity at 60 °C. This BSA + SF20 Maillard copolymer 184 

conjugate was denoted as BSMcon henceforth. The conjugation degree of the conjugate was 185 

analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at a 186 

protein load of 10 µg well-1 and O-phthaldialdehyde (OPA) assay as described elsewhere [31]. 187 

Additionally, Fourier transform infrared (FTIR) spectra (4500 - 400 cm-1, where 32 scans 188 

were averaged with a resolution of 2 cm-1) of the conjugates were obtained. Samples were 189 

prepared as KBr pellets and scanned against air background on a Spectrum 100 ATR-FTIR 190 

Spectrometer (Perkin Elmer Inc., USA) with KBr correction optics. 191 

Control groups included BSA + ACS Maillard copolymer conjugate (BAMcon) without 192 

any addition of folic acid groups produced under the same reaction conditions and native 193 

bovine serum albumin (BSAnative) protein. 194 

2.3. Fabrication of nanogels and curcumin encapsulation 195 

BSMcon (1 mg mL-1) was stirred in 10 mM phosphate buffer at 500 rpm for 12 h using a 196 

magnetic stirrer for complete hydration. For clarity, only the concentration of albumin in the 197 

protein-polysaccharide conjugates is denoted. The nanogels were prepared as described earlier 198 

by Fan et al. [31] with some modifications. Briefly, the hydrated dispersion of BSMcon 199 

prepared above was heated to 80 °C. To load curcumin, the latter was dissolved in ethanol and 200 

added to the hydrated dispersion of copolymer conjugates at various loads (0 - 0.2 mg mL-1). 201 

Ethanol concentration in the final mixture was < 0.01 %. The thermal treatment was 202 

continued alongside stirring at 500 rpm for 60 min and then allowed to cool to room 203 
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temperature to produce curcumin encapsulated thermally-crosslinked nanogels. Nanogel 204 

fabrication was always carried out in dark conditions and stored at 4 °C before use. Any 205 

minor precipitation of copolymer conjugate or curcumin if observed was centrifuged out of 206 

the dispersion at 3000 g for 10 mins. The nanogels without curcumin (0 mg mL-1)/with 207 

curcumin (0.02 - 0.2 mg mL-1) were denoted as BSM/BSMcur, respectively. Control nanogels 208 

without folic acid or any conjugation with ACS were denoted as BAM and BSA (without 209 

curcumin) and BAMcur and BSAcur (with curcumin), respectively. Curcumin encapsulation 210 

efficiency (CEE, indicating the mass % of loaded curcumin that was encapsulated into the 211 

nanogels) and the curcumin loading efficiency (CLE, indicating the mass % of the nanogels 212 

comprising the encapsulated curcumin) were expressed as described previously [32]: 213 

𝐶𝐸𝐸(%) = ெିெುெ × 100                                                                                  Eq. (1) 214 

𝐶𝐿𝐸 (%) = ெିெು(ெିெು)ା × 100                                                                           Eq. (2) 215 

where MT, MP, and p represent the mass of the total curcumin load, the curcumin in the 216 

precipitate, and the total weight of the polymer, respectively. Absorbance was measured at 217 

420 nm. 218 

2.4. Characterization of the nanogels 219 

2.4.1. Mean hydrodynamic diameter, ζ-potential, and molecular weight 220 

The mean hydrodynamic diameter (Dh) and size distribution of the nanogels were measured 221 

using dynamic light scattering on a Nano ZS series (Malvern Instruments, UK) Zetasizer 222 

equipped with a 4 mW helium/neon laser at a wavelength output of 633 nm and 223 

backscattering was measured at a detection angle of 173°. On the other hand, ζ-potential was 224 

calculated from the electrophoretic mobility of the nanogels in a mini-electrophoretic DTS-225 

1070 capillary cell (Malvern Instruments, UK). During the measurements, the samples were 226 



12 
 

diluted 10-times with 10 mM phosphate buffer (pH 7.4) for analysis at 25 °C.  Each value was 227 

measured at least six times. 228 

The same instrument was used for estimation of molecular weight using a static light 229 

scattering method as described elsewhere for crosslinked polymers [33]. Briefly, samples 230 

were prepared in 90 % DMSO (vol. %) and then adjusted with 10 mM phosphate buffer (pH 231 

7.4) to 0.25 - 1 mg mL-1 concentrations and allowed to completely hydrate for 24 h. The final 232 

DMSO concentration in samples was DMSO: buffer (1:10, vol. %). Molecular weight was 233 

estimated from the intercept at zero concentration from Debye-plots, where the time-averaged 234 

intensity of scattering (therefore, static) for the samples against the single angle was compared 235 

to the time-averaged scattered light from a standard sample of toluene, latter was used as a 236 

reference. 237 

2.4.2. Far-UV Circular dichroism (CD) 238 

The CD spectra (180 - 260 nm) were measured on a Chirascan Plus (Applied Photophysics, 239 

UK) spectropolarimeter using a 1.0 mm path length quartz cuvette at 25 °C. The content of 240 

the α-helix, β-sheet, and random coil structures in the protein moiety of the nanogels was 241 

calculated on the DICHROWEB server using the K2D method [34]. During the 242 

measurements, the samples were diluted 10-times with 10 mM phosphate buffer (pH 7.4) for 243 

analysis at 25 °C. 244 

2.4.3. Wide-angle X-ray diffraction (XRD) 245 

The XRD diffractograms of lyophilized nanogels were recorded at 25 °C, over an angular 246 

range, 2θ° = 5 - 25°. The sample was mounted on an aluminum sample holder and leveled 247 

with a glass slide for examination on a D8 Focus (Bruker AXS, Germany) X-ray 248 

diffractometer using Cu Kα (λ = 0.154 nm) radiation. 249 

2.4.4. Electron microscopy 250 
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Transmission electron micrographs (TEM) were obtained on a Tecnai G2 F20 S-TWIN (FEI 251 

Company, USA) electron microscope. The nanogels were diluted 10-times with 10 mM 252 

phosphate buffer (pH 7.4), deposited over a carbon-coated copper grid, and then air-dried 253 

before imaging at an accelerating voltage of 20 kV. 254 

Scanning electron micrographs (SEM) were obtained on a JSM 6390 LV (JEOL, 255 

Singapore) electron microscope. Lyophilized nanogels were sputter-coated with gold over the 256 

sample stage before imaging at an accelerating voltage of 20 kV. 257 

2.4.5. Thermogravimetric analysis (TGA) 258 

TGA was performed on a TG 209 F1 Libra (NETZSCH, Germany) thermogravimetric 259 

analyzer. For TGA measurements, the mass of lyophilized nanogels was monitored under 260 

nitrogen (20 mL min-1) at temperatures from 20 - 700 °C at a rate of 10 °C min-1. 261 

The first derivative of the mass % in TGA thermograms were plotted (i.e. the 262 

derivative thermogravimetric (DTG) thermograms) as described elsewhere [35]. The 263 

degradation temperature (Td) of the protein or polysaccharide components of the nanogels was 264 

estimated from the temperature corresponding to the maximum mass % change in DTG 265 

thermograms. Based on known values of Td, the mass loss (m1) in either protein or 266 

polysaccharide components and the total mass loss in the nanogels (m2) were utilized to 267 

calculate the thickness of the core and shell as, ቀభమቁ 𝑟, where 𝑟 is the radius of the nanogels 268 

i.e.  ଶ   obtained from the dynamic light scattering results.. 269 

2.5. In vitro oral-gastrointestinal digestion of nanogels 270 

In vitro digestion was carried out using a method described earlier by Minekus et al. [36] with 271 

some modifications. Briefly, 100 mg of nanogels were used for each experiment and mixed 272 

with salivary α-amylase (75 U mL-1) and CaCl2 (0.75 mM) solution for 5 min at 37 °C to 273 
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replicate oral phase digestion. This was followed by the addition of the simulated gastric fluid 274 

containing 0.26 g L-1 KCl, 0.06 g L-1 KH2PO4, 1.05 g L-1 NaHCO3, 1.38 g L-1NaCl, 0.12 g L-275 

1 MgCl2(H2O)6, 0.02 g L-1 (NH4)2CO3 and 1.02 - 1.40 × 104 U mL-1 pepsin, pH of the solution 276 

was adjusted to 2.20 ± 0.05. The simulated gastric digestion was carried out for 30 min. 277 

Intestinal digestion was initiated by adding simulated intestinal fluid containing 0.25 g L-278 

1 KCl, 0.05 g L−1 KH2PO4, 3.57 g L−1 NaHCO3, 1.12 g L−1 NaCl, 0.33 g L−1 MgCl2(H2O)6, 279 

0.44 g L-1 CaCl2.2H2O, 0.23 g L-1 bile salts, and 0.12 g mL-1 pancreatin (lipase activity: > 280 

8 U mg-1, amylase activity: > 100 U mg-1, protease activity: > 100 U mg-1). The pH of the 281 

solution was adjusted to 6.80 ± 0.05. The simulated intestinal digestion was carried out for 282 

265 min, allowing the total oral-gastrointestinal digestion to be 300 min. The pH was 283 

maintained during the entire digestion process by the addition of HCl and NaOH, as 284 

necessary. 285 

The digesta was diluted using SDS-PAGE loading buffer and subjected to SDS-PAGE 286 

analysis as described earlier [31], at a protein load of 10 µg well-1. Relative intensities in 287 

SDS-PAGE gels were measured using the open source code ImageJ (NIH, USA). 288 

2.6. In vitro cellular internalization of nanogels into cancer cells and cell viability 289 

The HT29 and A549 cells (diseased and control cellular models, respectively) were 290 

maintained in complete DMEM medium supplemented with 10 wt. % FBS and 291 

penicillin/streptomycin. The confluent cells were seeded into 6-well plates (ca. 0.5 × 106 - 292 

0.75 × 106 cells well-1). For evaluating cellular internalization, FITC was used owing to its 293 

narrow emission maximum at 525 nm compared to the broad emission of curcumin in 294 

aqueous environments [37]. Briefly, 5 µg ml-1 nanogels were tagged with 1.28 µM FITC mg-1, 295 

via the method of encapsulating curcumin as described in section 2.3. The nanogels were 296 

further stirred in the dark for 12 h at room temperature.  The excess FITC was removed using 297 

ultracentrifugation in Amicon® filters (10-washes). The nanogels were designated as 298 
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BSMFITC. Appropriate controls without folic acid or any conjugation with ACS (BAM and 299 

BSA nanogels) were tagged similarly with FITC and denoted as BAMFITC and BSAFITC, 300 

respectively. The FITC-tagged nanogels (5 µg ml-1) were added to the cells in 1 wt. % FBS 301 

containing medium for 24 h at 37 °C. After treatment, the cells were washed and incubated 302 

with phalloidin tagged with Alexa Fluor 568 in the dark (60 min at room temperature) to stain 303 

the F-actin filaments of the cells. The cells were then mounted with ProLong Gold Antifade 304 

mounting solution with DAPI to stain the cell nuclei and imaged using an IX83 (Olympus, 305 

Japan) fluorescence microscope. Relative intensities in micrographs were measured using 306 

ImageJ (NIH, USA). 307 

An acridine orange/ethidium bromide (AO/EB) assay was used for the identification 308 

of apoptosis as described earlier [38]. Briefly, cells were seeded in 6 well tissue culture plates 309 

(0.5 × 106 cells well-1) and treated with free curcumin or the curcumin encapsulated nanogels 310 

for 24 h at 37 °C. After removal of medium, cells were washed and then stained with AO 311 

(50 mg mL-1) and EB (5 mg mL-1), respectively for 5 min at room temperature and examined 312 

under a fluorescence microscope. Apoptosis + necrosis in micrographs were measured using 313 

ImageJ (NIH, USA) based on the intensity of EB entry into the nonviable cells (dye entry 314 

follows, early apoptotic < late apoptotic < necrotic cells) and emission of red fluorescence by 315 

intercalation into DNA [38]. 316 

An MTT-based colorimetric assay was performed to examine the in vitro cellular 317 

cytotoxicity. Cells were seeded (7.5 × 103 cells well-1) in a 96-well plate and incubated 318 

overnight at 37 °C. Next, the cells were treated with free curcumin or the nanogels (1, 5, and 319 

10 µg mL-1) in 1 wt. % FBS containing medium for another 24 h at 37 ºC. Following the 320 

treatment, cells were washed with DPBS, and MTT (5 mg mL-1) was added for 4 h at 37 °C. 321 

The medium was discarded and 150 µL of MTT-dissolving solution (0.1 % TERGITOL™ 322 

Type NP-40 and 4 mM HCl in isopropanol) was added to each well and agitated in an orbital 323 
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shaker for 15 min. Formazan absorbance was measured at 590 nm. Absorbance values were 324 

corrected against the absorbance of cells without any treatment (control). 325 

Note, penicillin/streptomycin was not used in the AO/EB and MTT assays to limit any 326 

antibiotic-induced interference in cell viability. 327 

2.7. Statistical analysis 328 

Analysis of variance (ANOVA) and Tukey’s HSD Post Hoc analyzes were conducted using 329 

SPSS 8.0 (SPSS, Inc., USA). Treatment means were considered significantly different at p < 330 

0.05. 331 

3. Results and discussion 332 

3.1. Synthesis and characteristics of the albumin (BSA)-folic acid functionalized 333 

amylopectin (SF20) copolymer conjugates 334 

The folic acid functionalized amylopectin (SF20) and amylopectin (ACS, control) was 335 

conjugated to bovine serum albumin (BSAnative) via a Maillard reaction, under water-restricted 336 

conditions. This yielded the BSMcon and BAMcon copolymer conjugates. For both the 337 

conjugates i.e. with or without functionalization with folic acid groups, the increasing degree 338 

of glycation was dependent on the reaction time (corresponding to 6, 12, 24, and 48 h) as 339 

evidenced in Figure 1 derived from Figure S1a. The SDS-PAGE electrogram confirming the 340 

formation of conjugates as evidenced by high molecular weight glycoprotein smears in 341 

BSMcon and BAMcon as shown in Figure S1a. The BSAnative protein (L 2 in Figure S1a) was 342 

prominent at ca. 66 kDa, which is consistent with the theoretical molar mass [31]. From a 343 

closer examination of Figure 1, it appears that SF20 is more potent in conjugating to the 344 

protein, in comparison to ACS. Additionally, the O-phthaldialdehyde assay (evaluated for 345 

lysine) sheds further light into this covalent binding behavior. For BSMcon and BAMcon, 41.20 346 

± 2.77 and 27.54 ± 1.15 % lysine residues in the protein were conjugated to SF20 and ACS, 347 
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respectively (data not shown). We postulate that the negatively-charged SF20 (ca. -24 mV 348 

[22]) was favored in terms of the spatial proximity to a greater number of cationic lysine 349 

residues housed in the protein at pH 8.0. This electrostatically attractive contribution may 350 

have facilitated the Maillard reaction to a greater extent as shown in Figure 1, which in the 351 

case of weakly-anionic ACS (ca. -3 mV [22]) was marginal. 352 

Noteworthy that extending the Maillard reaction time (> 24 h) resulted in water-353 

insoluble products (the plateauing region in Figure 1). Similar observations have been made 354 

earlier, where the solubility of albumin-alginate Maillard reaction conjugates suffered when 355 

subjected to a prolonged Maillard reaction time [39]. 356 

 357 

Figure 1. Unconjugated protein (%) at different Maillard reaction times; BSMcon (blue, ●) and 358 
BAMcon (red, ■). Error bars represent standard deviations of independent image analyses 359 
(n = 10). 360 

 361 

We used FT-IR to comprehend the short-range molecular order of the conjugates. The 362 

spectra (Figure 2) evidenced the characteristic peaks around 2852 cm-1. The peak attributes to 363 

the NH-group of pterin ring in folic acid [22] confirming the functionalization by folic acid 364 

ligands in the case of BSMcon. This characteristic peak was absent in both BAMcon and 365 

BSAnative. The FTIR spectra of BSMcon and BAMcon in comparison to BSAnative, evidenced a 366 
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ca. 65 and 22 % reduction in the intensity of the band around 2930 cm-1 (obtained from peak 367 

area analysis). This may be assigned to intramolecular hydroxyl and amino group H-bonding 368 

amidst the amino acid residues residing in the protein [40], which upon conjugation appears to 369 

be de-bonded, resulting in the unfolding of the polypeptide structure. A weakening of the 370 

absorbance signal around 1656 cm-1 was additionally evidenced. The peak corresponds to the 371 

amide I region (Figure 2, inset) of the protein, comprising C=O stretching and C-N bending. 372 

Also, a dampened absorbance around 1539 cm-1 was observed, which may be attributed to the 373 

unfolding of the amide II region (Figure 2, inset) of the protein, comprising N-H bending and 374 

C-N stretching. Both indicate that a protein structure unfolding occurred via conjugation with 375 

SF20/ACS. A similar unfolding of protein structure has been witnessed earlier during the 376 

Maillard reactions of albumin with glucose and mannose [41]. Interestingly, protein structure 377 

unfolding was more pronounced in the case of SF20, in comparison to ACS (Figure 2, inset). 378 

This appears to have had implications in the promotion of Maillard conjugation of the former, 379 

as evidenced during SDS-PAGE and OPA analysis. 380 

 381 

Figure 2. FTIR spectra of BSAnative (black), BAMcon (red), and BSMcon (blue). Arrows 382 
indicate characteristic peaks. The spectra are offset vertically for clarity. Inset shows the 383 
Amide I and II regions of the spectra. 384 

 385 
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Additionally, Figure S1b, left, indicated that the conjugates exhibited pronounced 386 

amphiphilicity evidenced from the formation of the film at the n-hexane/phosphate buffer 387 

interface even after strenuous shaking. The schematic illustration of this amphiphile assembly 388 

at the oil/water interface is depicted in Figure S1b, right, and corroborates with findings of 389 

previous protein-polysaccharide studies [17, 42]. 390 

3.2. Mean hydrodynamic diameter and ζ-potential of the nanogels 391 

The synthesized conjugates were subjected to thermal gelation to fabricate nanogels. The 392 

mean hydrodynamic diameter (Dh) of the BSM (89.50 ± 10.88 nm; PDI, 0.24) and the control 393 

BAM (105.58 ± 11.24; PDI, 0.28) nanogels were observed to be significantly smaller (p < 394 

0.05) than their protein alone counterpart, BSA (232.73 ± 31.24; PDI, 0.41). It seemed that 395 

the conjugation of polysaccharide (SF20/ACS) to protein prevented the formation of larger 396 

heterogeneous nanogels. A polysaccharide surface coverage of protein nanogels is known to 397 

provide a steric barrier for stability against aggregation [17, 19]. This was reinstated by the 398 

narrow distribution of BSM and BAM, in comparison to the bimodal distribution for the BSA 399 

nanogels (Figure 3a). 400 

 401 

Figure 3. Size distribution of BSM (blue), BAM (red), and BSA (black) nanogels. Inset shows 402 
the nanogel solutions. Double black lines behind solutions vials are present to help visualize 403 
solution turbidity (a). Solid lines and dashed lines (BSM (blue), BAM (red), and BSA (black) 404 
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nanogels) represent TGA and DTG thermograms, respectively. Solid vertical lines indicate 405 
mass loss intervals. Td represents the degradation temperature (b). 406 

 407 

Additionally, the ζ-potential of BSM nanogels was -24.40 ± 0.43 mV, significantly (p 408 

< 0.05) higher in comparison to -8.76 ± 0.24 and -18.60 ± 0.45 mV for the BAM and BSA 409 

counterparts at pH 7.4, respectively. The ζ-potential of SF20 and ACS are known to be -24.50 410 

± 6.41 and -3.95 ± 0.32 mV, respectively [22]. This further confirms an effective surface 411 

coverage of the proteinaceous core by SF20 and ACS polysaccharide shell. The higher net ζ-412 

potential value of BSM suggests the forming of a stable colloidal dispersion against protein 413 

aggregation during nanogel formation. 414 

3.3. Structural characteristics of the nanogels 415 

The synthesized protein-polysaccharide conjugates that thermally-crosslink to produce the 416 

core-shell nanogels, comprised of a protein tail and a polysaccharide head, as depicted in 417 

Figure 4a (left). In the conjugate, the Dh of a single monodisperse BSAnative protein 418 

comprising the tail is ca. 5 - 6 nm (the theoretical assumption that the radius of the protein is 419 0.066𝑀భయ, where M is the protein mass in Daltons [43]) and the Dh of SF20 comprising the 420 

head is ca. 300 nm [22]. Therefore, the tail is orders of magnitude smaller than the head, 421 

allowing the conjugates to reflect as cone-shaped macromolecules (Figure 4a, left). Such cone 422 

shaped amphiphiles favor a positive mean curvature (surfaces moving away from the normal) 423 

during assembly via thermal-crosslinking, forming Type I or oil-in-water-like architectures 424 

[44], as depicted in Figure 4a, right. The impetus for this assembly should be derived from the 425 

amphiphilic necessity of, a) the hydrophilic polysaccharide head to be particularly hydrated at 426 

the water interface, and b) the hydrophobic denatured protein tail sequestered to the interior to 427 

reduce oil-water interactions. The dynamic light scattering data and ζ-potential of the BSM 428 

and BAM in comparison to BSA nanogels agree with this proteinaceous core and 429 
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polysaccharide shell-type structure, which is in agreement with previous studies [9, 18, 45]. 430 

The schematic structures of these core-shell nanogels are shown in Figure 4b-d.  431 

 432 

Figure 4. Schematic illustrations of the dimension of copolymer conjugates and core-shell 433 
nanogel architecture (a), BSA (b), BAM (c), and BSM (d) nanogels (nanogels were prepared 434 
and rendered using the open source code Blender 2.8, https://www.blender.org). Arc length 435 
distance and curvature effects of BAM (e) and BSM (f) nanogels. The structural arrangement 436 
of polysaccharide polymer chains in the BAM (g) and BSM (h) shell. Schematic illustrations 437 
are not drawn to scale. 438 

 439 

The thickness of the core and shell of the nanogels were estimated roughly from the 440 

protein and polysaccharide mass composition of the nanogels evaluated from DTG 441 

thermograms (derived from the derivative of TGA thermograms) (Figure 3b). In the three-442 

stage thermal degradation profile, the first (Td1) corresponds to the evaporation of water 443 

molecules [46] and therefore was not assumed to arise from the nanogels. The second (Td2) 444 

and third (Td3) thermal degradation profile is assumed to arise from the protein and 445 

polysaccharide parts of the nanogels, respectively. TGA and DTG thermograms of ACS and 446 

SF20 are shown in Supplementary Figure S1d for comparison. We evidenced ca. 54 nm core 447 

diameter (i.e. radius of core, 𝑟 is ca. 27 nm) with an 18 nm thick shell for BSM and ca. 67 448 

nm core diameter (i.e. radius of core, 𝑟 is ca. 34 nm) with a 19 nm thick shell for BAM. 449 

Note, the density difference of BSM and BAM nanogels were insignificant (p > 0.05) at 1.01 450 
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± 0.29 and 1.48 ± 0.22 g cm-3, respectively as estimated using a PYC-100A (Porous Material 451 

Inc., USA) He-pycnometer (density should be considered with precaution as the error rate was 452 

≥ 0.2 g cm-3). Since the Dh of a monodisperse BSAnative protein is ca. 5 - 6 nm as discussed 453 

earlier, the number of unit proteins within the core of BSM and BAM nanogels can be 454 

estimated as ca. 95 and 180, respectively from ௨ೝ௨ಳೄಲೌೡ × 0.74 [47] (considering unit 455 

proteins being equal-sized spheres, their closest packing density is, గ√ଶయ ≈ 0.74; i.e. 74 % of 456 

the volume). This further ascertains that the greater net negative charge of BSMcon restricted 457 

the excessive aggregation of protein in BSM nanogels during formation, in comparison to 458 

BAMcon. 459 

The structural characteristics of the proteinaceous core of the nanogels were explored 460 

using far-UV circular dichroism. Circular dichroism revealed that BSAnative comprised of a ca. 461 

71 % α-helical structure, which is in close agreement with published data [48]. However, all 462 

the nanogels demonstrated a significant loss of the α-helical structure, alongside an increase in 463 

the quantity of random coil structure and formation of β-sheets, as evidenced in Table 1 464 

derived from Figure S1c. Denaturation of BSA at 80 °C seems to have resulted in the 465 

complete unfolding of the BSA polypeptide structure via heat-induced gelation [49, 50], 466 

which upon cooling allowed BSA to (re)fold into nanogel conformation, in agreement with an 467 

earlier work [51]. 468 

Table 1. Structural aspects of the proteinaceous core. 469 

 α-helix β-sheets Random coil 

 % 

BSAnative 71 3 26 

BSM 23 21 56 

BAM 23 22 55 

BSA 24 21 55 
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BSAnative, native bovine serum albumin used without any treatment; BSM, bovine serum 470 
albumin + folic acid functionalized amylopectin (SF20) conjugate nanogels; BAM, bovine 471 
serum albumin + amylopectin (ACS) conjugate nanogels without added folic acid (control); 472 
and BSA, Bovine serum albumin nanogels without any conjugation (control). 473 

 474 

The TGA thermograms were further utilized to estimate the packing density of the 475 

polysaccharide chains in the SF20/ACS shell masking the molten proteinaceous core [52]: 476 

𝜎்ீ = ಾ %ೞಾ %ೝ ఘೝరయగೝయேಲெௐସగೝమ                                                                      Eq. (3) 477 

where M %shell and M %core are the mass of SF20/ACS and BSA derived from Figure 3b. The 478 

M %shell was divided by the polymer mass per chain (i.e. polymer molecular weight 479 

determined for SF20 and ACS polymers subjected to temperature-sheared conditions of 480 

nanogel preparation (see preparation method in section 2.3) using static light scattering were 481 

6.47 × 105 and 2.84 × 106 Da, respectively over Avogadro’s number) to estimate the number 482 

of polymer units in the sample. Note, the molecular weight of native SF20 and ACS were 2.04 483 

× 107 and 1.82 × 107 Da, respectively; where ACS values are in agreement with previous 484 

reports [26, 53]. It appears that the polymer molecular weight was susceptible to shear and 485 

temperature induced degradation plausibly causing chain breakage at the polysaccharide 486 

branching points [54]. This was greater for SF20 as compared to ACS, in agreement with a 487 

previous report for citric acid functionalized starch with 75 % amylopectin [55]. The 488 

denominator in Eq. (3) represented the total surface area of the nanogel cores in the sample 489 

i.e., the surface area per unit nanogel core (4π𝑟ଶ) multiplied by the total number of 490 

nanogel cores. The total number of nanogel cores was estimated from the M %core divided by 491 

mass of a unit nanogel core, which correlates with the density of BSA core (assumed from 492 

BSA nanogel density i.e. ρcore = ca. 1.48 g cm-3) multiplied by the volume of a unit nanogel 493 

core (ସଷ 𝜋𝑟ଷ). And the volume and surface area calculations assumed that the nanogels 494 
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were spherical, in congruence with TEM images, which are discussed later in Section 3.5. 495 

From Eq. (3), we estimated the packing density of SF20 and ACS polysaccharide chains in 496 

the shell per nm2 of the proteinaceous core to be 8.15 × 10-3 and 2.00 × 10-3, respectively. The 497 

number of SF20 and ACS chains attached to each nanogel core was estimated from the 498 

packing density (σTGA) and the radius of the nanogel core ( 𝑟) as, 𝜎்ீ4𝜋𝑟ଶ [56] and 499 

the calculated value for SF20 and ACS was 75 and 28, respectively. Note, each chain is a 500 

hyperbranched polysaccharide with a tree-like topology. The packing order within this 501 

polysaccharide shell appeared to be an A-, B- (depicted in Figure 4h), and V-type 502 

polymorphism for the BSM nanogels, whereas, a mostly disordered packing (depicted in 503 

Figure 4g) was apparent for the BAM nanogels except for a single A-type peak, as analyzed 504 

by XRD (Figure S2a, b). BSA nanogels exhibited a characteristic scattering at 2θ, ca. 5°, 505 

which was observed in all the nanogels. This confirms that the diffraction contributions other 506 

than 2θ, 5° in BSM and BAM should only arise from the liquid-crystalline state of the 507 

polysaccharide gelators in the shell. In BSM, the B- and V-type liquid crystalline 508 

contributions are a larger hybrid hexagonal packing known to be driven by the self-assembly 509 

of SF20 chains [22, 25] and single-left handed helical packing in the presence of guest 510 

molecules [57] such as folic acid in this case, respectively. The presence of inter-lamellar 511 

water, confirmed by our TGA experiments, is essential to such liquid crystalline 512 

contributions, as demonstrated earlier [22]. Additionally, it appears that the large curvature 513 

effect produced by the relatively small sizes of the nanogels, do not favor self-assembly of the 514 

ACS chains in BAM nanogels, leading to the observed disorder in the shell. Note, the inter-515 

chain arc length distance between two monodisperse chains originating from the curved 516 

surface of the core at θ° will increase at the rate of 4𝜋𝐷 ቀ ఏଷቁ, as D i.e. chain length increases. 517 

The increased inter-chain distance makes their self-assembly energetically unsustainable. Yet, 518 

the substituted folic acid on SF20 chains acts as bridges and surmounts the distance barrier for 519 
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self-assembly of the BSM shell to occur. This phenomenon is depicted in Figure 4e, f. Further 520 

evaluation of these core-shell nanogels using small-angle neutron scattering with contrast 521 

variation might provide detailed information on these thermally-crosslinked nanogels, which 522 

is beyond the scope of this work. 523 

3.4. In vitro oral-gastrointestinal digestion of the nanogels 524 

Since the BSM nanogels comprised of a liquid crystalline polysaccharide shell, we 525 

hypothesized the shell to modulate the oral-gastrointestinal digestion behavior of the 526 

embedded protein core. Additionally, this was of applicative importance to delivery via the 527 

oral route, considering the physiological degradation of oral-gastrointestinal transit. Figure 5 528 

shows the SDS-PAGE electrogram of the digesta of BSM, BAM (control), and BSA (control) 529 

nanogels. After 300 min of simulated in vitro digestion, ca. 35 % of  BSM remained intact in 530 

comparison to ca. < 5 % of both BAM and BSM (measured via image analysis, see Figure 531 

S3a). This is evidenced by the prominent band at ca. 66 kDa alongside glycoprotein smears at 532 

higher molecular weights. Besides the high molecular weight smears, it seems that the protein 533 

(ca. 66 kDa band) was also mildly glycated, thus evidencing hindered digestion. 534 

 535 

Figure 5. SDS-PAGE electrogram of in vitro oral-gastrointestinal digesta. Lanes L 1: BSA, 0 536 
min (sample, oral-gastrointestinal digestion time), L 2: BSA, 30 min; L 3: BSA, 300 min, L 4: 537 
BAM, 0 min, L 5: BAM, 30 min, L 6: BAM, 300 min, L 7: BSM, 0 min, L 8: BSM, 30 min, L 538 
9: BSM, 300 min. 539 

 540 
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One can argue that the Maillard reaction-based conjugation via covalent binding of the 541 

carbohydrate moiety to the polypeptide backbone altered the conformation of the latter, 542 

thereby limiting enzymatic accessibility through steric hindrance [49]. Ideally, this should 543 

have helped to limit the digestion in both BSM and BAM nanogels; however, it was not the 544 

case. BSM appears to be resilient in evading digestion in the larger scheme of 300 min of 545 

digestion. We believe that the SF20 shell of BSM nanogels to exert this restrictive 546 

phenomenon on digestion, owing to the B- and V-type liquid crystalline packing [25]. This 547 

shell-packing resisted the initial digestion by amylases and provided a steric safeguard to the 548 

protein core from in vitro digestion by proteolytic enzymes. We propose that the structural 549 

aspects of polysaccharide chain packing in the shell relate closely to protection against 550 

physiological digestion. 551 

3.5. Effect of curcumin encapsulation on the colloidal structure of nanogels 552 

The core-shell structure was further evaluated for structural effects upon encapsulation of the 553 

model therapeutic hydrophobe, curcumin. The latter profoundly altered the Dh of the nanogels 554 

as the curcumin load was incremented from 0.02 to 0.2 mg mL-1. The BSMcur nanogels 555 

exhibited 100 % curcumin encapsulation efficiency (CEE), encapsulating all the curcumin 556 

molecules until a curcumin load of 0.05 mg mL-1 (Figure S3b). In spite of the poor solubility 557 

of curcumin in water, BSMcur leads to the formation of a clear yellow dispersion (Figure 6, 558 

inset). Beyond this level of loading, CEE decreased. The Dh of the BSMcur was observed to 559 

remain fairly consistent (ca. 90 nm) until a curcumin load of 0.1 mg mL-1 (Figure 6). 560 

However, a significant (p < 0.05) increase in Dh to 345.70 ± 25.21 nm (PDI, 0.38) was 561 

observed at 0.2 mg mL-1 curcumin load (Figure 6). For the control experiments, an increase in 562 

Dh was observed for the BAMcur and BSAcur nanogels at 0.2 mg mL-1 curcumin load with high 563 

polydispersity (Dh, 1488.71 ± 49.21; PDI, 1.0 and 2380.34 ± 115.21 nm; PDI, 0.51, 564 

respectively, Figure 6). This was significantly higher (p < 0.05) when compared to the 565 
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BSMcur. Beyond > 0.2 mg mL-1 curcumin load, all nanogels displayed heavy precipitation and 566 

reliable measurements could not be performed. 567 

 568 

Figure 6. Mean values of hydrodynamic diameter (solid symbols) and ζ-potential (open 569 
symbols) of BSM (blue, ▲, △), BAM (red, ●, ○), and BSA (black, ■, □) nanogels. Error bars 570 
represent standard deviation from independent measurements, n = 6. Inset shows clear-yellow 571 
dispersion of BSMcur nanogels, 0.05 mg mL-1 curcumin load. Double black lines behind 572 
solution vial are present in order to help visualize solution turbidity. CEE and CLE % of 573 
nanogels against curcumin load are shown in Figure S3b. 574 

 575 

Transmission electron micrographs evidenced spherical BSMcur core-shell nanogels 576 

(curcumin load, 0.05 mg mL-1, Figure 7a). Here, the dense shell (dark grey layer, Figure 7a 577 

enlarged inset) encompassing the core (light grey) appears to originate from the diffraction 578 

contrast of the ordered liquid crystalline signature of SF20, as observed in XRD results 579 

(Section 3.3) and earlier small and wide-angle X-ray scattering [22, 25]. Note, the shell 580 

thickness (Figure 7a, enlarged inset) is in close agreement with the theoretical estimates from 581 

TGA in Section 3.3. Additionally, BSMcur nanogels with 0.2 mg mL-1 curcumin load appeared 582 

enlarged in congruence with the dynamic light scattering results and evidenced a much thicker 583 

shell (Figure 7b, enlarged inset). 584 
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 585 

Figure 7. Transmission electron micrographs (TEM) of BSMcur, curcumin load, 0.05 mg mL-1, 586 
scale bar is 50 nm (a) and 0.2 mg mL-1, scale bar is 0.2 µm (b). Scanning electron micrograph 587 
(SEM) of BSMcur (curcumin load, 0.2 mg mL-1), scale bar is 2 µm (c). Insets represent 588 
zoomed images. 589 

  590 

It has been previously reported that curcumin encapsulation dramatically alters the 591 

structural characteristics such as the Dh of particles [31, 51]. A bound hydrophobic molecule 592 

may act as connective bridges between spatially adjacent inter-particle proteins via H-bonding 593 

[14, 52]. Additionally, a recent study by Wong et al. [53] suggested that carbohydrates can be 594 

involved in hydrogen bonding with curcumin, promoting their self-assembly via non-covalent 595 

forces. We postulate that in our case, incrementing the curcumin load (notably > 0.1 mg mL-1) 596 

promoted non-covalent interactions amidst the protein-polysaccharide chains of conjugates in 597 

the pre-particle solution that was undergoing thermal gelation, leading to aggregation, and 598 

consequently increase in Dh of the resulting nanogels. This aggregation was additionally 599 

observed in scanning electron micrographs showing BSMcur nanogels (marked by black 600 

arrows, Figure 7c) forming clustered-superstructures that appear to be fused (Figure 7c, white 601 

enclosure and enlarged inset to the right), in agreement with previous reports [28, 54]. 602 

However, the SEM image should be considered with precaution, as the observations might 603 

have been influenced by the dehydration steps during the sample preparation process for 604 

microscopy. 605 
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Additionally, a systematic increase in the corresponding ζ-potential of BSMcur 606 

nanogels (-24.40 ± 0.43 to -26.72 ± 0.34 mV) was observed upon increasing the curcumin 607 

load to 0.05 mg mL-1 (Figure 6). Note, at curcumin load of 0.1 mg mL-1 (> 0.05 mg mL-1) the 608 

ζ-potential (-26.31 ± 0.48 mV) was not significantly (p > 0.05) different to the former, 609 

indicating a plateau. Beyond this, the ζ-potential decreased significantly (p < 0.05) to -21.54 ± 610 

0.64 mV (curcumin load, 0.2 mg mL-1). For the controls, BAMcur and BSAcur (curcumin load, 611 

0.2 mg mL-1), the ζ-potential value were observed to be significantly (p < 0.05) lower (-5.29 ± 612 

0.38 and -6.72 ± 0.24 mV, respectively) in comparison to the BSMcur counterparts. Such low 613 

values, ca. -5 mV is expected to cause aggregation [58-60] as observed in their increased Dh. 614 

It is noteworthy, that both BSMcur and BAMcur nanogels demonstrated alike magnitudes of ζ-615 

potential and CLE % (cp. Figure 6 and Figure S3b). We measured the ζ-potential of curcumin 616 

to be -4.34 ± 0.34 mV (non-ionic Tween 20 was used to create the interfacial phenomenon at 617 

pH 7.4), in agreement with an earlier report [7]. It appears that the mass % of the nanogels 618 

comprising the encapsulated curcumin contributes to the overall charge of the nanogels and 619 

can profoundly alter it, as also observed in a previous study [61]. 620 

The curcumin-loaded nanogels were further evaluated for stability in physiological 621 

conditions. SDS-PAGE results for the BSMcur, BAMcur, and BSAcur at 0.05 mg mL-1 curcumin 622 

load, displayed equivalent resistance to digestion as compared to the empty nanogels (cp. 623 

Figure 5 and Figure S4a). Previous in vitro digestion models studies have demonstrated that 624 

curcumin degradation is unlikely to occur during simulated gastric digestion i.e. acidic pH 625 

owing to curcumin adopting the stable keto-form in such environments, which is contrary to 626 

the rapid degradation of curcumin in simulated intestinal digestion conditions i.e. near neutral 627 

pH and under visible light [4, 28, 62]. Therefore, a photo-degradation study of the 628 

encapsulated curcumin at neutral pH was carried out as it is relevant for further application of 629 

the nanogels in formulations. Figure S4b demonstrates the time-dependent 50 % degradation 630 
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of free curcumin to occur within ca. 140 min at physiological pH under direct light at 25 °C 631 

(absorbance, 420 nm). However, all nanogels exhibited ca. < 50 % curcumin degradation up 632 

to 900 min in the same conditions. Any curcumin degradation observed in the encapsulated 633 

form is likely to stem from weakly bound curcumin molecules to the nanogels [63]. We 634 

believe that the nanogels enabled the increased resilience to degradation via the encapsulation 635 

of curcumin within hydrophobic pockets of the proteinaceous core that was isolated from the 636 

bulk physiological environment. XRD results were in agreement. Free curcumin exhibited 637 

sharp peaks at 2θ°, 12°, 15°, 17°, 18°, 21°, and 24°, implying a highly crystalline curcumin 638 

form I structure (Figure S5a). This is typical for commercial curcumin [64]. Such 639 

characteristics were absent in the curcumin-loaded nanogels (other than diffractions at 2θ°, 640 

18° and 21°) indicating that the hydrophobe was fully solubilized within the proteinaceous 641 

core of the nanogels and was unable to re-crystallize within the nanoscale confinement 642 

(Figure S5b). 643 

Further monitoring of curcumin release kinetics from the nanogels and degradation 644 

under physiological stress (pH, temperature, and oral-gastrointestinal digestion) may be 645 

interesting to establish a relationship amidst the structural integrity of the nanogels and the 646 

persistence of the encapsulated payload. 647 

3.6. In vitro cellular internalization and cytotoxicity of nanogels 648 

To assess cellular internalization, a cellular uptake assay was performed in human HT29 649 

colon adenocarcinoma cells which overexpress folate receptors. Figure 8a shows BSMFITC 650 

nanogels were successfully capable of specifically targeting and internalizing into HT29 cells. 651 

The fluorescent green spots around the actin fibers (red) and the cell nuclei (blue) indicate 652 

nanogel internalization. We postulate that fluorescent green spots are endosomally engulfed 653 

BSMFITC clusters (Figure 8a and inset-right, green globules indicated by yellow arrows). 654 

Contrarily, no FITC fluorescence was observed for the BSMFITC nanogels when evaluated on 655 
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the folate-receptor negative A549 cells (Figure 8b). Additionally, FITC fluorescence or 656 

fluorescent globules were not observed in both the cellular models for the controls, i.e. 657 

BAMFITC (Figure 8c, d) and BSAFITC (Figure 8e, f), and therefore not investigated hereafter. 658 

The internalization of the FITC-tagged nanogels are quantified in Figure 8g and indicates that 659 

the SF20 presentation on the shell of BSMFITC drives the observed nanogel internalization, 660 

plausibly via a folate-receptor dependent internalization mechanism, confirming the 661 

specificity. 662 

 663 

Figure 8. Fluorescence micrographs of folate-receptor positive HT29 and folate-receptor 664 
negative A549 cells treated with FITC-tagged nanogels. Yellow zoned regions are enlarged to 665 
the right. Arrows (yellow) indicate the internalized of BSMFITC (fluorescent green spots) 666 
nanogels. Scale bars are 10 µm (a - f). Control experiments and individual dye emission 667 
channels are shown in Figure S6 and S7. Histogram shows quantification of BSMFITC, 668 
BAMFITC, and BSAFITC cellular internalization. *p < 0.05 (g). AO/EB assay of free curcumin 669 
(h) and BSMcur nanogels (i) in HT29 cells. Arrow (blue) indicates necrotic cells and arrow 670 
(white) indicate early-stage apoptotic cells. Scale bars are 50 µm. Control experiments and 671 
individual dye emission channels are shown in Figure S8. Histogram shows quantification of 672 
free curcumin and BSMcur induced early-stage apoptosis (yellow cells) + necrosis (red cells). 673 
*p < 0.05 (j). Error bars represent standard deviations of independent image analyses, n = 3. 674 

 675 

Additionally, an AO/EB assay demonstrated that in comparison to equal amounts of 676 

free curcumin (Figure 8h), the BSMcur nanogels (5 µg mL-1 nanogels with 0.05 mg mL-1 677 

curcumin load) after treatment in HT29 cells, evidenced a significant decrease in the 678 
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proportion of viable cells and increase in the proportion of early-apoptotic + necrotic cells 679 

(Figure 8i). Note, bright green chromatin and organized structures indicated viable cells 680 

whereas bright green-yellow chromatin and bright red chromatin indicated early apoptotic 681 

cells and necrotic cells, respectively [38].  This is quantified in Figure 8j (derived from Figure 682 

S8). Apoptosis is a coordinated energy-dependent process that follows a complex cascade of 683 

events that link the initiating stimuli to the final demise of the cell [65]. Note, an MTT assay 684 

confirmed that free curcumin or BSM nanogels at 1, 5, and 10 μg mL-1 exhibited ca. ≥ 80 % 685 

cell viability after 24 h of treatment in HT29 cells (Supplementary Figure S9). Therefore, 686 

curcumin encapsulated BSM nanogels, i.e. BSMcur incremented the retention of curcumin in 687 

HT29 cells by 60 % compared to free curcumin in solution and any induction of apoptosis is 688 

likely to arise from the increased bioavailability of curcumin in the colon cancer cells. 689 

4. Conclusions 690 

To enable specific targeting of colon cancer cells by folic acid [66], we employed previously 691 

reported hyperbranched folic acid functionalized amylopectin (SF20) polymers that 692 

demonstrated resilience to oral-gastrointestinal digestion [22, 25] to conjugate with BSA 693 

protein (a natural carrier of hydrophobic molecules [9]) via Maillard reaction. The resulting 694 

sophisticated “cone-shaped” amphiphilic copolymer conjugates were thermally-crosslinked to 695 

design unique bovine serum albumin-folic acid functionalized amylopectin (BSM) nanogels 696 

with a core-shell conformation such that thermally cross-linked proteinaceous BSM formed 697 

the gel-like core and the liquid crystalline (B- and V-type polymorphism) folic-acid 698 

functionalized polysaccharide formed the shell. The unique biocompatible core-shell colloidal 699 

design demonstrated resistance to in vitro oral-gastrointestinal digestion, in addition to 700 

specific cellular internalization in the human HT29 colon cancer cells plausibly via a folate 701 

receptor-dependent internalization mechanism. Encapsulation of curcumin within the BSM 702 

nanogels (denoted as BSMcur) allowed solubilization of 0.05 mg mL-1 curcumin, which was 703 
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ca. two orders of magnitude higher than the reported aqueous solubility (ca. 0.4 - 0.6 μg mL-1) 704 

of curcumin at neutral pH [29, 67].  The curcumin encapsulated in BSMcur nanogels 705 

demonstrated stability to physiological degradation and effectively induced early-stage 706 

apoptosis in HT29 cells, which was not observed for free curcumin in solution. Thus, the 707 

present study demonstrates in-depth structural characterization and bio-functional 708 

performance of these sophisticated nanogels as delivery vehicles. Insights from this study may 709 

provide practical design approaches to tailor-make colloidal core-shell nanogels to increase 710 

the oral bioavailability of curcumin or similar hydrophobic drugs for the treatment of colon 711 

cancer. Further neutron scattering study is ongoing to clearly understand the structural 712 

implications of the shell thickness and ordering of folic acid on cellular internalization of 713 

curcumin. 714 
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 976 

Figure S1. SDS-PAGE electrogram of BSAnative, BAMcon and BSMcon at different Maillard 977 
reaction times (a). Visual image of the interfacial film of amphiphilic BSMcon at the n-978 
hexane/phosphate buffer (10 mM, pH 7.4) interface (left) and schematic illustration of the 979 
amphiphile at the oil/water interface (right) (b). Circular dichroism spectra of BSAnative (black, 980 
■) protein and BSM (blue, ▼), BAM (red, ▲), and BSA (black, ●) nanogels dispersed in 10 981 
mM phosphate buffer at pH 7.4 (c). Solid lines and dashed lines (SF20 (orange) and ACS 982 
(blue)) represent the TGA and DTG thermograms, respectively (d). 983 
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 985 

Figure S2. XRD diffractograms of BSM (blue), BAM (red), and BSA (black) at  2θ, 5-10° (a) 986 
and 10-25° (b), respectively. Arrows and values indicate diffraction angles and polymorphism 987 
types. The diffractograms are offset vertically for clarity. 988 
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 990 

Figure S3. SDS-PAGE electrogram of in vitro oral-gastrointestinal digesta as in Figure 5. Red 991 
enclosures identify zones used for images analysis of the individual digesta. Lanes L1: BSA, 992 
0 min (sample, oral-gastrointestinal digestion time), L2: BSA, 30 min; L3: BSA, 300 min, L4: 993 
BAM, 0 min, L5: BAM, 30 min, L6: BAM, 300 min, L7: BSM, 0 min, L8: BSM, 30 min, L9: 994 
BSM, 300 min (a). Curcumin encapsulation efficiency (CEE, solid symbols and dashed line) 995 
and curcumin loading efficiency (CLE, open symbols and solid line) as a function of 996 
curcumin load used for the preparation of the BSMcur (blue, ▲, △), BAMcur (red, ●, ○), and 997 
BSAcur (black, ■, □) nanogels. Error bars represent standard deviations of independent 998 
analysis, n = 3 (b). 999 
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  1001 

Figure S4. SDS-PAGE electrogram of in vitro oral-gastrointestinal digesta of curcumin 1002 
encapsulated nanogels (curcumin load, 0.05 mg mL-1), Lanes L 1: BSAcur, 0 min (sample, 1003 
oral-gastrointestinal digestion time), L 2: BSAcur, 30 min; L 3: BSAcur, 300 min, L 4: BAMcur, 1004 
0 min, L 5: BAMcur, 30 min, L 6: BAMcur, 300 min, L 7: BSMcur, 0 min, L 8: BSMcur, 30 min, 1005 
L 9: BSMcur, 300 min. (a). Degradation of curcumin (curcumin load, 0.05 mg mL-1) at pH 7.4 1006 
under direct light (1000 lumen); free curcumin (orange, ■), BSMcur (blue, ▼), BAMcur (red, 1007 
▲), and BSAcur (black, ●) (b). Error bars represent standard deviations of independent 1008 
analysis, n = 3. 1009 
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 1011 

Figure S5. XRD diffractograms of curcumin (orange) (a), and BSMcur (blue), BAMcur (red), 1012 
and BSAcur (black) at curcumin load of 0.05 mg mL-1. Arrows and values indicate diffraction 1013 
angles. The diffractograms are offset vertically for clarity (b). 1014 
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 1016 

Figure S6. Fluorescence micrographs of folate-receptor positive HT29 cells treated with 1017 
FITC-tagged nanogels. The control contained no nanogels and only phosphate buffer 10 mM 1018 
at pH 7.4. Scale bars are 10 µm. 1019 

  1020 



52 
 

 1021 

Figure S7. Fluorescence micrographs of folate-receptor negative A549 cells treated with 1022 
FITC-tagged nanogels. The control contained no nanogels and only phosphate buffer 10 mM 1023 
at pH 7.4. Scale bars are 10 µm. 1024 
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 1026 

Figure S8. AO/EB assay of free curcumin (0.05 mg mL-1) and curcumin encapsulated BSMcur 1027 
nanogels (0.05 mg mL-1 curcumin load) treated with folate-receptor positive HT29 cells. The 1028 
control contained only phosphate buffer 10 mM at pH 7.4. Scale bars are 50 µm. 1029 
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 1030 

Figure S9. MTT assay showing the viability of HT29 cells after exposure to increasing load of 1031 
free curcumin and BSM nanogels (1 - 10 µg mL-1, respectively) for 24 h. Error bars represent 1032 
standard deviations of independent analysis, n = 3. 1033 
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