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ABSTRACT

In 2018, Lewis and Curry presented a method for estimating the transient climate response (TCR) of the

climate system from the temperature change between two time windows: an early baseline period in the

nineteenth century and amodern period primarily in the twenty-first century.The results suggest a lower value of

TCR than estimates from climate model simulations. Previous studies have identified uncertainty in the his-

torical forcings, the impact of the timeevolution of the forcing on temperature response, andobservational issues

as contributory factors to this disagreement. We investigate a further factor: uncertainty in the bias corrections

applied to historical sea surface temperature data. This uncertainty can particularly affect the estimation of

variables on decadal time scales and therefore affect the estimation of TCR using the windowmethod as well as

estimates of internal variability.We demonstrate that use of the whole historical record canmitigate the impacts

of working with short time windows to some extent, particularly with respect to the early part of the record.

Several recent studies, including Lewis and Curry (2018)

and Otto et al. (2013), use the ratio of the change in tem-

perature to the change in forcing between two timewindows

as an estimator for transient climate response (TCR) and

produce lower estimates of TCR than climate model simu-

lations or other methods that are based on past change

(Knutti et al. 2017). Previous studies have identified dif-

ferences in the inferred forcings, differences in the tem-

perature impact of historical versus transient forcing

changes, and data type and coverage as potential ex-

planatory factors for this difference (Storelvmo et al.

2016; Armour 2017; Richardson et al. 2016). In 2016 the

authors of all of the major sea surface temperature (SST)

datasets drew attention to major unresolved biases in

historical sea surface temperature records (Kent et al.

2017), which may affect our understanding of both his-

torical warming and internal variability. We demonstrate

that these biases can also affect the results of the window

method when estimating TCR, and we explore to what

extent this may be mitigated by using more of the data.

Lewis and Curry (2018) choose windows at the start

and end of the historical temperature record as the

basis for their TCR calculation. The early time window

(1869–82) was nominally chosen to avoid major volcanic

eruptions, in particular the Krakatoa eruption of 1883.

However, coverage of the ‘‘water hemisphere’’ (Boggs

1945) is almost nonexistent in the 1860s [Kennedy

(2014) and the Hadley Centre SST dataset, version 3

(HadSST3), gridded data]. Infilled records (Hansen and

Lebedeff 1987; Rohde et al. 2013; Cowtan and Way

2014) can mitigate coverage issues for recent decades

but can only meaningfully address data ‘‘holes’’ of up to

;1000km in radius (Hansen andLebedeff 1987; Cowtan

et al. 2018) and cannot reconstruct a missing hemisphere

of data. Nineteenth-century temperatures are contin-

gent on large ‘‘bucket corrections’’ to SST observations,

the evolution of which are poorly constrained by met-

adata, and they show substantial differences between

observational products (Folland and Parker 1995; Kent

et al. 2017; Cowtan et al. 2017). An alternative earlyCorresponding author: Kevin Cowtan, kevin.cowtan@york.ac.uk
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window (1930–50) used by Lewis andCurry (2018) spans

the World War II period and is also the subject of large

discrepancies among SST products (Kent et al. 2017).

We examine the impact of the choice of dates for the

early and late windows and evaluate the impact of using

short data windows rather than all of the data. The po-

tential impact of volcanic events is addressed by applica-

tion of the windowmethod not to the observed data but to

the difference between the observations and the mean of

climate model simulations from phase 5 of the Coupled

Model Intercomparison Project (CMIP5) using data from

the historical and representative concentration pathway

4.5 (RCP4.5) scenarios. Masking the model outputs to

match the observational coverage also allows us to control

for the impact of changing coverage. Lehner et al. (2016)

suggest that climate model simulations overestimate the

volcanic response, although this may be a result of internal

variability and other factorsmasking the volcanic response

(Stevenson et al. 2017; Liu et al. 2018). Linear regression

was therefore used to remove the residual volcanic con-

tribution to the difference temperature series by using the

stratospheric aerosol optical depth (Sato et al. 1993) con-

voluted with an exponential response function with an e-

folding time of 1yr (determined by fit to the data). No

correction was made for internal variability; however, if an

El Niño term is included in the regression the remaining

short-term features in the variability of warming with

window choice are slightly reduced.

For this analysis we will focus on the University of East

Anglia Climatic Research Unit–Hadley Centre global

land-plus-ocean temperature dataset, version 4 (Had-

CRUT4) as the temperature product (Morice et al. 2012);

however, similar issues arise with the other temperature

products, and in the case for the ExtendedReconstructed

Sea Surface Temperature(ERSST)-based products the

problems in the early record are more serious (Cowtan

et al. 2017). We also used temperature data from 36

CMIP5 models with, in total, 107 historical re-

alizations, extended using RCP4.5 simulations for the

period 2006–16 and regridded onto a common 18 3 18

grid. We calculated a multimodel mean gridded tem-

perature series over the 107 simulations using monthly

surface air temperature estimates, that is, the ‘‘tas’’

field (Taylor et al. 2012) in CMIP5 terminology (sim-

ilar results are obtained if all of the simulations for

each model are averaged and then an average is cal-

culated across the models). We then converted the

temperatures to temperature anomalies using a 1961–

90 baseline. We averaged blocks of 5 3 5 grid cells to

match the 58 HadCRUT4 grid and calculated a grid-

ded difference map series between the HadCRUT4

gridded observations and the multimodel mean. Last,

we determined the mean temperature difference for

the common coverage region by using the cosine-

weighted mean of the observed grid cells.

A comparison of early window dates for the Had-

CRUT4 temperature data (Morice et al. 2012) is shown

in Fig. 1a, fixing the late window to 1995–2016, which is

the longer option suggested by Lewis and Curry (2018)

and is less affected by an uncorrected bias in ship ob-

servations (Hausfather et al. 2017). Coordinates repre-

sent the start and end dates of the early window, with red

regions indicating that observations warmed more than

model results and blue regions indicating that modeled

results warmed more than observations for a given

choice of early window. Different window choices can

lead to the conclusion that the model results show sig-

nificantly faster warming than the observations do or

that the observations warm slightly faster than the

model results, and this discrepancy is much larger than

changes arising from presence or absence of a historical

volcanic eruption in the window.

The experiment was repeated using land data only

in Fig. 1b. In this case the University of East Anglia

Climatic Research Unit–Hadley Centre land tempera-

ture dataset, version 4 (CRUTEM4), observations

(modified by the Hadley Centre to account for urbani-

zation and exposure biases) warm faster than themodels

for a window of any reasonable length. The HadSST3

observations are compared with the model marine air

temperatures in Fig. 1c: these two tests show that vari-

ability in the results for different window dates arises

primarily from the ocean data.

SST observations generally come from the top 10m

of the ocean and should strictly be compared with

temperatures at a corresponding depth in the models.

Cowtan et al. (2015) used the CMIP5 ocean surface

temperature field (‘‘tos’’ in CMIP5 nomenclature) for

this purpose. Lewis and Curry argue that this field is not

the top layer of the bulk ocean surface temperature.

Richardson et al. (2016) examined 28 model configura-

tions: in 22 of these configurations the tos field is iden-

tical (18 cases) or almost identical (4 cases) to the top

layer of the bulk ocean temperature (‘‘thetao’’ in

CMIP5 nomenclature). We extend this analysis to 33

model configurations: for 20 of 33 model configurations

the sea surface temperature field is essentially identical

to the top layer of the bulk ocean temperature field. For

12 further model configurations (ACCESS1.0, ACCESS1.3,

BCC_CSM1.1, CSIRO-Mk3.6-0,EC-EARTH,GISS-E2-H,

GISS-E2-H-CC,GISS-E2-R,GISS-E2-R-CC,MPI-ESM-LR,

MPI-ESM-MR,MRI-CGCM3,MRI-ESM1, andNorESM1-M;

expansions of acronyms are available online at http://

www.ametsoc.org/PubsAcronymList) the differences be-

tween tos and the upper thetao are noiselike and do not

impact the trend. The remaining model (GFDL-ESM2G)
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shows large differences between tos and upper thetao that

are suggestive of a data deposition or processing error.

The effect of window choice for observed and mod-

eled SSTs (as opposed to modeled air temperatures) is

shown in Fig. 1d. Use of model SSTs increases the

warming of the observations relative to the models by

approximately 0.18C for any choice of window.

The period from 1850 to 1930 represents a change

from the use of wooden buckets to poorly insulated

canvas buckets in the measurement of SSTs, the latter

requiring a large bias correction. The early features of

Figs. 1c and 1d could be explained if this change oc-

curred primarily between 1890 and 1910, as suggested

by comparison of SSTs with coastal weather station

observations (Jones et al. 1991; Folland and Parker

1995; Cowtan et al. 2017). After World War II,

HadSST3 may be affected by incorrect inference of

some observation types and other biases (Carella et al.

2018; Davis et al. 2018). Internal multidecadal vari-

ability may also contribute to the features of Fig. 1d,

although the Pacific contribution is likely to be small in

the nineteenth century because of poor coverage, and

FIG. 1. Comparison of temperature change in observations relative to models for a range of

early window start and end dates (the late window is fixed at 1995–2016): (a) blended tem-

perature observations are compared with surface air temperatures from models, (b) land air

temperature observations are compared with surface air temperatures from models, (c) sea

surface temperature observations are compared with surface air temperatures from models,

and (d) sea surface temperature observations are compared with sea surface temperatures

from models. Open squares mark the Lewis and Curry (2018) windows. The difference be-

tween (c) and (d) is from SSTs warming slower than air temperatures. Red regions indicate

that observations warm more than the model results, and blue regions indicate that modeled

results warmmore than observations, using a given window as a baseline. The plots in (a) and

(c) incorporate the misleading comparison of marine air temperatures from models to SST

observations, while (b) and (d) are like-with-like comparisons for land and ocean,

respectively.
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the coastal temperature difference is not localized to

either the Pacific or Atlantic Oceans.

A similar experiment was conducted for the late

window while holding the early window fixed at 1869–82

(Fig. 2). When using land data alone, all window choices

of reasonable length lead to faster warming of the ob-

servations than themodels. The sea surface temperature

data show slower warming in the observations except for

windows ending before 1975, because of the unusual

warmth of HadSST3 relative to bothmodels and ERSST

between 1950 and 1980 (Kent et al. 2017; Cowtan et al.

2017; Carella et al. 2018; Davis et al. 2018). Windows

starting after 2005 show a greater difference between

observations and models: a residual bias in the sea sur-

face temperatures for recent years (Hausfather et al.

2017) and the overestimation of forcings (Huber and

Knutti 2014; Tatebe et al. 2019; Volodin and Gritsun

2018) are expected to contribute to a difference between

modeled and observed warming for windows running to

the present.

Multidecadal biases are present in all current SST

products, including the ERSST temperature data

(Huang et al. 2017) that are used in the other main

temperature products not used by Lewis and Curry.

ERSST shows little or no evidence of a lower early bias

due to the use of wooden buckets (Kent et al. 2017), in

contradiction of the observational metadata, suggesting

the need for caution with respect to nineteenth-century

temperatures in this product. ERSST is cooler than

HadSST3 for the period 1930–50, except during World

War II when it is too warm as a result of an uncorrected

bias in the marine air temperatures and temporal

smoothing in the ERSST algorithm suppressing the

World War II bias correction (Cowtan et al. 2017).

The results of the window method are influenced by

decisions concerning the criteria for window selection.

We analyze the effect of window selection by evaluating

the regression coefficient that fits the multimodel mean

temperature change for the RCP4.5 simulations to the

observational data, comparingmodel land air temperatures

FIG. 2. As in Fig. 1, but exploring different choices for the late window while holding the early

window fixed at 1869–82.
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with land-based observations, model marine air tem-

peratures with SST observations, and model SSTs with

SST observations. Regression coefficients fitting the

corrected model data to the observations were de-

termined for different data selections and are given in

Table 1, with values of greater than 1 indicating obser-

vations warming faster than the models, and vice versa.

Land temperature observations warm faster than the

models for any of the chosen data selections, with some

variation resulting from window choice (i.e., the values

in the CRUTEM/tas column of Table 1 are always

greater than unity). SST observations warmmore slowly

thanmodeledmarine air temperatures for long windows

running to the present (i.e., the values in theHadSST/tas

column are less than unity). SST observations warm

slightly faster than modeled SSTs for long windows (i.e.,

the values in the HadSST/tos column are greater than

unity). Regression coefficients using model SSTs are

typically ;15% higher than those using marine air

temperatures (based on the ratios of the HadSST/tos to

the HadSST/tas columns when using long windows).

Observed SSTs warm more quickly than modeled SSTs

prior to the twenty-first century, but the difference is

reduced on inclusion of the last 20 years of data, consis-

tent with the underestimation of recent SST observations

and the overestimation of forcings. The inclusion of the

intervening decades of data mitigates most of the vari-

ability resulting from choice of the early window, but has

limited benefit with respect to the late window because

the rapid temperature change at the end of the record

gives the final decades greater leverage in determining

the regression coefficient.

In summary, the use of short time windows and the

difference between air and sea surface warming, as in-

dicated by temperature, can influence conclusions con-

cerning whether observations are warming faster than

indicated by models, with the differences primarily

arising in the sea surface temperatures. Since warming in

model results is strongly correlated with forcing, this

also impacts TCR estimates determined using window

methods. In comparisons between observations and

climate model simulations, use of longer spans of data

can reduce the impact of early window choice, but

varying the end point of the data still affects the results

(with the implication that conclusions from historical

data can change in future). It is vital that use of historical

temperature data for the estimation of climate sensi-

tivity or internal variability be informed by the literature

on the limitations and biases in those products, which

generally incorporates more recent results than the da-

tasets themselves. On the basis of current data it is not

possible to conclude that models show faster warming

than observations do, and as a result discrepancies

between model-based TCR estimates and those de-

duced from the observations must arise primarily from

inconsistencies in TCR evaluation method, incompati-

bility of modeled and observed temperature estimates,

and/or differences between the modeled and historical

forcings.

The data computer code used in this paper, along with

additional figures, is available online (https://doi.org/

10.15124/92466e73-6012-4ab4-ad10-cd7fdc075cb3).
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