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Abstract

The fetal membrane surrounds the fetus during pregnancy and is a thin tissue composed of

two layers, the chorion and the amnion. While rupture of this membrane normally occurs at

term, preterm rupture can result in increased risk of fetal mortality and morbidity, as well as

danger of infection in the mother. Although structural changes have been observed in the

membrane in such cases, the mechanical behaviour of the human fetal membrane in vivo

remains poorly understood and is challenging to investigate experimentally. Therefore, the

objective of this study was to develop simplified finite element models to investigate the mec-

hanical behaviour and rupture of the fetal membrane, particularly its constituent layers, under

various physiological conditions. It was found that modelling the chorion and amnion as a sin-

gle layer predicts remarkably different behaviour compared with a more anatomically-accu-

rate bilayer, significantly underestimating stress in the amnion and under-predicting the risk

of membrane rupture. Additionally, reductions in chorion-amnion interface lubrication and

chorion thickness (reported in cases of preterm rupture) both resulted in increased mem-

brane stress. Interestingly, the inclusion of a weak zone in the fetal membrane that has been

observed to develop overlying the cervix would likely cause it to fail at term, during labour.

Finally, these findings support the theory that the amnion is the dominant structural compo-

nent of the fetal membrane and is required to maintain its integrity. The results provide a

novel insight into the mechanical effect of structural changes in the chorion and amnion, in

cases of both normal and preterm rupture.

1. Introduction

The fetal membrane is a thin tissue that surrounds the fetus during gestation, and is critical for

maintaining a pregnancy to delivery [1]. In order for successful delivery to occur, normal rup-

ture of the membrane (ROM) takes place at term. Occasionally, ROM occurs before the onset

of labour, known as premature rupture of the membrane (PROM), which is not considered to

be pathological as it is usually followed by contractions [2, 3]. However, approximately 3% of
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pregnancies are affected by rupture earlier than 37 weeks gestational age, known as preterm pre-

mature rupture of the fetal membrane (PPROM) [3]. PPROM is the cause of one third of all

premature births [4], and is associated with increasingly high risk of mortality and morbidity

with earlier gestational age [3]. The two most common associated circumstances of PPROM are

inflammation or infection of the membrane, and bleeding of the uterine lining (decidua) [5].

While multiple other risk factors for PPROM have been identified, notably cases of abnormally

low (oligohydramnios) and abnormally high (polyhydramnios) volumes of amniotic fluid in the

uterus [6, 7], the specific causes of PPROM remain poorly understood and study of the changes

in the mechanical behaviour of the fetal membrane that underlie PPROM is ongoing [8].

The fetal membrane (FM) in fact has a bilayer structure composed of a thick, cellular cho-

rion covering an interior thin, amnion comprised of a dense layer of collagen fibrils [9, 10]. It

is thought that the amnion dominates the mechanical behaviour of the fetal membrane and

acts as a structural barrier [11], whereas the chorion acts as an immunological buffer prevent-

ing degradation of the amnion and protecting the fetus from the maternal immune system

[12]. The biomechanics of the complete in vivo uterine environment, including the effects of

pressure changes, membrane thicknesses and contractions, are challenging to investigate

experimentally and thus remain poorly understood.

Experimental studies of fetal membrane tissue in cases of PPROMhave revealed interesting phe-

nomena. It was found that the chorion-amnion interface, which is normally extremely hydrophobic

and therefore effectively frictionless [13], is significantly less hydrophobic in fetal membrane sam-

ples taken from PPROM cases compared to term cases [14]. This has been suggested to result in

increased friction between the amnion and chorion in PPROM [15], although themechanical effect

of this remains unknown. More recently, it has been observed that the entire chorion layer is signif-

icantly thinner in cases of PPROM [16], which may affect the mechanical behaviour of the fetal

membrane as a whole. Indeed it has previously been suggested that the relative thicknesses of the

chorion and amnion may play an important role in PPROM [12, 17], although this has not been

directly investigated.

It has been shown that an area of altered morphology occurs in the region of the fetal mem-

brane that overlies the cervix in the late stages of pregnancy [18–20]. This area has decreased

connective tissue thickness and reduced rupture strength, and has been described as a “weak

zone” in the fetal membrane [21, 22]. Indeed, in a study of spontaneous ruptures of fetal mem-

branes, the rupture tear line was found to bisect the weak zone, suggesting that rupture initi-

ates in this area [19]. It has thus been proposed that this represents a “programmed

weakening” or “pre-weakening” of the fetal membrane such that it ruptures in the correct area

at term, although the mechanical behaviour and failure of this region in vivo remains to be

determined. Indeed, a recent review of the current understanding highlighted a cascade of bio-

chemical signalling and expression that leads to “pre-weakening” and can be affected by pro-

inflammatory signalling [23–25], developing into a “weak zone” above the cervix from which

fetal membrane rupture initiates [8].

The human uterine environment is a complex closed mechanical system and, as such, it is dif-

ficult to investigate experimentally without interfering with its mechanical behaviour. Indeed,

invasive procedures such as amniocentesis can occasionally result in rupture of previously intact

membranes [26]. Therefore, finite element models have been applied as a way to simulate the

structural and mechanical behaviour of this complex environment, and have previously been

developed to investigate the stress and strain in the cervix during pregnancy, demonstrating the

importance of adhesion of the fetal membrane to the uterine wall [27]. Finite element techniques

have also been employed to model the fetal membrane while investigating the mechanical behav-

iour of the membrane during in vitro inflation tests [28], the mechanical properties of the cervix

during pregnancy [29] and cases of cervical insufficiency [30]. In a recent study, we used a
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combination of computational techniques and novel cine-MRI technology to quantify the defor-

mation of the fetal membrane and uterine wall, and to characterise the forces generated by fetal

muscles, during fetal kicking in utero [31]. Notably, previous finite element studies have mod-

elled the fetal membrane as a single structure rather than as its constituent parts. This is largely

due to the majority of material properties being reported for the membrane as a whole rather

than for the chorion and amnion separately, but since these layers are very different to each

other and can slide relative to each other, models of a monolithic fetal membrane likely do not

capture the complex distribution of loading between these distinct biological structures.

Therefore the objectives of this study are to develop simplified finite element models of the

in vivomechanical environment of the uterus in order to 1) determine the mechanical role of

the chorion and the amnion during various physiological and pathophysiological loading con-

ditions, and 2) predict the structural performance and failure of these tissues in the context of

normal and preterm rupture of the membrane.

2. Materials andmethods

Finite element modelling is a computational method whereby a complex mechanical system is

discretised into a mesh of smaller, simpler regions and a number of specific variables. These

simpler elements can be treated like structures obeying known physical laws, with the standard

physical equations solved for each element. The results are then assembled into a larger system

of equations, allowing modelling and analysis of the entire complex problem. Thus, finite ele-

ment modelling has developed into a powerful engineering tool to assess the mechanical behav-

iour of physical structures, mechanical systems and, more recently, biological processes [32].

A series of simplified two-dimensional finite element models of the uterine environment

were created, with each model representing a gestational age of 15, 20, 25, 30, 35 or 40 weeks.

The uterus was modelled as a semi-circular pressure vessel using axisymmetric boundary con-

ditions, with the radius of the uterus calculated from previously observed uterine volumes at

various gestational ages [33] using the following equation:

r ¼
3V

4p

� �1

3

where r is the radius and V is the volume of the uterus. The calculated radii are listed in Table 1

for each gestational age. The uterine wall comprises a layer of muscle, the thickness of which

has been observed to vary throughout gestation [33]. The thickness of this layer in the models

was altered for each gestational age, as shown in Table 1.

2.1. Comparison of single and partitioned fetal membrane models

In order to determine the mechanical roles played by the chorion and the amnion, the fetal

membrane was modelled using two configurations: as a single monolithic membrane and as a

composite bilayer structure comprising a chorion and an amnion membrane.

Table 1. Previously reported changes in uterine radius calculated from [33], uterine wall thickness reported in [33], and fetal membrane stiffness
at different gestational ages reported or extrapolated from [34]. Values in italics calculated or extrapolated from published data.

Gestational Age (Weeks) Uterine Radius (mm) (24) Uterine Wall Thickness (mm) (24) Fetal Membrane Stiffness (MPa) (25)

15 60 5.5 8.84

20 70 6 7.53

25 83 6.5 6.22

30 99 6.8 4.91

35 113 7 3.6

40 124 7 2.29

doi:10.1371/journal.pone.0171588.t001
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In the single membrane model, the fetal membrane was assumed to be a 600 μm thick layer

on the interior of the uterus [34]. The fetal membrane was assigned a Young’s modulus of 8.8–

2.3 MPa (see Table 1), stiffness values that were extrapolated linearly to each gestational age

based on previous testing of pre-term and term membranes [34]. This membrane was attached

to the uterine muscle using a tie constraint. A Young’s modulus of 586 kPa was assumed for

the uterine muscular tissue from the available literature [35]. All materials were assumed to be

linear elastic and isotropic in nature, with a Poisson’s ratio of 0.4 [36]. Half of the uterus envi-

ronment was modelled, with symmetry conditions applied at the boundaries (Fig 1A and 1B).

Maximum reported normal intrauterine pressures varied from 1.2 kPa at 15 weeks to 2.3 kPa

at 40 weeks, while minimum reported normal pressures ranged from 274 to 956 Pa over the

same time period [33, 37]. These pressures, as shown in Fig 2, were applied as boundary condi-

tions to the interior surface of the fetal membrane. As the intrauterine pressure increases sig-

nificantly with each contraction during labour, the maximum recorded mid-contraction

pressure of 6.7 kPa was applied to the 40 week model [38, 39].

A second set of models was generated, in which the membrane was partitioned into two lay-

ers, the chorion and the amnion (Fig 1C and 1D). Using the same symmetry and boundary

Fig 1. Diagram showing (a) symmetry boundary conditions in FEmodel of uterus, (b) components of the
Single MembraneModel, and (c, d) components of the PartitionedMembraneModel.

doi:10.1371/journal.pone.0171588.g001

Fig 2. (a) Graph of previously reported or calculated changes in maximum and minimum intrauterine
pressure [37], and intrauterine pressure during polyhydramnios and oligohydramnios calculated from [45],
over gestation. Diagram showing a partitioned membranemodel with (b, c) a section of chorion removed, and
(d) a section of amnion removed.

doi:10.1371/journal.pone.0171588.g002
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conditions, the outer surface of the chorion was attached to the uterine wall, while the interface

between the chorion and the amnion was modelled separately using frictionless surface con-

tact, to allow physiological sliding contact [40]. The amnion, with a Young’s modulus of 21

MPa, is much stiffer than the chorion, with a Young’s modulus of 2.3 MPa [10]. Conversely,

the average thickness of the chorion (188 μm) is greater than that of the amnion (44 μm) [10,

41].

Finally, a survey of published experimental testing of fetal membrane demonstrates consid-

erable disagreement on and non-reporting of the thicknesses of the fetal membrane and its

constituent membranes [17]. Therefore, while the thickness of the single fetal membrane

model was taken from previously published data (600 μm) [34], an additional simulation was

performed in which the thickness was assumed to be the same as the combined layer thick-

nesses in the bilayer model (232 μm).

All models were meshed using 4-noded CAX4 quadrilateral axisymmetric elements of aver-

age area 0.01 mm2 and implemented using ABAQUS finite element software (Dassault Sys-

temes, Vélizy-Villacoublay, France). As unpressurised uterine geometries cannot be measured,

clinically-measured geometries as described were used at the beginning of each simulation,

with deformation occurring after the application of pressure. While a range of failure values,

obtained using multiple different methods, are available in the literature, the accepted failure

criteria for the amnion, chorion and the fetal membrane as whole are approximately 4 MPa

[42], 168 kPa [43] and 900 kPa [17], respectively. Therefore, in our models when the stresses

exceeded these defined levels, failure (rupture) was assumed to have occurred in those

locations.

Lastly, in order to investigate the effect of the assumption of sphericity an analysis was con-

ducted, applying identical boundary conditions and material properties to the bilayer model,

to compare a semi-circular and elliptical model of 20 weeks gestation, at which stage the

length/width ratio is reported to be 1.2 [44].

2.2. Effect of abnormal intrauterine pressures

To simulate abnormal uterine conditions, the applied pressures were varied by taking the aver-

age increases or decreases in intrauterine pressure that have been reported previously in poly-

hydramnios and oligohydramnios [45], and either adding or subtracting the values to the

average recorded pressure at each gestational age [37], as shown in Fig 2.

2.3. Effect of friction at the chorion-amnion interface

In order to investigate the effect of altered friction at the interface between the chorion and the

amnion, as has been proposed to occur in cases of PPROM [14], the interface was modelled

separately using frictionless surface contact, contact with a coefficient of friction of 0.5, or as a

completely tied surface.

2.4. Effect of varying membrane thickness on rupture of the membrane

The thickness of the chorion and amnion layers were varied independently between

known maximum and minimum values in different models (see Table 2). Additionally, a

model was generated in which the thickness of chorion alone was reduced from the aver-

age value to 114.9 μm, replicating recent clinically observed thickness values in cases of

PPROM [16].

Modelling the mechanics of the chorion and amnion
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2.5. Effect of inclusion of a “weak zone” on rupture of the membrane

Finally, in order to simulate the events at the end of pregnancy, a weak zone of length 124 mm

in the fetal membranes was included, representing the diameter of a zone of 119.4 cm2 as pre-

viously reported [20]. A value of 71 kPa has previously been measured for the Young’s modu-

lus of this weak zone [21]. It was assumed that a similar reduction in the Young’s moduli to

that observed in the whole membrane would occur for the individual layers, resulting in values

of 71 kPa and 648 kPa, for the chorion and amnion respectively. These zones were modelled

using a gradient approach, in which the stiffness was gradually reduced from the edges towards

the centre of the zone in a linear fashion. Models were generated in which a weak zone was

present in either the chorion or the amnion, or both simultaneously. In all cases the Poisson’s

ratio was assumed to 0.4 as for the rest of the membrane.

Finally, a set of models were built in which a section of each membrane of the same length

as the weak zone (62 mm) was independently removed (Fig 2B, 2C and 2D), to examine the

effect of failure of a weak zone in either of the tissues under maximum normal pressure or the

contraction pressure conditions.

3. Results

3.1 Comparison of single and partitioned fetal membrane models

When investigating the separation of the fetal membrane into the chorion and the amnion,

the single fetal membrane approach substantially underestimated the maximum principal

stress arising in the amnion layer in the more anatomically-accurate partitioned model,

across all gestational ages (81 vs. 398 kPa at 15 weeks to 145 vs. 989 kPa at 40 weeks), as

shown in Fig 3A. However, maximum principal strain increased considerably with gesta-

tional age in a single fetal membrane model, such that it was overestimated when compared

to strains in the chorion and amnion at term in the partitioned model (6.34% vs. 5.73% and

4.71% at 40 weeks, respectively).

Separately, it was found that altering the geometry alone to represent a prolate spheroid

resulted in minimal increases in maximum stress (1.2% in amnion and 0.8% in chorion).

Table 2. Previously reported ranges of thickness for the chorion and amnion from [10], as well as for the chorion during PPROMpressure from
[16].

Maximum Thickness (ȝm) (8) Average Thickness (ȝm) (8) Minimum Thickness (ȝm) (8) PPROM Thickness (ȝm) (14)

Amnion Thickness 70 44 25

Chorion Thickness 240 188 130 114.9

doi:10.1371/journal.pone.0171588.t002

Fig 3. Predicted maximum principal (a) stress and (b) strain in the chorion and amnion membranes,
comparing tied and slip contact conditions with a single fetal membranemodel.

doi:10.1371/journal.pone.0171588.g003

Modelling the mechanics of the chorion and amnion
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3.2. Effect of abnormal intrauterine pressures

The maximum principal stress in both the chorion and amnion increased with both intrauter-

ine pressure and gestational age, as shown in Fig 4. Maximum principal stress during oligohy-

dramnios was predicted to have a similar range to the minimum normal intrauterine pressures

over the same time period; 5 to 30 kPa for the chorion, and 43 kPa to 252 kPa for the amnion.

Notable increases in maximum principal stress were predicted for both membranes during

polyhydramnios, ranging from 103 and 791 kPa at 15 weeks to 192 kPa and 1.4 MPa at 40

weeks, for the chorion and amnion respectively.

3.3. Effect of friction at the chorion-amnion interface

When frictionless contact was allowed at the interface between the chorion and the amnion

the maximum principal stress in both membranes was less than if the layers were tied, with the

greatest differences occurring at term (9 and 67 kPa lower, respectively), as shown in Fig 3.

When a coefficient of friction of 0.5 was applied to the interface, the chorion was found to

experience higher maximum principal stress than with frictionless contact (3 kPa higher), with

an increase also observed in the amnion (2 kPa higher).

3.4. Effect of varying membrane thickness on rupture of the membrane

Changes in membrane maximum principal stress due to changes in membrane thickness are

shown in Fig 5, as percentage increases above the stress predicted in a model with average

membrane thicknesses (902 kPa and 124 kPa for the amnion and chorion, respectively).

Maximum thickness in the amnion resulted in decreases in maximum principal stress of

8.06% and 10.81%, for the amnion and chorion respectively (Fig 5A), while minimum amnion

Fig 4. Predicted maximum principal stresses in (a) the chorion and (b) the amnion under application of
previously observedmaximum and minimum intrauterine pressures, and intrauterine pressures during
polyhydramnios and oligohydramnios, over gestation.

doi:10.1371/journal.pone.0171588.g004

Fig 5. Percentage changes in maximum principal stress based on stress due to average amnion and chorion
thicknesses in the amnion (902 kPa) and chorion (124 kPa), for maximum and minimum thicknesses of (a) the
amnion, (b) the chorion, (c) both membranes simultaneously, and (d) with a thinner chorion due to PPROM.

doi:10.1371/journal.pone.0171588.g005
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thickness predicted an increase in stress of 11.94% and 20.82%. When varying the chorion

thickness alone, maximum thickness resulted in a 6.66% and 2.08% increase in maximum prin-

cipal stress for the amnion and chorion respectively (Fig 5B), while greater increases in stress of

12.49% and 12.89% were predicted for minimum chorion thickness. Finally, when the thick-

nesses of both membranes were varied in tandem, a 4.19% and 7.29% decrease in maximum

principal stress was observed for maximum thickness, for the amnion and chorion respectively

(Fig 5C), while a 23.35% and 23.46% stress increase was observed for minimum thickness.

When the reduced chorion thickness, as has been observed in cases of PPROM, was mod-

elled an increase in maximum principal stress of 3.28% and 2.64% was observed for the

amnion and chorion, respectively (Fig 5D). Finally, assuming a single membrane thickness

similar to the combined thicknesses of the constituent layers (232 μm) resulted in a 15%

increase in maximum principal stress (see S1 Table).

3.5. Effect of inclusion of a “weak zone” on rupture of the membrane

Inclusion of a weak zone in either or both of the membranes resulted in a range of greater

maximum principal stresses in the chorion when compared to stresses resulting from an intact

membrane (by 211 kPa), as shown in Fig 6A. A similar effect was found for the amnion (by

398–698 kPa), as shown in Fig 6B. This trend was even more pronounced under application of

pressure due to contractions, for maximum principal stress in both the chorion (by 0.3–1.3

MPa), and the amnion (by 0.2–3.8 MPa).

Finally, it was observed that when a section of the chorion was removed during maximum

normal pressure conditions, the amnion experienced maximum principal stress of 142 kPa

while the maximum principal stress in the remaining chorion was 64 kPa (Fig 7A). For the

Fig 6. Maximum predicted stress in (a) the chorion and (b) the amnion under application of both maximum
normal intrauterine pressure and pressure during contractions, with a weak zone in either membrane, in both,
or with a zone removed completely. Dashed lines indicate the failure stress of the chorion and fetal membrane
in (a) and (b), respectively.

doi:10.1371/journal.pone.0171588.g006

Fig 7. Maximum principal stress under maximum intrauterine pressure conditions for (a) a model with a
section of the chorion removed and (b) a model with a section of amnion removed.

doi:10.1371/journal.pone.0171588.g007

Modelling the mechanics of the chorion and amnion
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same pressure conditions, if a section of the amnion was removed, maximum principal mem-

brane stress was predicted to be 4.3 kPa for the remaining amnion and 373 kPa for the chorion

(Fig 7B). Under application of contraction pressures, the maximum principal stress in the

amnion was observed to be 255 kPa when a section of chorion was removed. When contrac-

tion pressures were applied to a model with a section of the amnion removed, maximum prin-

cipal stress was found to be 670 kPa for the chorion. As this stress exceeds the reported

chorion failure stress of approximately 168 kPa [43], the fetal membrane as a whole would rup-

ture if the amnion failed.

4. Discussion

This study represents the first computational investigation of the mechanical behaviour of a

bilayer fetal membrane in a simplified approximation of its intact mechanical environment. It

was found that modelling the chorion and amnion as a single layer predicts remarkably differ-

ent behaviour to a more anatomically-accurate bilayer, significantly underestimating stress in

the amnion and disregarding potential membrane rupture. Membrane stress was observed to

increase with gestational age and intrauterine pressure, with significant increases above the

failure strength of the fetal membrane occurring during polyhydramnios. Additionally, it was

found that reductions in chorion-amnion interface lubrication and chorion thickness reported

in cases of PPROM both result in increased membrane stress. Interestingly, it was predicted

that the inclusion of a weak zone could cause the fetal membrane to fail in the approach to full

term, and especially during labour.

This computational study explores the mechanical state of the fetal membrane throughout

gestation and demonstrates the structural importance of considering the membrane as a

bilayer structure, comprising the amnion and chorion. Given the difficulty in measuring in

vivo structural properties of the membrane during pregnancy, a simplified model was devel-

oped based on engineering assumptions and structural evidence gathered from previous stud-

ies of the uterus and fetal membrane, in an attempt to capture the salient features of this

complex bilayer structure. Although the uterus has been noted to be a prolate spheroid [33,

46], and the three-dimensional uterine dimensions have been measured previously using ultra-

sound, only the calculated uterine volume [33] and length/width ratios [44] have been pub-

lished. Therefore, it was necessary to assume spherical dimensions for the uterus in the model,

with the radii based upon the published volumetric data. However, our sensitivity analysis

found that an elliptical geometry lead to only minor increases in maximum stress of roughly

1%, demonstrating that the predicted stresses are relatively insensitive to changes in ellipticity.

A Young’s modulus of 586 kPa was assumed for the myometrium based on in vitro tests of tis-

sue excised during hysterectomy (Pearsall and Roberts 1978), which likely differs from preg-

nant myometrium in vivo. Similarly, while in vitro tests have established the mechanical

properties of the fetal membrane, chorion and amnion, these materials may behave differently

in vivo. Additionally, while nonlinear material models have been described for fetal membrane

tissue [34], these data were at term and are not available for the amnion or chorion, which

necessitated the assumptions of linear elasticity and homogeneity in the current study. If gesta-

tional age data for such non-linear material properties were available, incorporation would

likely lead to higher strains than predicted here. Furthermore, while this study aims to separate

out the effects of changes in thickness, the anatomical causes of these thickness changes may

themselves result in different mechanical properties, e.g. increased volume fraction of fibro-

blasts [18]. Indeed, it has recently been shown that the amnion contains rivet-like collagen VII

structures attaching it to the basement membrane [47], which could be modelled with micro-

scale mechanical testing. As it is impossible to measure the un-deformed geometry of the

Modelling the mechanics of the chorion and amnion
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uterus at different gestational ages, this study assumes a pressure load applied to the observed

geometries at each time point. We observed increases in diameter after application of maxi-

mum pressure of no more than 2.11%, indicating small deformations in response to loading.

In reality, the uterus would already be “pre-stretched” by the pressure load at the dimensions

for each gestational age [48] and, as such, the in vivo stresses are likely to be somewhat greater

than predicted here. Finally, a wide array of experimental data obtained by different research-

ers over many years were applied in these simulations, with inevitable implications on the

physiological accuracy of the predictions. However, by applying mechanics to predict the rela-

tive effects of different material and physical parameters, we can glean further information

from the available experimental data and, in this case, highlight the importance of the bilayer

structure of the fetal membrane to its mechanical integrity.

It is interesting to note that when compared with a more anatomically-accurate model of a

bilayer fetal membrane that allows sliding contact between layers, as has been observed physio-

logically [40], not only does the single fetal membrane model significantly underestimate the

stress that occurs in the amnion, the strain behaviour is also very different and changes notice-

ably with gestational age. Even when simulations were run where the thickness of the single

fetal membrane layer was assumed to be the same as the bilayer model (232 μm), stresses were

still substantially lower in the single layer model than in the bilayer model. This indicates that

previous models which have included the fetal membrane as a single monolithic entity [27, 31]

may have incorrectly predicted the behaviour of the membrane, and that future studies should

incorporate the chorion and amnion as separate entities. Indeed, it is noteworthy that at 40

weeks, the stress in the amnion exceeds 900 kPa, the established failure stress for the fetal

membrane [17]. This corroborates a previous analytical prediction of failure at term based on

biaxial test data [42], and would not have been predicted using a single membrane model. Sim-

ilarly, the analytical predictions of increased membrane stress due to polyhydramnios are also

observed in our models [42].

Particularly intriguing are the findings that the experimentally observed phenomena during

PPROM, thinning of the chorion and reduced lubrication of the chorion-amnion interface

[14, 16], were both shown to increase the stress in the fetal membrane. While it is unlikely that

either of these phenomena alone are the cause of idiopathic PPROM, the results predicted here

indicate that they are probable contributing factors.

When varying the thicknesses of the fetal membrane layers independently it was found that

the stress within both the chorion and the amnion generally increased with decreasing thick-

ness of either layer in isolation, or both at the same time. The highest overall stresses were pre-

dicted when both membranes were at their thinnest, with the stress in the amnion exceeding

the fetal membrane failure stress of 900 kPa when the amnion is at its thinnest. Therefore,

these results appear to suggest that the amnion thickness is more critical to the structural integ-

rity of the fetal membrane than the chorion thickness, particularly as varying it has a greater

effect on both membranes.

The inclusion of a weak zone in either the chorion, the amnion, or both simultaneously

caused stress in the chorion to exceed its reported failure stress of approximately 168 kPa [43].

Similarly, in all cases where a weak zone was included, while the stress in the amnion was

below the reported failure stress of the amnion alone (approximately 4 MPa), it significantly

exceeded the failure stress of the fetal membrane as a whole (900 kPa). The higher stresses for

both normal and contraction pressure conditions in the presence of a weak zone, coupled with

the fact that this zone develops over the cervix and alongside rupture lines [20], lends support

to the theory that the weak zone occurs to allow a controlled failure after a “programmed

weakening” of the fetal membrane at term [22], i.e. the “waters breaking” at the correct time.
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Furthermore, while it was found that removing a zone of the chorion led to increased stress

in the amnion, this stress did not exceed the reported amnion failure stress of 4 MPa [42].

Conversely, when a zone of the amnion was removed, the stress in the chorion exceeded the

reported chorion failure stress of 168 kPa [43]. This implies that while the chorion is critical to

preventing degradation of the amnion, if a zone of the chorion were to fail, the amnion would

not necessarily rupture. In contrast, our models predict that if the amnion fails, the entire fetal

membrane will rupture.

5. Conclusion

In summary, this paper provides the first attempt to characterise the in vivomechanical behav-

iour and rupture of the fetal membrane and its constituent layers using computational model-

ling. The results provide a novel insight into the mechanical effect of structural changes in the

chorion and amnion, and shed new light on how the interaction between these two layers can

affect the behaviour of the fetal membrane as a whole, particularly in cases of both normal and

preterm premature rupture.
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