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Superconducting (S) thin film superlattices composed of Nb and a normal metal spacer (N ) have
been extensively utilized in Josephson junctions given their favorable surface roughness compared
to Nb films of comparable thickness. In this work, we characterize the London penetration depth
and Ginzburg-Landau coherence lengths of S/N superlattices using polarized neutron reflectometry
and electrical transport. Despite the normal metal spacer layers being only approximately 8% of
the total superlattice thickness, we surprisingly find that the introduction of these thin N spacers
between S layers leads to a dramatic increase in the measured London penetration depth compared
to that of a single Nb film of comparable thickness. Using the measured values for the effective in-
and out-of-plane coherence lengths, we quantify the induced anisotropy of the superlattice samples
and compare to a single Nb film sample. From these results, we find that that the superlattices
behave similarly to layered 2D superconductors.

I. INTRODUCTION

Superconducting materials have long been of interest
since they were first discovered in 1911 by Kammerlingh
Onnes [1]. The two fundamental properties most closely
associated with superconductivity are zero electrical re-
sistance and the expulsion of magnetic field, where the
latter is known as the Meissner effect [2]. The two typical
lengthscales describing superconductivity are the coher-
ence length (ξ) and the penetration depth (λ), which we
set out to measure directly in this work. The ratio of
these two length scales, known as the Ginzburg-Landau
parameter (κ = λ/ξ), governs whether the supercon-
ductor is type-I or type-II, where a type-I is defined as
κ < 1/

√
2 and type-II when κ > 1/

√
2. In bulk single

crystal, Nb is a borderline type-I/type-II superconductor
with ξ ≈ λ ≈ 41 nm [3]. Upon reducing dimension-
ality and introducing the disorder associated with poly-
crystalline thin film growth, Nb becomes strongly type-II
with a typical κ between 8 and 10.

Superconducting technologies based on Josephson
junctions are a promising candidate for a low power com-
putational alternative to traditional CMOS technologies
[4, 5]. Of particular interest, here, are ferromagnetic
Josephson junctions which form the memory bits in such
a scheme [6–18]. There have been numerous reports
concerning the supercurrent passing through ferromag-
netic Josephson junctions, including the discovery of spin
triplet pair correlations in these systems [19–26]. In order
to improve the properties of the thin ferromagnetic layers
in the Josephson junctions, it is important that the sur-
face roughness of the Nb electrode be as small as possible
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[27]. It has long been known that introducing a thin Al
layer between Nb films improves the surface roughness
compared to Nb films of equivalent thickness; this is un-
derstood to be due to the Al forming amorphously and
thus preventing columnar growth of Nb [28–30]. Given
that the Al is sufficiently thin in these multilayers, the Al
layer superconducts via proximity effect from the neigh-
boring Nb layers. It has previously been shown that by
replacing Nb with a Nb/Al superlattice, the curious ef-
fect of non-linear scaling of critical currents with area
can be resolved [31]. Recently, it was discovered that
substituting Al with Au has the same effect on the sur-
face roughness of the superlattice, as we report in this
work.

The London penetration depth (λL) characterizes the
depth of penetration of an externally applied field and is
the length scale associated to the Meissner effect, hence
it is often referred to as the magnetic screening length [3].
λL is typically determined from measurements of flux ex-
pulsion by muon implantation [32] or surface microwave
[33] techniques.

In superconducting thin film samples, when an in situ
magnetic field is applied and the samples are cooled be-
low the superconducting transition temperature, polar-
ized neutron reflectometry (PNR) is sensitive to the ab-
sence of magnetic field due to the Meissner effect as a
function of depth [34–36]. The availability of PNR makes
this technique highly attractive for the study of thin films
with buried interfaces. PNR directly probes the nuclear
composition and magnetization, as a function of depth,
in thin film systems. The non-spin flip reflectivities (R↑↑

and R↓↓) are sensitive to the nuclear composition and in-
plane magnetization, aligned with the in situ magnetic
field, as a function of depth through the sample. Han et al
examined Nb/Al superlattices near and above the lower
critical field by measuring the penetration depth (λL) and
characterizing the formation of superconducting vortices
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using PNR [37]. After the early investigations of field
expulsion in superconducting thin film systems, PNR
characterization of superconductors became less common
due to the unavailability of sufficiently smooth interfaces
in thin film materials with novel properties. Early at-
tempts to study thin films of YBCO, for example, had
limited success due to the large surface roughness [35].
Recently, improvements in thin film growth combined
with experimental observations and theoretical predic-
tions of proximity effects in superconductor-ferromagnet
(S/F ) based heterostructures have renewed interest for
characterizing the field expulsion profile in detail [38–44].
The PNR measurements and analysis performed here
are expandable to a wide range of conventional and un-
conventional superconducting systems, and layered het-
erostructures containing both superconducting and non-
superconducting layers. However, we wish to note that
these measurements remain challenging due to the mag-
netic scattering length density resulting from expelled
field of a superconductor being as much as two orders of
magnitude lower than that of strong ferromagnets, such
as Fe.

The Ginzburg-Landau coherence length (ξGL) char-
acterizes the distance over which superconductivity
can vary without undue energy increase. While the
Ginzburg-Landau theory is strictly valid only near the
critical temperature (Tcritical), it has been utilized ex-
tensively to describe data over a much broader tempera-
ture range [45]. Experimentally, one can estimate ξGL

from temperature-dependent electrical transport mea-
surements of the upper critical field (Hc2). In conven-
tional bulk superconductors, Hc2 is isotropic. In thin
film and layered superconductors, the upper critical field
for field orientations parallel (Hc2‖) and perpendicular
(Hc2⊥) to the sample plane can differ significantly. To
determine an accurate estimate for ξGL, Hc2 data must
be analyzed in the appropriate geometric limit [45].

In this work, we directly determine the effects of intro-
ducing a thin (with respect to ξGL) non-superconducting
layer (N, which is Al or Au) in Nb-dominant superlat-
tices. Quantitative understanding of λL and ξGL are
important for modelling and interpreting the behav-
ior of superconducting devices such as Josephson junc-
tions and Superconducting QUantum Interference De-
vices (SQUIDs), in which the use of superlattices to re-
duce surface roughness may be advantageous. For ex-
ample, in a Josephson junction the characteristic Fraun-
hofer pattern is determined by the flux (Φ) in the junc-
tion, Φ = µ0Hw(2λL + d), where w is the width of the
patterned junction and d is the thickness of the junc-
tion. However, this description is modified if λL becomes
comparable to or longer than the thickness of the super-
conducting electrode, which is common in thin films [46].
As such, an independent and direct measurement of λL is
important for thorough characterization and understand-
ing of these Josephson junctions. In trying to analyze
the inductance of their SQUID devices built upon Nb/Al
multilayers, Madden et al. found that they could only

adequately model their devices by allowing the penetra-
tion depth to be about 185 nm, rather than the 85 nm
typical value associated with sputtered Nb [15]. With
PNR, we are able to directly examine the field expul-
sion to thoroughly evaluate changes in the penetration
depth in S/N superlattice structures. We find distinctly
different superconducting properties of S/N superlattice
samples compared to a single Nb thin film using PNR
and electrical transport measurements. We observe large,
consistent modification of λL and ξGL, which allows us
to directly probe and quantify the weakening of the su-
perconducting coupling in the out-of-plane direction as-
sociated with the introduction of the thin normal metal
intermediary layers.

We also report that while our Nb film is best charac-
terized as a 3D superconductor, the superlattices are best
described at low temperatures by the 2D limit of layered
superconductors. Such 2D states have been observed in
a number of different S/N superlattices, but as far as
we know not in the composition of the two superlattices
studied here [47]. When a superlattice is made by layer-
ing a superconductor with normal metals [48, 49], semi-
conductors [50, 51], or ferromagnets [52], measurements
of Hc2 (T) have long been known to show a transition
from 3D to 2D superconductor behavior when the tem-
perature is reduced [47]. This crossover is understood
to occur due to reduction of the effective perpendicular
coherence length (ξ⊥), which results in a decoupling of
the layers in the superlattice [45, 53]. This is a surpris-
ing result given that our N layers are thin enough that
we would expect strong and fully proximitized supercon-
ducting coupling across the entirety of the superlattices.

II. EXPERIMENTAL METHODS

Thin films are deposited by sputtering with base pres-
sure of 2 × 10−8 Torr and partial water pressure of
3×10−9 Torr (4×10−7 Pa), after liquid nitrogen cooling.
We grow the films on 12.5 mm x 12.5 mm Si substrates,
which have a typical native oxide layer. Growth is per-
formed at an approximate Ar (6N purity) pressure of

2 mTorr and temperature of -25
◦

C. Triode sputtering is
used for Nb and Al from 57 mm diameter targets, and dc
magnetron sputtering is used for Au from a 24 mm di-
ameter target. Materials are deposited at typical growth
rates of 0.4 nm s−1 for Nb and Au, and 0.2 nm s−1 for Al
from targets with 4N purity. Growth rates are calibrated
using an in situ quartz crystal film thickness monitor and
checked by fitting to Kiessig fringes obtained from X-ray
reflectometry (XRR) on reference samples.

The superlattices had a full stack structure of
[S (25)/N (2.4)]×7/S (25), where the nominal thicknesses
are denoted in nanometers, S refers to superconducting
Nb, and N refers to Al or Au. Hereafter, the superlattice
samples are referred to as Nb/Al or Nb/Au. The thick-
nesses of the S and N layers are guided by previous work
[31], and the number of repeats chosen so the films were
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thick enough to give appreciable magnetic field screen-
ing to observe with PNR. In addition, a 200 nm film
of Nb was grown for comparison to the superlattices in
our current investigation and is comparable to Nb films
described in previous studies [34, 35].

We collect PNR using the Polarized Beam Reflec-
tometer and Multi-Angle Grazing-Incidence K-vector re-
flectometer at the NIST Center for Neutron Research
(NCNR). The incident neutron spins are polarized par-
allel or antiparallel to the applied in-plane magnetic field
(H ) with supermirrors, and reflectivity is measured in
the non-spin-flip cross sections (R↑↑ and R↓↓) as a func-
tion of the momentum transfer (Q) normal to the film
surface. Given the beam incident beam is in the grazing
configuration for the entire Q range measured, the neu-
tron beam effectively scatters across the entire sample.
The PNR data are reduced and modeled using the RE-
DUCTUS [54] software package and model-fit using the
REFL1D program [55, 56]. The uncertainty of each fit-
ting parameter is estimated using a Markov-chain Monte-
Carlo simulation implemented by the DREAM algorithm
in the BUMPS Python package, and with the number of
steps taken allowing for the uncertainty to be reported
with two significant digits [57]. Data are gathered at tem-
peratures as low as 3 K, using a closed cycle refrigerator,
and with an in situ magnetic field of 42 mT applied in the
sample plane. To avoid concerns of flux trapping in the
sample, we do not change field when below the transition
temperature of Nb (≈ 9 K). When changing field states,
the temperature is increased to approximately 12 K. For
reproducibility of the magnetic field condition, a saturat-
ing field of 700 mT is then applied, followed by lowering
to the desired measurement field, and finally the sam-
ple is cooled to the base temperature of 3 K. XRR and
rocking curves are used to confirm the structural model
determined from PNR. (An in-depth discussion of the
XRR results can be found in the supplemental materials
[58]).

Electrical transport measurements are performed using
a conventional four-point-probe measurement configura-
tion with lock-in amplifier and 100 µA current source on
a cut of the samples with area of approximately 3 mm
× 1 mm, and so we can estimate a current density of
5×105A/m

2
. We collect transport data in a 4He cryostat

with variable temperature insert (1.3 - 300 K) and 8 T
superconducting solenoid. Our resistance measurements
are performed at a fixed temperature by continuously
ramping the magnetic field. Resistance as a function of
the in- and out-of-plane field, at various temperatures,
determines the upper critical fields (Hc2‖, Hc2⊥). The
Ginzburg-Landau coherence lengths in the plane and per-
pendicular to the plane are extracted by fitting to mea-
surements of Hc2 as a function of temperature [45].

III. RESULTS

A. Polarized Neutron Reflectometry

The non-spin flip PNR and the spin asymmetry [SA =
(R↑↑−R↓↓)/(R↑↑ +R↓↓)] for the Nb, Nb/Al and Nb/Au
samples, measured at 42 mT, are shown in Fig. 1,
alongside theoretical fits. The PNR Bragg peak spac-
ing (∆Q = 2π/t) shows that the superlattice structures
are close to the nominal layer thicknesses, and the spin
asymmetry serves to highlight the differences in scatter-
ing intensity between R↑↑ and R↓↓ induced by Meissner
screening. For data taken at 20 K for the Nb/Al sample,
we observe no observable spin asymmetry, as expected
(supplemental Fig. S3 [58]). Specular and off-specular
background XRR are collected in order to further vali-
date the neutron reflectometry results as shown in sup-
plementary Fig. S1 [58]. We also collect x-ray rock-
ing curves to provide additional qualitative information
about sample roughness, and the data can be seen in
supplementary Fig. S2 [58].

The scattering length density (SLD) profiles that yield
the best theoretical fits for the R↑↑ and R↓↓ data in Figs.
1 (a), (c), and (e) are shown in Fig. 2. When fitting the
superlattice structure, each elemental layer is constrained
to the same nuclear SLD and thickness. The nuclear
scattering length densities are in strong agreement with
the bulk values for each layer. We model the magnetic
field expulsion as a function of depth (where z is distance
from edge of the superconductor) in the superlattice as
determined from the London equation [35],

B(z) = B0 cosh

(

z

λL

−
ds

2λL

)

cosh

(

ds
2λL

)−1

, (1)

where ds and z are the thickness of the superconduc-
tor and distance from the surface, respectively. In this
model, the external field (B0) is fixed to the value mea-
sured with a Hall probe, while λL is a fitting parameter.
Our modeling assumes that there is no observable flux
trapped by the formation of superconducting vortices
which is reasonable given that the applied field is well
below Hc1, and the fits without accounting for vortices
are of excellent quality. In prior PNR reports vortices
were not needed to explain the data for fields under 100
mT [37]. Furthermore, based upon our previously mea-
sured Fraunhofer patterns in Josephson junctions with a
Nb/Al superconducting electrode, we found no degrada-
tion of the pattern (which is well known to occur when
flux is trapped) for fields as large as 120 mT [59], which
is far larger than the 42 mT applied in this work. Our
fits for the 200 nm single layer of Nb yield λL = 96.2 ±
9.2 nm (uncertainties on fit parameters correspond to 2
σ), which is in good agreement with prior experimental
reports [34, 35, 60]. We find λL = 145 ± 25 nm and
190 ± 26 nm for the Nb/Al and Nb/Au superlattices,
respectively. Our measurement of λL for the Nb/Al sam-
ple is consistent with results reported values of 180 nm



4

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.05 0.10 0.15 0.20 0.25 0.30 0.35
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.05 0.10 0.15 0.20 0.25 0.30 0.35
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.05 0.10 0.15 0.20 0.25 0.30 0.35
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

 R� �

 R� �

 T� �

 T� �

R
ef

le
ct

iv
ity

(a) (c) (e)

(b) (d) (f)

 R� �

 R� �

 T� �

 T� �

Nb/AuNb/Al
 R� �

 R� �

 T� �

 T� �

Nb

S
pi

n 
as

ym
m

et
ry

Q (nm-1)

FIG. 1. Non-spin flip cross-section PNR data (points) with theoretical fits (T, line) and associated spin asymmetry for (a,b)
Nb, (c,d) Nb/Al, and (e,f) Nb/Au superlattices in a field of 42 mT and temperature of 3 K. Error bars are representative of 1
σ for the data.

by Han et al., despite their Nb thickness being signifi-
cantly thinner [37]. Furthermore, Madden et al found
that a penetration depth of approximately 185 nm was
needed to model the inductance of their SQUID devices
[15]. The increase in λL for the superlattice samples is ev-
ident from a qualitative inspection of the spin asymmetry
data near Q = 0.14 nm−1, where the amplitude is signifi-
cantly larger in Nb than in the superlattices; additionally
the oscillations in the spin asymmetry are noticeably less
clear at higher Q in the superlattices compared to those
for pure Nb. We have also carried out additional model
fitting on the superlattice samples where the penetration
depth is fixed at several values, and all other parame-
ters are again fit, in order to qualitatively demonstrate
which features drive the determination of the penetration
depth and associated error bar size (supplementary Fig.
S4) [58].

B. Electrical Transport

To determine the effect of the thin Al and Au layers on
the coherence lengths, we measure Hc2 as a function of
temperature for the magnetic field applied both in- and
out-of-plane, as shown in Fig. 3. Example resistance as a
function of field data sets can be found in supplementary
Fig. S5 [58], which is then used to determine the Hc2

values for Fig. 3. The measured Tcritical at zero applied

field for each sample, used in later calculations, is given
for each sample in Table I.

We use the Hc2 measurements to estimate the co-
herence lengths in the Nb and superlattices using the
Ginzburg-Landau theory. In all our samples there ex-
ists the isotropic coherence length of Nb, ξNb0, however
in the superlattices there is also an effective coherence
length perpendicular to the layers, ξ⊥0. This additional
effective coherence length arises in the superlattices as
the currents perpendicular to the plane are strongly in-
fluenced by the coupling of the Nb layers through the
normal-metal layers and by the impedance provided by
the Nb-Al or Nb-Au interfaces. As previous work has
shown, the anisotropy in superlattices can be treated in
analogy to high temperature cuprate layered supercon-
ductors [45, 53].

We estimate the zero temperature in-plane coherence
length (ξ‖0), from the out-of-plane field data in Fig 3 and
fitting to,

µ0Hc2⊥(T ) =

(

Φ0

2πξ2‖0

)

(1 − T/Tcritical) , (2)

where Φ0 is the flux quantum. For the Nb film and su-
perlattices, µ0Hc2⊥(T ) is linear just below Tcritical (where
the Ginzburg-Landau theory applies) and the fitted co-
herence lengths are: ξ‖0 = 11.6 ± 0.1 nm, 10.1 ± 0.1 nm,



5

0 25 50 75 100 125 150 175 200

0

1

2

3

4

5
(a)

25

30

35

40

0 25 50 75 100 125 150 175 200 225
0

1

2

3

4

N
uc

le
ar

 S
LD

 (
x 

10
-6

 Å
-2

)

25

30

35

40

B
 (

m
T

)(b)

(c)

0 25 50 75 100 125 150 175 200

0

2

4

6

Z (nm)

25

30

35

40

FIG. 2. Nuclear SLD (black, left axis) and magnetic field (red, right axis) for (a) 200 nm Nb, (b) Nb/Al (grey/teal) and (c)
Nb/Au (grey/gold) superlattices as a function of depth in the sample for B = 42 mT and T = 3 K. Z = 0 refers to the Si
substrate surface. A thin native SiOx layer is included between the substrate and Nb (both Si and SiOx are denoted by the
beige shaded region). An additional layer is needed to account for oxidation at the top Nb surface. A condensation of gas on
the sample surface occurred at low temperatures for the Nb/Au sample. Both the Nb oxidation and condensation layers are
denoted by the purple shaded region.

and 10.3 ± 0.1 nm, for Nb, Nb/Al, and Nb/Au, respec-
tively. For the Nb sample, we can identify ξ‖0 ≡ ξNb0,
where ξNb0 is the isotropic coherence length of Nb. In
the superlattices, ξ‖0 is still consistent with ξNb0 in the
systems, which has been slightly modified due to the N
layers.

As expected for a 3D superconductor, the upper criti-
cal field for Nb in the parallel-field configuration can be
described by,

µ0Hc2‖(T ) ∝ (1 − T/Tcritical) . (3)

µ0Hc2 is approximately 40% larger at zero temperature
for the parallel field configuration compared to the per-
pendicular field. This occurs since λL is not much smaller
than the sample thickness, thus at large enough fields,
the supercurrents of each vortex in the film make contact
with the film surfaces [61], which we note is unaccounted
for by the Ginzburg-Landau theory.

For the superlattices in an in-plane field, we must con-
sider two separate temperature regimes. Close to Tcritical,
Hc2‖(T ) is linear and consistent with Eqn. 3, but below

Tcritical/2 follows a square root dependence, as is high-
lighted by the fits in Fig. 3 (b) and (c). The underlying
high-field physics in these samples is again driven by the
size, shape, and position of vortices in the system.

For an in-plane field at T close to Tcritical, we observe
behavior similar to that of a 3D superconductor since the
diameter of the vortex cores is so large that the vortices
can be viewed as averaging over the entire superlattice.
And thus, the linear dependence of Hc2‖(T ) can then be
fit to the Ginzburg-Landau expression,

µ0Hc2‖(T ) =

(

Φ0

2πξNb0ξ⊥0

)

(1 − T/Tcritical) , (4)

where the proportionality constant can now be inter-
preted in terms of a phenomenological out-of-plane co-
herence length, ξ⊥0, associated with properties of the N
layers and niobium. We note that ξ⊥0 is not to be under-
stood as an effective coherence length inside the N layers.
Using the ξ‖0 values determined for each superlattice (ap-
proximately equal to ξNb0), fits to Eqn. 4 are shown in
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2D behavior in the superlattices, respectively. Equation 4 is
fit only to the high temperature ‖ magnetic field data of the
superlattices, where the temperature dependence is linear, to
determine an estimate for the effective out-of-plane coherence
length, see text.

Fig. 3 (b) and (c). We find that ξ⊥0 = 4.4± 0.1 nm, and
3.8 ± 0.1 nm for Nb/Al, and Nb/Au, respectively.

At temperatures below Tcritical/2, Hc2‖(T ) no longer
follows the linear form, and instead is best described by
the square root dependence expected for 2D supercon-
ductors,

µ0Hc2‖(T ) ∝ (1 − T/Tcritical)
1/2

. (5)

In this regime, the cores of the vortices are confined to

the N layers, and do not significantly penetrate into the
Nb layers.

The Ginzburg-Landau theory predicts that close to
Tcritical,

µ0Hc2‖(T ) =

( √
3Φ0

πdξNb0

)

(1 − T/Tcritical)
1/2

, (6)

where d is the thickness of the Nb layers. Setting
d = 25 nm and using our previously determined ξNb0 =
10.1 nm for the Nb/Al superlattice, Eqn. 6 predicts
µ0Hc2‖(0K) ≈ 4.5 T, in decent agreement with the mea-
sured values of 4.6 ± 0.1 T and 5.1 ± 0.1 T for Nb/Al
and Nb/Au, respectively. This agreement between ex-
periment and theory is further supportive of our inter-
pretation that the superlattices behave as 2D supercon-
ductors.

Finally, we summarize our experimental findings for
each relevant superconducting parameter (e.g. Tcritical,
λL, and the discussed in- and out-of-plane upper critical
fields and coherence lengths ) in Table I.

IV. DISCUSSION

From the combination of PNR, XRR, and electrical
transport, we develop a consistent picture of the means
by which the superconducting properties are affected by
the structural differences between the S/N superlattices
and uniform superconducting films of similar thickness.
The fits for the PNR and XRR show that the repeated
layers in our superlattices are uniform with near nomi-
nal deposition thicknesses and SLD values close to bulk.
The XRR fitted roughnesses of the topmost surface for
the Nb/Al and Nb/Au superlattices (0.60 and 0.69 nm,
respectively) are smaller than those obtained for the Nb
film (1.95 nm). The improved surface roughness of the
superlattices is qualitatively consistent with trends re-
ported for similar Nb and Nb/Al samples with root-
mean-squared roughnesses of 0.53 and 0.23 nm, respec-
tively, obtained from atomic force microscopy over an
area of 1 µm−2 [31]. Note that the roughness values ob-
tained from reflectivity measurements are typically larger
than those obtained from atomic force microscopy since
they represent an average of interdiffusion, local rough-
ness, and large-scale features averaged across the sample
plane. We also note that the Nb/Al sample characterized
by Wang et al. had a superlattice repeat of 3 [31], and
not 7 as we use in this work. We also observe satellite
(Yoneda) peaks in the rocking curve for the Nb film at θ
positions of θC (where θC corresponds to the critical an-
gle for total internal reflection in Nb) and 2θ - θC . Yoneda
peaks, however, are not apparent in comparable rocking
curves for the Nb/Al and Nb/Au samples. In general,
Yoneda scattering results from a resonant enhancement
of scattering from faceted surfaces. Since these features
can be qualitatively linked to surface roughness, the pro-
nounced Yoneda wings in rocking curves for the Nb film
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TABLE I. Summary of experimentally measured superconducting parameters for Nb, Nb/Al and Nb/Au samples. Tcritical is
the critical temperature measured by electrical transport at zero applied field. λL is the London penetration depth, as measured
by PNR. Hc2 (0 K) is the upper critical field at zero temperature extracted from Figure 3. ξ‖0 is the experimental in-plane
coherence length, which gives an estimate of ξNb0, the isotropic coherence length of Nb. ξ⊥0 is the phenomenological parameter
describing the anisotropic coherence perpendicular to the plane in the superlattices.

Sample Tcritical λL (3 K) µ0Hc2‖ (0 K) µ0Hc2⊥ (0 K) ξ‖0 (ξNb0) (0 K) ξ⊥0 (0 K)
(K) (nm) (T) (T) (nm) (nm)

Nb 9.10 ± 0.05 96.2 ± 9.2 3.29 ± 0.02 2.32 ± 0.02 11.6± 0.1 –
Nb/Al 8.40 ± 0.05 145 ± 25 4.6 ± 0.1 3.02 ± 0.03 10.1± 0.1 4.4 ± 0.1
Nb/Au 8.00 ± 0.05 190 ± 26 5.1 ± 0.1 2.81 ± 0.04 10.3± 0.1 3.8 ± 0.1

suggest that its surface is significantly rougher than the
surfaces of the superlattices [62] (see supplementary Fig.
S2 [58]).

Prior studies demonstrated that the thin intermedi-
ary layers (Al and Au in this work) disrupt the colum-
nar growth of Nb, resulting in reduced surface roughness
in Nb/N superlattices [28, 30]. This conclusion is fur-
ther supported by XRR measurements of the off-specular
background for the superlattices and film. While the off-
specular scattering for the Nb film is mostly featureless
(supplemental Fig. S1c [58]), the scattering for the su-
perlattices has finite-size oscillations (with constant spac-
ing in Q) and diffraction peaks that mirror the features
present in the specular reflectivity (supplemental Fig. S1
[58]). The presence of these off-specular oscillations sug-
gests that the in-plane interface roughness originates in
the layers near the substrate and is replicated from one
layer to the next (i.e., conformal) [62–64]. The super-
lattice interfaces are presumably well-defined on a local
scale, and the resulting smooth surface contrasts with
that of the Nb film.

Experimental measurements of the penetration depth

(λexperimental
L ) are known to be larger than the intrinsic

London penetration depth (λintrinsic
L ), due to impurity de-

fects. A relationship between the intrinsic London pene-
tration depth and that measured by experiment has been
derived by Pippard [65] and demonstrated by Zhang et
al [35], as

λexperimental
L = λintrinsic

L

√

1 +
ξintrinsicNb

l
, (7)

where l is the electron’s mean free path (5.5 nm based
upon previous resistivity measurements [35, 66]), and
valid when l << ξ. Using the experimental value for
λL and ξintrinsicNb = 41 nm as reported by Weber et al [67],
we calculate λintrinsic

L = 33.1 nm. This value is reasonably
consistent with the reported value of Zhang et al [35].

Our measured penetration depth for Nb/Al is in agree-
ment with prior reports by Han et al. [37] who employ
PNR on Nb/Al superlattices and found λL = 180 ± 20
nm, though in this case the Al normal-metal layer was
even thinner than in our work. Furthermore, Madden et
al [15] could simulate the inductance of their SQUIDs
only if they used a longer λL (185 nm) for Nb/Al (with
3 multilayer repeats), which supports our findings with

an entirely independent technique. Finally, during the
preparation of this work, it has been reported that a
larger penetration depth of approximately 190 nm is nec-
essary to satisfactorily model the flux through Josephson
junctions where a Nb/Au superlattice serves as one of
the electrodes [18, 68]. While this much longer penetra-
tion depth in S/N superlattices is perhaps surprising,
our measurements are in strong agreement with multiple
independent groups and measurement methods.

V. CONCLUSIONS

In summary, we have studied the effect of adding
thin normal-metal layers between Nb layers by directly
measuring the London penetration depth and Ginzburg-
Landau coherence length. We find that the superlattices
have a significantly longer penetration depth compared
to Nb films of similar thickness. To further character-
ize the superlattices, we determine an effective coherence
length for currents perpendicular to the plane, which we
find to be less than half that of the intrinsic coherence
length of Nb. The result of this is a decoupling of the S
layers in the superlattices, such that below Tcritical/2 the
superlattices act as layered 2D superconductors, unlike
the single Nb film that displays 3D behavior across all
temperatures measured. The changes suggest that the
addition of thin N layers between the S layers weakens
the superconducting coherence in the out-of-plane direc-
tion despite the expectation that the N layers would be
fully proximitized given that the coherence length (ξNb0)
is large with respect to the thickness of the N layers.
This weakening of the out-of-plane coherence causes the
superlattices to act as an anisotropic 2D superconduc-
tor, unlike the Nb sample which displays isotropic behav-
ior. The lower surface roughness associated with using
a S/N superlattice compared to a single S layer is valu-
able in Josephson junction applications given the overall
improved quality of the junction, however, this has the
unintended consequence of significantly changing charac-
teristic superconducting properties. To properly model
such systems, one must account for changes in λL, ξGL,
and Tcritical– which we independently and directly mea-
sure in this work.

The data associated with this paper are openly avail-
able from the NCNR and University of Leeds data repos-
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itories [69].
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