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SCADA-data-based wind turbine fault detection: a dynamic model sensor method

Sikai Zhanga, Zi-Qiang Langa,∗

aDepartment of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, United Kingdom

Abstract

Fault detection based on data from the supervisory control and data acquisition (SCADA) system, which has been installed in most

MW-scale wind turbines, has brought significant benefits for wind farm operators. However, the changes in the features of hardware

sensor measurements, which are used in current SCADA systems, often cannot provide reliable early alarms. In order to resolve this

problem, in this paper, a novel dynamic model sensor method is proposed for the SCADA data based wind turbine fault detection. A

dynamic model representing the relationship between the generator temperature, wind speed, and ambient temperature is derived

following the first principles and used as the basic structure of the model sensor. When the model sensor is applied for fault detection,

its parameters are updated regularly using the generator temperature, wind speed, and ambient temperature data from the SCADA

system. Then, from the updated model, the fault sensitive features of wind turbine system are extracted via performing system

frequency analysis and used for the turbine fault detection. This novel model sensor method is applied to the SCADA data of a wind

farm of 3 wind turbines currently operating in Spain. The results show that the proposed method can not only detect the turbine

generator fault but also reveal the trend of ageing with the wind turbine generator, demonstrating its capability of failure prognosis

for wind turbine system and components.
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1. Introduction

The wind power generation, as a mainstream option for sus-

tainable energy, requires timely fault detection for reducing the

cost of operation and maintenance (O&M) (Lu et al., 2009).

However, many advanced fault detection approaches are diffi-

cult to be implemented in practice due to the need of additional

equipment that may incur considerable costs (Sun et al., 2016).

Therefore, fault detection based on data from supervisory con-

trol and data acquisition (SCADA) systems, which have been

installed in most MW-scale wind turbines, has attracted exten-

sive research attention (Gray and Watson, 2010; Feng et al.,

2011; Yang et al., 2013; Schlechtingen et al., 2013; Schlechtin-

gen and Santos, 2014; Leahy et al., 2016; Hu et al., 2016; Wang

et al., 2017; Pandit and Infield, 2018; Zhang et al., 2020).

From the raw data of traditional hardware sensor measure-

ments, simple signal processing techniques are often used to

detect wind turbine faults by checking whether the values of

some measurements have exceeded a threshold (Qiu et al., 2012),

or whether the trend of the measurements with a particular wind

turbine is significantly different from that with the neighbor-

ing wind turbines (Wilkinson et al., 2014). However, hardware

sensors in SCADA systems cannot directly measure some physi-

cal variables such as bending moments and drive-train torques,
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which are important indicators for wind turbine failures. Con-

sequently, the techniques of soft sensors have been applied to

estimate the immeasurable information from the measurable

physical variables (Barahona et al., 2017; Alvarez and Ribaric,

2018). A soft sensor is basically a predictive model that is

used to infer critical but difficult-to-measure physical variables

(Kadlec et al., 2009; Kadlec and Gabrys, 2011). For example,

the wind turbine shaft torque is vital for bearing fatigue life

prognostic but difficult to measure directly; thus, soft sensors

were used to estimate shaft torque from the measured genera-

tor power output and shaft rotational speed (Gray and Watson,

2010; Alvarez and Ribaric, 2018). Principle component analysis

(PCA) techniques can also be used as soft sensors to estimate

the damage sensitive latent variables. Jia et al. (2016) used the

standard deviation of the secondary principle component (PC2)

derived from measurable SCADA parameters as the indicator of

wind turbine failures.

However, many damage sensitive features cannot be revealed

by individual measurements but are embedded in the relation-

ship between these measurements. For example, the power

curve which shows the relationship between the wind speed

and wind turbine power output has been used for wind turbine

fault detections (Uluyol et al., 2011; Lydia et al., 2014; Carrillo

et al., 2013; Shokrzadeh et al., 2014). Hereafter, we will refer

to such a relationship as the model sensor where the features of

the relationship between measurements rather than the measure-

ments themselves are used to evaluate the health conditions of

underlying systems.

An illustration of hardware sensors, soft sensors, and model

sensors is shown in Fig. 1. The system in Fig. 1 can be a whole
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wind turbine or a subsystem of the wind turbine such as the gen-

erator and gearbox. The inputs are the external environmental

conditions such as wind speed and ambient temperature, and the

outputs are the physical variables affected by wind turbines oper-

ation such as power output and generator temperature. Hardware

sensors are traditional sensors. Soft sensors are built off-line

using the first principles or data-driven methods (Ge and Song,

2010; Shang et al., 2014). The outputs of hardware and soft

sensors are individual signals. From the signals, features are

extracted by signal processing techniques such as, e.g., Fourier

transform and wavelet transform (Lu et al., 2009) for the pur-

pose of condition monitoring and fault diagnosis. Instead, model

sensors are built on-line to reveal the changes of the relation-

ship between the input and output measurements in real time.

Moreover, model sensors use a model to represent system health

conditions and exploit model analysis techniques to extract the

damage sensitive features (Yang et al., 2013; Peng et al., 2007).

Some researchers have already adopted the idea of the model

sensor method for wind turbine fault detection. For example,

Gill et al. (2012) used the SCADA data in a normal wind turbine

to generate a baseline copula-power curve, which is the power

curve transformed by the copula estimation; then the similarity

between the copula-power curves in the actual turbine operating

condition and the baseline case is evaluated for the purpose

of wind turbine fault detection. Yang et al. (2013) trained 4th

degree polynomial models to describe the relationship between

the SCADA parameters under both healthy and faulty conditions.

As this relationship varies with turbine health conditions, the

model coefficients can be used as indicators for wind turbine

fault detection. Zhang et al. (2020) established state model

curves by the bin method with SCADA data for wind turbines.

The health index based on the Euclidean distance between the

baseline state model curve and the investigated state model

curve are proposed for the wind turbine health monitoring. Long

et al. (2015) described the power curve profile by a Weibull

cumulative distribution function (WCDF)-based model, which

contains two parameters. The SCADA data were partitioned into

consecutive time intervals and each subset of data was used to

Fig. 1. Schematic diagram showing a comparison of hardware sensors, soft

sensors, and model sensors.

train a power curve profile by a least-squares method. Through

monitoring changes in the model parameters, the online wind

turbine health monitoring was achieved. Pashazadeh et al. (2018)

proposed to build an autoregressive (AR) model with the time

series data from a wind turbine over a sliding window. In this

method, the coefficients of the AR model are updated while

the window is moving as time goes. The fault detection of the

wind turbine is then implemented by monitoring the change of

the AR model coefficients. In these cases, the copula-power

curves, polynomial models, state model curves, WCDF-based

models, and AR models can all be regards as model sensors

for monitoring the health conditions of wind turbines. The

damage sensitive model features (i.e. the characteristics of the

copula-power curves, the coefficients of the polynomial models,

the characteristics of the state model curves, the parameters

of the WCDF-based models, and the coefficients of the AR

models, respectively) rather than individual signals are used for

the purpose of fault detection. These existing model sensors are

mainly static model-based, which are independent from time.

The SCADA data of wind turbines include many measure-

ments such as power output, generator temperature, gear box

vibration, wind speed, and ambient temperature etc. The re-

lationship between most of these are static. For example, the

relationship between wind speed and power output is the widely

used static power curve. Although gear box vibration varies

much faster than the 10 min sampling rate of SCADA data, the

associated SCADA measurement is the average of the vibration

data over the 10 min, which is again statically related to other

variables such as power output. However, it is observed that the

relationship between wind speed, turbine ambient temperature,

and generator temperature is dynamic and the dynamics can be

fully covered by the 10 min per sample sampling rate. Consid-

ering a dynamic model can provide much richer information

than a static one for system analysis, the dynamic relationship

between the three variables will be used in the present study

as a model sensor for the purpose of the wind turbine system

fault diagnosis. The aim is to detect incipient wind turbine

generator faults and provide wind farm operators with an early

alarm when a failure is about to take place. Although there

are abundant researches constructing the relationships between

SCADA parameters through a black-box model (such as deep

neural networks (Wang et al., 2017), Gaussian process models

(Pandit and Infield, 2018)) where no prior knowledge is required,

the grey-box models, which involve physical laws, can normally

achieve better interpretability, are more parsimonious in terms

of parameters, and have a better capability to deal with epis-

temic uncertainty (Worden et al., 2018). Considering this, in

the present study, it is proposed that the dynamic relationship

between wind speed, turbine ambient temperature, and generator

temperature will first be derived using the first principles. Then,

the parameters in the dynamic relationship will be regularly up-

dated using a parameter estimation procedure to produce a model

that can in real time reflect the changes in this dynamic relation-

ship. After that, the damage sensitive features are extracted from

the updated dynamic model to perform fault detection using a

novel nonlinear system frequency analysis known as NOFRFs

(nonlinear output frequency response functions) method. This
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novel approach is then applied to process the SCADA data from

3 operating wind turbines over 5 years when a generator failure

had taken place once in one of the 3 turbines. The results show

that the new approach can reveal incipient generator fault occur-

ring well before failure, demonstrating its significant potential

in SCADA-data-based wind turbine fault detection and failure

prognosis.

2. Dynamic model sensor for wind turbine fault detection

Fig. 2 illustrates the principle of the dynamic model sensor

for the SCADA data-based wind turbine fault detection. Here,

the time series data are the data of the wind speed, ambient

temperature and generator temperature. These data are regularly

collected from the SCADA system and used to update the pa-

rameters of a model sensor. The model sensor represents the

dynamic relationship between the wind speed, ambient temper-

ature, and generator temperature over the time when the data

are collected. Therefore, from the analysis of the model sen-

sor characteristics, the operational status of a wind turbine can

be evaluated, and potential faults with the turbine system and

components can be detected from a damage sensitive index as

illustrated at the bottom of Fig. 2. The implementation of these

ideas requires to address three issues which are the model sen-

sor design, model sensor parameter updating, and model sensor

analysis, respectively. The model sensor design and parameter

updating are concerned with the determination of the model

structure and parameters while the model sensor analysis is to

extract model features and evaluate an index which is sensitive

to wind turbine system and component damage for potential

fault detection.

time

SCADA DATA

Data Data Data Data......

Updating Model Sensor Parameters

updated
model
sensor

Model Feature Extraction

model
sensor
feature

Evaluation of Damage Index

value of
damage

index

...... Indication of
damage/failure

Fig. 2. Procedural of the model sensor method to detect the system changes.

3. Design and parameter update of the model sensor

3.1. Model sensor design

The first principles will be applied in the following to find the

relationship between generator winding temperature, wind speed

and ambient temperature to determine the model sensor structure.

According to (Esfandiari and Lu, 2014), the relationship between

the temperature change of the wind turbine generator winding

∆Tg(◦C) and associated energy Q(J) is given by

Q = Cg∆Tg = Cg(Tg(k) − Tg(k − 1)) (1)

where Cg is the thermal capacitance (J/◦C), k ∈ Z+ denotes the

discrete time, and Tg(k) is the generator winding temperature at

the kth time instant.

The energy Q can be determined by the “energy in” Qin

caused by copper loss (Aglen, 2003), and the “energy out” Qout

caused by cooling, that is

Q = Qin − Qout. (2)

Copper loss is the heat produced by the current in generator

windings, and Qin generally has a nonlinear relationship with

the wind speed denoted as Vw. It is found that a third-degree

polynomial is sufficient to approximate this relationship (Tamura,

2012). In addition, as there is no copper loss when wind speed

is 0, the constant term in the polynomial is 0; therefore, the

polynomial is given by

Qin = f (Vw) = f3Vw
3 + f2Vw

2 + f1Vw. (3)

For Qout, we only consider the conduction effect between the ex-

ternal environment and the generator, and the thermal resistance

(◦C/W) between them is denoted as Rga. The equation of the

heat conduction is given by (Esfandiari and Lu, 2014)

Qout = tsqout = ts

Tg − Ta

Rga

(4)

where qout is the heat flow rate (W), ts = 600 s is the time interval

of the SCADA data collection, Rga is thermal resistance, and Ta

is the ambient temperature (◦C).

The generators often have a cooling system which is com-

posed of the blades directly mounted onto the generator rotor

shaft. Therefore, Rga is determined by generator rotor speed.

The fan speed is generally proportional to 1/Rga, and the re-

lationship between the rotor speed and the wind speed can be

approximated by a third-degree polynomial (Shin et al., 2010).

Thus, the relationship between the thermal resistance and the

wind speed is described by

1

Rga

= g(Vw) = g3Vw
3 + g2Vw

2 + g1Vw + g0. (5)

According to (1)-(5), the dynamic model representing the gener-

ator winding temperature can be written as

Tg(k) =
C−1

g f (Vw(k)) + Tg(k − 1) − Ta(k)

1 +C−1
g tsg(Vw(k))

+ Ta(k). (6)
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3.2. Model sensor parameter updating

In order to apply the dynamic model (6) to SCADA data

for wind turbine fault detection in real time, the parameters of

the model need to be updated regularly. The prediction error

minimization (PEM) method (Söderström and Stoica, 1989) is

applied to update the parameters of model (6). The use of the

PEM method is based on the relationship

T ∗g (k) =
C−1

g f (V∗w(k)) + T ∗g (k − 1) − T ∗a (k)

1 +C−1
g tsg(V∗w(k))

+ T ∗a (k) + e(k)

,T̂g(k) + e(k)

(7)

where T ∗g (k), V∗w(k) and T ∗a (k) are the generator temperature,

wind speed and ambient temperature measured by the SCADA

system, e(k) is the modelling error. Considering (3) and (5),

T̂g(k) can be written as

T̂g(k) =

C−1
g ( f3V∗w

3(k) + f2V∗w
2(k) + f1V∗w(k)) + T ∗g (k − 1) − T ∗a (k)

1 +C−1
g ts(g3V∗w

3(k) + g2V∗w
2(k) + g1V∗w(k) + g0)

+ T ∗a (k).

(8)

In order to estimate the parameters of the model sensor, PEM

minimizes the square of the prediction error such that

min
θ

Ns
∑

k=1

F2
k (θ) (9)

where Ns is the sample size,

Fk(θ) = T̂g(k) − T ∗g (k)

=
C−1

g ( f3V∗w
3(k) + f2V∗w

2(k) + f1V∗w(k)) + T ∗g (k − 1) − T ∗a (k)

1 +C−1
g ts(g3V∗w

3(k) + g2V∗w
2(k) + g1V∗w(k) + g0)

−
(

T ∗g (k) − T ∗a (k)
)

(10)

and

θ =[θ1, . . . , θ7]T

=C−1
g

[

f3, f2, f1, tsg3, tsg2, tsg1, 1/C
−1
g + tsg0

]T (11)

is the vector of model sensor parameters to be updated regularly

for the purpose of wind turbine fault detection. After the pa-

rameter vector θ has been obtained, the dynamic model sensor,

according to (8), is given by

y(k) =

θ1u1
3(k) + θ2u1

2(k) + θ3u1(k) + y(k − 1) − u2(k)

θ4u1
3(k) + θ5u1

2(k) + θ6u1(k) + θ7

+ u2(k)

(12)

where u1 = V∗w and u2 = T ∗a are model inputs and y = T̂g is the

model output.

3.3. Comparison with an existing model

A similar thermal dynamic model structure can be found

in (Qiu et al., 2016), where the thermal resistant is assumed

as a constant. The model fitting performance of the constant

thermal resistance model in (Qiu et al., 2016) and wind speed

dependent thermal resistance model (6) is compared in Fig. 3.

Two different cooling processes are shown in the figure in the

top and bottom plots, respectively. In both processes, the wind

turbine is shut down at about 1300 minutes, then the generator

starts cooling down. It is found that for the model with a constant

thermal resistance, the model predicted cooling process is slower

than the real system at the beginning, but faster at the end. The

reason of the mismatch is because that the cooling system still

works at the beginning of the cooling process, until the generator

rotor shaft is totally stopped. The thermal resistance of the real

system unceasingly increases with the rotor speed slowdown in

the cooling process. However, the proposed model (6) of a wind

speed dependent thermal resistance obviously produces a much

better representation for the generator cooling process.

0 500 1000 1500 2000 2500
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0

50

100
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Fig. 3. Model fitting performance of the constant and wind speed dependent

thermal resistance models for the cooling processes.

4. Extraction of damage sensitive features of model sensor

using NOFRFs

To quantitatively evaluate the characteristics of the model

sensor for fault detection, the damage sensitive features should

be extracted from each updated model sensor. The model pa-

rameters can be the features in some cases, but the number of

the parameters involved in model sensor (12) implies the pa-

rameters are hard to be used to produce a simple index for the

fault detection objective. The frequency features of a system

model are often very effective features for the representation of

system properties (Frank, 1990). When a model is nonlinear,

the nonlinear output frequency response functions (NOFRFs)

have been demonstrated to be effective for the frequency feature

extraction and analysis (Peng et al., 2011, 2007). Therefore, the

NOFRFs will be exploited here for the extraction of the model

sensor features for wind turbine fault detection.

4.1. The Volterra series representation of the model sensor

When wind speed varies around V0
w and turbine ambient

temperature varies around T 0
a , the model sensor (12) is known as
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being working around the operating point
(

V0
w,T

0
a

)

. If the varia-

tion of the turbine ambient temperature about T 0
a is negligible,

the system (12) is subject to inputs

u1(k) = u(k) + V0
w

u2(k) = T 0
a .

(13)

As input u2 is a constant, system (12) can be regarded as a single

input and single output system which has input u(k) and out-

put y(k). The underlying continuous single-input-single-output

system can be represented by the Volterra series as follows

y(t) = h0 +

N
∑

n=1

∫ ∞

−∞
· · ·
∫ ∞

−∞
hn(τ1, . . . , τn)

n
∏

i=1

u(t − τi)dτi (14)

where h0 is a stable equilibrium of the system, hn(τ1, . . . , τn) is

the nth order Volterra kernel, and N denotes the maximum order

of the system nonlinearity. Fig. 4 illustrates this representation

of model sensor system (12).

System (12)

+
+

+

+

u(k)

0

u1(k)

u2(k)
y(k)

V0
w

T 0
a

hn(τ1, . . . , τn), n = 0, . . . ,Nu(k) y(k)

Fig. 4. The Volterra series representation of the model sensor (12).

4.2. The NOFRFs

The NOFRFs are proposed based on the Volterra series repre-

sentation of a nonlinear system. The output frequency response

of system (14) can be described as (Lang and Billings, 2005)

Y( jω) =

N
∑

n=0

Yn( jω), (15)

where

Y0( jω) =











h0 for ω = 0

0 for ω , 0

Yn( jω) =
1
/√

n

(2π)n−1

∫

ω1+···+ωn=ω

Hn( jω1, . . . , jωn)

n
∏

i=1

U( jωi)dσnω.

(16)

and

Hn( jω1, . . . , jωn) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
hn(τ1, . . . , τn)

×e− j(ω1τ1+···+ωnτn)dτ1 . . . dτn

(17)

is known as the nth order generalised frequency response func-

tion (GFRF), which is a description of the characteristics of

nonlinear systems in the frequency domain. In (16),

∫

ω1+···+ωn=ω

Hn( jω1, . . . , jωn)

n
∏

i=1

U( jωi)dσnω (18)

denotes the summation of Hn( jω1, . . . , jωn)
n
∏

i=1

U( jωi) over the

n-dimensional hyperplane ω1 + · · · + ωn = ω.

For n = 0, 1, . . . ,N, the spectrum of the un(k) at the fre-

quency ω is given by (Lang and Billings, 2005)

U0( jω) =











1 for ω = 0

0 for ω , 0

Un( jω) =
1/
√

n

(2π)n−1

∫

ω1+···+ωn=ω

n
∏

i=1

U( jωi)dσnω.

(19)

Thus, we can define the nth order nonlinear output frequency

response function (NOFRF) at frequency ω as

Gn( jω) =
Yn( jω)

Un( jω)
(20)

under the condition

Un( jω) , 0. (21)

Therefore, Yn( jω) in (15) can be expressed as

Yn( jω) = Gn( jω)Un( jω). (22)

Consequently, the output frequency response of system (14) can

be represented using the NOFRFs as

Y( jω) =

N
∑

n=0

Gn( jω)Un( jω). (23)

The condition (21) implies that the NOFRF Gn( jω) only

exists when Un( jω) , 0. As U0( jω) is non-zero only at 0

frequency, we can use G0 to stand for G0( jω). In addition, based

on the definition (20), G0 is identical to the system’s stable

equilibrium h0.

4.3. Evaluation of the NOFRFs under harmonic inputs

In the present study, harmonic inputs with frequency ωc , 0

will be used to excite the model sensor for the NOFRFs evalu-

ation. In this case, the system output only contains frequency

components at {pωc|p = 0, 1, . . . ,N}, and according to (Peng

et al., 2007), the output frequency response of system (23) can

now be described as

Y( jpωc) =

q
∑

i=0

Gp+2i( jpωc)Up+2i( jpωc) (24)

where q = ⌊(N − p)/2⌋. When a nonlinear system is subject to

a harmonic input, the existence of the NOFRFs over different

frequencies is shown in Table 1.
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Table 1. The existence of NOFRFs over different frequencies when a non-

linear system is subject to harmonic input with 1 indicating existence and 0

nonexistence.

Ω

G
G0( jΩ) G1( jΩ) G2( jΩ) G3( jΩ) G4( jΩ) · · ·

0 1 0 1 0 1 · · ·
ωc 0 1 0 1 0 · · ·

2ωc 0 0 1 0 1 · · ·
3ωc 0 0 0 1 0 · · ·
... 0 0 0 0

...
...

The NOFRF Gn( jω) is insensitive to the change of the input

by a constant factor α (α , 0) (Lang and Billings, 2005), that is,

Gn( jω)|u(t)=u∗(t) = Gn( jω)|u(t)=αu∗(t). (25)

Thus, if the model is excited by the harmonic input u∗(t) scaled

by N̄ different constants α1, α2, · · · , αN̄ , respectively, to produce

N̄ different system frequency responses Y i( jω), i = 1, . . . , N̄,

the following equation can be obtained.

Y( jpωc) = AU( jpωc)G( jpωc) (26)

where

Y( jpωc) =
[

Y1( jpωc),Y2( jpωc), . . . ,Y N̄( jpωc)
]T

AU( jpωc) =



















































U1
p( jpωc) U1

p+2
( jpωc) · · · U1

p+2q
( jpωc)

U2
p( jpωc) U2

p+2
( jpωc) · · · U2

p+2q
( jpωc)

...
...

. . .
...

UN
p ( jpωc) UN

p+2
( jpωc) · · · UN

p+2q
( jpωc)



















































G( jpωc) =
[

Gp( jpωc),Gp+2( jpωc), . . . ,Gp+2q( jpωc)
]T

(27)

and U i
n( jpωc), i = 1, . . . , N̄, n = 0, . . . ,N is the spectrum of

the input (αiu
∗(k))n at the frequency pωc. To avoid (26) to be

underdetermined, it is required that N̄ ≥ q + 1. Consequently,

the NOFRFs of nonlinear systems subject to a harmonic input

can be determined as

G( jpωc) =
[

AU( jpωc)TAU( jpωc)
]−1

AU( jpωc)TY( jpωc)

p = 0, 1, . . .N.
(28)

4.4. Damage sensitive indices

As the Volterra series representation shown in Fig. 4 is

dependent on the operating point
(

V0
w,T

0
a

)

, the NOFRFs of

the model sensor (12) evaluated using the method in Section

4.3 above will be affected by
(

V0
w,T

0
a

)

. Therefore, when the

NOFRFs of the investigated wind turbine are compared with

the NOFRFs of other turbines in the wind farm, the two wind

turbines should be at the same operating point
(

V0
w,T

0
a

)

for the

purpose of wind turbine fault detection. Denote the NOFRFs

of model sensor (12) and their baseline that represent the cur-

rent and normal conditions of a wind turbine working about the

operating point
(

V0
w,T

0
a

)

as Gn( jω) and Gb
n( jω), n = 0, . . . ,N,

respectively. Then, the NOFRFs based damage sensitive indices

for the wind turbine can be defined as

In( jω) = |Gn( jω)| −
∣

∣

∣Gb
n( jω)

∣

∣

∣ , n = 0, . . . ,N. (29)

In principle, Gb
n( jω) is the NOFRF determined from a bench-

mark wind turbine which is similar to the evaluated turbine

system and is working normally in a similar environment.

In practical applications, M(M ≥ 2) wind turbines in the

same wind farm and located near the wind turbine of concern

can be used as the benchmark and, each time, the values of

indices (29) are evaluated. Obviously, in most cases, when

an alarm is raised from the evaluated values of (29), there are

two possible situations. One is the benchmark is normal, so

the alarm correctly indicated there exists a fault with the wind

turbine of concern. Another is the benchmark turbine is of fault

so the alarm may be wrong. It is assumed that at the same time

greater than 50% of the benchmark wind turbines can be normal.

Therefore, if greater than 50% of the evaluated values of index

(29) indicate there exists a fault, the turbine of concern can be

considered to be fault. Otherwise, the turbine can be normal.

Thus, the SCADA data based wind turbine fault detection can

be achieved.

In some special cases, such as grid failure event or storm, it

is possible that more than 50% wind turbines can simultaneously

show abnormal behaviours in some measurements such as power

output and generator temperature. In these cases, given the

severity of the problems, it is expected that the abnormality

would be easily identified by the alarm system embedded in

the wind turbines. Consequently, in response to the alarm by

the embedded system, the proposed approach can stop working

until the alarm has been lifted indicating most turbines have now

performed normally.

4.5. Model sensor based wind turbine generator fault detection

Based on the model sensor design in Section 3 and the

NOFRF based model feature extraction introduced above, a

detailed algorithm for the SCADA dada-based wind turbine

fault detection can be summarised as follows.

1. Take the wind turbine of concern for fault detection as the

turbine to be assessed and the other turbines in the wind

farm with operating environments similar to that of the

turbine to be assessed as benchmarks.

2. At the beginning of every day, the parameters of the

model sensor (12) are updated using PEM method and

the SCADA data over the latest 30 days for each wind

turbine.

3. Evaluate the output response of the model sensor for each

wind turbine to N̄ different harmonic inputs

u(t) = αiu
∗(t), i = 1, 2, . . . , N̄. (30)

4. Evaluate the Fourier transform of the model sensor out-

puts and corresponding inputs and construct Y( jpωc) and

AU( jpωc) in equation (27) for each wind turbine.

5. Evaluate the NOFRFs of the model sensor for each wind

turbine using equation (28).
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6. Evaluate the damage sensitive indices (29) with Gn( jω)

representing the NOFRF of the wind turbine to be assessed

and Gb
n( jω) representing the NOFRF of a benchmark tur-

bine

7. Raise alarm if the damage sensitive indices evaluated

for more than 50% benchmark wind turbines exceed a

threshold then get back to step 1 and repeat steps 1-6

when a new day starts.

5. Application to fault detection of an operating wind tur-

bine

5.1. The SCADA data description

The data used in the present study were collected from the

SCADA of three operating wind turbines which are referred to

as A101, A102 and A103, respectively. The three wind turbines

are of the same model and located close to each other in a wind

farm in Spain. The data were collected from 01/08/2009 to

31/12/2014. Every 10 minutes, 40 measurements were obtained

from each turbine. These measurements include the wind speed,

the temperature of various components, the vibration of the

tower, and the power output, etc. The maximum, minimum,

standard deviation and average of the measurements over the 10

minutes were recorded. The SCADA measurements used in this

study are listed in Table 2.

Table 2. The SCADA measurements used in this study.

Sensor Measurement Symbol Units

Wind speed Vw m/s

Ambient temperature Ta
◦C

Generator temperature Tg
◦C

Power output Po kW

Blade 1 pitch angle B1 deg(◦)

Blade 2 pitch angle B2 deg(◦)

Blade 3 pitch angle B3 deg(◦)

In 01/2013, the generator of turbine A103 was replaced

for a serious rotor winding failure, which is shown in Fig. 5.

The generator failure was detected by an operator with a wave

comparator on 21/01/2013, but the SCADA system failed to

detect this failure. Then the wind turbine was recovered after a

new generator was installed on 22/01/2013.

5.2. The SCADA data pre-processing

In this application study, the model sensor technique pro-

posed in Sections 3 to 4 is applied to process the SCADA data

in order to demonstrate how to use the proposed technique to

detect the generator failure in advance. For this purpose, the

SCADA data were first pre-processed to clean the data by 1)

removing the data sets which have missing data and outliers, and

2) setting wind speed as 0 when wind turbine stopped.

A considerable proportion of missing values were found

from the SCADA data. For example, 2.15% power data during

01/08/2009 to 31/12/2014 from wind turbine A103 are missing.

Data set with missing data cannot be used for model sensor

parameter updating, so have to be removed. The data set with

Fig. 5. Rotor winding short circuit causing the generator failure of wind turbine

A103 in 01/2013.

outliers may affect the accuracy of model parameter estimation

so should also be removed. The rules of the outlier detection

are shown in Table 3. The first type of outlier is simply detected

by whether the average or standard deviation of the parameters

are beyond the normal ranges. The second type of outlier is

that the environment parameters, i.e. wind speed and ambient

temperature, stay at a constant value or increase/decrease lin-

early, which can be detected by checking whether the standard

deviation of the parameters has been unchanged for a long time.

The examples of the second type outlier are shown in Fig. 6. In

Outlier 1, σVw
stays at 0 for about 10000 minutes (or 7 days), and

correspondingly Vw stays at the low speed 0.4 m/s. In Outlier

2, σVw
stays at 0.0025 for about 4500 minutes (or 3 days), and

meanwhile, Vw linearly increases from 9 to 13 m/s. As a linear

change of the wind speed or ambient temperature is unlikely in

practice, the data are the outliers. The third type of outlier is

caused by blade pitch control. The pitch control affects the wind

turbine power output especially when the wind speed exceeds

the rated wind speed or the curtailment happens. Fig. 7 shows a

comparison between the entire power curve and the power curve

when the pitch angle is larger than 10 degree. After the wind

speed exceeds the rated wind speed, the curtailment can cause

the power output to be slightly lower than the rated power or to

be zero. The first type of the curtailment is treated as outlier,

while the second type is treated as wind turbine stop.

The data measured when wind turbines stopped have been

kept, since the data can help to model the cooling processes.

Wind turbines may be shut down when wind speed was beyond

the range between cut-in (3 m/s) and cut-off (25 m/s) wind speed

or the turbine was in the second type of curtailment shown in

Fig. 7. In both cases, no power was produced, and the generator

was cooling down. As the wind speed has no effect on power

output or generator temperature when a wind turbine stops, the

wind speed is taken as 0 in the data analysis.

5.3. Power curve analysis

The traditional power curve analysis was first applied to the

SCADA data of wind turbine A103, which is shown in Fig. 8.

As the data were pre-processed according to Section 5.2, the
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Table 3. The rules of the outlier detection. σVw , σTg , and σTa are the standard

deviation of the wind speed, the generator temperature, and the ambient tem-

perature, respectively. B1, B2, B3 are the pitch angles (in degrees) of the three

blades.

Outlier category Detection rule

Threshold exceeded

1. σVw
> 20

2. σTg
> 5 or Tg > 150 or Tg < 0

3. σTa
> 5 or Ta > 50 or Ta < −10

No change or linear

increase/decrease in

environmental parameters

1. σVw
has not changed for more than

50 minutes.

2. σTa
has not changed for more than

1500 minutes.

Pitch controlled B1 or B2 or B3 > 10 when power out-

put is not 0.
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Fig. 6. An illustration of the second type of outlier.

wind speed is set as 0 when no power is generated. Therefore,

the power curve in some wind speed ranges, e.g. between 0

and cut-in wind speed, are missing. The wind speed from 0 to

25 m/s were divided into 25 bins with a 1 m/s interval, and the

mean value of each bin was evaluated. Through comparing the

power curves in January over the three years before the failure

happened, no significant change has been observed.

5.4. Analysis of the generator temperature

The generator temperature of the three wind turbines are

compared in Fig. 9. The data plotted has been pre-processed

according to Section 5.2. As the three wind turbines were under

similar environmental conditions, the generator temperature

data are close to each other. The left figure shows the raw

SCADA data during the last 30 days just before the failure

happens. Although the failure was about to happen, it is hard

to distinguish the difference between the failure wind turbine

and the normal wind turbines through the generator temperature

data. The similar difficulty can also be found from the right

figure, which is constructed by a moving average of the generator

temperature over a sliding window of length 30 days with an one

day step. The data used for computing the average on each day

Fig. 7. The pitch controlled data in power curve and two types of curtailment.
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800

1000
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1400

1600

Fig. 8. Comparison of the power curve of 01/2013 with the power curves of

01/2010, 01/2011, and 01/2012.

is the same as the data used for model sensor update. From Fig.

9, it is obvious that the generator temperature data provide no

any indication of the ageing process of the generator of turbine

A103 and can therefore not be used for detection of the turbine

winding damage.

5.5. Application of the model sensor method to the wind turbine

fault detection

In this application, model sensor (12) was adopted. The

model sensor parameters are updated every day for turbine A101,

A102, and A103, respectively. In each updating, the data over

30 days are used, which, after pre-processing, contain about

4000 samples of data. For A103, as the new generator was

installed on 22/01/2013, after the model sensor is updated on

21/01/2013, the next model sensor is updated on 20/02/2013, so

that the 30 days’ data are only from the new generator. From

the data collected from the three turbines every day, three model

sensors of the form of equation (12) are determined and used

to represent the operating conditions of the three wind turbines,

respectively. For example, the model sensor for A102 during
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Fig. 9. The comparison between the three wind turbines in generator temper-

ature. The left figure shows the generator temperature data from 23/12/2012

to 21/01/2013. The right figure shows the moving average from 30/08/2009 to

21/01/2013.

01/09/2009 to 30/09/2009 was obtained as follows.

y(k) =

−0.0050u1
3(k) + 0.1233u1

2(k) + 0.0499u1(k) + y(k − 1) − u2(k)

2.9632 × 10−4u1
3(k) − 0.0093u1

2(k) + 0.0940u1(k) + 0.8248

+ u2(k).

(31)

In order to evaluate the NOFRFs of the model sensors, the

operating point of (6.3, 21.7) was used where 21.7 ◦C is the

average ambient temperature in the 30 days, while 6.3 m/s is the

average wind speed over 01/08/2009 to 31/12/2014. Therefore,

the inputs of model sensor (12) that were used for the evaluation

of the NOFRFs are given by

u1(k) = u(k) + 6.3

u2(k) = 21.7.
(32)

Take

u(k) = αu∗(k) (33)

where u∗(k) = cos(ωckts), and ωc = 7.27× 10−5rad/s, which cor-

responds to the period of one day and is an important frequency

component in the spectra of wind turbine SCADA measure-

ments. As the sampling period of the SCADA system (i.e. 10

min) is much shorter than one day, the sampling frequency of

the SCADA system is sufficient to capture the system dynamics

at ωc. Although in this case, the NOFRFs at a single frequency

are evaluated, the NOFRFs can generally be evaluated at any

frequencies of concern to assess the properties of a system under

study.

The NOFRFs of model sensor (12) determined from SCADA

data from a wind turbine were evaluated using (28) from u(k)

given by (33) and corresponding output y(k) generated by the

model sensor (31). The NOFRFs up to the 2nd order, i.e. G0,

G2(0), G1( jωc) and G2( j2ωc)) were used to assess the wind

turbine operating conditions.

For example, in order to evaluate G1( jωc), the maximum

order of system nonlinearity was taken as N = 6 which implies

the input u∗(k) should be scaled by at least 3 different α (i.e. N̄ ≥
3). In this case, following the procedure in Section 4.3, three

responses of model sensor (12) to u(k) = α1u∗(k) = 0.25u∗(k),

u(k) = α2u∗(k) = 0.35u∗(k) and u(k) = α3u∗(k) = 0.5u∗(k),

respectively, were used to determine G1( jωc) as

G1( jωc) = [1, 0, 0]
























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


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

















= [1, 0, 0]
[

AU( jωc)TAU( jωc)
]−1

AU( jωc)TY( jωc)

= 4.3332 − 1.5199 j

(34)

where

Y( jωc) =


























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


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(35)

Similarly, G0, G2(0), and G2( j2ωc)) can also be obtained. The-

oretically, the values of α can be chosen arbitrarily. However,

if the model nonlinearity is significant, α greater than 1 will

introduce a large input to the model, which may drive the sys-

tem states into an unstable regime or a regime around another

equilibrium. So, a good practice is to choose an α between 0

and 1.

In this study, A101 and A102 were used as the benchmark

turbines. Therefore M = 2, and the M sets of damage sensitive

indices for A103 are given by
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(36)

and
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(37)

The values of the two sets of indices evaluated by applying

the proposed model sensor technique to the SCADA data of

A101, A102, and A103 over the period from 01/08/2009 to

31/12/2014 are shown in Fig. 10.

It can be observed from Fig. 10 that both IA101
0

and IA102
0

start from a point higher than 0, and then follow a trend which
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Fig. 10. The values of A103 damage sensitive indices I0, I1( jωc), I2(0), and

I2( j2ωc)) of the model sensor (12), with * indicating when the generator failure

took place. The subfigure (a) shows the indices from 01/08/2009 to 31/12/2014

and (b) shows the zoomed-in results from 01/01/2013 to 28/02/2013.

slowly increases with time until the generator failure of A103

takes place in January 2013. After the time point when A103

generator was replaced, both IA101
0

and IA102
0

reduce back to

about zero. These exactly reflect the actual operating conditions

of wind turbine A103 and indicate that I0 can be used as an

excellent index for the SCADA data based wind turbine fault

detection.

In addition, Fig. 10 shows that I1( jωc) can also be a good

index for the purpose of SCADA data based wind turbine fault

detection. However, the trend with I0, which slowly increases

with time until the point when A103’s failure took place, cannot

be very obviously observed from I1( jωc). The increasing trend

of I0 is important, as it is the evidence of the feasibility of

the method to detect the incipient generator fault. Although

only three wind turbines are available, the results achieved have

demonstrated that the principle of the proposed method works

and is expected to be applicable to more turbines.
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Fig. 11. The values of A103 damage sensitive indices I0 and I1( jωc) extracted

from a linear model sensor (40), with * indicating when the generator failure

took place. The subfigure (a) shows the indices from 01/08/2009 to 31/12/2014

and (b) shows the zoomed-in results from 01/01/2013 to 28/02/2013.

Also it is worth pointing out that although G2(0) and G2( j2ωc)

cannot, as clearly as I0, indicate the trend of change of the wind

turbine operating status, it is still necessary to take the effect of

system nonlinearity into account in the proposed analysis. If (3)

and (5) are simplified as

f (Vw) = f1Vw

g(Vw) = g0

(38)

the dynamic model (6) become linear, which is given by

Tg(k) =
C−1

g f1Vw(k) + Tg(k − 1) − Ta(k)

1 +C−1
g tsh0

+ Ta(k). (39)

Following the steps in Section 3.2, the linear model sensor is

given by

y(k) =
θ1u1(k) + y(k − 1) − u2(k)

θ2
+ u2(k) (40)

Fig. 11 shows the results of I0 and I1( jωc) determined when

assuming the linear model structure (39) so N = 1. It can be

observed from Fig. 11 that I0 thus obtained is not able to clearly

show the trend of turbine winding ageing so as to properly issue

an alarm before the winding failure takes place. In addition,

I1( jωc) obtained in this way is also obviously no longer a good

index for the turbine operating conditions.
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5.6. Failure prognosis performance of the proposed model sen-

sor approach

In this section, the failure prognosis performance of the

proposed approach will be evaluated.

From the values of I0 in Fig. 10, it can be observed that

the generator winding ageing damage was accumulated as time

went by and eventually reached a level such that the generator

failure took place on 21 January 2013. For the purpose of failure

prognosis performance analysis, it is assumed that up to the date

of 01/01/2012, the ageing damage accumulation with turbine

A103 had been significant enough such that an incipient fault

had occurred. Consequently, the generator conditions of A103

from 01/01/2012 to 21/01/2013 are labelled as faulty and the

conditions over other times are labelled as normal. Thus, if a

threshold for I0 is set, the generator failure prognosis can be

carried out by checking whether I0 has exceeded the threshold.

According to the algorithm summarised in Section 4.4, an alarm

will be raised when the damage sensitive indices evaluated for

more than 50% benchmark wind turbines exceed a threshold. As

only two benchmark turbines are available in the present study,

the prognosis analysis is carried out based on the following

principle:

1. If the indices evaluated for both benchmark turbines have

exceeded the threshold, an incipient fault is considered to

have occurred indicating a failure is going to take place at

a future time.

2. If the indices evaluated for one or none benchmark turbine

have exceeded the threshold, no incipient fault is consid-

ered to have occurred indicating a failure is not going to

take place at a future time.

From the results of the prognosis analysis thus conducted, the

true positive rate (TPR) and false positive rate (FPR) can be

worked out for each value of the threshold that has been used.

Three examples of the threshold and the corresponding TPR and

FPR are shown in Table 4 where the date when the prognosis

decision could be made under each threshold is also provided.

Clearly it can be observed from Table 4 that I0 has good potential

to detect an incipient fault and realises generator failure progno-

sis with a high TPR and low FPR. By choosing the threshold of

I0 over a range of values and carrying out corresponding failure

prognosis analysis, a set of TPRs and FPRs can be obtained.

The results are studied using the receiver operating character-

istic (ROC) curve shown in Fig. 12. The area under the ROC

curve (AUC) is 0.9882 indicating that the proposed model sen-

sor approach has an excellent incipient fault detection/failure

prognosis performance.

Table 4. The three thresholds of I0 with their TPRs, FPRs, and the date of the

first true positive alarm was raised.

Threshold TPR FPR Date

3.0168 0.7390 0 04/03/2012

2.8243 0.8501 0.0104 27/02/2012

2.3077 1 0.2451 01/01/2012

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

X 0.01043

Y 0.8501

Fig. 12. The ROC curve of I0, where the threshold of the data tip is 2.8243.

For the two normal wind turbines A101 and A102, when

A102 is used as the benchmark of A101 and A101 as the bench-

mark of A102, the damage indices IA101
0

and IA102
0

are obtained

are shown in Fig. 13. If the second threshold in Table 4 is

adopted, it is found that, in both cases, I0 is always below the

threshold, so no false alarm will be raised.
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Fig. 13. The values of A102 damage sensitive indices IA101
0

when A101 wind

turbine is the benchmark and the values of A101 damage sensitive indices IA102
0

when A102 wind turbine is the benchmark. The threshold is 2.8243.

6. Conclusions

In this paper, a novel dynamic model sensor method is pro-

posed for the detection of faults in wind turbines from the

SCADA data. The model sensor represents the dynamic re-

lationship between the generator temperature, wind speed, and

ambient temperature with the model structure derived from the

first principles. When applied to SCADA data to conduct turbine

fault detection, the parameters of the model sensor are updated

every day by a parameter estimation process so that the model

can timely represent the turbine operating conditions. Then, a

NOFRFs based frequency analysis for the model sensor charac-

teristics is carried out to extract damage sensitive indices and to

perform fault detection based on the values of these indices. The

new model sensor method is applied to 5 years’ SCADA data of

three operating wind turbines in Spain. The same data are also

used for the traditional power curve and generator temperature

analysis. The results show that the new method can not only

correctly detect a generator fault with one of the three turbines

but also reveal the trend of ageing with the turbine’s winding

11



insulation so as to realise failure prognosis, which cannot be

achieved by the traditional methods. The key idea with the pro-

posed method is to use the changes in the properties of inspected

systems to conduct system fault detection. The field data analy-

sis in the present study has demonstrated the effectiveness of this

novel idea and its potential applications in wind energy industry.
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Söderström, T., Stoica, P., 1989. System identification. Prentice Hall.

Sun, P., Li, J., Wang, C., Lei, X., 2016. A generalized model for wind turbine

anomaly identification based on scada data. Applied Energy 168, 550–567.

Tamura, J., 2012. Calculation method of losses and efficiency of wind generators,

in: Wind Energy Conversion Systems. Springer, pp. 25–51.

Uluyol, O., Parthasarathy, G., Foslien, W., Kim, K., 2011. Power curve ana-

lytic for wind turbine performance monitoring and prognostics, in: Annual

Conference of the Prognostics and Health Management Society, Montreal,

Canada. pp. 1–8.

Wang, L., Zhang, Z., Long, H., Xu, J., Liu, R., 2017. Wind turbine gearbox

failure identification with deep neural networks. IEEE Transactions on

Industrial Informatics 13, 1360–1368.

Wilkinson, M., Darnell, B., Van Delft, T., Harman, K., 2014. Comparison

of methods for wind turbine condition monitoring with scada data. IET

Renewable Power Generation 8, 390–397.

Worden, K., Barthorpe, R., Cross, E., Dervilis, N., Holmes, G., Manson, G.,

Rogers, T., 2018. On evolutionary system identification with applications

to nonlinear benchmarks. Mechanical Systems and Signal Processing 112,

194–232.

Yang, W., Court, R., Jiang, J., 2013. Wind turbine condition monitoring by the

approach of scada data analysis. Renewable Energy 53, 365–376.

Zhang, F., Wen, Z., Liu, D., Jiao, J., Wan, H., Zeng, B., 2020. Calculation and

analysis of wind turbine health monitoring indicators based on the relation-

ships with scada data. Applied Sciences 10, 410.

12


	Introduction
	Dynamic model sensor for wind turbine fault detection
	Design and parameter update of the model sensor
	Model sensor design
	Model sensor parameter updating
	Comparison with an existing model

	Extraction of damage sensitive features of model sensor using NOFRFs
	The Volterra series representation of the model sensor
	The NOFRFs
	Evaluation of the NOFRFs under harmonic inputs
	Damage sensitive indices
	Model sensor based wind turbine generator fault detection

	Application to fault detection of an operating wind turbine
	The SCADA data description
	The SCADA data pre-processing
	Power curve analysis
	Analysis of the generator temperature
	Application of the model sensor method to the wind turbine fault detection
	Failure prognosis performance of the proposed model sensor approach

	Conclusions

