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Abstract

The notion of a Joyce structure was introduced in Bridgeland (Geometry from

Donaldson–Thomas invariants, preprint arXiv:1912.06504) to describe the geometric

structure on the space of stability conditions of a CY3 category naturally encoded by

the Donaldson-Thomas invariants. In this paper we show that a Joyce structure on a

complex manifold defines a complex hyperkähler structure on the total space of its

tangent bundle, and give a characterisation of the resulting hyperkähler metrics in

geometric terms.

Keywords Hyperkähler geometry · Donaldson-Thomas invariants · Stability

conditions · Integrable systems

Mathematics Subject Classification Primary 14N35; Secondary 53C26

1 Introduction

In the recent paper [6] it was argued that the Donaldson-Thomas (DT) invariants of a

CY3 triangulated category D should encode a certain geometric structure on its space

of stability conditions M = Stab(D). These structures were called Joyce structures,

since the most important ingredients already appear in the paper [18]. The definition

1 This was denoted by the letter J in [6], but to avoid confusion with the standard notation I , J , K in

hyperkähler geometry, we switch to W here.
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of a Joyce structure on a complex manifold M given in [6] is rather ungeometric

in nature. In this paper we explain that it can be re-interpreted as the existence of a

complex hyperkähler metric of a particular kind on the total space X = TM of the

holomorphic tangent bundle of M . We include a brief summary of the most important

ideas of [6] in the “Appendix” section.

In terms of a local system of co-ordinates (z1, · · · , zn) on M , the main ingredient of

a Joyce structure is a function1 W : X → C satisfying the partial differential equations

∂2W

∂θi∂z j

−
∂2W

∂θ j∂zi

=
∑

p,q

ηpq ·
∂2W

∂θi∂θp

·
∂2W

∂θ j∂θq

, (1)

where ηpq is a constant non-degenerate skew-symmetric matrix, and (θ1, · · · , θn)

are the natural linear co-ordinates on the tangent spaces TM,p obtained by writing a

tangent vector in the form v =
∑n

i=1 θi · ∂
∂zi

. We shall explain below that (1) is the

condition for the expression

g =
∑

i, j

ωi j · (dθ i ⊗ dz j + dz j ⊗ dθ i ) −
∑

i, j

∂2W

∂θi∂θ j

· (dzi ⊗ dz j + dz j ⊗ dzi ).

(2)

to define a complex hyperkähler metric on X . Here ωi j is the inverse matrix to ηi j . In

terms of the basis of vector fields

vi =
∂

∂θi

, hi =
∂

∂zi

+
∑

p,q

ηpq ·
∂2W

∂θi∂θp

·
∂

∂θq

,

the complex structures I , J , K are defined by the block matrices

I =

(

i · 1 0

0 −i · 1

)

, J =

(

0 −1

1 0

)

, K =

(

0 −i · 1

−i · 1 0

)

,

and the metric is given by g =
∑

i, j ωi j · (vi ⊗ h j + h j ⊗ vi ).

The main characteristic of the complex hyperkähler structures defined by this con-

struction is that the holomorphic 2-form

�−(v,w) = g(v, (J − i K )(w)),

on X is the pull-back via the natural projection π : X → M of a holomorphic sym-

plectic form on M , namely ω =
∑

i, j ωi j dzi ∧dz j . Conversely, as we show in Sect. 2,

all complex hyperkähler structures with this property are locally given by the above

construction for some function W satisfying (1). We leave to future work the problem

of describing interesting classes of examples of Joyce structures, and hence of func-

tions W satisfying the partial differential Eq. (1). One non-trivial example is discussed

in detail in [8], and a large class of examples will be described in [9].

In a recent preprint [10], Dunajski showed that the form (2) of the metric follows

from a weaker set of conditions than complex hyperkähler, namely null Kähler. Such
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a structure consists of a metric g and an endomorphism N with the property that its

kernel is half-dimensional, together with the conditions

g(X , NY ) + g(N X , Y ) = 0 , N 2 = 0

and ∇N = 0 (with ∇ being the Levi-Civita connection of g). Since (J − i K )2 = 0

the constructions in this paper provide examples of such null-Kähler structures. This

work also provides an explanation of the appearance of isomonodromy problems.

1.1 Relations with previous work

Since hyperkähler metrics may be written in terms of a Kähler potential, the geometric

conditions of being hyperkähler result in differential equations for such a potential, and

these take the form of Monge-Ampére-type equations. In 4-dimensions there is a single

equation which is known as Plebański’s first heavenly Eq. [25] (the original motivation

coming from the equivalent description of Ricci-flat metrics with anti-self-dual Weyl

tensor). Many other forms of the equations exist, and Eq. (1), in 4-dimensions, is

known as Plebański’s second heavenly equation. From the work of Penrose [24]—

the original nonlinear graviton construction—it immediately follows that there is an

associated twistor space, and a crucial property of this space is the family of curves

with normal bundle O(1) ⊕ O(1) .

This construction can be generalized in many ways, and the simplest is to generalize

the normal bundle structure to
⊕

iO(ni ). Equation (1) first appear explicitly in the

literature in the work of Takasaki [29], who used the bundle of 2-forms construction

of Gindikin [15] to write down the associated hierarchies of integrable equations.

Equation (1) corresponds to the case where the manifold is hyperkähler, with the

associated family of curves in the twistor space having normal bundle structure O(1)⊕

. . . ⊕ O(1) with 2r -terms.

With the development of the links between twistor theory and the theory of inte-

grable systems initiated by Ward [31], these curved twistor space constructions and

their pencils of commuting vector fields were reinterpreted in terms of Lax equations

with ‘gauge fields’ taking values in, for example, the Lie algebra sdiff(�) of volume

preserving diffeomorphims of some associated manifold � (see, for example, [22]).

Thus, for example, the original 4D self-duality equation may be interpreted as a two-

dimensional σ -model [23] with fields taking values in the Lie algebra sdiff(�2). This

splitting into two distinct sets of coordinates is mirrored here with the coordinates zi on

the base space M and the fibre coordinates θi . Indeed, here the Lie algebra sdiff(�2) is

replaced by the algebra of Poisson-preserving sympletic vector fields on the algebraic

torus T, and the Lie group SDiff(�) by the group of automorphisms of this torus.

Connections between hyperkähler geometry and Donaldson-Thomas theory are

also not new. Gaiotto, Moore and Neitzke explained a beautiful connection between

these subjects [13], and went on to describe explicit examples leading to the Hitchin

metric on the moduli space of Higgs bundles [14]. The approach of [6] is inspired by,

and closely-related to, their work, although it is strictly different, since it deals with
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the ‘confomal limit’, and hence leads to complex hyperkähler structures rather than

real ones.

As will be explained below, and as explained in [6], the function W has also to

satisfy certain homogeneity conditions in order for it to define a Joyce structure,

and geometrically these imply the existence of a conformal (actually a homothetic)

Killing vector on the hyperkähler manifold X = TM . In 4-dimensions, hyperkähler

manifolds with such a conformal Killing vector were studied by Dunajski and Tod [11],

with the corresponding Einstein-Weyl structures on the orbit space being constructed,

following Hitchin, and the associated mini-twistor space defined. Such constructions

will obviously extend to arbitrary dimensional hyperkähler manifolds with a conformal

Killing vector, but the details do not appear to have been explicitly written down.

As well as bringing together some of the disparate sources, which span 50 years of

research in several different areas, the reason for writing the paper is to give a precise

geometric description of the structure on stability space one expects to be encoded by

DT theory. This is a complex hyperkähler structure on the tangent bundle, but with

certain extra features which it seems worthwhile making explicit. We also took the

opportunity to give a geometric characterisation of the hyperkähler structures arising

from the above construction.

Notation and terminology

We use the notation TM to denote the holomorphic tangent bundle of a complex

manifold M . Given a holomorphic map of complex manifolds π : X → M , a tangent

vector v ∈ TX ,x at a point x ∈ X will be called vertical if π∗(v) = 0 ∈ TM,π(x),

and a holomorphic vector field on X will be called vertical if its value at each point is

vertical.

A system of co-ordinates (z1, · · · , zn) on a complex manifold M gives natural linear

co-ordinates (θ1, · · · , θn) on the tangent spaces TM,p by writing a tangent vector in the

form v =
∑

i θi ·
∂

∂zi
. We thus obtain a system of co-ordinates (z1, · · · , zn, θ1, · · · , θn)

on the total space of the tangent bundle TM , which we refer to as being induced by

the co-ordinate system (z1, · · · , zn) on M .

2 Complex hyperkähler manifolds and affine symplectic fibrations

In this section we introduce the notion of an affine symplectic fibration of a complex

hyperkähler manifolds, and give a local description of an arbitrary complex hyperkäh-

ler manifold admitting such a map.

2.1 Affine symplectic fibrations

A complex hyperkähler structure on a complex manifold X consists of a non-

degenerate symmetric bilinear form g : TX ⊗ TX → OX , together with three
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holomorphic endomorphisms I , J , K ∈ End(TX ) satisfying the quaternion relations

I 2 = J 2 = K 2 = I J K = −1,

which preserve the form g, and which are covariantly constant with respect to the

associated holomorphic Levi-Civita connection. By a complex hyperkähler manifold

we mean a complex manifold equipped with a complex hyperkähler structure.

Remark 2.1 Viewing the complex manifold X as consisting of the underlying smooth

manifold XR equipped with a complex structure S ∈ End(TXR
), we can use the

identification TXR
⊗RC ∼= TX ⊕TX to define endomorphisms IR, JR, KR ∈ End(TXR

)

which commute with S and satisfy the quaternion relations, together with a non-

degenerate symmetric bilinear form gR : TXR
⊗ TXR

→ R satisfying gR(SX , SY ) =

−gR(X , Y ). This defines a hyperkähler structure on the smooth manifold XR in the

usual sense, except that the metric gR is indefinite.

Given a complex hyperkähler structure on a complex manifold X we define a

holomorphic symplectic form �I on X by the rule �I (X , Y ) = g(X , I (Y )). The

holomorphic symplectic forms �J and �K are defined analogously. We also introduce

the combinations �± = �J ± i�K . These are closed, holomorphic 2-forms, but are

not symplectic. Indeed, since

g(v1, (I ± i)v2) = g(K (v1), (J ± i K )(v2)) = �±(K (v1), v2), (3)

the kernels of the forms �± are precisely the eigenspaces of ∓i with eigenvalues mpi .

These two subspaces are half-dimensional, and are exchanged by the action of J .

Definition 2.2 Let X be a complex hyperkähler manifold. A holomorphic map

π : X → M is an affine symplectic fibration if there exists a holomorphic symplectic

form ω on M such that �− = π∗(ω).

We call the symplectic form ω the base symplectic form of the affine symplectic

fibration. For an explanation of the name affine symplectic see Remark 2.4 below.

Remark 2.3 The vertical tangent vectors for π are clearly contained in the kernel of

the form �− = π∗(ω). The assumption that ω is non-degenerate ensures that on the

open dense subset where π is a submersion this inclusion is an equality. But by (3), the

kernel of �− also coincides with the +i eigenspace of the operator I , and is therefore

everywhere half-dimensional. It follows that π is a submersion with half-dimensional

fibres.

Let Vπ ⊂ TX denote the bundle of vertical tangent vectors for the map π : X → M .

Consider a nonzero vertical tangent vector v ∈ TX ,x at some point x ∈ X . Since J

switches the two eigenspaces of I , the tangent vector J (v) is not vertical. Thus the

map v �→ π∗(J (v)) induces an isomorphism Vπ,x → TM,π(x). Putting these maps

together gives a bundle isomorphism

b : Vπ → π∗(TM )

which we will call the basing map of the affine symplectic fibration.
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Remark 2.4 Note that by (3), the kernel of the form �+ is precisely the −i eigenspace

of I . Thus �+ restricts to a holomorphic symplectic form on each fibre of the map

π : X → M . The basing map relates this symplectic form to the symplectic form

ω on the base M . Indeed, if v1, v2 ∈ TX ,x are vertical tangent vectors, then since

(J − i K )J = J (J + i K ), we have

�+(v1, v2) = �−(J (v1), J (v2)) = (π∗ω)(J (v1), J (v2)) = ω(b(v1), b(v2)).

This now gives the reason for the name affine symplectic fibration: any given fibre

π−1(m) of the map π : X → M has the property that each of its tangent spaces is

identified via the basing map with the fixed symplectic vector space TM,m .

2.2 Standard example

Let n ≥ 2 be an even integer, and take M = Cn . Let X denote the total space of

the holomorphic tangent bundle TM , with its canonical projection π : X → M . Let

(z1, · · · , zn) be standard linear co-ordinates on M , and let (z1, · · · , zn, θ1, · · · , θn)

be the induced co-ordinate system on X , as explained in the notation and terminology

section.

Choose an n × n non-degenerate, skew-symmetric matrix ωpq and introduce the

holomorphic symplectic form

ω =
∑

p,q

ωpq · dz p ∧ dzq ,

on M . Let X0 ⊂ X be an open subset, and let W : X0 → C be a holomorphic function

satisfying the partial differential equations

∂

∂θk

(

∂2W

∂θi∂z j

−
∂2W

∂θ j∂zi

−
∑

p,q

ηpq ·
∂2W

∂θi∂θp

·
∂2W

∂θ j∂θq

)

= 0, (4)

where ηi j is the inverse matrix to ωi j . Then define vector fields

vi =
∂

∂θi

, hi =
∂

∂zi

+
∑

p,q

ηpq ·
∂2W

∂θi∂θp

·
∂

∂θq

. (5)

We define a complex hyperkähler structure on X0 by setting

I (v j ) = i · v j , J (v j ) = h j , K (v j ) = −ih j , (6)

I (h j ) = −i · h j , J (h j ) = −v j , K (h j ) = −iv j . (7)

g(vi , v j ) = 0, g(vi , h j ) = ωi j , g(hi , h j ) = 0. (8)
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The quaternion relations are immediate, as is the fact that I , J and K preserve the

metric. It is clear that [vi , v j ] = 0, and the Eq. (4) implies that [hi , h j ] = 0. Note that

g([vi , h j ], hk) =
∂3W

∂θi∂θ j∂θk

.

Using the Koszul formula to compute the Levi-Civita connection, most terms vanish,

and we find that

∇hi
(h j ) = −

∑

p,q

ηpq ·
∂3W

∂θi∂θ j∂θp

· hq , ∇hi
(v j ) = −

∑

p,q

ηpq ·
∂3W

∂θi∂θ j∂θp

· vq ,

(9)

and ∇vi
(h j ) = 0 = ∇vi

(v j ). It is then easy to check that ∇ preserves I , J and K .

The associated holomorphic symplectic forms are

�I = −i ·
∑

p,q

ωpq · v p ∧ hq ,

�J =
1

2
·
∑

p,q

ωpq(v p ∧ vq + h p ∧ hq), �K = −
i

2
·
∑

p,q

ωpq(v p ∧ vq − h p ∧ hq)

where we used the dual bases of covectors

h j = dz j , v j = dθ j +
∑

r ,s

η jr ·
∂2W

∂θr∂θs

· dzs

so that (h j , vi ) = 0 = (v j , hi ) and (h j , hi ) = δi j = (v j , vi ). In particular

�− = �J − i�K =
∑

p,q

ωpq · h p ∧ hq = π∗(ω),

which shows that the restriction π : X0 → M is an affine symplectic fibration.

Remark 2.5 Note that since only the second derivatives of the function W with respect

to the fibre variables θi play any role in the definition of the hyperkähler structure, this

function is only well-defined up to the addition of functions which are at most linear

in the fibre directions. The transformation of W under symplectic co-ordinate changes

(z1, · · · , zn) �→ (w1, · · · , wn) on the base M is written out explicitly in [8, Section

4.2]. In addition to the obvious substitutions, the function W picks up an extra term

which is cubic in the fibre directions.

Remark 2.6 A calculation with the Eq. (4) shows that the curvature component

R(hi , h j ) = ∇hi
◦ ∇h j

− ∇h j
◦ ∇hi

= 0,
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and it is immediate that R(vi , v j ) = 0. On the other hand

R(h j , vi )(hk) =
∑

p,q

ηpq ·
∂4W

∂θi∂θ j∂θk∂θp

· hq ,

R(h j , vi )(vk) =
∑

p,q

ηpq ·
∂4W

∂θi∂θ j∂θk∂θp

· vq .

Thus we conclude that the metric is flat precisely if the restriction of the function

W : X → C to each fibre π−1(m) = TM,p is a polynomial function of degree ≤ 3.

2.3 Normalised affine symplectic fibrations

Consider the total space X = TM of the holomorphic tangent bundle of M , with its

natural projection π : X → M . Denote by Vπ ⊂ TX the bundle of vertical tangent

vectors. There is a canonical bundle isomorphism

ν : Vπ → π∗(TM )

sending a vertical tangent vector v ∈ TX ,x to the corresponding tangent vector ν(v) ∈

TM,π(x).

Definition 2.7 Let M be a complex manifold. Suppose given a complex hyperkähler

structure on an open subset X0 of the total space X = TM , for which the restriction

of the projection map π : X → M is an affine symplectic fibration. Then we call this

affine symplectic fibration normalised if the basing map b coincides with the natural

map ν.

Note that the examples of Example 2.2 are normalised in this sense, since in the

co-ordinate system considered there, the map ν is defined by ν( ∂
∂θi

) = ∂
∂zi

, and it

is immediate from the definition that π∗(J ( ∂
∂θi

)) = ∂
∂zi

. Conversely, we have the

following:

Proposition 2.8 Let M be a complex manifold, and suppose given a complex hyperkäh-

ler structure on an open subset X0 of the total space X = TM , for which the restriction

of the projection map π : X → M is a normalised affine symplectic fibration. Then,

shrinking X0 if necessary, the hyperkähler structure arises via the construction of

Sect. 2.2.

Proof By the holomorphic Darboux theorem, we can find local co-ordinates zi on the

base M such that the base symplectic form can be written in the form
∑

i, j ωi j ·dzi∧dz j

for some constant skew-symmetric matrix ωi j . Take the induced co-ordinate system

(zi , θ j ) on X and set vi = ∂
∂θi

and hi = J (vi ). Then, as in Remark 2.3, since the vi are

vertical tangent vector fields they satisfy I (vi ) = ivi , and it follows that in the basis

of vector fields (vi , h j ) the operators I , J , K are given by the formulae of Sect. 2.2.
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The normalisation condition is the statement that π∗(hi ) = ∂
∂zi

, and we can there-

fore write

h j =
∂

∂z j

+
∑

p,q

ηpq · c j p(z, θ) ·
∂

∂θq

for some locally-defined holomorphic functions c j p(z, θ). Since I preserves the metric

g, the eigenspaces of I are necessarily isotropic. Thus the metric is determined by

2g(vi , h j ) = −g(h j , (J − i K )(hi )) = �−(hi , h j ) = ω(π∗(hi ), π∗(h j )) = 2ωi j ,

and therefore coincides with that of Sect. 2.2.

Consider next the expression

g
(

[vi , h j ], hk

)

=
∂

∂θi

c jk(z, θ).

We claim that the expression on the right is completely symmetric in i, j, k. To prove

this, note first that [vi , h j ] is a vertical vector field. Since ∇ preserves the eigenspace

decomposition of I , the relation ∇vi
(h j ) − ∇h j

(vi ) = [vi , h j ] implies that ∇vi
(h j )

= 0, and so

g
(

[vi , h j ], hk

)

= −g
(

∇h j
(vi ), hk

)

.

Similarly, since [hi , h j ] is vertical, both sides of the expression ∇hi
(h j ) − ∇h j

(hi )

= [hi , h j ] must vanish. Since J is covariantly constant, and g(h j , vk) is constant, we

therefore have

g
(

∇h j
(vi ), hk

)

= g
(

∇h j
(J (vi )), J (hk)

)

= −g
(

∇h j
(hi ), vk

)

= g
(

hi ,∇h j
(vk)

)

,

which together with ∇hi
(h j ) = ∇h j

(hi ) proves the required symmetry property.

It now follows that we can write hi in the form (5) for some locally-defined function

W = W (z, θ). The relations [hi , h j ] = 0 obtained above then imply that W satisfies

the partial differential Eq. (4), which completes the proof. ⊓⊔

2.4 Developingmaps

In this section we prove that an arbitrary complex hyperkähler manifold with an affine

symplectic fibration is locally isomorphic to one arising from the construction of

Sect. 2.2. For this purpose we introduce the following notion:

Definition 2.9 Let π : X → M be an affine symplectic fibration. A developing map

defined on an open subset U ⊂ X is defined to be an open embedding f : U → TM ,

commuting with the projections to M , such that

ν( f∗(v)) = π∗(J (v)), (10)

123
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for any vector field v on U which is vertical for the restriction of the map π .

Proposition 2.10 Let π : X → M be an affine symplectic fibration. Then a developing

map exists in a neighbourhood of any given point x ∈ X.

Proof Let zi be local Darboux co-ordinates on M for the base symplectic structure ω,

as in the proof of the previous result. Since π is a submersion, we can complete these

to local co-ordinates (zi , φi ) on X so that the vertical tangent spaces are spanned by

the vector fields vi = ∂
∂φi

. Let us write

hi = J (vi ) =
∑

j

ai j (z, φ) ·
∂

∂z j

+
∑

j

bi j (z, φ) ·
∂

∂φ j

for some locally-defined holomorphic functions ai j (z, φ) and bi j (z, φ).

Consider the induced co-ordinate system (zi , θ j ) on the total space TM . Then

ν( ∂
∂θ j

) = ∂
∂z j

, and the defining property of the developing map θ j = θ j (zi , φi )

becomes the condition that

∑

j

∂θ j

∂φi

·
∂

∂z j

=
∑

j

ai j (z, φ) ·
∂

∂z j

,

for all i . To show the local existence of such a map we must check that
∂ai j

∂φk
=

∂ak j

∂φi
.

In more intrinsic terms this is the statement that the expression

π∗([vk, hi ]) =
∑

j

∂ai j

∂φk

·
∂

∂z j

is symmetric under exchanging i and k. Since ∇ preserves the eigenspaces of I , and

hence the sub-bundle of vertical vector fields, the relation [vk , hi ] = ∇vk
(hi )−∇hi

(vk)

implies that

π∗([vk, hi ]) = π∗(∇vk
(hi )).

Using the fact that J is covariantly constant we get

∇vk
(hi ) − ∇vi

(hk) = J
(

∇vk
(vi ) − ∇vi

(vk)
)

= J ([vi , vk]) = 0,

which gives the required symmetry. It is easy to see from the relation (10) that the

derivative of the developing map is an isomorphism, so restricting its domain if nec-

essary we can assume that it is a local embedding. ⊓⊔

The next result gives the promised local description of complex hyperkähler man-

ifolds with an affine symplectic fibration.
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Proposition 2.11 Let π : X → M be a complex hyperkähler manifold equipped with

an affine symplectic fibration. Take a point x ∈ X and let f : U → TM be a developing

map defined on an open neighbourhood x ∈ U ⊂ X. Set V = f (U ) ⊂ TM , and use

the resulting isomorphism f : U → V to transfer the complex hyperkähler structure

from U to V . Then, after possibly shrinking U, the hyperkähler structure on V arises

from the construction of Sect. 2.2.

Proof Since the developing map commutes with the projections to M it is clear that

the restriction of the projection π : TM → M is an affine symplectic fibration for

the transferred hyperkähler structure on V . By definition of the developing map it is

moreover normalised. The result therefore follows from Proposition 2.8. ⊓⊔

3 Joyce structures

In this section we give a more geometric definition of the notion of a Joyce structure

from [6], at least in the case when the form η appearing there is non-degenerate. A

Joyce structure is a rather complicated combination of geometric structures which one

expects to find on the space of stability conditions on a CY3 triangulated category.

The simplest part of this structure, explained in Sect. 3.1, is obtained from the basic

properties of spaces of stability conditions, in particular the existence of a local iso-

morphism to a vector space. The rest of the data of a Joyce structure, discussed in

Sect. 3.2, is induced by the Donaldson-Thomas invariants of the category in a rather

indirect and involved way which is explained in [6] and briefly summarised in the

“Appendix” section.

3.1 Spaces with periodmaps

Let M be a complex manifold and H a holomorphic vector bundle on M . By a bundle of

lattices in H we mean a holomorphically-varying collection of subgroups Lp ⊂ Hp in

the fibres of H such that the induced maps Lp ⊗Z C → Hp are all isomorphisms. Any

such bundle of lattices determines a locally-constant subsheaf L ⊂ TM consisting of

the holomorphic sections of TM whose values at each point p ∈ M lie in the subgroup

Lp. This local system in turn determines a unique flat connection on the bundle H,

whose flat sections are precisely the C-linear combinations of the sections of the

subsheaf L.

By a period map on a complex manifold M we mean a local isomorphism

̟ : M → HomZ(Ŵ, C), (11)

where Ŵ ∼= Z⊕n is a free abelian group of finite rank. Thus ̟ is a holomorphic map

from M to the vector space HomZ(Ŵ, C) whose derivative

(D̟)p : TM,p → HomZ(Ŵ, C), (12)
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at each point p ∈ M is an isomorphism. The inverse images of the subgroup Ŵ∗ =

HomZ(Ŵ, Z) under the maps (12) define a bundle of lattices in TM , and we therefore

obtain a flat connection ∇. The period map ̟ now gives a distinguished vector field

Z ∈ Ŵ(M,TM ) via the assignment

p �→ Z p = (D̟)−1
p (̟(p)) ∈ TM,p.

Let us express all this in co-ordinates. Take a basis (γ1, · · · , γn) for the lattice Ŵ.

We obtain holomorphic functions

zi : M → C, zi (p) = ̟(p)(γi ),

and the assumption that ̟ is a local isomorphism ensures that (z1, · · · , zn) form a

system of co-ordinates on M . The dual of the derivative of ̟ at a point p ∈ M sends

γi ∈ Ŵ to the element dzi ∈ T∗
M,p. This implies that the connection ∇ is torsion-free

and that the zi are flat co-ordinates for this connection. The distinguished vector field

is Z =
∑

i zi · ∂
∂zi

. Note that it follows that ∇(Z) = id.

In general we would like to consider complex manifolds M with a locally-defined

period map ̟ . Such spaces arise for example as discrete quotients of manifolds with

a globally-defined period map. We therefore make the following

Definition 3.1 A period structure on a complex manifold M consists of data

(P1) a bundle of lattices L ⊂ TM whose associated flat connection we denote by ∇;

(P2) a distinguished vector field Z ∈ Ŵ(M,TM ) satisfying ∇(Z) = id.

Take a point p ∈ M and set Ŵ∗ = Lp. A basis of the free abelian group Ŵ∗

extends uniquely to a basis of ∇-flat sections φ1, · · · , φn of the tangent bundle TM

over a contractible open neighbourhood p ∈ M0 ⊂ M . Writing the vector field Z

in the form Z =
∑

i zi · φi then defines holomorphic functions zi : M0 → C, and

condition (P2) then implies that φi = ∂
∂zi

. It follows that on the open neighbourhood

p ∈ M0 ⊂ M the structure arises from a period map as explained above. Note in

particular that the connection ∇ is necessarily torsion-free.

In the situations of interest below we consider period maps (11) in which the lattice

Ŵ has a natural skew-symmetric integral form η : Ŵ × Ŵ → Z. The local version of

this is

Definition 3.2 A period structure with skew-form consists of a period structure as

above, together with a ∇-flat skew-symmetric form

η : T
∗
M × T

∗
M → OM ,

which takes integral values on the lattices L∗ ⊂ T∗
M .

We will be particularly interested in the case when the form η is non-degenerate.

The inverse then defines a complex symplectic form

ω : TM × TM → OM ,

taking rational values on the lattices L ⊂ TM .
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3.2 Joyce structures

We can now give a geometric definition which is a slight strengthening of that of a

Joyce structure given in [6]. We discuss the differences in Remark 3.4 below.

Definition 3.3 Let M be a complex manifold, and let X denote the total space of the

holomorphic tangent bundle. A strong Joyce structure on M consists of

(a) a period structure with skew-form (L, Z , η) on M ;

(b) a complex hyperkähler structure (g, I , J , K ) on X ;

satisfying the following conditions

(J1) the canonical projection π : X → M is a normalised affine symplectic fibration;

(J2) the base symplectic structure ω ∈ Ŵ(M,
∧2

TM ) is the inverse to the form η;

(J3) the involution ι : X → X acting by −1 on the fibres of π satisfies

ι∗(g) = −g, ι∗(I ) = I , ι∗(J ± i K ) = −(J ± i K );

(J4) the ∇-horizontal lift E ∈ Ŵ(X ,TX ) of the vector field Z satisfies

LE (g) = g, LE (I ) = 0, LE (J ± i K ) = mp J ± i K );

(J5) the hyperkähler structure is invariant under translations by the lattice (2π i)·L ⊂

TM .

As in Sect. 3.1, we can take ∇-flat local co-ordinates zi on M such that the lattice

L ⊂ TM,p is spanned by the vector fields ∂
∂zi

. Let (zi , θ j ) be the induced co-ordinate

system on X . Condition (J2) together with Definition 3.2 ensure that the symplectic

form ω is covariantly constant and can therefore be written in the form ω =
∑

i, j ωi j ·

dzi ∧ dz j , with ωi j a non-degenerate, skew-symmetric matrix. Moreover, the inverse

matrix ηi j is integral. Condition (J1) and Proposition 2.8 then imply that the complex

hyperkähler structure (g, I , J , K ) arises from the formulae of Example 2.2 for some

locally-defined holomorphic function W : X → C satisfying the equations

∂

∂θk

(

∂2W

∂θi∂z j

−
∂2W

∂θ j∂zi

−
∑

p,q

ηpq ·
∂2W

∂θi∂θp

·
∂2W

∂θ j∂θq

)

= 0. (13)

As in Remark 2.5, the function W = W (z, θ) is only well-defined up to the addition

of functions which are at most linear in the θi variables. Condition (J3) is equivalent

to the statement that it may be taken to be an odd function of the θi co-ordinates, in

the sense that it satisfies i∗(W ) = −W . To see this note first that i ∗ (z j ) = z j and

i∗(θ j ) = −θ j . Consulting (5) we see that the condition i∗(J ) = −J is equivalent to

the second derivatives appearing there being odd. If this holds, then modifying W by

functions at most linear in the co-ordinates θi we can assume that W has the same

property.

Definition 3.1 shows that Z =
∑

i zi · ∂
∂zi

, and the ∇-horizontal lift E is given by

the same formula. Condition (J4) then becomes the statement that W can be taken
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to be homogeneous of degree −1 under simultaneous rescaling of the variables zi .

Finally, condition (J5) is equivalent to the statement that the second derivatives of W

with respect to the fibre variables θ j are invariant under transformations of the form

θ j �→ θ j + 2π i .

We can in fact assume that W satisfies the simplified equation appearing in [6]:

∂2W

∂θi∂z j

−
∂2W

∂θ j∂zi

=
∑

p,q

ηpq ·
∂2W

∂θi∂θp

·
∂2W

∂θ j∂θq

. (14)

Indeed, if we replace W by the expression

W (zi , θ j ) −
∑

k

θk ·
∂W

∂θk

(zi , 0),

then each of the first two terms on the left-hand side of (14) vanishes along the locus

where all θi = 0. But the third term also vanishes along this locus, because W is odd in

the co-ordinates θ j . Since the Eq. (13) state that the left-hand side of (14) is independent

of the co-ordinates θ j , after the above modification it must vanish identically.

Remark 3.4 There are three differences between the above definition of a strong Joyce

structure and the definition of a Joyce structure in [6].

(i) The above formulation assumes that the form η is non-degenerate. This is not

required in the definition of [6]. To include degenerate forms in the framework of

this paper we would have to consider generalisations of the notion of a hyperkähler

structure which have the endomorphisms I , J , K , but in which the metric is

dropped and replaced with a symmetric, bilinear form on the cotangent bundle.

(ii) In [6] it was only assumed that the third, rather than the second, derivatives of the

function W in the fibre directions were periodic. This was to allow the inclusion

of certain examples obtained by doubling spaces of stability conditions for which

the form η is degenerate, and even vanishing.

(iii) The definition in [6] allows the function W to be meromorphic. Of course, we

could also introduce meromorphic complex hyperkähler structures to deal with

this generalisation.

Let us briefly consider the linearisation procedure of [6, Section 7]. Identifying M

with the zero-section M ⊂ X , the tangent bundle TM becomes a sub-bundle of the

restriction TX |M . The fact that W is an odd function of the θi co-ordinates ensures

that along the zero section M ⊂ X we have hi = ∂
∂zi

. It follows that the Levi-Civita

connection preserves the tangents to the zero section and hence induces a torsion-free

connection ∇ J on TM . Moreover, Remark 2.6 together with the oddness of the function

W ensure that this connection is flat. From Eq. (9) we see that it is given explicitly by

∇ ∂
∂zi

( ∂

∂z j

)

= −
∑

p,q

ηpq ·
∂3W

∂θi∂θ j∂θp

∣

∣

∣

θ=0
·

∂

∂zq

. (15)

This is what was referred to as the linearised Joyce connection in [6].
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3.3 Twistor space

We conclude by making some brief remarks on the twistor space of a complex hyper-

kähler manifold. Note that the existence of such a twistor space is not obvious since the

quotienting out by a distribution could potentially result in an object that is not Haus-

dorff. Conditions guaranteeing that the space of complex null geodesics is Hausdorff

are described in [21].

Consider the quadric in the complex projective plane

Q =
{

[a : b : c] ∈ P2 : a2 + b2 + c2 = 0
}

.

For each point q = [a : b : c] ∈ Q the kernel of the operator aI + bJ + cK defines

a half-dimensional sub-bundle H(q) ⊂ TX . The fact that I , J , K are flat for the

Levi-Civita connection ∇ ensures that this sub-bundle is involutive, since if v,w are

sections of H(q) then so is [v,w] = ∇v(w) − ∇w(v). Thus there is a corresponding

foliation F(q) of the space X by complex submanifolds. We define the twistor space

Z to the set of pairs (q,L), where q ∈ Q, and L is a leaf of the foliation F(q). There

is an obvious projection π : Z → Q ∼= P1. Each point x ∈ X then defines a section

of this projection by sending a point q ∈ Q to the unique leaf of the foliation Fq

containing the point x ∈ X .

Note that ifπ : X → M is an affine symplectic fibration, the sub-bundleH(q) ⊂ TX

corresponding to the point q = [0 : 1 : −i] ∈ Q is the vertical sub-bundle defined

by the map π , and so the corresponding fibre of the twistor space Zq = π−1(q) is

naturally identified with M .

If we identify P1 with the quadric Q via the isomorphism

[s : t] �→
[

2ist, s2 + t2, i(s2 − t2)
]

,

then the sub-bundle H(q) becomes the kernel of the operator

2ist I + s2(J + i K ) + t2(J − i K ).

Given a local basis of vector fields vi and h j on X in which the operators I , J , K take

the simple form (6)–(7), this sub-bundle is spanned by the vector fields svi + thi .

Remark 3.5 In the context of Sect. 2.2 the sub-bundle H(q) is spanned by

ǫ−1 ·
∂

∂θi

+
∂

∂zi

+
∑

p,q

ηpq ·
∂2W

∂θi∂θp

·
∂

∂θq

, (16)

where we set ǫ = t/s. In [6] these sub-bundles H(ǫ) played a central role, and were

viewed as defining a pencil of Ehresmann connections on the map π : X → M .

It seems interesting to try to relate the Riemann–Hilbert problems considered in

[6] to the geometry of the twistor space Z . Note in particular, that the solutions to the

Riemann–Hilbert problem at a particular value ǫ ∈ C∗ are annhilated by the flows (16),

and are therefore constant on the leaves of the corresponding foliation F(q). Thus such
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solutions naturally define functions on the fibre Zq = π−1(q) of the twistor space.

In the context of categories defined by quivers with potential this suggests a relation

between these fibres and the associated cluster Poisson variety.

4 QuantumDT invariants and deformations of anti-self-duality

In [27] an integrable deformation of Plebański’s first heavenly equation was con-

structed using ideas from the deformation quantization programme. The nonlinear

terms in both the first and second Plebański equations comes from the Poisson bracket

{ f , g} =

2
∑

i, j=1

ηi j ∂ f

∂θi

∂g

∂θ j

and deformations of this bracket - preserving the Jacobi identity - date back to the work

of Moyal who introduced such a structure in his phase space approach to quantum

mechanics. The Moyal bracket can be defined in terms of the operator

P = exp

[

i�

2
ηi j

←
∂

∂θi

→
∂

∂θ j

]

(where the arrows show which direction the derivatives are to be taken) and with

this one defines the non-commutative but associative product f ∗ g = f Pg and the

corresponding Moyal bracket

{ f , g}M =
f ∗ g − g ∗ f

i�
.

Since

lim
�→0

{ f , g}M = { f , g}

this is a deformation of the normal Poisson bracket with � being the deformation

parameter. The Jacobi identity for the Moyal bracket follows trivially from the asso-

ciative property of the underlying ∗-product.

One can also introduce differential operators X̂ f which contain higher derivatives

(formally, as these are to all orders in �) that are deformations of Hamiltonian vector

fields, and have the property

[X̂ f , X̂g] = X̂{ f ,g}M

where the left-hand side is commutator of operators. These operator no longer have

a clear geometric interpretation but one can use them instead of Hamiltonian vector

fields in Lax equations. Applying this idea results in the Moyal deformation of the

first Plebański equation
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{

∂W

∂z1
,
∂W

∂z2

}

M

= 1

and, in the same way, to the Moyal deformed version of Plebański’s second heavenly

equation [26]

∂2W

∂z1∂θ2
−

∂2W

∂z2∂θ1
=

{

∂W

∂θ1
,
∂W

∂θ2

}

M

. (17)

The integrability of such equations remains, though in a formal setting. In [27] solutions

were constructed as a formal power series in � and in [30] the equations were derived

from a Riemann–Hilbert splitting problem in the associated Moyal loop group. The

ideas are easily extended to give deformation of the system of equations (1).

The ∗-product, and hence the Moyal bracket, has a very rich structure. In terms of

a torus basis,

eθ(α) ∗ eθ(β) = (−q
1
2 )〈α,β〉eθ(α+β) ,

where 〈α, β〉 = ηi jαiβ j , and hence

{eθ(α), eθ(β)}M =
1

i�

[

(−q
1
2 )〈α,β〉 − (−q− 1

2 )〈α,β〉
]

eθ(α+β) , (18)

=
2

�
sin

[

�〈α, β〉

2

]

eθ(α+β) , (19)

where q = ei(�+2π) (the e2π i term is to ensure the correct sign for the square root).

This algebra has a number of names: the sine-algebra [12] and the quantum torus

algebra [20]. Since

lim
�→0

{eθ(α), eθ(β)}M = 〈α, β〉eθ(α+β) .

in the classical limit the quantum torus algebra becomes the twisted torus algebra.

With the same ansatz

W =
∑

α

Fα(z)
eθ(α)

z(α)

with Fα of degree zero, one obtains the isomonodromy equation

d Fγ =
∑

α+β=γ

1

i�

{

L
1
2 〈α,β〉 − L− 1

2 〈α,β〉
}

Fα Fβd log z(β) .

where L = ei� . The construction of solutions to such equations is still at a very

early stage, and even in the simplest case, it involves highly intricate calculations [7].

But it appears that the quantum DT invariants play the same role in the construction
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of solutions to the deformed Eq. (17) as DT invariants play in the construction of

solutions to Eq. (1).

With the replacement of Hamilton vector fields with infinite order differential

operators the link with geometry becomes less clear. At the level of Lax pairs, the

replacement of Hamiltonian vector fields with operators seems minor, but these are

infinite-order operators, and so the resulting differential equations are of infinite order.

Also, any notion of hyperkähler geometry is lost - though it is intriguing to speculate

where there is a notion of q-deformed hyperkähler structures and q-deformed twistor

spaces (see, for example, [19,28]).
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Appendix A. Summary of [6]

For the convenience of the reader we give a brief summary of the main ideas of [6].

The key point is that the Donaldson-Thomas (DT) invariants of a CY3 triangulated

category can be interpreted as Stokes data for a family of connections over the space

of stability conditions. These connections take values in an infinite-dimensional group

G of automorphisms of the space (C∗)n equipped with a constant Poisson structure.

A.1. Stokes data

We will start by considering Stokes data in the context of the finite-dimensional group

GLn(C). Our treatment is based on that in [4], to which we refer the reader for refer-

ences to the original literature. Set G = GLn(C) and g = gln(C), and let h ⊂ g denote

the Cartan subalgebra of diagonal matrices. Introduce the standard root decomposition

g = h ⊕ god, god =
⊕

α∈�

gα, � = {e∗
i − e∗

j } ⊂ h∗.

Let us consider a meromorphic connection on the trivial G-bundle over P1 of the form

∇ = d −

(

U

ǫ2
+

V

ǫ

)

, (20)
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where U , V ∈ g are constant matrices such that

(i) U = diag(u1, · · · , un) ∈ hreg is diagonal with distinct eigenvalues,

(ii) V ∈ god has zeroes on the diagonal.

The connection ∇ has a regular singularity at ǫ = ∞, but the singularity at ǫ = 0 is

irregular, and is essentially the simplest example of such a singularity. It is a classical

fact that the gauge equivalence of a connection in a neighbourhood of an irregular

singularity is not determined solely by the monodromy: we must also consider its

Stokes data.

For any ray r = R>0 · z ⊂ C∗ we denote by Hr ⊂ C∗ the half-plane centered on

it. The Stokes rays of the connection (20) at ǫ = 0 are defined to be the rays

R>0 · (ui − u j ) = R>0 · U (α) ⊂ C∗, α = e∗
i − e∗

j .

We then have the following fundamental existence result [1]:

Theorem A.1 (Balser, Jurkat, Lutz) For any non-Stokes ray r ⊂ C∗ there is a unique

flat section Yr : Hr → G of the connection (20) such that

Yr (ǫ) · exp(U/ǫ) → 1 as ǫ → 0.

Using this result we can associate to each Stokes ray ℓ a Stokes factor

Sℓ = Yr+(ǫ) · Yr−(ǫ)−1 ∈ exp
(

⊕

U (α)∈ℓ

gα

)

⊂ G,

where r+ and r− are small clockwise and anti-clockwise perturbations of the ray ℓ.

Let us now consider varying the diagonal matrix U ∈ hreg. It turns out that we

can uniquely deform the matrix V ∈ god so that the Stokes factors S(ℓ) remain

constant. Such deformations are called isomonodromic or iso-Stokes, and the variation

of V = V (U ) is described by the partial differential equation

d log Vγ =
∑

α+β=γ

[Vα, Vβ ] · d log U (β), V =
∑

γ∈�

Vγ ∈ god. (21)

In fact the isomonodromy condition stated above is not sufficiently precise. As

U ∈ hreg varies, the Stokes rays R>0 · U (α) may cross, at which point the statement

that the Stokes factors are constant ceases to make sense. The correct condition to

impose is that for any convex sector � ⊂ C∗, the clockwise product

Sp(�) =
∏

ℓ∈�

Sp(ℓ) ∈ G,

of Stokes factor associated to rays in the sector should be constant as U ∈ hreg varies,

providing that no Stokes ray crosses the boundary of �.

Let us suppose given the matrix U ∈ hreg and the Stokes factors S(ℓ) ∈ G, and

consider the inverse problem of reconstructing the connection (20). To do this we can
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first try to construct the canonical half-plane solutions Yr (t) and then differentiate to

obtain the operator V . This leads to the following Riemann–Hilbert boundary-value

problem:

Riemann–Hilbert problem. For each non-Stokes ray r ⊂ C∗ find a holomorphic

function Yr : Hr → G such that the following three properties hold:

(RH1) Yr (ǫ) · exp(U/ǫ) → 1 as t → 0 in Hr ,

(RH2) there exists k > 0 such that |ǫ|−k < ‖Yr (ǫ)‖ < |ǫ|k as ǫ → ∞ in Hr ,

(RH3) if � ⊂ C∗ is a convex sector with ∂� = {r+} ∪ {r−} then

Yr+(ǫ) = Yr−(ǫ) · S(�) for ǫ ∈ Hr+ ∩ Hr− .

Note that the canonical half-plane solutions of Theorem A.1 satisfy (RH1) by defi-

nition, and (RH3) holds by the definition of the Stokes factors. The condition (RH2)

follows from the fact that the Eq. (20) has a regular singularity at ǫ = ∞, so that

solutions have moderate growth at this point.

A.2. Stability conditions and DT invariants

Let D be a C-linear triangulated category of finite type. We assume for simplicity that

the Grothendieck group

Ŵ := K0(D) ∼= Z⊕n

is free of finite rank. The expression

〈

[E], [F]
〉

=
∑

i

(−1)i dimC Homi (E, F[i]),

defines a bilinear form 〈−,−〉: Ŵ × Ŵ → Z known as the Euler form.

The data of a stability condition on D consists of a group homomorphism Z : Ŵ →

C called the central charge, and for each φ ∈ R a full subcategory P(φ) ⊂ D whose

objects are said to be semistable of phase φ. This data is required to satisfy a simple

set of axioms [3]. The important fact is then that the space Stab(D) of all such stability

conditions on the category D is a complex manifold, and the forgetful map

̟ : Stab(D) → HomZ(Ŵ, C) (22)

sending a stability condition to its central charge is a local isomorphism of complex

manifolds.

To be able to define Donaldson-Thomas (DT) invariants we must assume that the

category D satisfies the CY3 condition

Homi
D

(A, B) ∼= Hom3−i
D

(B, A)∗.
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This implies that the Euler form is skew-symmetric. Thus in the terminology of

Sect. 3.1 the manifold Stab(D) is naturally equipped with a period structure with

skew-form. Our aim is to use DT theory to enrich this to a Joyce structure.

Let us fix a stability condition σ ∈ Stab(D). Given further assumptions on the pair

(D, σ ) it is possible to define DT invariants DTσ (γ ) ∈ Q for each class γ ∈ Ŵ. In the

simplest case, when there are no strictly-semistable objects of class γ ∈ Ŵ, and the

moduli stack Mσ (γ ) of semistable objects is smooth, the invariant DTσ (γ ) coincides

up to sign with the Euler characteristic of the coarse moduli space of Mσ (γ ) viewed

as a complex manifold. The definition in the general case is due to Joyce and Song

[17], and Kontsevich and Soibelman [20]. There is an equivalent system of invariants

�σ (γ ) ∈ Q defined by

DTσ (α) =
∑

α=kβ

1

k2
· �σ (β),

These appear in physics as BPS invariants, and in many cases are known to be integers.

A.3. The wall-crossing formula

Continuing with the notation of the previous section, the next step is to consider the

dependence of the DT invariants on the stability condition σ ∈ Stab(D). It turns out

that for a fixed class γ ∈ Ŵ, the invariant DTσ (γ ) is constant in the complement of

a collection of real codimension-one submanifolds in the space Stab(D), but jumps

discontinuously as the stability condition crosses one of these walls. Joyce [16,17], and

Kontsevich and Soibelman [20], were able to describe this wall-crossing behaviour

exactly, in such a way that knowledge of all invariants DTσ (γ ) at one point σ ∈

Stab(D) determines them at all other points. Even more remarkably, in the formulation

of [20], the resulting wall-crossing formula is exactly the iso-Stokes condition for a

family of differential equations of the form (20), but with the finite-dimensional group

GLn(C) replaced by an infinite-dimensional group of Poisson automorphisms of the

space (C∗)n .

To explain this in more detail, introduce the algebraic torus

T = HomZ(Ŵ, C∗) ∼= (C∗)n, C[T] =
⊕

γ∈Ŵ

C · xγ ,

whose character lattice is Ŵ. The Euler form defines an invariant Poisson structure on

T given on characters by

{xα, xβ} = 〈α, β〉 · xα+β .

To make connection with the material of Section A.1. we would like to consider the

group

G = Aut{−,−}(T)
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of algebraic Poisson automorphisms of the variety T. Note that the group structure on

the torus T plays no role in this definition. The corresponding Lie algebra g consists

of algebraic vector fields on T whose flows preserve the Poisson structure. The fact

that these objects are infinite-dimensional will make some aspects of the following

discussion heuristic. Precise discussions can be found in [5].

For simplicity we assume that the form 〈−,−〉 is non-degenerate. There is then a

root decomposition

g = Vect{−,−}(T) = h ⊕ god, (23)

where the Cartan subalgebra h ∼= HomZ(Ŵ, C) consists of translation-invariant vector

fields on T, and the subspace god ⊂ g consists of Hamiltonian vector fields, and can

be identified with the Poisson algebra of non-constant algebraic functions on T:

god =
⊕

α∈Ŵ\{0}

gα =
⊕

α∈Ŵ\{0}

C · xα.

Fix a stability condition σ ∈ Stab(D). For each ray ℓ ⊂ C∗ we can attempt to define

an automorphism of T by taking the time 1 Hamiltonian flow of the corresponding DT

generating function viewed as a regular function on T. The action of this automorphism

on characters is

Sσ (ℓ)∗(xβ) = exp
{

−
∑

Z(γ )∈ℓ

DTσ (γ ) · xγ ,−
}

(xβ) = xβ ·
∏

Z(γ )∈ℓ

(1 − xγ )�σ (γ )·〈γ,β〉.

(24)

Since the sum and product here could be infinite, making rigorous sense of this requires

further work [5,20]. Let us call a ray ℓ ⊂ C∗ active if S(ℓ) is not the identity. The

wall-crossing formula can now be stated as follows: for any convex sector � ⊂ C∗

the product

Sσ (�) =
∏

ℓ∈�

Sσ (ℓ) ∈ G

is constant as σ ∈ Stab(D) varies, providing the boundary of � remains non-active.

A.4. Joyce structures

Comparing the results of the last two subsections we come to the remarkable con-

clusion that the wall-crossing formula is the isomonodromy condition for a family of

meromorphic connections on P1 of the form

∇ = d −

(

Z

ǫ2
+

HamF

ǫ

)

dǫ, (25)
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parameterised by the points of Stab(D) and taking values in the group G =

Aut{−,−}(T) of Section A.3. Here Z and HamF are constant elements of the Lie

algebra (23) such that

(i) Z ∈ h is the central charge Z : Ŵ → C, viewed as an invariant vector field on T,

(ii) HamF ∈ god is the Hamiltonian vector field of a regular function F =
∑

γ∈Ŵ Fγ ·

xγ .

Let us choose a basis (γ1, · · · , γn) ⊂ Ŵ giving co-ordinates zi = Z(γi ) on Stab(D),

and θi = θ(γi ) on its tangent spaces, which are all identified with the fixed vector

space HomZ(Ŵ, C) by the derivative of the period map (22). Set ηi j = 〈γi , γ j 〉.

Let X be the total space of the tangent bundle of Stab(D) and define a holomorphic

function W : X → C by the formula

W (zi , θ j ) =
∑

γ∈Ŵ×

Fγ (z1, · · · , zn) ·
eθ(γ )

Z(γ )
.

The variation of F = F(Z) is controlled by the isomonodromy equation (21), which

in the Lie algebra (23) takes the form

d Fγ =
∑

α+β=γ

〈α, β〉 · Fα Fβ · d log Z(β).

when written in terms of the Joyce function W this becomes

∂2W

∂θi∂z j

−
∂2W

∂θ j∂zi

=
∑

p,q

ηpq ·
∂2W

∂θi∂θp

·
∂2W

∂θ j∂θq

, (26)

which obviously implies the Eq. (4).

Reconstructing the connection (25), and hence the Joyce function W , from the

Stokes data (24) involves solving a Riemann–Hilbert boundary-value problem anal-

ogous to the one stated in Section A.1. In the context of the infinite-dimensional Lie

algebra (23) these problems were considered in detail in [5,6].
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