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ABSTRACT

The classic PFC design is simple and intuitive and yet this paper shows that, counter
to expectations, the long standing use of the target information is flawed. Some
simple illustrations will demonstrate that what appears sensible can in fact lead to
inconsistent decision making with many common process dynamics. Having explored
the source of this inconsistency, the paper shows how it can be ameliorated in a
systematic fashion and also investigates the impact of the change on loop sensitivity
to disturbances. Several numerical examples demonstrate the efficacy of the proposal
in the paper.
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1. Introduction

Model Predictive Control (MPC) is popular because it deals systematically with both
difficult dynamics and also constraint handling [1, 2, 3]. However, classical MPC al-
gorithms tend to be expensive and thus there is a significant market for cheaper
alternatives such as Predictive Functional Control (PFC) which, albeit they are not
as rigorous, flexible or effective as optimal MPC algorithms, nevertheless can signif-
icantly outperform competitors such as PID in many SISO cases [4, 5, 6]. Moreover,
PFC is very cheap to code and implement [7, 8] so that use on PLCs or equivalent
software/hardware is straightforward.

1.1. Concepts of human control and links to PFC

The main weakness of PFC originates from its main strength, that is the design is in-
tuitive, based on a reflection of how humans control the world around them. Humans
tend to actuate in proportion to the error; the larger the error the more aggressively we
actuate. The actual amount we actuate is also model based, that is, from experience
we have some idea of the actuation move magnitudes required to obtain a desired out-
put response, both in terms of acceleration and steady-state. Hence, in simple terms,
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humans anticipate (or predict) the output behaviour that will result from a given actu-
ation change and thus chose the input magnitude to give a prediction with the desired
rate of response (or error convergence). One could argue that the human intuition
is based on a prediction model somewhat like Figure 1, that is an expectation that
with a constant change in the input, the output will move fairly smoothly towards
the steady-state. We choose an input value that roughly speaking ensures the predic-
tion matches the ideal behaviour at some point not to far into the future (coincidence
point) as this will give the required acceleration; constant updates/feedback will deal
with steady-state offset.
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Figure 1.: Ideal output trajectory and typical system behaviour.

PFC practitioners sought to translate the insight of Figure 1 into a mathematical
equation that could be implemented in code. Hence, assuming that the ideal target
was a first order response , the coincidence of the prediction and target can be ensured
with the following equality:

Yegnlk = (L= A" + Nyy, (1)

where Y, is the n-step ahead system prediction at sample time &, A is the desired
closed-loop pole which controls the convergence rate from output y; to steady-state
target r and n is a coincidence horizon (a tuning parameter), the point where the
system prediction is forced to match the target trajectory [5]. To retain human intu-
ition, technicians may be asked for a desired closed-loop time constant/settling time,

T, that has a direct relationship with A = e (with the sampling period T') and can
be computed in the code.

Remark 1.1. [t is worth emphasising the industrial success of PFC in all likelihood
stems from the simplicity of the law (1) and Figure 1 which are very simple to explain
and code, and thus of course, straightforward and cheap to implement.

1.2. Weaknesses of PFC and paper contribution

It can be shown that if the system has well damped open-loop dynamics which are
close to lst-order, then a control law based on solving (1) every sample can be very
effective, but critically, where that is not the case then the performance of PFC may



be much more erratic and it is more difficult to obtain strong performance assurances
[9, 10, 11]. This is unsurprising as the conceptual design is based on a simple assump-
tion of behaviour much like shown in Figure 1; if this assumption is faulty then the
corresponding control law to (1) may also be flawed [12, 13].

There are a number of suggestions (e.g. [8, 14]) in the literature for how we can
retain the conceptual simplicity while also improving the consistency between the
prediction assumptions and reality. To some extent these proposals are quite successful,
although the author believes there is a strong reason for exploring methods based in
PID prestabilisation [15, 16], more especially as this has strong synergies with methods
long since adopted in more classical MPC circles [2, 3]. However, the focus of this paper
is not on those issues which link more to the parametrisation of the input trajectory
used to solve (1).

A weakness of PFC that has not been explored in the literature is the definition of
the coincidence point/target point. A preliminary paper [17] exposed the basic issue
but did not study the solution in detail or provide any analysis. This paper will begin
in Section 2 by introducing the problems with the default choice of coincidence point.
Section 3 will then show how a more sensible choice can be made and define a sys-
tematic control structure for implementing this. Numerical illustrations demonstrate
the benefits clearly. Section 4 will then explore the repercussions on sensitivity of the
proposed adjustment. The paper then finishes with some conclusions.

2. Weaknesses of the default concidence point

A core requirement of well posed decision making is consistency from one sample to
the next. Chaotic decision making can lead to chaotic behaviours thus it is important
that in subsequent samples we support and build on earlier decisions rather than
contradicting them. In principle you might expect PFC to lead to consistent decision
making, but as this section will show, a lack of appropriate detailed analysis meant
the PFC community did not spot where some inconsistencies might exist. This section
sets up the mathematical background for PFC carefully before then exposing where
the possible flaws lie.

2.1. Classical PFC background

Using a simple English explanation, the PFC control law is based on the following
proposal:

Find the distance between the target and the current output and assume this distance
will follow a first order decay. Thus if the distance at the current sample is Dy, then
the desired distance n-steps ahead will be \" Dy,.

It is not difficult to see that control law (1) is derived from this, that is:

Dy =1k — Yk
Dyyp = N'"Dy, = Tk = Yksn = A" (Tk — U) (2)
Dk+n =Tkt — Yk+n

For convenience later, define the implied target sequence Ry, based on (2) and a
known steady-state target rp at sampling k as follows:

Ry = {EWhinp) = 1= A")rp + Ay, n=1,2,---} (3)
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Prediction is well understood in the literature (e.g. [1, 3, 18]) and thus assuming a
difference equation model, n-step ahead output predictions take the form:

Yetnlk = Hn% + Pnulj_—l + Qny_k (4)

where matrices/vectors Hy,, P,, @, depend on the model parameters and

Ug 1 Ug—1 Yk
Uk41 1 Uk—2 Yi—1
ugp = . = Up; Uk—1 = . P Yk = : (5)
Uk4n—1 1 Uk—n,, Yk—n,
L

for a denominator/numerator with orders n,, n, respectively and assuming future in-
puts are constant (w4, = uy, for i > 0). Substituting prediction (4) into equality (3)
gives:

Hy Luy + Po=1 + Quik = (1= N")r + X'y (6)
Rearranging the nominal PFC control law is given as:

1
- H,L

uy, (1= A7+ Ny — QuY — Pplik—1 (7)

2.2. Catering for uncertainty

In practice predictions such as (4) would be biased due to parameter uncertainty
and disturbances. In order to ensure offset free tracking, these predictions need to be
corrected so they are unbiased in the steady-state. A classic method for doing this (but
not the only method) is to use an internal model (output y,,,) and find the difference
between the model output and the process output y, as shown in Figure 2 and from
this, define a prediction bias term:

di, = Yp.k — Ym,k (8)

The process predictions will be unbiased in the steady-state if defined as:
Elypknik) = Hy Lug + Pptk—1 4 QnYk + dy, 9)

where the past outputs ¥k are taken from the model and £ [.] is added here to emphasise

that this is an expected value. Consequently, the control law (7) is rearranged as
follows.

Algorithm 2.1. The conventional PFC control law, with offset free tracking, is sum-
marised as follows:

1
H,L

U = (1 — )\n)T + )\"ypyk — Qny@k — P"u’tl —dp (10)
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Figure 2.: Internal model structure.

Remark 2.1. For simplicity of presentation this paper assumes no parameter un-
certainty so that differences between the process and model are solely due to output
disturbances, but control law (10) will ensure offset free tracking for both types of un-
certainty, assuming closed-loop stability.

2.3. Concepts of the tail and consistent decision making after target
changes

A well known concept in the conventional MPC literature is the so-called tail [3]. So,
if a strategy at sample k was to choose a predicted input trajectory as:

T
U, = [Ur, Uk 1 Uktapps ] (11)
then we would reasonably expect, assuming no change in target/disturbance/etc., that
at the next sample the strategy would be very similar, that is:

Uk 1|k+1 = Upg1lks  Ukgolkt1 N Ukg2lks  *°° (12)

For first order models [9], it is straightforward to show that this consistency is em-
bedded with PFC. However, with higher order models the converse is true, that is, it
is possible to show that the proposed trajectories can be quite different. This paper
seeks to explain why this occurs and then propose appropriate modifications.

The core issue is not immediately obvious from (1) as this details only %, but
rather is more apparent in the definition of Ry, given in (3). This signal denotes the
desired 1st order trajectory that the system is being asked to follow and obviously,
for consistency from one sample to the next, one would expect (with no uncertainty)
that:

Ry tijkr1 = Ryyip, Vi 20 (13)

A simple analogy could be driving a car along a road. We do not expect the road we
intend to drive along in the near future to keep changing position from one sample to
the next; if it did, our steering would become chaotic and we could not plan effectively,
much like walking through a bustling crowd.

So, it is worth plotting these target signals for some examples and investigating
whether they do change or not. This section computes the sequences Ry, ;. at succes-
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(b) Sequences for example system (15).

Figure 3.: Implied target sequences Ry, for 0 < i < 10 from (3) at successive

sampling instants k.

sive sampling instants and overlays on Figs. 3a,3b for the two examples below.

e Define the second order system (14) with n =5 and A = 0.8,

01zt 04272
1 —1.4z"140.45272

G(2)

e Define a third order example (15) with n = 10 and A = 0.92,

G(2)

33271 4+0.31272-3273

T 1927621 +2.5422 — (.782-3

(14)

(15)

In both figures it is clear that the target sequence Ry, # Riiik41; at subsequent
samples the coincidence point is therefore notably different which is a bit like the
road moving. We are being asked for inconsistent targets from one sample to the next
with the differences being especially notable in fast transients and gradually becoming
smaller as the closed-loop output approaches steady-state.

Remark 2.2. Readers might note that, in affect, the changes in the target seem to



be equivalent to a lag. So, the evolution of the target means a gradually slowing down
compared to the original target.

Remark 2.3. As noted above, this behaviour does not occur when applying PFC to
first order models, as seen in Figure 3¢ based on example (16).

1.2271

G2) =100

(16)

2.4. Repercussions of target changes on output behaviour

The previous section demonstrated clearly how the target trajectory is typically sub-
ject to significant lag when PFC is applied to higher order systems. This section
elaborates the issue further by considering the control law itself which is based on
a coincidence point (1), that is matching the prediction to the target n-steps ahead.
What is clear from the following figures is that the coincidence points do not move
smoothly as one would like or expect, with the consequence that the resulting closed-
loop behaviour could be far from that which was desired.

Specifically, Figures 4a,4b show the coincidence points for examples (14,15) along
side the corresponding optimised predictions at each sample; Figure 4c does the same
for the first order example (16).

(1) Again it is clear that one ends up following a lagged version of the orginal target
and thus, the closed-loop behaviour will be noticeably slower than the target
behaviour. This undermines the role of A as a tuning parameter and a core
selling point of PFC which is that, one can choose the desired closed-loop time
constant.

(2) The coincidence points can be somewhat meandering, going up and down and
with inconsistent changes, which is far from what is desired and cannot be a
good basis for decision making.

(3) The resulting predictions at subsequent samples change significantly, thus show-
ing inconsistent decision making which is a worrying flaw for a predictive based
method, especially when constraint handling and recursive feasibility are to be
considered.

(4) The lag does not occur in the coincidence points for the first-order case where
the intuitive definition of PFC works best.

In summary, a core tenent of PFC is that the designer is able to select the desired
closed-loop time constant and have confidence that the closed-loop behaviour will be
close to this as this is the main tuning parameter. This works well with first order
systems but clearly, for systems with high order dynamics this is often far from true
and thus the core selling point of simple and intuitive tuning, alongside prediction to
facilitate constraint handling, is lost.

3. The reasons PFC use of feedforward information is flawed and
improvements

The previous section has demonstrated clearly the lag that occurs in the target trajec-
tory for PFC with higher order models where inevitably the coincidence horizon must
be selected n > 1. It is perhaps unsurprising then to match this with the observations
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of other papers (e.g. [9, 10]) which have noted that in a conventional PFC agorithm
the tuning parameter A has limited impact for many systems. Hence, although the
previous section has demonstrated the lagging through the gradual slowing down of
the target trajectory, an analysis of the closed-loop shows that this has in fact become
embedded into the closed-loop poles rather than the feedforward.

This section will present some analysis which explains more clearly how the lag arises
and which then provides insight into how it might be removed. For completeness it
is also shown that the same lagging in effect happens with disturbance rejection and
thus a conceptually similar solution is also available there. Finally, to enable more
systematic sensitivity analysis, in a later section the proposal is reorganised into an
analytic form.

3.1. Analysis of the causes of the lag

The change in target from one sample to the next is due to an inconsistency between
assumptions and indeed, in mainstream MPC concepts of the tail and the importance
of consistency from one sample to the next and now long standing [2, 3]. The issue
arises because we have two two parallel prediction processes: (i) what we would like
the system to do and (ii) what the system actually does. The difficulty is that the first
of these is based on coincidence for an n-step ahead prediction while the latter we only
take one sample at a time, so one-step ahead. Hence, considering the one-step ahead
predictions only:

e The desired trajectory shape one-step ahead is given by:
Ry = (1= A1 + Ay
e The actual system behaviour (difference equation model) one step ahead is:

Ykt = Do bitth—ip1 — 325 ajYk—j11
whereas uy, is selected to meet (1) which is based on an n-step ahead coincidence.

For consistency we need Ry = yg+1 but as will be shown, this often does not
happen.

Theorem 3.1. The updated trajectory sequence Ry 41, © > 1 at the next sample is
consistent with the sequence Ry ;. from the previous sample if and only if:

Y1 = R = (1= M)r+ Ayg (17)
Proof. The sequences for the trajectories are given as:
Rppifirr = (L= A0+ Ny R = (1= XT)r 4+ Ay, (18)
It is clear that Ry g1 = Rgqq requires:
(1= A+ Xiggyr = (1= A 4 Ay, (19)
Substitute in the proposed identity yx+1 = (1 — A\)r + Ayx and we have:
(1= A)r 4 N[(1 = A)r + Ayg] = (1= A + ALy, (20)

which is clearly satisfied. O



Corollary 3.1. For anything other than a first order system, the identity (17) is
highly unlikely to be satisfied when n # 1 and thus lagging of the target will occur.

Proof. Use zero initial conditions and positive r without loss of generality. A generic
proof is not possible but we can use knowledge of typical high order systems to make
one obvious observation. The one-step ahead prediction implicit in (17) implies a
steep initial output gradient, as it matches a first order step response. However, for
higher order systems containing 2nd order derivatives and inertia, the initial gradient
is typically small and often zero . Consequently, after just one sample, there is often
little movement. In consequence:

{Fuk = wrts Vi st Yppup = (1= A"t = {Eyppp) < (1= A)r} (21)

For a non-minimum phase system the result is easier to prove as in that case yjnx =
(1 =A"r = Elygqs] < 0 for a sensible choice of coincidence horizon and thus
Yr+1 has the wrong sign. O

Remark 3.1. It is useful to illustrate (21) on examples (14,15) respectively.

(1) Solving condition (1) with A = 0.8,n = 10,r = 1 gives {yx+10 = —1.478uy —
0.56ug_1 + 1.29y, — 0.63yx_1 = (1 — AMO)r} = wu= —0.455. Using this input
gives Y11 = —0.0455 which clearly is far less than the 0.2 required by (17) and
moreover is of the wrong sign.

(2) Solving (1) with A = 0.92,n = 10,7 = 1 gives {yg+10 = 0.22u, — 0.06ug_1 —
0.07ug_o + 28.56y, — 47.Tyr_2 +20.1yx_3 = (1 = A0} = u = 2.579. Using
this input gives yrr1 = 0.0086 which clearly is only 10% of the 0.08 movement
required by (17).

So in summary, this section has shown that it is fairly typical for the change in
the output (one -step ahead) to be far less than the change in the target trajectory.
However, in a conventional PFC algorithm, the target trajectory is always reset based
on the actual output at each sample and thus, for most systems, the target trajectory
is continually changed, or in effect lagged. The amount of lagging is linked to the
coincidence horizon, choice of A and system dynamics and thus there does not exist a
simple formulae capturing this.

It is also noted that this section has not considered the disturbance signal yet. This
is deliberate as it will be more convenient for the reader to introduce that aspect once
the proposal for handling target information is properly framed.

4. Using systematic feedforward design to compensate for innate PFC
lagging

Now that the reason for the inefficacy of the tuning parameter X is better understood,
it is possible to consider systematic modifications to ensure that the closed-loop be-
haviour is closer to what we want. This paper takes a different approach to earlier
work [8, 10] which focussed on the loop tuning and instead here considers the role of
the feedforward terms. It is well known that feedforward can be useful for improving
performance without effecting loop sensitivity and thus there is a good expectation
that this approach might be effective.
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4.1. Modification of PFC control law to remove lag

The reader will no doubt be thinking that the choice of target is to some extent in
the control of the user, so why not manually prevent the drift noted in figures 3a-
3b. However, such a change requires a radical overhaul of the original PFC law (1), a
rethink in how uncertainty is incorporated and quite possibly will lead to very different
loop sensitivity.

The lag arises due to the inconsistency in (21). We can remove this inconsistency
by making the target trajectory independent of the current system state/output and
depend solely on the target information supplied. It is noted that removing the de-
pendency of the implied target sequence Rj; on the current output measurement y,, .
may effect the management of uncertainty, so this issue is dealt with in the following
subsection. The proposed algorithm is given next.

Algorithm 4.1.

e Target initialisation: Without loss of generality and using superposition, take
the case with zero initial conditions and a change in the target at k = 0: rp, =
0, k<0 and rp =7, k> 0. The implied target sequence Ry ;. is given as:

Rk+i|k = [(1_)‘)a(1_)‘2)a (1_)‘3)¢"']T
Ro (22)
= [Rps1iks Brgopir Birsjis ]

e Simple target update: Assuming no change in steady-state target r, at the
next sample k + 1, update this sequence by removing the first term and hence:

Rypifeer = [(1=23),(1=X%), (1 =XY),--]r

23
= [Ritops Rtk Rt ] (23)

e Updates when target changes: Next consider a scenario where the target
changes, so for example rp,—ri_1 # 0,k = h. The target trajectory needs to retain
the history information about earlier targets and be modified to take account of
this change, hence:

Ry, = [(1=X),(1=22), (1=X), - ](rn = 1)

24
+[Rh+2|h—l7Rh+3‘h_]_,Rh+4|h_l’- . ] ( )

Remark 4.1. The critical observation about Algorithm 4.1 is that the target trajectory
s solely dependent on target information and no longer has any dependence on the
current system output, thus is quite different to (1).

The modifed PFC algorithm is now defined.

Algorithm 4.2. The nominal PFC control law is given from:

ElYyp ktnk] = Risnlk (25)
Where the target trajectory Ry is updated as in Algorithm 4.1.

It is clear that as the target no longer has an explicit dependence on the ouput

11



measurement condition and instead solely uses history information from the target,
therefore the the target sequence is consistently defined from one sample to another
and no lag is induced.

4.2. Modified PFC control law with handling of uncertainty

In order to cater for uncertainty such as disturbances and parameter uncertainty, it
is necessary to use unbiased predictions as outlined in section 2.2. Hence, control law
(25) could be expanded to read:

E[yp,k+n\k] = Rk+n\k = Ym,k+nlk + di (26)

where the subscript p is used to denote actual system output value and subscript m
for the model output (Figure 1). In practice, the user estimates the values of y, ;i
using the following:

di = Ypk — Umks  ElYpinlk] = Ymtnlk + i (27)

Thus, rearranging (26) gives a possible modified law based on the following:

Ym gtk = Brink — di (28)

However, returning to the orginal PFC control law of (1) and adding in the distur-
bance/bias correction term, gives:

Ytk T Ak = (1 = N")r + X' [ym k + di] (29)
or alternatively
Ymptnlk = (L= A")[r — di] + \"Ym i (30)

Equation (30) raises an interesting question because the bias correction term appears
in the control law in an analogous way to the target information, and hence the
modification of the PFC control law proposed in (25) could be equally applied to this
term. Hence, defining an initial ‘bias correction’ future term as follows:

Bryip = [L= A 1=X2 1=\, ]d; (31)

Ro

one can very quickly see an analogous update expression to (24), that is:
By, yijh = Rol(dn — dn—1)] + [Bhgojp—15 Bha3jh—1> Bhgajp—1," ] (32)

The proposed modified PFC control law is then given in the following algorithm.

Algorithm 4.3.

(1) Update the target trajectory and bias correction terms using (24,32).
(2) Define the control law by solving for input ug:

Ym otnlk = Bl = Bgnjl = Hnlp + Ptk + Qn¥k (33)

12



For completeness, it is important to establish the proposed control law (33) achieves
offset free tracking in the presence of uncertainty.

Theorem 4.1. Assuming closed-loop stability and in the unconstrained case, PFC
Algorithm 4.8 will ensure the system outputs converge to the steady-state target.

Proof. In the unconstrained case, control law (33) is fixed and thus normal linear
analysis can be deployed. A simple proof considers the steady-state this loop reaches
and confirms whether or not that is consistent with zero offset. Steady-state assumes
that past and future inputs are constant and no recent changes in the target and bias
correction terms. Thus, at steady-state (subscript ss), the following identities must
hold:

Ymk = Ymk4nlk = Gsstk = Bynk — Brgnls (34)

Recursive use of update equation (24,32) with 7y, d), constant will lead to Ry, =
7, Byijk = d, Vi, and hence (34) can be rewritten as:

Ym,k = Gssuk =r—d (35)

that is, no steady-state offset. O

4.3. Numerical illustrations for proposed algorithm

This section will demonstrate the efficacy of the proposed algorithm using examples
(14), (15). Specifically it will illustrate clearly that by removing the lag in the target
trajectories, the closed-loop behaviour is now closer to the orginal desired dynamic in
terms of its convergence; clearly fast transients for high order systems will rarely be
able to follow a first order dynamic closely.

The closed responses for a change in the target and a change in the disturbance for
examples (14,15) are in in Fig. 5a, 5b and Fig 6a, 6b respectively. Both examples have
the expected slow transient response, especially given one is non-minimum phase. How-
ever, thereafter the trajectories clearly approach the desired trajectory much better
than a classical PFC law and the speed-up is also retained for disturbance rejection.

5. Closed-loop interpretations and sensitivity analysis

It is clear from the previous figures that the closed-loop responses have changed, and
consequently so has sensitivity and the closed-loop poles. Hence, it is important to
look at both the poles and sensitivity more closely to gain insights into the impact
of changes in the PFC algorithm. Moreover, the reader may have noticed that the
update expression, for example (24), implicitly requires a very long vector with history
information which is clumsy, and potentially requiring exccessive memory. This section
first demonstrates how the proposed use of feedforward information can be presented
in a more systematic transfer function relationship that lends itself to loop analysis
and much simpler implementation. From this the loop sensitivity analysis is developed
followed by numerical illustrations and conjectures.
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5.1. Analytic expressions for feedforward action

The proposal of this paper is that feedforward information utilises the expressions in
(24,32) within the control law of (33). Here it is shown that expressions (24,32) have
a more compact realisation.

Lemma 5.1. The expression (24) capturing the inclusion of target information into
the control law can be represented with a difference equation model of the form:

Ry npe = 7 — Awy, (36)
where
W = AWg_1 + 01K Orp =718 — Tp_1 (37)

Proof. First expand out (24) in terms of all the impacts of past information, and
hence the entire future trajectory can be captured with the infinite sequence:

Rk-i-iIk? {'L =12, } = [(1 - )‘)7 (1 - )‘2)7 (1 - )‘3)7 e ](rk - kal)
F(T =X, (1 =A%), (1 =AY, )(rp—1 — r4-2)
HT=X3), (1= A1), (1=X°), - )(rh—2 — 1%-3)
(38)
It can be reduced to a simpler form by considering just a single coincidence horizon
or point in the future:

Ry = (L= AN")ore + (1= X" D0y + (1= AN"2)ryg + - (39)
which, noting that r,, =, 07—, can be rearranged to be:
Ry = Th — N1 — N6y = A28, — - (40)
Finally, consider the output of the difference equation (37):
o0
W = A\Mwg_1 + Z Nors_ (41)
i=0
Hence, substituting (41) into (40) gives:
Ry o = ri — Awyg (42)

O]

Corollary 5.1. Disturbance information can be included into the control law (33)
using a model of the form:

Riinpk — Bignje = Tk — di, — A"wy;  wg, = Awg—q + g, — ddy; (43)

This is given without proof as analogous to the previous lemma.

15



Theorem 5.1. A transfer function representation of (43) is given from Ty, = Ry —

_ Z_l n
1) = 1= S5 e - a0 (44)

Proof. We have that Ry, x — Brynk = rk — dp — A\"wy and also that wy = Awg—1 +
drp — ddy. The latter of these can be rearranged using z-transforms to take the form:

B (1-— z_l)
w(z) = m(r(z) —d(z)) (45)

as 0r(z) = (1 — 27 Yr(2),0d(z) = (1 —2z"1)d(2). It then follows immediately, by taking
z-transforms of all terms, that:

. Zl n
1) = [1- $ =225 0 - ae (46)
Fi(z)

O
Theorem 5.2. The PFC control law (33) can be expressed in transfer function form.
Proof. The control law is given as:
Ymptnlk = Brynk = Brynk = Tk = HnLug + PpUg—1 + QnYmk (47)
which can be rearranged as:

[H L, Pk = —QuYmk + Ty (48)
D,

Rewriting in terms of z-transforms (e.g. [3]) gives:

Dy(2)u(z) = =Qu(2)ym(2) + T(2) = —=Qn(2)ym(2) + Fi(2)[r(2) — d(2)] (49)

O

5.2. Sensitivity functions for the proposed PFC and conventional PFC

The previous section has described the transfer function expression for the proposed
PFC control law in (49). The conventional PFC algorithm of (10) has a similar form
of expression which here will be denoted as:

De(2)u(z) = = [Qn(2) = X' ym(2) + Fe(2)[r(2) —d(2)];  Fe=1-X" (50)
Qe(2)

16
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Figure 7.: Block diagram representation of PFC laws (49,50).

The interesting point to note here is that, by inspection of both (10,48), one can see
that:

Dy(2) = De(2); Qn(2) # Qe(2);  Fi(2) # Fe(2) (51)

Consequently, the two laws differ solely in how they use the feedforward information
on the target and the bias information.

Remark 5.1. It should be noted that subscript t is use to denote the proposed algo-
rithm and subscript c is for the traditional PFC.

Lemma 5.2. Algorithms 2.1, 4.3, summarised in control laws (49,50) have different
sensitivity and different closed-loop pole polynomials.

Proof. This follows by noting that the F.(z) terms multiplies onto bias information,
that is d(z) = yp(2) — ym(2) and thus in effect introduces a further feedback loop.
Hence, the control law (50) can be expressed as:

De(2)u(z) = Fe(2)r(2) = Fe(2)yp(2) — [Qc(2) — Fe(2)] ym(2) (52)
—_——
N.(2)
As Fy(z) # Fe(z) and Qn(z) # Qc(2), different parameters in the feedback loop must
lead to different sensitivities for control law (49). The appropriate block diagram for

both algorithm is shown in Figure 7 (note that no subscripts are assigned to keep it
general). O

Theorem 5.3. Assuming no parameter uncertainty, the closed-loop poles for (49) can
be determined from:

Fi(2) = Di(2)a(z) + Fi(2)b(2) (53)

Proof. From Figure 7, we can represent Dy(z)~' = [Dy(2) + Ny(2)ym(2)]~" where

17



ym(z) = a(z)u(z). Thus, the closed-loop pole can be computed as:

Pi(2) = 1+ Fy(2)Dy(2) 71 Gp(2) (54)
Then, combine (54) with system/process model Gp(z) = %, ones can get (53). O

Corollary 5.2. The closed-loop poles for control law (50) have the analogous struc-
ture, but with F.(z) rather than Fy(z) and D.(z) rather than Dy(z).

Po(2) = De(2)a(z) + Fe(2)b(2) (55)

Theorem 5.4. The output sensitivity to disturbance transfer function for Algorithm
(49) can be form as:

Sya = a(2)Pi(2) L Dy(2) (56)

Proof. Based on Figure 7, the output sensitivity to disturbance can be formed by
finding a transference from y, to Dy as:

Sya = [1+ Py(2)De(2) ' Gp(2)] ! (57)

Substituting the pole (53) and system/process model Gp(z) = ZE?) into (57), ones can

form the transfer function as (56). O

Corollary 5.3. Similarly, the output sensitivity to disturbance for control law (50)
can be formed with P.(z) and D.(z).

Sya = a(2)P(2) "' D.(2) (58)

5.3. Numerical Illustrations
This section uses examples (14,15) and compares:

(1) The dominant closed-loop pole achieved for various pairs of n, A with Algorithms
4.3,2.1 (see Figures 8 and 9).
(2) The sensitivity plot to output disturbances (see Figure 10).

Considering Figures 8 and 9, as expected, for a smaller coincidence horizon n, the
dominant closed-loop pole is closer to the desired one A. Conversely, with larger n,
the system will eventually converge to its open loop behaviour. However, one can
clearly see that Algorithm (4.3) managed to reduce the lag in tracking the desired A,
especially within a smaller n, for both cases where the dominant closed-loop pole is
constant within this range. Hence, it may provide faster system convergence compared
to the traditional PFC as discussed in Section 4.3. Besides, this information also is
very useful to setup a guideline in selecting a suitable tuning parameters n, A for a
system.

For the output sensitivity to disturbance as shown in Figure 10, the new Algorithm
(4.3) improves the system sensitivity in the low and mid frequency range and produces
almost the same sensitivity in the higher frequency range for both examples. The main
reason behind this is because its target trajectory now becomes independent on the
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measured output y,,. Hence, Algorithm (4.3) may provide faster response in handling
disturbances as compared to Algorithm 2.1 as discussed in the previous section (and
Figures 5 and 6).

6. Conclusions

This paper makes two important contributions to algorithms for Predictive Functional
Control.

(1) An important insight is that the main tuning parameter which conventionally is
set as the desired closed-loop time settling time, or equivalently desired closed-
loop pole, usually cannot be delivered. While this fact had been observed in the
past it had not been explained. This paper gives clear and novel insight into how
lag enters a conventional PFC law, and thus causes the closed-loop response to
be slower than expected/desired.
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(2.1,4.3).

(2) Once the cause of the lagged responses has been understood, the paper is able
to propose systematic modifications to avoid this. This requires an imaginative
change from the existing control law definition, but in fact the change retains the
same fundamental concepts and intuition. It introduces the need for a history
variable, but it is shown that this can be handled with a first order model which
thus is simple to code and implement, thus the resulting algorithm is no more
complex than the classical PFC to code.

The responses for the proposed PFC algorithm are encouraging and demonstrate im-
proved tuning properties. It is not surprising that loop sensitivity is modified, as the
behaviour is now different, so for completeness the paper also illustrates the sensitivity
or the proposed modification.

In terms of future work, this paper has not explicitly considered constraint handling
although the basic algorithm would not require anything novel compared to what exists
in the literature and thus is not worth including here. However, there have been other
modifications to PFC in the literature in recent years which used a different approach
to tackle tuning efficacy, and thus it would be interesting to incoporate the proposal
here into some of those and discern whether even better tuning efficacy can result.
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